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Matching Polynomials of Graphs
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Disclaimer

These notes are not necessarily an accurate representation of what happened in class. The notes
written before class say what I think I should say. I sometimes edit the notes after class to make
them way what I wish I had said.

There may be small mistakes, so I recommend that you check any mathematically precise statement
before using it in your own work.

These notes were last revised on December 7, 2015.

25.1 Overview

The coefficients of the matching polynomial of a graph count the numbers of matchings of various
sizes in that graph. It was first defined by Heilmann and Lieb [HL72], who proved that it has some
amazing properties, including that it is real rooted. They also proved that all root of the matching
polynomial of a graph of maximum degree d are at most 2

√
d− 1. In the next lecture, we will use

this fact to derive the existence of Ramanujan graphs.

Our proofs today come from a different approach to the matching polynomial that appears in the
work of Godsil [God93, God81]. My hope is that someone can exploit Godsil’s approach to connect
the 2

√
d− 1 bound from today’s lecture with that from last lecture. In today’s lecture, 2

√
d− 1

appears as an upper bound on the spectral radius of a d-ary tree. Infinite d-ary trees appear as the
graphs of free groups in free probability. I feel like there must be a formal relation between these
that I am missing.

25.2 The Matching Polynomial

A matching in a graph G = (V,E) is a subgraph of G in which every vertex has degree 1. We say
that a matching has size k if it has k edges. We let

mk(G)

denote the number of matchings in G of size k. Throughout this lecture, we let |V | = n. Observe
that m1(G) is the number of edges in G, and that mn/2(G) is the number of perfect matchings
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in G. By convention we set m0(G) = 1, as the empty set is matching with no edges. Computing
the number of perfect matchings is a #P -hard problem. This means that it is much harder than
solving NP -hard problems, so you shouldn’t expect to do it quickly on large graphs.

The matching polynomial of G, written µx [G], is

µx [G]
def
=

n/2∑
k=0

xn−2k(−1)kmk(G).

Our convention that m0(G) = 1 ensures that this is a polynomial of degree n.

This is a fundamental example of a polynomial that is defined so that its coefficients count some-
thing. When the “something” is interesting, the polynomial usually is as well.

25.3 Properties of the Matching Polynomial

We begin by establishing some fundamental properties of the matching polynomial. For graphs G
and H on different vertex sets, we write G ∪H for their disjoint union.

Lemma 25.3.1. Let G and H be graphs on different vertex sets. Then,

µx [G ∪H] = µx [G]µx [H] .

Proof. Every matching in G ∪H is the union of a matchings in G and a matching in H. Thus,

mk(G ∪H) =
k∑
j=0

µj(G)µk−j(H).

The lemma follows.

For a a vertex of G = (V,E), we write G − a for the graph G(V − {a}). This notation will prove
very useful when reasoning about matching polynmomials. Fix a vertex a of G, and divide the
matchings in G into two classes: those that involve vertex a and those that do not. The number of
matchings of size k that do not involve a is mk(G− a). On the other hand, those that do involve a
connect a to one of its neighbors. To count these, we enumerate the neighbors b of a. A matching
of size k that includes edge (a, b) can be written as the union of (a, b) and a matching of size k− 1
in G− a− b. So, the number of matchings that involve a is∑

b∼a
mk−1(G− a− b).

So,

mk(G) = mk(G− a) +
∑
b∼a

mk−1(G− a− b).

To turn this into a recurrence for µx [G], write

xn−2k(−1)kmk(G) = x · xn−1−2k(−1)kmk(G− a)− xn−2−2(k−1)(−1)k−1mk−1(G− a− b).

This establishes the following formula.
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Lemma 25.3.2.
µx [G] = xµx [G− a]−

∑
b∼a

µx [G− a− b] .

The matching polynomials of trees are very special—they are exactly the same as the characteristic
polynomial of the adjacency matrix.

Theorem 25.3.3. Let G be a tree. Then

µx [G] = χx(AG).

Proof. Expand
χx(AG) = det(xI −AG)

by summing over permutations. We obtain∑
π∈Sn

(−1)sgn(π)x|{a:π(a)=a}|
∏

a:π(a) 6=a

(−AG(a, π(a))).

We will prove that the only permutations that contribute to this sum are those for which π(π(a)) = a
for every a. And, these correspond to matchings.

If π is a permutation for which there is an a so that π(π(a)) 6= a, then there are a = a1, . . . , ak with
k > 2 so that π(ai) = ai+1 for 1 ≤ i < k, and π(ak) = a1. For this term to contribute, it must be
the case that AG(ai, ai+1) = 1 for all i, and that AG(ak, a1) = 1. For k > 2, this would be a cycle
of length k in G. However, G is a tree and so cannot have a cycle.

So, the only permutations that contribute are the involutions: the permutations π that are their
own inverse. An involution has only fixed points and cycles of length 2. Each cycle of length
2 that contributes a nonzero term corresponds to an edge in the graph. Thus, the number of
permutations with k cycles of length 2 is equal to the number of matchings with k edges. As the
sign of an involution with k cycles of length 2 is (−1)k, the coefficient of xn−2k is (−1)kmk(G).

25.4 The Path Tree

Godsil proves that the matching polynomial of a graph is real rooted by proving that it divides
the matching polynomial of a tree. As the matching polynomial of a tree is the same as the
characteristic polynomial of its adjacency matrix, it is real rooted. Thus, the matching polynomial
of the graph is as well. The tree that Godsil uses is the path tree of G starting at a vertex of G. For
a a vertex of G, the path tree of G starting at a, written Ta(G) is a tree whose vertices correspond
to paths in G that start at a and do not contain any vertex twice. One path is connected to another
if one extends the other by one vertex. For example, here is a graph and its path tree starting at a.



