
Spectral and Algebraic Graph Theory

Incomplete Draft, dated April 2, 2025
Current version available at http://cs-www.cs.yale.edu/homes/spielman/sagt.

Daniel A. Spielman
Yale University

Copyright ©2025 by Daniel A. Spielman. All rights reserved.

http://cs-www.cs.yale.edu/homes/spielman/sagt

Chapter List

Preface v

Contents vi

Notation xxii

I Introduction and Background 1

1 Introduction 2

2 Eigenvalues and Optimization: The Courant-Fischer Theorem 21

3 The Laplacian and Graph Drawing 29

4 Adjacency matrices, Eigenvalue Interlacing, and the Perron-Frobenius Theorem 34

II The Zoo of Graphs 43

5 Fundamental Graphs 44

6 Comparing Graphs 53

7 Cayley Graphs 61

8 Eigenvalues of Random Graphs 69

9 Strongly Regular Graphs 83

i

CHAPTER LIST ii

III Physical Metaphors 91

10 Random Walks on Graphs 92

11 Walks, Springs, and Resistor Networks 102

12 Effective Resistance and Schur Complements 111

13 Random Spanning Trees 122

14 Approximating Effective Resistances 129

15 Tutte’s Theorem: How to draw a graph 134

16 The Lovàsz - Simonovits Approach to Random Walks 142

17 Monotonicity and its Failures 147

18 Dynamic and Nonlinear Networks 155

IV Spectra and Graph Structure 163

19 Independent Sets and Coloring 164

20 Graph Partitioning 171

21 Cheeger’s Inequality 176

22 Local Graph Clustering 181

23 Spectral Partitioning in a Stochastic Block Model 189

24 Nodal Domains 196

25 The Second Eigenvalue of Planar Graphs 204

26 Planar Graphs 2, the Colin de Verdière Number 211

CHAPTER LIST iii

V Expander Graphs 218

27 Properties of Expander Graphs 219

28 A brief introduction to Coding Theory 228

29 Expander Codes 236

30 A simple construction of expander graphs 243

31 PSRGs via Random Walks on Graphs 251

VI Algorithms 257

32 Sparsification by Random Sampling 258

33 Linear Sized Sparsifiers 264

34 Iterative solvers for linear equations 272

35 The Conjugate Gradient and Diameter 280

36 Preconditioning Laplacians 287

37 Augmented Spanning Tree Preconditioners 295

38 Fast Laplacian Solvers by Sparsification 300

39 Testing Isomorphism of Graphs with Distinct Eigenvalues 307

40 Testing Isomorphism of Strongly Regular Graphs 317

VII Interlacing Families 325

41 Expected Characteristic Polynomials 326

42 Quadrature for the Finite Free Convolution 333

CHAPTER LIST iv

43 Ramanujan Graphs of Every Size 341

44 Bipartite Ramanujan Graphs 349

45 The Matching Polynomial 357

Bibliography 363

Preface

Please note that this is a rapidly evolving draft. You will find warning messages at
the start of sections that need substantial editing.

This book is about how combinatorial properties of graphs are related to algebraic properties of
associated matrices, as well as applications of those connections. One’s initial excitement over this
material usually stems from its counter-intuitive nature. I hope to convey this initial amazement,
but then make the connections seem intuitive. After gaining intuition, I hope the reader will
appreciate the material for its beauty.

This book is mostly based on lecture notes from the “Spectral Graph Theory” course that I have
taught at Yale, with notes from “Graphs and Networks” and “Spectral Graph Theory and its
Applications” mixed in. I love the material in these courses, and find that I can never teach
everything I want to cover within one semester. This is why I wrote this book. As this book is
based on lecture notes, it does not contain the tightest or most recent results. Rather, my goal is
to introduce the main ideas and to provide intuition.

There are three tasks that one must accomplish in the beginning of a course on Spectral Graph
Theory:

• One must convey how the coordinates of eigenvectors correspond to vertices in a graph.
This is obvious to those who understand it, but it can take a while for students to grasp.

• One must introduce necessary linear algebra and show some interesting interpretations of
graph eigenvalues.

• One must derive the eigenvalues of some example graphs to ground the theory.

