Laplacian Gems

Daniel A. Spielman
Yale University

Outline

Laplacian Linear Systems (Electrical Graph Theory)
Applications
Fast Algorithms

Bold ideas

Surprising results

Powerful techniques

Faster than Koutis-Miller-Peng?

Graphs as Spring Networks

edges ->ideal linear springs
weights -> spring constants (k)

Physics: when stretched to length x, force is kx
potential energy is kx?/2

Nail down some vertices, let rest settle

dwomwomd

Graphs as Spring Networks

Nail down some vertices, let rest settle

VS

Physics: minimizes total potential energy

Z w; j(v; —v;)* = v Lo
(i,4)€E

subject to boundary constraints (nails)

Tutte’s Theorem ‘63

If nail down a face of a planar 3-connected graph,
get a planar embedding!

The Laplacian

0 otherwise J

Z w;,j(€; — e;)(e; _ej)T

(4,7)EE

The Laplacian

v! Ly = Z w; i (v; — v;)°
(i,J)eE

—Wj j if (Z,j) c b
Li,j = < d; if ¢ :] d’b — Zwi,j
0 J

otherwise

Can minimize, subject to boundary v; = f; for i € S
by Laplacian Linear Solvers in nearly-linear time
[Koutis-Miller-Peng ‘10, S-Teng ‘04]

Regression on Graphs [zhu-Ghahramani-Lafferty 03]

Say know f(i) foralliin S CV
want to guess f(j) for all other j.

ldea: nail node i to f(i) on Real line.

Graphs as Resistor Networks

edge ->resistor
weight -> 1/resistance

Ohm’s law: flow/current

v.
o= —

g (vi —vj)

Graphs as Resistor Networks

edge ->resistor
weight -> 1/resistance

Ohm’s law: flow/current

v._v.
o= ———

" w;,; (Vi — vj)

Demands/external current:

d = Lv v=LT7d

the pseudo-inverse J

Graphs as Resistor Networks

Ohm’s law: flow/current

v._v.
fugm———

o w;,; (v — vj)

Demands/external current:

d = Lv v=L"d

To flow 1 from s to t:
Setd(s) =1and d(t) =-1
Solve for v
Use Ohm’s law to find flow in graph

Graphs as Resistor Networks

To solve for current when fix voltages

W\lv

ov —

Solve for v minimizing dissipated energy,
ey 2
v' Ly = Zw’i’j (v; — vy)

subject to fixed potentials

Graphs as Resistor Networks

To solve for current when fix voltages

0.5V

W\lv

0.5V
— AN\ —

— 0.375V 0.625V
oV —

Solve for v minimizing dissipated energy,
ey 2
v' Ly = Zw’i’j (v; — vy)

subject to fixed potentials

Effective Resistance between s and t

= resistance of whole network between s and t

=v,—V, in s-t flow of value 1

= (e, —e.)t LT (e, — e;)

Effective Resistance between s and t

= resistance of whole network between s and t

=v,—V, in s-t flow of value 1
T
= (es —e:)" LT (es — €;)
= 1/effective spring constant between s and t

= prob edge (s,t) in a random spanning tree

~ expected commute time between s and t
[Chandra-Raghavan-Ruzzo-Smolensky-Tiwari ‘89]

And, is a distance.

Application: Random Spanning Trees

Can use fast Laplacian solvers to sample
: C ~ 1/2
random spanning trees in time O(mn"/*)
[Kelner-Madry-Propp ‘09]

ldea: accelerate random-walk based sampling
[Aldous, Broder]
by jumping through clusters where walk is slow.

Application: Approximate Maximum Flow
[Christiano-Kelner-Madry-S-Teng "10]

1. Compute electrical s-t flow >
2. Increase resistance on over-capacity edges
3. Return average of computed flows (a la MWM)

Time O(m3/2/¢e)

Application: Approximate Maximum Flow
[Christiano-Kelner-Madry-S-Teng "10]

1. Compute electrical s-t flow)
2. Increase resistance on over-capacity edges

and delete very over-capacity edges
3. Return average of computed flows (a la MWM)

~

Time O(m3/2/€3) — O(mnl/S/ell/S)

Approximate Laplacian Solvers

Preconditioned Conjugate Gradient O(mn)
[Hestenes ‘51, Stiefel '52, ?7?7]

Vaidya ‘90: Subgraph preconditioners O(mn3/4)

Boman-Hendrickson '01: ~
Using Low-Stretch Spanning Trees O(mnl/z)

S-Teng "04: Spectral sparsification é(m)

Koutis-Miller-Peng ‘10: Elegance O(m log? n)

Preconditioned Conjugate Gradient

Solve L, x = b by
Approximating L. by L, (the preconditioner)