Lecture 25: December 7, 2015 25-4

 

When G is a tree, Ta(G) is isomorphic to G.

Godsil’s proof begins by deriving a somewhat strange equality. Since I haven’t yet found a better
proof, I’ll take this route too.

Theorem 25.4.1. For every graph G and vertex a of G,

µx [G− a]

µx [G]
=
µx [Ta(G)− a]

µx [Ta(G)]
.

The term on the upper-right hand side is a little odd. It is a forrest obtained by removing the root
of the tree Ta(G). We may write it as a disjoint union of trees as

Ta(G)− a =
⋃
b∼a

Tb(G− a).

Proof. If G is a tree, then the left and right sides are identical, and so the inequality holds. As the
only graphs on less than 3 vertices are trees, the theorem holds for all graphs on at most 2 vertices.
We will now prove it by induction on the number of vertices.

We may use Lemma 25.3.2 to expand the reciprocal of the left-hand side:

µx [G]

µx [G− a]
=
xµx [G− a]−

∑
b∼a µx [G− a− b]

µx [G− a]
= x−

∑
b∼a

µx [G− a− b]
µx [G− a]

.

By applying the inductive hypothesis to G− a, we see that this equals

x−
∑
b∼a

µx [Tb(G− a)− b]
µx [Tb(G− a)]

. (25.1)

To simplify this expression, we examine these graphs carefully. By the observtion we made before
the proof,

Tb(G− a)− b =
⋃

c∼b,c 6=a
Tc(G− a− b).

Similarly,

Ta(G)− a =
⋃
c∼a

Tc(G− a),

which implies

µx [Ta(G)− a] =
∏
c∼a

µx [Tc(G− a)] .
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Let ab be the vertex in Ta(G) corresponding to the path from a to b. We also have

Ta(G)− a− ab =

 ⋃
c∼a,c6=b

Tc(G− a)

 ∪
 ⋃
c∼b,c6=a

Tc(G− a− b)


=

 ⋃
c∼a,c6=b

Tc(G− a)

 ∪ (Tb(G− a)− b) .

which implies

µx [Ta(G)− a− ab] =

 ∏
c∼a,c6=b

µx [Tc(G− a)]

µx [Tb(G− a)− b] .

Thus,

µx [Ta(G)− a− ab]
µx [Ta(G)− a]

=

(∏
c∼a,c6=b µx [Tc(G− a)]

)
µx [Tb(G− a)− b]∏

c∼a µx [Tc(G− a)]

=
µx [Tb(G− a)− b]
µx [Tb(G− a)]

.

Plugging this in to (25.1), we obtain

µx [G]

µx [G− a]
= x−

∑
b∼a

µx [Ta(G)− a− ab]
µx [Ta(G)− a]

=
xµx [Ta(G)− a]−

∑
b∼a µx [Ta(G)− a− ab]

µx [Ta(G)− a]

=
µx [Ta(G)]

µx [Ta(G)− a]
.

Be obtain the equality claimed in the theorem by taking the reciprocals of both sides.

Theorem 25.4.2. For every vertex a of G, the polynomial µx [G] divides the polynomial µx [Ta(G)].

Proof. We again prove this by induction on the number of vertices in G, using as our base case
graphs with at most 2 vertices. We then know, by induction, that for b ∼ a,

µx [G− a] divides µx [Tb(G− a)] .

As
Ta(G)− a = ∪b∼aTb(G− a),

µx [Tb(G− a)] divides µx [Ta(G)− a] .

Thus,
µx [G− a] divides µx [Ta(G)− a] ,
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and so
µx [Ta(G)− a]

µx [G− a]

is a polynomial in x. To finish the proof, we apply Theorem 25.4.1, which implies

µx [Ta(G)] = µx [Ta(G)− a]
µx [G]

µx [G− a]
= µx [G]

µx [Ta(G)− a]

µx [G− a]
.

25.5 Root bounds

If every vertex of G has degree at most d, then the same is true of Ta(G). We will show that
the norm of the adjacency matrix of a tree in which every vertex has degree at most d is at most
2
√
d− 1. Thus, all of the roots of the matching polynomial of a graph of maximum degree d are

at most 2
√
d− 1.

Theorem 25.5.1. Let T be a tree in which every vertex has degree at most d. Then, all eigenvalues
of χx(AT ) have absolute value at most 2

√
d− 1.

Proof. Let A be the adjacency matrix of T . Choose some vertex to be the root of the tree, and
define its height to be 0. For every other vertex a, define its height, h(a), to be its distance to the
root. Define D to be the diagonal matrix with

D(a, a) =
(√

d− 1
)h(a)

.

Recall that the eigenvalues of A are the same as the eigenvalues of DAD−1. We will use the fact
that all eigenvalues of a nonnegative matrix are upper bounded in absolute value by its maximum
row sum.

So, we need to prove that all row sums of DAD−1 are at most 2
√
d− 1. There are three types of

vertices to consider. First, the row of the root has up to d entries that are all 1/
√
d− 1. For d ≥ 2,

d/
√
d− 1 ≤ 2

√
d− 1. The intermediate vertices have one entry in their row that equals

√
d− 1,

and up to d− 1 entries that are equal to 1/
√
d− 1, for a total of 2

√
d− 1. Finally, every leaf only

has one nonzero entry in its row, and that entry equals
√
d− 1.

When combined with Theorem 25.4.2, this tells us that that matching polynomial of a graph with
all degrees at most d has all of its roots bounded in absolute value by 2

√
d− 1.
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