I find that one has to do all these at once. For this reason my first few lectures jump between
developing theory and examining particular graphs. For this book I have decided to organize the
material differently, mostly separating examinations of particular graphs from the development of
the theory. To help the reader reconstruct the flow of my courses, I give three orders that I have
used for the material:

put orders here

There are many terrific books on Spectral Graph Theory. The four that influenced me the most
are

v

PREFACE vi

“Algebraic Graph Theory” by Norman Biggs,

“Spectral Graph Theory” by Fan Chung,

“Algebraic Combinatorics” by Chris Godsil, and

“Algebraic Graph Theory” by Chris Godsil and Gordon Royle.

Other books that I find very helpful and that contain related material include

“Modern Graph Theory” by Bela Bollobas,

“Probability on Trees and Networks” by Russell Llyons and Yuval Peres,

“Spectra of Graphs” by Dragos Cvetkovic, Michael Doob, and Horst Sachs, and

“Eigenspaces of Graphs” By Dragos Cvetkovic, Peter Rowlinson, and Slobodan Simic

“Non-negative Matrices and Markov Chains” by Eugene Seneta

“Nonnegative Matrices and Applications” by R. B. Bapat and T. E. S. Raghavan

“Numerical Linear Algebra” by Lloyd N. Trefethen and David Bau, III

“Applied Numerical Linear Algebra” by James W. Demmel

For those needing an introduction to linear algebra, a perspective that is compatible with this
book is contained in Gil Strang’s “Introduction to Linear Algebra.” For more advanced topics in
linear algebra, I recommend “Matrix Analysis” by Roger Horn and Charles Johnson, as well as
their “Topics in Matrix Analysis.” For treatments of physical systems related to graphs, the topic
of Part III, I recommend Gil Strang’s “Introduction to Applied Mathematics”, Sydney H. Gould’s
“Variational Methods for Eigenvalue Problems”, and “Markov Chains and Mixing Times” by
Levin, Peres and Wilmer.

I have gained a lot of intuition for spectral and algebraic graph theory by examining examples. I
include many examples so that you can play with them, develop your own intuition, and test your
own ideas. My preferred environment for computational experiments is a Jupyter notebook
written in the Julia programming language. All of the code used in this book may be found at
this GitHub repository: https://github.com/danspielman/sagt_code. If you want to start
running the code in this book, you should begin by importing a few packages and setting some
defaults with the lines

using Laplacians, LinearAlgebra, Plots, SparseArrays, FileIO, JLD2, Random

gr(); default(fmt=:png)

Random.seed!(0)