In each iteration
solve a system in L,
multiply a vector by L,

€ -approx solution after
O(\/k(Lg, Ly)loge 1) iterations
- condition number/approx quality

Approximate G by a sparse H,
approximately preserving all cuts

Spectral Sparsification [S-Teng ‘04]

*[1]

Approximate G by a sparse H,
approximately preserving all energies
and effective resistances

vT Lgv Nﬂﬁ vT Ly
(1 +e¢)

Spectral Sparsification [S-Srivastava ‘08]

'UTLGv Nﬂj> ’UTLH’U
(1+£e¢)

Sample edges (i,j) of G
with probability proportional to Ref#(%,7)w; ;

O(nlogn/€e®) edges suffice

Analysis by random matrix concentration results
of Rudelson and Vershynin.

Spectral Sparsification [Koutis-Miller-Peng ‘10]

Understand Rudelson-Vershynin much better

Suffices to sample edges (i,j) of G
with probability crudely related to Ref¢(Z,7)w;_;

Sample O(nlogn/e*) edges
so actually get many fewer edges!

Given vertex of interest
find nearby cluster S

with small conductance
in time O(|S])

v, / havs

0D RS
I\ 7‘%?@?&:
N 7 1R
4 \';;) . , L)

X

N/ /N

R [T 7K 7o
;s 9 ?A!!;ffl\'é'ir v

(:

|

LS
S =':§§!;/1\ E 'd.v:’l“‘:s ‘4" ‘\‘,. A/ N\
r;‘,'.“'» _i\\‘/l ‘\

Local Graph Clustering [S-Teng ‘04]

Given vertex of interest
find nearby cluster S
with small conductance
in time O(|S])

How should one explore a graph?

How should one explore a graph?

Possible goals:
find nodes like the first node
find a representative sample
minimize computation and graph access

prove something rigorous

How should one explore a graph?

Possible goals:

find nodes like the first node
find a representative sample

minimize computation and graph access

prove something rigorous

Beat BFS

Local Graph Clustering [S-Teng ‘04]

Prove: if S has small conductance ¢
uisarandomnodein$S
probably
find a set of small conductance, ¢'/21log®n
in time |S|log®n/¢

Using Approximate Personal PageRank Vectors <= %

Jeh-Widom ‘03, Berkhin ‘06, Andersen-Chung-Lang ‘06

Spilling paint in a graph:
start at one node
at each step,
a fraction dries
of wet paint, half stays put, half to neighbors

Using Approximate Personal PageRank Vectors

Jeh-Widom ‘03, Berkhin ‘06, Andersen-Chung-Lang ‘06

Spilling paint in a graph:

start at one node Q O—Q
1 0 0

at each step,
a fraction dries
of wet paint, half stays put, half to neighbors

Using Approximate Personal PageRank Vectors

Jeh-Widom ‘03, Berkhin ‘06, Andersen-Chung-Lang ‘06

Spilling paint in a graph:

start at one node @ Q—@
0 0

at each step, 1/2

of wet paint, half stays put, half to neighbors

Using Approximate Personal PageRank Vectors

Jeh-Widom ‘03, Berkhin ‘06, Andersen-Chung-Lang ‘06

Spilling paint in a graph:

start at one node @ @ @

at each st.ep, | 1/4 1/4
a fraction dries

of wet paint, half stays put, half to neighbors

with o =1/2

Using Approximate Personal PageRank Vectors

Jeh-Widom ‘03, Berkhin ‘06, Andersen-Chung-Lang ‘06

Spilling paint in a graph:

start at one node —@

at each step, 1/8 1/8

of wet paint, half stays put, half to neighbors

Using Approximate Personal PageRank Vectors

Jeh-Widom ‘03, Berkhin ‘06, Andersen-Chung-Lang ‘06

Spilling paint in a graph:

start at one node —@

at each st.ep, | 3/32 1/8 1/32
a fraction dries

of wet paint, half stays put, half to neighbors

with o =1/2

Using Approximate Personal PageRank Vectors €= 2/

Jeh-Widom ‘03, Berkhin ‘06, Andersen-Chung-Lang ‘06

Spilling paint in a graph:
start at one node
at each step,
a fraction dries
of wet paint, half stays put, half to neighbors

Time doesn’t matter, can push paint whenever

Approximate: only push when a lot of paint

Using Approximate Personal PageRank Vectors

Jeh-Widom ‘03, Berkhin ‘06, Andersen-Chung-Lang ‘06

Spilling paint in a graph:

start at one node @ @—@
1 0 0

at each step,
a fraction dries
of wet paint, half stays put, half to neighbors

Time doesn’t matter, can push paint whenever

Approximate: only push when a lot of paint

Using Approximate Personal PageRank Vectors

Jeh-Widom ‘03, Berkhin ‘06, Andersen-Chung-Lang ‘06

Spilling paint in a graph:

start at one node @ @ @
1/4

at each st.ep, | 1/4
a fraction dries
of wet paint, half stays put, half to neighbors

