Spectral Graph Theory Lecture 22

Linear Sized Sparsifiers
Daniel A. Spielman November 14, 2018

22.1 Overview

In this lecture, we will prove a slight simplification of the main result of [BSS12, BSS14]. This will
tell us that every graph with n vertices has an e-approximation with approximately 4e~2n edges.
To translate this into a relation between approximation quality and average degree, note that such
a graph has average degree dy,. = 8¢~ 2. So,

L2
\/av

which is about twice what you would get from a Ramanujan graph. Interestingly, this result even
works for average degree just a little bit more than 1.

€

22.2 Turning edges into vectors

In the last lecture, we considered the Laplacian matrix of a graph G times the square root of the
pseudoinverse on either side. That is,

L% Y0 wanky | LG
(a,b)eEE

Today, it will be convenient to view this as a sum of outer products of vectors. Set

2
V(ap) = \/wa,bLZ/ (84 — Op).
Then,
+/2 +/2
LG/ Z Wa,b L(q,pb) LG/ = Z ”(avb)”z;,b) =11,
(a,b)eE (a,b)EE
where we recall that IT = %LKn is the projection orthogonal to the constant vectors.

The problem of sparsification is then the problem of finding a small subset of these vectors, S C F,
along with scaling factors, ¢ : S — IR, so that

(1 - E)H < Z Ca,bv(a,b)va,b) =< (1 + 6)1_[
(a,b)eS
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If we project onto the span of the Laplacian, then the sum of the outer products of vectors v,
becomes the identity, and our goal is to find a set S and scaling factors ¢, so that

1—6 Z Cabv(ab)vab) (1+€)I
(a,b)eS

That is, so that all the eigenvalues of the matrix in the middle lie between (1 —¢€) and (1 + €).

22.3 The main theorem

Theorem 22.3.1. Let vq,..., v, be vectors in IR™ so that
S ! =
i
Then, for every € > 0 there exists a set S along with scaling factors ¢; so that

(1—¢€)? Zc,'v vl < (1+ €)1,
ies
and

S| < [n/e?].

The condition that the sum of the outer products of the vectors sums to the identity has a name,
isotropic position. 1 now mention one important property of vectors in isotropic position

Lemma 22.3.2. Let v1,..., v, be vectors in isotropic position. Then, for every matriz M,
Z’UZTM’UZ' =Tr(M).
i
Proof. We have
vI'Mv =Tr (’U’UTM) ,

ZviTMvZ ZTr (vivI M) = ((Zvv ) )zTr(IM):Tr(M).

O]

Today, we will prove that we can find a set of 6n vectors for which all eigenvalues lie between 1n
and 13n. If you divide all scaling factors by 1/13n, this puts the eigenvalues between 1/4/13 and
v/13. You can tighten the argument to prove Theorem 22.3.1.

We will prove this theorem by an iterative argument in which we choose one vector at a time to
add to the set .S. We will set the scaling factor of a vector when we add it to S. It is possible that
we will add a vector to S more than once, in which case we will increase its scaling factor each
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time. Throughout the argument we will maintain the invariant that the eigenvalues of the scaled
sum of outer produces is in the interval [I,u], where | and u are quantities that will change with
each addition to S. At the start of the algorithm, when S is empty, we will have

lo=-n and wuy=n.
Every time we add a vector to S, we increase [ by 07, and u by dy, where
5L:1/3 and 5U:2.

After we have done this 6n times, we will have | = n and v = 13n.

22.4 Rank-1 updates

We will need to understand what happens to a matrix when we add the outer product of a vector.

Theorem 22.4.1 (Sherman-Morrison). Let A be a nonsingular symmetric matriz and let v be a
vector and let ¢ be a real number. Then,
A lypT A

T\—1 __ —1
(A—C'U'U ) —A +Cm

Proof. The easiest way to prove this is to multiply it out, gathering v A~!v terms into scalars:

A lyoT AT vol A1 vl A w7 A7?
A—cvv) (A +e——— = V=T —covTA ' ¢ — 2
( ) ( 1—cvTA v 1—cvTA v 1—cvTA v
1 cvl Av
=TI —covlA ' (1-
( 1—cvTA v 1-— chA1v>

=1.

