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Disclaimer

These notes are not necessarily an accurate representation of what happened in class. The notes
written before class say what I think I should say. I sometimes edit the notes after class to make
them way what I wish I had said.

There may be small mistakes, so I recommend that you check any mathematically precise statement
before using it in your own work.

These notes were last revised on December 8, 2015.

21.1 Overview

In this lecture, we will perform a crude analysis of the performance of spectral partitioning al-
gorithms in what are called stochastic block models or a planted partition model. The name you
choose largely depends on your community and application. As we are especially interested today
in partitioning, we will call it the planted partition model. In this model, we build a random graph
that has a natural partition.

The simplest model of this form is for the graph bisection problem. This is the problem of partition-
ing the vertices of a graph into two equal-sized sets while minimizing the number of edges bridging
the sets. To create an instance of the planted bisection problem, we first choose a paritition of the
vertices into equal-sized sets X and Y . When then choose probabilities p > q, and place edges
between vertices with the following probabilities:

Pr [(u, v) ∈ E] =


p if u ∈ X and v ∈ X
p if u ∈ Y and v ∈ Y
q otherwise.

The expected number of edges crossing between X and Y will be q |X| |Y |. If p is sufficiently
larger than q, then every other bisection will have more crossing edges. If p is too close to q, then
the partition given by X and Y will not be the smallest. We will consider the case p = 1/2 and
q = p − 24/

√
n. If q = p − ε/

√
n for small ε, then one cannot hope to distinguish between X and

Y .

In this lecture, we will show that this partition can be recovered from the second eigenvector of the
adjacency matrix of the graph. This will be a crude version of an analysis of McSherry [McS01].
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McSherry analyzed more general models than this, and his analysis has since been tightened and
better results have been obtained in a number of recent papers. To get started, look at [MNS14,
DKMZ11, BLM15, Mas14, Vu14]. My goal today is just to give you the idea behind his analysis, as
it has had a substantial impact well beyond stochastic block models. McSherry’s analysis considers
the adjacency matrix of the generated graph as a perturbation of one ideal probability matrix.
In the probability matrix the second eigenvector provides a clean partition of the two blocks.
McSherry shows that the difference between the generated matrix and the ideal one is small, and
so the generated matrix can be viewed as a small perturbation of the idea one. He then uses matrix
perturbation theory to show that the second eigenvector of the generated matrix will probably be
close to the second eigenvector of the original, and so it reveals the partition.

The idea of using perturbation theory to analyze random objects generated from nice models has
been very powerful. For example, it inspired Shkolnisky and Singer to design an exciting algorithm
for the image processing problems that occur in cryo-electron microscopy [SS11, SS12].

I finish this introduction with a warning. Stochastic block models have been the focus of a lot of
research lately, and there are now very good algorithms for solving problems on graphs generated
from these models. But, these are just models and very little real data resembles the product of
these models. So, there is no reason to believe that algorithms that are optimized for these models
will be useful in practice. Neverthelss, some of them are.

21.2 The Perturbation Approach

As long as we don’t tell our algorithm, we can choose X = {1, . . . , n/2} and Y = {n/2 + 1, . . . , n}.
Let’s do this for simplicity.

Define the matrix

M =



p · · · p q · · · q
...

...
p · · · p q · · · q
q · · · q p · · · p
...

...
q · · · q p · · · p


=

[
pJ n/2 qJ n/2

qJ n/2 pJ n/2

]
,

where we write J n/2 for the square all-1s matrix of size n/2.

The adjacency matrix of the planted partition graph is obtained by setting A(a, b) = 1 with
probability M (a, b), subject to A(a, b) = A(b, a) and A(a, a) = 0. So, this is a random graph, but
the probabilities of some edges are different from others.

We will study a very simple algorithm for finding an approximation of the planted bisection: com-
pute v2, the eigenvector of the second-largest eigenvalue of A. Then, set S = {a : v2(a) < 0}. We
guess that S is one of the sets in the bisection. We will show that under reasonable conditions on
p and q, S will be mostly right. For example, we might consider p = 1/2 and q = 1/2 − 12/

√
n.