Time doesn’t matter, can push paint whenever

Approximate: only push when a lot of paint

Using Approximate Personal PageRank Vectors

Jeh-Widom ‘03, Berkhin ‘06, Andersen-Chung-Lang ‘06

Spilling paint in a graph:

start at one node @ @ @

at each st.ep, | 1/4 1/4
a fraction dries

of wet paint, half stays put, half to neighbors

Time doesn’t matter, can push paint whenever

Approximate: only push when a lot of paint

Using Approximate Personal PageRank Vectors

Jeh-Widom ‘03, Berkhin ‘06, Andersen-Chung-Lang ‘06

Spilling paint in a graph:

start at one node @ @—@

at each st.ep, | 5/16 1/16 1/16
o fraction dries

of wet paint, half stays put, half to neighbors

Time doesn’t matter, can push paint whenever

Approximate: only push when a lot of paint

Volume-Biased Evolving Set Markov Chain< ¢

[Andersen-Peres ‘09]

Walk on sets of vertices
starts at one vertex, ends at V

Dual to random walk on graph

When start inside set of conductance ¢
find set of conductance ¢*/%log!/? n

with work |S|log®n/¢/?

Volume-Biased Evolving Set Markov Chain< ¢

[Andersen-Peres ‘09]

Walk on sets of vertices
starts at one vertex, ends at V

Dual to random walk on graph

When start inside set of conductance ¢
find set of conductance ¢*/%log!/? n

with work |S|log®n/¢/?

A Technique for proving convergence of
walks on graphs of Lovasz and Simonovits

Consider lazy random walk on a regular graph
(stays put with probability 7).

Approaches uniform in time 1/conductance?.

A Technique for proving convergence of
walks on graphs of Lovasz and Simonovits

Consider lazy random walk on a regular graph
(stays put with probability 7).

Approaches uniform in time 1/conductance?.

p'(i) =prob of vertex i at time t

t _ t(s
C'k) = max), 919)
€S

sum of largest k values

Lovasz-Simonovits

Lovasz-Simonovits
C*(k) = max Zpt(i) extend by linearity

Lovasz-Simonovits

Lovasz-Simonovits
C*(k) = max Zpt(’i) IS concave

1 i€S /
maxp' (i) + ()
- m;axpt (z)/
/
0

Lovasz-Simonovits: Easy inequality

Ct—l—l < Ct

Lovasz-Simonovits: Conductance ¢ inequality
Ot (k) < % (C*(k — ¢k) + CH(k + o)) ke [0.n/2]
C**1(k) < % (C*(k — ¢(n—k)) + C*(k + ¢p(n — k))) k € [n/2,n]
1

Lovasz-Simonovits: Conductance ¢ inequality
Ot (k) < % (C*(k — ¢k) + CH(k + o)) ke [0.n/2]
C**1(k) < % (C*(k — ¢(n—k)) + C*(k + ¢p(n — k))) k € [n/2,n]
1

Lovasz-Simonovits: Conductance ¢ inequality

C*l(k) < % (C*(k — ¢k) + C*(k + ¢k)) ke[0,n/2]
C'H(k) < % (C'(k — ¢(n — k) + C*(k + ¢(n — k))) k € [n/2,n]
1
=
—
Ct //
/
//
4
0

Lovasz-Simonovits: Conductance ¢ inequality
Ot (k) < % (C*(k — ¢k) + CH(k + o)) ke [0.n/2]
C**1(k) < % (C*(k — ¢(n—k)) + C*(k + ¢p(n — k))) k € [n/2,n]
1

—

4/

Low-Stretch Spanning Trees
[Alon-Karp-Peleg-West ‘91]

N
oo
— &

Low-Stretch Spanning Trees
[Alon-Karp-Peleg-West ‘91]

‘/Q—

Neo oo

Low-Stretch Spanning Trees (unweighted case)
[Alon-Karp-Peleg-West ‘91]

‘_
i
Tc/
3 \.L'—‘—
j o T———————————@

stretchp (2, 7) = distp(z, 7)

Low-Stretch Spanning Trees (unweighted case)
[AIon-Karp-PeIeg-West ‘91]

6

stretchr (G) = Z distr (2, 5)

Low-Stretch Spanning Trees
[Alon-Karp-Peleg-West ‘91]

