
Spectral Graph Theory Lecture 22

Expected Characteristic Polynomials
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Disclaimer

These notes are not necessarily an accurate representation of what happened in class. The notes
written before class say what I think I should say. I sometimes edit the notes after class to make
them way what I wish I had said.

There may be small mistakes, so I recommend that you check any mathematically precise statement
before using it in your own work.

These notes were last revised on December 8, 2015.

22.1 Overview

Over the next few lectures, we will see two different proofs that infinite families of bipartite Ra-
manujan graphs exist. Both proofs will use the theory of interlacing polynomials, and will consider
the expected characteristic polynomials of random matrices. In today’s lecture, we will see a proof
that some of these polynomials are real rooted.

At present, we do not know how to use these techniques to prove the existence of infinite families
of non-bipartite Ramanujan graphs.

The material in today’s lecture comes from [MSS15], but the proof is inspired by the treatment of
that work in [HPS15].

22.2 Random sums of graphs

We will build Ramanujan graphs on n vertices of degree d, for every d and even n. We begin by
considering a random graph on n vertices of degree d. When n is even, the most natural way to
generate such a graph is to choose d perfect matchings uniformly at random, and to then take their
sum. I should mention one caveat: some edge could appear in many of the matchings. In this case,
we add the weights of the corresponding edges together. So, the weight of an edge is the number
of matchings in which it appears.

Let M be the adjacency matrix of some perfect matching on n vertices. We can generate the
adjacency matrix of a random perfect matching by choosing a permutation matrix Π uniformly at
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random, and then forming ΠMΠT . The sum of d independent uniform random perfect machings
is then

d∑
i=1

ΠiMΠT
i .

In today’s lecture, we will consider the expected characteristic polynomial of such a graph. For a
matrix M , we let

χx(M )
def
= det(xI −M )

denote the characteristic polynomial of M in the variable x.

For simplicity, we will consider the expected polynomial of the sum of just two graphs. For gener-
ality, we will let them be any graphs, or any symmetric matrices.

Our goal for today is to prove that these expected polynomials are real rooted.

Theorem 22.2.1. Let A and B be symmetric n-by-n matrices and let Π be a uniform random
permutation. Then,

EΠ

[
χx(A + ΠBΠT )

]
has only real roots.

So that you will be surprised by this, I remind you that the sum of real rooted polynomials might
have no real roots. For example, both (x − 2)2 and (x + 2)2 have only real roots, but their sum,
2x2 + 8, has no real roots.

Theorem 22.2.1 also holds for sums of many matrices. But, for simplicity, we restrict ourselves to
considering the sum of two.

22.3 Interlacing

Our first tool for establishing real rootedness of polynomials is interlacing.

If p(x) is a real rooted polynomial of degree n and q(x) is a real rooted polynomial of degree
n − 1, then we say that p and q interlace if p has roots λ1 ≥ λ2 ≥ · · · ≥ λn and q has roots
µ1 ≥ µ2 ≥ · · · ≥ µn−1 that satisfy

λ1 ≥ µ1 ≥ λ2 ≥ µ2 · · · ≥ λn−1 ≥ µn−1 ≥ λn.

We have seen two important examples of interlacing in this class so far. A real rooted polynomial
and its derivative interlace. Similarly, the characteristic polynomial of a symmetric matrix and the
characteristic polynomial of a principal submatrix interlace.

When p and q have the same degree, we also say that they interlace if their roots alternate. But,
now there are two ways in which their roots can do so, depending on which polynomial has the
largest root. If

p(x) =

n∏
i=1

(x− λi) and q(x) =

n∏
i=1

(x− µi),



Lecture 22: November 18, 2015 22-3

we write q → p if p and q interlace and for every i the ith root of p is at least as large as the ith
root of q. That is, if

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λn ≥ µn.

Lemma 22.3.1. Let p and q be polynomials of degree n and n− 1 that interlace and have positive
leading coefficients. For every t > 0, define pt(x) = p(x)− tq(x). Then, pt(x) is real rooted and

p(x)→ pt(x).

Proof Sketch. For simplicity, I consider the case in which all of the roots of p and q are distinct.
One can prove the general case by dividing out the common repeated roots.

To see that the largest root of pt is larger than λ1, note that q(x) is positive for all x > µ1, and
λ1 > µ1. So, pt(λ1) = p(λ1)− tq(λ1) < 0. As pt is monic, it is eventually positive and it must have
a root larger than λ1.