22.5 Barrier Function Arguments

To prove the main theorem we need a good way to measure progress. We would like to keep all the
eigenvalues of the matrix we have constructed at any point to lie in a nice range. But, more than
that, we need them to be nicely distributed within this range. To enforce this, we need to measure
how close the eigenvalues are to the limits.

Let A be a symmetric matrix with eigenvalues A\; < ... < A,. If w is larger than all of the
eigenvalues of A, then we call v an upper bound on A. To make this notion quantitive, we define
the upper barrier function
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This is positive for all upper bounds u, goes to infinity as uw approaches the largest eigenvalue,
decreases as u grows, and is convex for u > A,. In particular, we will use

PUHI(A) < D(A),  for & > 0. (22.1)

Also, observe that
A <u—1/0%(A). (22.2)

We will exploit the following formula for the upper barrier function:

P"(A) =Tr ((ul —A)™).
For a lower bound on the eigenvalues [, we will define an analogous lower barrier function
1
P(A) =) —— =Tr((A-1D)).

This is positive whenever [ is smaller than all the eigenvalues, goes to infinity as [ approaches the
smallest eigenvalue, and decreases as [ becomes smaller. In particular,

[+ 1/(131(14) < A (22.3)
The analog of (22.1) is the following.

Claim 22.5.1. Let [ be a lower bound on A and let § < 1/®;(A). Then,

1

Pl S Ay -5

Note that this inequality is an equality when A is one-dimensional. In that case,
1 B 1
M —1—6 1/(A1/A—1)—0d

Proof. After rearranging terms, we see that the inequality is equivalent to
P115(A) — O (A) <61 5(A)P(A).

We then prove this by expanding in the eigenvalues, keeping in mind that all the terms A\; — 1 — ¢
are positive:

1 1
®z+5(A)—‘I’l(A):Zi:)\i—l—5_;Ai—l

)
:Zz.:ui—z—a)m—n
<5 1 1
- Z(M—l—Cs) zi:(&‘—l) '

i

Initially, we will have

B, (0)=®_,(0)=1 and ®"(0)=d"(0) = 1.
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22.6 Barrier Function Updates

The most important thing to understand about the barrier functions is how they change when we
add a vector to S. The Sherman-Morrison theorem tells us that happens when we change A to
A+ covl:

PU A+ cvovl) =Tr (ul —A— cva)_l)
Tr ((ul — A)'voT (ul — A)7h)
1—cvl(ul — A)~1
Tr (vT(ul — A)7'(ul — A) )
1—cvl(ul — A)~1
vl (ul — A) 2w
1—cvl(ul — A)~ 1w

=Tr ((ul — A)7 ') +c

=d“(A)+c

=d“(A)+c

This increases the upper barrier function, and we would like to counteract this increase by increasing
u at the same time. If we advance u to @ = u + dy, then we find

vT(al — A)2v
l—ch(uI A

<I>“+5U(A + covl) = <I>“+5U(A) +c :
v

Tar — A)~2
1/c— 'vT al — A)

)”
= 3 (4) — (@¥(4) - @00 (4)) +

We would like for this to be less than ®“(A). If we commit to how much we are going to increase
u, then this gives an upper bound on how large ¢ can be. We want

vT(al — A)~%v

which is equivalent to

1 v (ol — A)2v
o2 @) s () T

Define
((u+6,)I — A)~2

VA= @ua) - oo (4))

+ ((u+0,)I — A7t

We have established a clean condition for when we can add cvv” to S and increase u by 6y without
increasing the upper barrier function.

Lemma 22.6.1. If

then
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The miracle in the above formula is that the condition in the lemma just involves the vector v as
the argument of a quadratic form.

We also require the following analog for the lower barrier function. The difference is that increasing
[ by setting [ = [ 4 0y, increases the barrier function, and adding a vector decreases it.