Intuitively, the reason this works is that A is a slight perturbation of M , and so the eigenvectors
of A should look like the eigenvectors of M .
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To see why this would be useful, let’s look at the eigenvectors of M . Of course, the constant vectors
are eigenvectors of M . We have

M1 =
n

2
(p+ q)1,

and so the corresponding eigenvalue is

µ1
def
=

n

2
(p+ q).

The second eigenvector of M has two values: one on X and one on Y . Let’s be careful to make
this a unit vector. We take

w2(a) =

{
1√
n

a ∈ X
− 1√

n
a ∈ Y.

Then,

Mw2 =
n

2
(p− q)w2,

and the corresponding eigenvalue is

µ2
def
=

n

2
(p− q).

As M has rank 2, all the other eigenvalues of M are zero.

Let A be the adjacency matrix of the generated graph. I wish to consider

Â
def
= A + pI .

Note that the eigenvectors of Â and A are the same, so considering Â won’t change our analysis
at all. But, Â is closer to M . We now consider the difference between Â and M :

R = Â−M .

For (a, b) in the same component,

Pr [R(a, b) = 1− p] = p and

Pr [R(a, b) = −p] = 1− p,

and for (a, b) in different components,

Pr [R(a, b) = 1− q] = q and

Pr [R(a, b) = −q] = 1− q.

One can use matrix concentration bounds to prove that ‖R‖ is probably small. The bounds like
those we studied in Lecture 17 are too general to give a sharp result here. So, instead we appeal
to a result of Vu [Vu07, Theorem 1.4], which implies the following.

Theorem 21.2.1. There exist constants c1 and c2 such that with probability approaching 1,

‖R‖ ≤ 2
√
pn+ c1(pn)1/4 lnn,

provided that

p ≥ c2
ln4 n

n
.
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We apply the following corollary.

Corollary 21.2.2. There exists a constant c0 such that with probability approaching 1,

‖R‖ ≤ 3
√
pn,

provided that

p ≥ c0
ln4 n

n
.

In fact, Alon, Krivelevich and Vu [AKV02] prove that the probability that the norm of R exceeds
this value by more than t is exponentially small in t. However, we will not need that fact for this
lecture.

If we used concentration bounds such as those from Lecture 17, the 3 in the above bound would
be a

√
log n. Ignoring the details of the asymptotics, let’s just assume that ‖R‖ is small, and

investigate the consequences.

21.3 Perturbation Theory for Eigenvectors

Let α1 ≥ α2 ≥ · · · ≥ αn be the eigenvalues of Â, and let µ1 > µ2 > 0 = µ3 = · · · = µn be the
eigenvalues of M . Using the Courant-Fischer theorem, one can prove that

|αi − µi| ≤ ‖R‖ .

I was going to make this an exercise, but I forgot. In particular, if

‖R‖ < n

4
(p− q),

then
n

4
(p− q) < α2 <

3n

4
(p− q)

and, assuming q > p/3, we have

α1 > µ1 − ‖R‖ >
n

2
(p+ q)− n

4
(p− q) ≥ 3n

4
(p− q).

So, we can view α2 as a perturbation of µ2. The natural question is whether we can view v2 as a
perturbation of w2.

The Davis-Kahan theorem [DK70] says that v2 will be close to w2, in angle, if the norm of R
is significantly less than the distance between µ2 and the other eigenvalues of M . That is, the
eigenvector does not move too much if its corresponding eigenvalue is isolated.