We will now show that for every i ≥ 1, pt has a root between λi+1 and λi. As this gives us d − 1
more roots, it accounts for all d roots of pt. For i odd, we know that q(λi) > 0 and q(λi+1) < 0.
As p is zero at both of these points, pt(λi) > 0 and pt(λi+1) < 0, which means that pt has a root
between λi and λi+1. The case of even i is similar.

The converse of this theorem is also true.

Lemma 22.3.2. Let p and q be polynomials of degree n and n− 1, and let pt(x) = p(x)− tq(x). If
pt is real rooted for all t ∈ IR, then p and q interlace.

Proof Sketch. Recall that the roots of a polynomial are continuous functions of its coefficients, and
thus the roots of pt are continuous functions of t. We will use this fact to obtain a contradiction.

For simplicity,1 I again just consider the case in which all of the roots of p and q are distinct.

If p and q do not interlace, then p must have two roots that do not have a root of q between them.
Let these roots of p be λi+1 and λi. Assume, without loss of generality, that both p and q are
positive between these roots. We now consider the behavior of pt for positive t.

As we have assumed that the roots of p and q are distinct, q is positive at these roots, and so pt
is negative at λi+1 and λi. If t is very small, then pt will be close to p in value, and so there must
be some small t0 for which pt0(x) > 0 for some λi+1 < x < λi. This means that pt0 must have two
roots between λi+1 and λi.

As q is positive on the entire closed interval [λi+1, λi], when t is large pt will be negative on this
entire interval, and thus have no roots inside. As we vary t between t0 and infinity, the two roots
at t0 must vary continuously and cannot cross λi+1 or λi. This means that they must become
complex, contradicting our assumption that pt is always real rooted.

Together, Lemmas 22.3.1 and 22.3.2 are known as Obreschkoff’s Theorem [Obr63].

The following example will be critical.

1I thank Sushant Sachdeva for helping me work out this particularly simple proof.
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Lemma 22.3.3. Let A be an n-dimensional symmetric matrix and let v be a vector. Let

pt(x) = χx(A + tvvT ).

Then there is a degree n− 1 polynomial q(x) so that

pt(x) = χx(A)− tq(x).

Proof. Consider the case in which v = δ1. It suffices to consider this case as determinants, and
thus characteristic polynomials, are unchanged by multiplication by rotation matrices.

Then, we know that
χx(A + tδ1δ

T
1 ) = det(xI −A− tδ1δ

T
1 ).

Now, the matrix tδ1δ
T
1 is zeros everywhere except for the element t in the upper left entry. So,

det(xI −A− tδ1δ
T
1 ) = det(xI −A)− t det(xI (1) −A(1)) = χx(A)− tχx(A(1)),

where A(1) is the submatrix of A obtained by removing its first row and column.

We know that χx(A + tvvT ) is real rooted for all t, and we can easily show using the Courant
Fischer Theorem that for t > 0 it interlaces χx(A) from above. Lemmas 22.3.1 and 22.3.2 tell us
that these facts imply each other.

We need one other fact about interlacing polynomials.

Lemma 22.3.4. Let p0(x) and p1(x) be two degree n monic polynomials for which there is a third
polynomial r(x) that has the same degree as p0 and p1 and so that

p0(x)→ r(x) and p1(x)→ r(x).

Then for all 0 ≤ s ≤ 1,

ps(x)
def
= sp1(x) + (1− s)p0(x)

is a real rooted polynomial.

Sketch. Assume for simplicity that all the roots of r are distinct. Let µ1 > µ2 > · · · > µn be the
roots of r. Our assumptions imply that both p0 and p1 are positive at µi for odd i and negative
for even i. So, the same is true of their sum ps. This tells us that ps must have at least n− 1 real
roots.

We can also show that ps has a root that is less than µn. One way to do it is to recall that the
complex roots of a polynomial with real coefficients come in conjugate pairs. So, ps can not have
only one complex root.
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22.4 Sums of polynomials

Our goal is to show that ∑
Π∈Sn

χx(A + ΠBΠT )

is a real rooted polynomial for all symmetric matrices A and B , where Sn is the set of n-by-n
permuation matrices. We will do this by proving it for smaller sets of permutation matrices. To
begin, we know it for S = {I }. We will build up larger sets by swapping coordinates.

This will actually result in a distribution on permuations, so we consider σ : Sn → IR≥0 and consider
sums of the form ∑

Π

σ(Π)χx(A + ΠBΠT ).