Lemma 22.6.2. Define

(A-UI)? Pry—1
Lj= — (A =11
A= s, (A) - ay(ay) AT
If
1 < UTLA’U,
¢
then

If we fix the vector v and an increment d7,, then this gives a lower bound on the scaling factor by
which we need to multiply it for the lower barrier function not to increase.

22.7 The inductive argument

It remains to show that there exits a vector v and a scaling factor ¢ so that
DU (A + cvvT) < BU(A) and Byis, (A + cvvl) < By (A).
That is, we need to show that there is a vector v; so that
’UZT Ujgv; < 'vaLA'Ui.

Once we know this, we can set ¢ so that

'va Ujpv, < -< ’l)ZTLA’Ui.

Ol

Lemma 22.7.1. )
Z vl U pv; < — + ®,(A).
i ou

Proof. By Lemma 22.3.2, we know

ZviTUA'vi:Tr(UA).

To bound this, we break it into two parts

Tr ((al — A)~?)
(P(A) — duFov(A))
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and
Tr ((aI — A)7Y).

The second term is easiest
Tr ((a — A)7') = 2“0 (A4) < ®“(A).

To bound the first term, consider the derivative of the barrier function with respect to u:

O guay=2y Ly (! L D(ul - 4)?
ou - Ou - u—XN ~\u—X\/) '

)

As ®“(A) is convex in u, we may conclude that

PU(A) — BUTU(A) > —5Uﬁq>u+5u(A) = oyTr (al — A)~2.

ou
O

The analysis for the lower barrier is similar, but the second term is slightly more complicated.
Lemma 22.7.2. ) 1

T

T Lavi > — — ———————.

zi:vz AV = or, 1/(135(A)—5L
Proof. As before, we bound
Tr (A= (+0.D) %)
Piy5,(A) — ®i(A)

by recalling that

Qcpl(A) =Tr(A—1I)"2.

ol
As ®;(A) is convex in [, we have

0 _
Pis, (A) = Pi(A) < 0@y, (A) = 0L Tr (A = (14 31)T) 2.
To bound the other term, we use Claim 22.5.1 to prove
1
Tr(A—(1+0 D)) <.
(AT < Ty s,
O

So, for there to exist a v; that we can add to .S with scale factor ¢ so that neither barrier function
increases, we just need that

1 1 1

5 TS5 T e s
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If this holds, then there is a v; so that
v; U gv; <wv;Lpv;.

We then set ¢ so that
v, Upv; <

o=

< 'UiLA'Ui-

We now finish the proof by checking that the numbers I gave earlier satisfy the necessary conditions.
At the start both barrier functions are less than 1, and we need to show that this holds throughout
the algorithm. At every step, we will have by induction

1 1 3
S P (A)<-41=2
(5U+ ( >_2+ 2
and
1 1 1 3
_—— >3- —— = —.
oy, l/q)l(A)—éL - 1—1/3 2

So, there is always a v; that we can add to .S and a scaling factor ¢ so that both barrier function
remain upper bounded by 1.

If we now do this for 6n steps, we will have

l=-n+6n/3=n and u=n+2-6n=13n.

The bound stated at the beginning of the lecture comes from tightening the analysis. In particular,
it is possible to improve Lemma 22.7.2 so that it says

1 1
T

M Lgv; > — — —
ZZ':UZ AV =5 1/®(A)

I recommend the paper for details.

22.8 Progress and Open Problems

e It is possible to generalize this result to sums of positive semidefinite matrices, instead of
outer products of vectors [dCSHS11].

e It is now possible to compute sparsifiers that are almost this good in something close to linear
time. [AZLO15, LS15].

e Given last lecture, it seems natural to conjecture that the scaling factors of edges should
be proportional to their weights times effective resistances. Similarly, one might conjecture
that if all vectors v; have the same norm, then the scaling factors are unnecessary. This
is true, but not obvious. In fact, it is essentially equivalent to the Kadison-Singer problem
[MSS14, MSS15].
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