https://github.com/danspielman/sagt_code

Contents

Preface v

Contents vi

Notation xxii

I Introduction and Background 1

1 Introduction 2

1.1 Graphs . 2

1.2 Matrices for Graphs . 3

1.2.1 A spreadsheet . 3

1.2.2 An operator . 4

1.2.3 A quadratic form . 5

1.3 Spectral Theory . 5

1.4 Some examples . 6

1.4.1 Paths . 6

1.5 Highlights . 9

1.5.1 Spectral Graph Drawing . 9

1.5.2 Graph Isomorphism . 12

1.5.3 Platonic Solids . 14

1.5.4 The Fiedler Value . 16

1.5.5 Bounding Eigenvalues . 17

vii

CONTENTS viii

1.5.6 Planar Graphs . 17

1.5.7 Random Walks on Graphs . 17

1.5.8 Expanders . 17

1.5.9 Approximations of Graphs . 18

1.5.10 Solving equations in and computing eigenvalues of Laplacians 18

1.5.11 Advice on reading this book . 18

1.6 Exercises . 19

2 Eigenvalues and Optimization: The Courant-Fischer Theorem 21

2.1 The First Proof . 22

2.2 Proof of the Spectral Theorem by Optimization . 24

2.3 Singular Values for Asymmetric Matrices . 27

2.4 Exercise . 28

3 The Laplacian and Graph Drawing 29

3.1 The Laplacian Matrix . 29

3.2 Drawing with Laplacian Eigenvalues . 31

4 Adjacency matrices, Eigenvalue Interlacing, and the Perron-Frobenius Theorem 34

4.1 The Adjacency Matrix . 34

4.2 The Largest Eigenvalue, µ1 . 35

4.3 Eigenvalue Interlacing . 37

4.4 Wilf’s Theorem . 38

4.5 Perron-Frobenius Theory for symmetric matrices . 39

4.6 Singular Values and Directed Graphs . 41

4.7 Exercises . 42

II The Zoo of Graphs 43

5 Fundamental Graphs 44

5.1 The complete graph . 44

CONTENTS ix

5.2 The star graphs . 45

5.3 Products of graphs . 46

5.3.1 The Hypercube . 47

5.4 Bounds on λ2 by test vectors . 48

5.5 The Ring Graph . 49

5.6 The Path Graph . 51

6 Comparing Graphs 53

6.1 Overview . 53

6.2 The Loewner order . 53

6.3 Approximations of Graphs . 55

6.4 The Path Inequality . 55

6.4.1 Lower bounding λ2 of a Path Graph . 56

6.5 The Complete Binary Tree . 57

6.6 The weighted path . 59

6.7 A better lower bound on λ2(Tn) . 60

7 Cayley Graphs 61

7.1 Cayley Graphs . 61

7.2 Paley Graphs . 62

7.3 Eigenvalues of the Paley Graphs . 63

7.4 Generalizing Hypercubes . 64

7.5 A random set of generators . 66

7.6 Conclusion . 67

7.7 Non-Abelian Groups . 67

7.8 Eigenvectors of Cayley Graphs of Abelian Groups . 68

8 Eigenvalues of Random Graphs 69

8.1 Transformation . 70

8.2 The extreme eigenvalues . 71

8.2.1 Vectors near v1 . 72

CONTENTS x

8.3 The Trace Method . 74

8.4 Expectation of the trace of a power . 75

8.5 The number of walks . 77

8.6 Notes . 80

8.7 Exercise . 81

9 Strongly Regular Graphs 83

9.1 Introduction . 83

9.2 Definitions . 83

9.3 The Pentagon . 84

9.4 Lattice Graphs . 84

9.5 Latin Square Graphs . 84

9.6 The Eigenvalues of Strongly Regular Graphs . 85

9.7 Regular graphs with three eigenvalues . 86

9.8 Integrality of the eigenvalues . 86

9.9 The Eigenspaces of Strongly Regular Graphs . 87

9.10 Triangular Graphs . 88

9.11 Two-distance point sets . 89

III Physical Metaphors 91

10 Random Walks on Graphs 92

10.1 Random Walks . 92

10.2 Spectra of Walk Matrices . 93

10.3 The stable distribution . 94

10.4 The Rate of Convergence . 95

10.5 Relation to the Normalized Laplacian . 97

10.6 Examples . 98

10.6.1 The Path . 99

10.6.2 The Complete Binary Tree . 99

CONTENTS xi

10.6.3 The Dumbbell . 99

10.6.4 The Bolas Graph . 100

10.7 Diffusion . 101

10.8 Final Notes . 101

11 Walks, Springs, and Resistor Networks 102

11.1 Overview . 102

11.2 Harmonic Functions . 102

11.3 Random Walks with absorbing nodes . 103

11.4 Spring Networks . 103

11.5 Laplacian linear equations . 104

11.6 Energy . 107

11.7 Resistor Networks . 107

11.8 Solving for currents . 109

11.9 Exercise . 110

12 Effective Resistance and Schur Complements 111

12.1 Electrical Flows and Effective Resistance . 111

12.2 Effective Resistance through Energy Minimization 112

12.3 Reciprocity and Monotonicity . 113

12.4 Examples: Series and Parallel . 114