For coordinates i and j, let Γi,j be the permutation matrix that just swaps i and j. We call such a
permutation a swap. We need the following important fact about the action of swaps on matrices.

Lemma 22.4.1. Let A be a symmetric matrix. Then, for all i and j, there are vectors u and v
so that

Γi,jAΓi,j = A− uuT + vvT .

Proof. Without loss of generality, let i = 1 and j = 2. We prove that A−Γi,jAΓi,j has rank 2 and
trace 0.

We can write this difference in the form
a11 − a22 a12 − a21 a13 − a23 a14 − a24 . . .
a21 − a12 a22 − a11 a23 − a13 a24 − a14 . . .
a31 − a32 a32 − a31 0 . . .
a41 − a42 a42 − a41 0 . . .

. . .

 =

 α β yT

−β −α −yT

y −y 0n−2



for some numbers α, β and some column vector y of length n − 2. If α 6= β then the sum of the
first two rows is equal to (c,−c, 0, . . . , 0) for some c 6= 0, and every other row is a scalar multiple
of this. On the other hand, if α = β then the first two rows are linearly dependent, and all of the
other rows are multiples of (1,−1, 0, . . . , 0).

Lemma 22.4.2. Let σ be such that for all symmetric matrices A and B ,

px(A,B)
def
=
∑
Π∈S

σ(Π)χx(A + ΠBΠT )

is real rooted. Then, for every 0 < s < 1 and pair of vectors u and v , for every symmetric A and
B the polynomial

(1− s)px(A,B) + spx(A− uuT + vvT ,B)

is real rooted.
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Proof. Define
rt(x) = px(A + tvvT ,B).

By assumption, rt(x) is real rooted for every t ∈ IR. By Lemma 22.3.3, we can write

rt(x) = r0(x)− tq(x),

where q(x) has degree n − 1 and both r0 and q have positive leading coefficients. So, by Lemma
22.3.2 q(x) interlaces r0(x) = px(A,B). Lemma 22.3.1 then tells us that

px(A,B)→ px(A + vvT ,B).

The same argument tells us that

px(A− uuT + vvT ,B)→ px(A + vvT ,B).

This tells us that px(A,B) and px(A−uuT + vvT ,B) both interlace r1(x) from below. We finish
by applying Lemma 22.3.4 to conclude that every convex combination of these polynomials is real
rooted.

Corollary 22.4.3. Let σ be such that for all symmetric matrices A and B ,

px(A,B)
def
=
∑
Π∈S

σ(Π)χx(A + ΠBΠT )

is real rooted. Then, for every 0 < s < 1 and for every symmetric A and B the polynomial∑
Π∈S

sσ(Π)χx(A + ΠBΠT ) + (1− s)σ(Π)χx(A + Γi,jΠBΠTΓT
i,j)

is real rooted.

Proof. Recall that

χx(A + Γi,jΠBΠTΓT
i,j) = χx(ΓT

i,jAΓi,j + ΠBΠT ) = χx(Γi,jAΓT
i,j + ΠBΠT ).

The corollary now follows from the previous lemma.

22.5 Random Swaps

We will build a random permutation out of random swaps. A random swap is specified by coordi-
nates i and j and a swap probability s. It is a random matrix is that is equal to the identity with
probability 1− s and Γi,j with probability s. Let S be a random swap.

In the language of random swaps, we can express Corollary 22.5.1 as follows.
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Corollary 22.5.1. Let Π be a random permutation matrix drawn from a distribution so that for
all symmetric matrices A and B ,

E
[
χx(A + ΠBΠT )

]
is real rooted. Let S be a random swap. Then,

E
[
χx(A + SΠBΠTST )

]
is real rooted for every symmetric A and B .

All that remains is to show that a uniform random permutation can be assembled out of random
swaps. The trick to doing this is to choose the random swaps with swap probabilities other than
1/2. If you didn’t do this, it would be impossible as there are n! permutations, which is not a power
of 2.

Lemma 22.5.2. For every n, there exists a finite sequence of random swaps S1, . . . ,Sk so that

S1S2 . . .Sk

is a uniform random permutation.

Proof. We prove this by induction. We can generate a random permutation on 1, . . . , n by first
choosing which item maps to n, and then generating a random permutation on those that remain.
To this end, we first form a sequence that gives a random permtuation on the first n− 1 elements.
We then compose this with a random swap that exchanges elements 1 and n with probability
1 − 1/n. At this point, the element that maps to n will be uniformly random. We then compose
with yet another sequence that gives a random permutation on the first n− 1 elements.
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