Understanding Networks through Physical Metaphors

Daniel A. Spielman

— YALE INSTITUTE FOR — NETWORK SCIENCE

Graphs and Networks

Analysis by Physical Metaphors

Algorithms (what I usually do)

A Social Network Graph "vertex" or "node"

from: http://nrc.uchsc.edu/STATES/united-states-map.jpg

Vertices = States. Edges connect adjoining states.

Planar implies can draw with 4 colors

A Transportation Network

Harris and Ross, RAND Corporation, 1955

A Mathematician's Network Vertices = Natural numbers Edges between pairs where one divides another

The Graph of a Mesh

Protein-protein Interaction Networks

vertex = protein
edge if "interact"

Schwikowski, Uetz & Fields, Nature Biotechnology 2000

Protein-protein Interaction Networks

vertex = protein
edge experimentally observed interaction

Schwikowski, Uetz & Fields, Nature Biotechnology 2000

Protein-protein Interaction Networks

vertex = group of proteins
edges between groups with interacting proteins

Schwikowski, Uetz & Fields, Nature Biotechnology 2000

Other Networks

Web Vertices = Web pages. Edges = links.

Trade networks Vertices = Companies. Edges when trade.

Gene regulatory networks Vertices = Genes. Edge when one regulates another.

Local Analysis of Networks

Examine degrees (number of attached edges) of nodes.

Count triangles based at nodes

Small configurations

Global Analysis of Networks

Diameter: how many steps between nodes

Drawing: understand overall structure

Clusters: how to group the nodes

Inference: extrapolate from a few nodes

Importance: find most important nodes

Graphs as Spring Networks

View edges as rubber bands or ideal linear springs

Nail down some vertices, let rest settle

Inference by Spring Networks

Assuming friends are similar, infer from limited data.

Will you donate to X?

Will you donate to X?

Estimate of Probability of "yes"

Some Networks can not be nicely drawn.

A "bad" drawing: mostly edges, many edge crossings edges are long

Some Networks can not be nicely drawn.

So,

we group their nodes into clusters.

Put stuff at a node.

Let stuff flow along edges to other nodes

Put stuff at a node.

Let stuff flow along edges to other nodes

Put stuff at a node.

Let stuff flow along edges to other nodes

Eventually... amount of stuff at nodes is proportional to their number

of edges

Clustering by Diffusion in Graphs

Earlier in the process the nodes with the most stuff are clusters.

Clustering by Diffusion in Graphs

Earlier in the process the nodes with the most stuff are clusters.

> If there are clusters, this finds them!

Spill paint at a node. Paint both spreads and dries.

Spill paint at a node. Paint both spreads and dries.

Spill paint at a node. Paint both spreads and dries.

Spill paint at a node. Paint both spreads and dries.

Amount of dried paint, measures importance relative to initial node

Spill paint at a node. Paint both spreads and dries.

Amount of dried paint, measures importance relative to initial node

Spill paint at a node. Paint both spreads and dries.

Amount of dried paint, measures importance relative to initial node

Most important nodes give clusters, if they exist.

PageRank, used by Google to rank web

Similar idea.

But, paint only flows in the directions of links.

Vibrations / Eigenvectors

The springs never stop vibrating

The "stuff" never stops moving

The motions are small

The fundamental mode

The fundamental mode

I used this to choose the order and draw the network

The fundamental mode

The fundamental mode

I used this to choose the order and draw the network

Algorithmic Problems: how to quickly compute

The stable configuration of springs = solve linear equations

The vibrations / fundamental modes = compute eigenvectors

State of diffusion after a long time, without just simulating and waiting

The difficult cases: Chimeric graphs

The difficult cases: Chimeric graphs

Finding the Stable Configuration

is a problem of solving linear equations

$$3x - y - z = 1$$
$$-x + 2y - z = 0$$
$$-2x - y + 4z = -1$$

Can solve exactly by Gaussian Elimination

Finding the Stable Configuration

is a problem of solving linear equations

$$3x - y - z = 1$$
$$-x + 2y - z = 0$$
$$-2x - y + 4z = -1$$

Can solve exactly by Gaussian Elimination

Can solve approximately by simulating physics

Finding the Stable Configuration

is a problem of solving linear equations

$$3x - y - z = 1$$
$$-x + 2y - z = 0$$
$$-2x - y + 4z = -1$$

Can solve exactly by Gaussian Elimination

Can solve approximately by simulating physics

Or, by much fancier algorithms (preconditioning)

To learn more (and all the caveats)

See

my web page on Laplacians, Clustering, etc.

or

lecture notes from "Spectral Graph Theory" and "Graphs and Networks"