Theorem 21.3.1. Let Â and M be symmetric matrices. Let R = M − Â. Let α1 ≥ · · · ≥ αn be
the eigenvalues of Â with corresponding eigenvectors v1, . . . , vn and let Let µ1 ≥ · · · ≥ µn be the
eigenvalues of M with corresponding eigenvectors w1, . . . ,wn. Let θi be the angle between v i and
w i. Then,

sin 2θi ≤
2 ‖R‖

minj 6=i |µi − µj |
.
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Note that this theorem is really bounding the angle between the lines through the eigenvectors,
rather than the particular eigenvectors. For this reason, the angle can never be more than π/2. You
can find a proof of this theorem in [Dem97, Theorem 5.4]. I will prove and use a slightly weaker
statement in which we replace 2θ with θ.

21.4 Partitioning

Consider
δ = v2 −w2.

For every vertex i that is misclassified by v2, we have |δ(i)| ≥ 1√
n

. So, if v2 misclassifies k vertices,

then

‖δ‖ ≥
√
k

n
.

As w2 and v2 are unit vectors, we may apply the crude inequality

‖δ‖ ≤
√

2 sin θ2

(the
√

2 disappears as θ2 gets small).

To combine this with the perturbation bound, we assume q > p/3, and find

min
j 6=2
|µ2 − µj | =

n

2
(p− q).

Assuming that ‖R‖ ≤ 3
√
pn, we find

sin θ2 ≤
2 · 3√pn
n
2 (p− q)

=
12
√
p

√
n(p− q)

.

So, the number k of misclassified vertices satisfies√
k

n
≤
√

212
√
p

√
n(p− q)

,

which implies

k ≤ 288p

(p− q)2
.

So, if p and q are both constants, we expect to misclassify at most a constant number of vertices.
If p = 1/2, and q = p− 24/

√
n, then we get

288p

(p− q)2
=
n

4
,

so we expect to misclassify at most a constant fraction of the vertices.
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21.5 Proof of the Davis-Kahan Theorem

For simplicity, we will prove a statement that is weaker by a factor of 2.

Proof of Theorem 21.3.1. By considering the matrices M − µiI and Â− µiI instead of M and Â,
we can assume that µi = 0. As the theorem is vacuous if µi has multiplicity more than 1, we may
also assume that µi has multiplicity 1 as an eigenvalue, and that w i is a unit vector in the nullspace
of M .

Our assumption that µi = 0 also leads to |λi| ≤ ‖R‖.

Expand v i in the eigenbasis of M , as

v i =
∑
j

cjw j , where cj = wT
j v i.

Setting
δ = min

j 6=i
|µj | ,

we may compute

‖Mv i‖2 =
∑
j

c2jµ
2
j

≥
∑
j 6=i

c2jδ
2

= δ2
∑
j 6=i

c2j

= δ2(1− c2i )
= δ2 sin2 θi.

On the other hand,

‖Mv i‖ ≤ ‖Av i‖+ ‖Rv i‖ = λi + ‖Rv i‖ ≤ 2 ‖R‖ .

So,

sin θi ≤
2 ‖R‖
δ

.

It may seem surprising that the amount by which eigenvectors move depends upon how close their
respective eigenvalues are to the other eigenvalues. However, this dependence is necessary. To see
why, first consider a matrix with a repeated eigenvalue, such as

A =

[
1 0
0 1

]
.
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Now, let v be any unit vector, and consider

B = A+ εvvT .

The matrix B will have v as an eigenvector of eigenvalue 1 + ε as well as an eigenvalue of 1. So, by
making an arbitrarily small perturbation, we were able to select which eigenvalue of B was largest.

To make this effect clearer, let w be any other unit vector, and consider the matrix

C = A+ εwwT .

So, w is the eigenvector of C of eigenvalue (1 + ε), and the other eigenvalue is 1. On the other
hand,

‖C −B‖ ≤
∥∥εwwT

∥∥+
∥∥εwwT

∥∥ = 2ε.

So, while B and C differ very little, their dominant eigenvectors can be completely different. This
is because the eigenvalues were close together.

21.6 Further Reading

If you would like to know more about bounding norms and eigenvalues of random matrices, I
recommend [Ver10] and [Tro12].
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