12.5 Equivalent Networks, Elimination, and Schur Complements 115

12.5.1 In matrix form by energy . 117

12.6 Eliminating Many Vertices . 118

12.7 The Schur Complement . 119

12.8 An interpretation of Gaussian elimination . 120

12.9 Effective Resistance is a Distance . 120

13 Random Spanning Trees 122

13.1 Introduction . 122

13.2 Determinants . 122

CONTENTS xii

13.3 Characteristic Polynomials . 123

13.4 The Matrix Tree Theorem . 124

13.5 Leverage Scores and Marginal Probabilities . 126

14 Approximating Effective Resistances 129

14.1 Representing Effective Resistances . 129

14.2 Computing Effective Resistances . 130

14.3 Properties of Gaussian random variables . 131

14.4 Proof of Johnson-Lindenstrauss . 132

15 Tutte’s Theorem: How to draw a graph 134

15.1 3-Connected, Planar Graphs . 134

15.2 Strictly Convex Polygons . 137

15.3 Consequences of Harmonicity . 138

15.4 All faces are convex . 140

15.5 Notes . 141

16 The Lovàsz - Simonovits Approach to Random Walks 142

16.1 Introduction . 142

16.2 Definitions and Elementary Observations . 143

16.3 Warm up . 143

16.4 The proof . 144

16.5 Andersen’s proof of Cheeger’s inequality . 146

17 Monotonicity and its Failures 147

17.1 Overview . 147

17.2 Effective Spring Constants . 147

17.3 Monotonicity . 148

17.4 Effective Resistance . 148

17.5 Examples . 150

17.6 Breakdown of Monotonicity . 150

CONTENTS xiii

17.7 Traffic Networks . 151

17.8 Braes’s Paradox . 152

17.9 The Price of Anarchy . 152

17.10Nash optimum . 153

17.11Social optimum . 153

18 Dynamic and Nonlinear Networks 155

18.1 Overview . 155

18.2 Non-Linear Networks . 155

18.3 Energy . 156

18.4 Uses in Semi-Supervised Learning . 157

18.5 Dual Energy . 158

18.6 Thermistor Networks . 160

18.7 Low Temperatures . 161

IV Spectra and Graph Structure 163

19 Independent Sets and Coloring 164

19.1 Introduction . 164

19.2 Graph Coloring and Independent Sets . 164

19.3 Hoffman’s Bound . 165

19.4 Application to Paley graphs . 166

19.5 Lower Bound on the chromatic number . 167

19.6 Proofs for Hoffman’s lower bound on chromatic number 168

20 Graph Partitioning 171

20.1 Isoperimetry and λ2 . 171

20.2 Conductance . 173

20.3 The Normalized Laplacian . 173

20.4 Notes . 175

CONTENTS xiv

21 Cheeger’s Inequality 176

21.1 Cheeger’s Inequality . 176

22 Local Graph Clustering 181

22.1 The Algorithm . 181

22.2 Good choices for a . 182

22.3 Bounding the D-norm . 184

22.4 Bounding the Generalized Rayleigh Quotient . 185

22.5 Rounding . 187

22.6 Notes . 188

23 Spectral Partitioning in a Stochastic Block Model 189

23.1 The Perturbation Approach . 190

23.2 Perturbation Theory for Eigenvectors . 192

23.3 Partitioning . 193

23.4 Proof of the Davis-Kahan Theorem . 194

23.5 Further Reading . 195

24 Nodal Domains 196

24.1 Overview . 196

24.2 Sylvester’s Law of Inertia . 198

24.3 Weighted Trees . 199

24.4 The Perron-Frobenius Theorem for Laplacians . 201

24.5 Fiedler’s Nodal Domain Theorem . 201

25 The Second Eigenvalue of Planar Graphs 204

25.1 Overview . 204

25.2 Geometric Embeddings . 205

25.3 The center of gravity . 208

25.4 Further progress . 210

26 Planar Graphs 2, the Colin de Verdière Number 211

CONTENTS xv

26.1 Introduction . 211

26.2 Colin de Verdière invariant . 211

26.3 Polytopes and Planar Graphs . 212

26.4 The Colin de Verdière Matrix . 213

26.5 Minors of Planar Graphs . 214

26.6 cdv(G) ≤ 3 . 214

V Expander Graphs 218

27 Properties of Expander Graphs 219

27.1 Overview . 219

27.2 Expanders as Approximations of the Complete Graph 219

27.3 Quasi-Random Properties of Expanders . 221

27.4 Vertex Expansion . 222

27.5 How well can a graph approximate the complete graph? 223

27.6 Open Problems . 227

28 A brief introduction to Coding Theory 228

28.1 Coding . 228

28.2 Notation . 229

28.3 Connection with Generalized Hypercubes . 229

28.4 Hamming Codes . 229