StretChT(G) _ Z dlStT(ZaJ)/length(zaj)
(i,7)€G

Every graph has a spanning tree of low stretch

Low-Stretch Spanning Trees
[Alon-Karp-Peleg-West ‘91]

stretchT(G) — Z dlStT(Zaj)/length(zaj)
(i,7)€G

Every graph has a spanning tree of low stretch

Expander:

Low-Stretch Spanning Trees
[Alon-Karp-Peleg-West ‘91]

stretchT(G) — Z dlStT(Zaj)/length(Z)J)
(i,7)€G

Every graph has a spanning tree of low stretch
Expander:

low diameter
use shortest path tree

Low-Stretch Spanning Trees
[Alon-Karp-Peleg-West ‘91]

stretchT(G) _ Z dlStT(ZaJ)/length(zaj)
(i,7)€G

Every graph has a spanning tree of low stretch

< sz(\/log n log logn)

Low-Stretch Spanning Trees
[Alon-Karp-Peleg-West ‘91]

Every graph has a spanning tree of low stretch

& sz(\/log n log log n)

Proof: by BFS/shortest paths.
Grow balls until low boundary (Awerbuch)

Low-Stretch Spanning Trees

[Alon-Karp-Peleg-West ‘91]
Proof: by BFS/shortest paths.
Grow balls until low boundary (Awerbuch)

Low-Stretch Spanning Trees

[Alon-Karp-Peleg-West ‘91]
Proof: by BFS/shortest paths.
Grow balls until low boundary (Awerbuch)

R A
Rk &

Use shortest path trees inside balls.

Low-Stretch Spanning Trees

[Alon-Karp-Peleg-West ‘91]
Proof: by BFS/shortest paths.
Grow balls until low boundary (Awerbuch)

Use shortest path trees inside balls.
Contract balls.

Lower-Stretch Spanning Trees
[ElIkin-Emek-S-Teng ‘04, Abraham-Bartal-Neiman ‘08]

Proof: BFS cones centered on a BFS ball.

< O(m logn loglogn (logloglog n)Z)

Lower-Stretch Spanning Trees
[ElIkin-Emek-S-Teng ‘04, Abraham-Bartal-Neiman ‘08]

Proof: BFS cones centered on a BFS ball.

< O(m logn loglogn (logloglog n)Z)

Can we get m log, n ?

Algebraic computation of stretch [S-Woo ’09]
stretchr (G) = Trace [L7} L]

Key: in trees, resistance acts like length.

Algebraic computation of stretch [S-Woo ’09]
stretchr (G) = Trace [L7} L]

Trace [Lf La] = Trace [LF S wij(ei — e)(ei — ;)]
=) w; ;Trace [LF(e; — e;)(e; — €;)7
=" w; jTrace [(e; — ;)T L (e; — €;)’
=) wij(ei —e;)" Lz(ei — ¢))
= Z wi ;R (4, 5)

Preconditioning: solve in time O(m k)

Need HE G, H is a tree + m/k edges
such that A\nez (L Lg) < &k

Preconditioning: solve in time O(m k)

Need HE G, H is a tree + m/k edges
such that A\nez (L Lg) < &k

For low-stretch T,

Z Ai(LTLg) = Trace [L7 Lg| < O(mlogn)

At most s eigenvalues larger than O((m/s)logn)

Preconditioning: solve in time O(m k)
Need HE G, H is a tree + m/k edges
such that A\nez (L Lg) < &k

For low-stretch T,
At most s eigenvalues larger than O((m/s)logn)

Kolla-Makarychev-Saberi-Teng ‘10:
Fix s eigenvalues with O(s) edges

s=m/logn k =O(log n)

Preconditioning: solve in time O(m k)

Need HE G, H is a tree + m/k edges
such that A\nez (L Lg) < &k

For low-stretch T,
At most s eigenvalues larger than O((m/s)logn)

Kolla-Makarychev-Saberi-Teng ‘10:

Fix s eigenvalues with O(s) edges

s=m/logn k =O(log n)

But, slow to choose edges

Preconditioning: solve in time O(m k)

Need HE G, H is a tree + m/k edges
such that A\nez (L Lg) < &k

For low-stretch T,
At most s eigenvalues larger than O((m/s)logn)

Koutis-Miller-Peng “10:

k = O(log? n)

Faster Laplacian Solvers?

KMST ‘09 says O(m log n) might be possible
Very powerful primitive

Like sorting

Faster Laplacian Solvers?

KMST ‘09 says O(m log n) might be possible
Very powerful primitive
Like sorting

Better than BFS?

Uses for better graph exploration?
Faster local clustering?

Convergence of processes on graphs?

Conclusion

We've produced a lot of gems