28.5 Terminology and Linear Codes . 231

28.6 Random Linear Codes . 232

28.7 Reed-Solomon Codes . 234

28.8 Caution . 235

29 Expander Codes 236

29.1 Bipartite Expander Graphs . 236

29.2 Building Codes . 238

29.3 Encoding . 238

CONTENTS xvi

29.4 Minimum Distance . 239

29.5 Decoding . 240

29.6 Historical Notes . 241

30 A simple construction of expander graphs 243

30.1 Overview . 243

30.2 Squaring Graphs . 244

30.3 The Relative Spectral Gap . 245

30.4 Line Graphs . 245

30.5 The Spectrum of the Line Graph . 246

30.6 Approximations of Line Graphs . 248

30.7 The whole construction . 249

30.8 Better Constructions . 250

31 PSRGs via Random Walks on Graphs 251

31.1 Overview . 251

31.2 Why Study PSRGs? . 251

31.3 Expander Graphs . 252

31.4 Today’s Application : repeating an experiment . 252

31.5 The Random Walk Generator . 253

31.6 Formalizing the problem . 253

31.7 Matrix Norms . 254

31.8 The norm of DXW . 255

31.9 Conclusion . 256

31.10Notes . 256

VI Algorithms 257

32 Sparsification by Random Sampling 258

32.1 Overview . 258

32.2 Sparsification . 258

CONTENTS xvii

32.3 Matrix Chernoff Bounds . 259

32.4 The key transformation . 260

32.5 The probabilities . 260

32.6 The analysis . 262

32.7 Open Problem . 263

33 Linear Sized Sparsifiers 264

33.1 Overview . 264

33.2 Turning edges into vectors . 264

33.3 The main theorem . 265

33.4 Rank-1 updates . 266

33.5 Barrier Function Arguments . 266

33.6 Barrier Function Updates . 268

33.7 The inductive argument . 269

33.8 Progress and Open Problems . 271

34 Iterative solvers for linear equations 272

34.1 Why iterative methods? . 272

34.2 First-Order Richardson Iteration . 273

34.3 Expanders . 274

34.4 The norm of the residual . 275

34.5 A polynomial approximation of the inverse . 275

34.6 Better Polynomials . 276

34.7 Chebyshev Polynomials . 277

34.8 Proof of Theorem 34.6.1 . 278

34.9 Laplacian Systems . 279

34.10Warning . 279

35 The Conjugate Gradient and Diameter 280

35.1 The Matrix Norm . 280

35.2 Application: Approximating Fiedler Vectors . 281

CONTENTS xviii

35.3 Optimality in the A-norm . 282

35.4 How Good is CG? . 284

35.5 Laplacian Systems, again . 285

35.6 Bounds on the Diameter . 285

36 Preconditioning Laplacians 287

36.1 Approximate Solutions . 288

36.2 Iterative Refinement . 288

36.3 Iterative Methods in the Matrix Norm . 289

36.4 Preconditioned Iterative Methods . 289

36.5 Preconditioning by Trees . 290

36.6 Improving the Bound on the Running Time . 292

36.7 Further Improvements . 293

36.8 Questions . 293

37 Augmented Spanning Tree Preconditioners 295

37.1 Recursion . 295

37.2 Heavy Trees . 297

37.3 Saving a log . 299

38 Fast Laplacian Solvers by Sparsification 300

38.1 Overview . 300

38.2 Today’s notion of approximation . 300

38.3 The Idea . 301

38.4 A symmetric expansion . 302

38.5 D and A . 303

38.6 Sketch of the construction . 305

38.7 Making the construction efficient . 306

38.8 Improvements . 306

39 Testing Isomorphism of Graphs with Distinct Eigenvalues 307

CONTENTS xix

39.1 Introduction . 307

39.2 Graph Isomorphism . 307

39.3 Using Eigenvalues and Eigenvectors . 308

39.4 An easy case . 309

39.5 All the Automorphisms . 310

39.6 Equivalence Classes of Vertices . 310

39.7 The first partition . 311

39.8 Unbalanced vectors . 311

39.9 The structure of the balanced classes . 312

39.10Algorithms . 315

40 Testing Isomorphism of Strongly Regular Graphs 317

40.1 Introduction . 317

40.2 Definitions . 317

40.3 Paley Graphs and The Pentagon . 318

40.4 Lattice Graphs . 318

40.5 Latin Square Graphs . 318

40.6 The Eigenvalues of Strongly Regular Graphs . 319

40.7 Testing Isomorphism by Individualization and Refinement 320

40.8 Distinguishing Sets for Strongly Regular Graphs . 321

40.9 Notes . 324

VII Interlacing Families 325

41 Expected Characteristic Polynomials 326

41.1 Overview . 326

41.2 Random sums of graphs . 326

41.3 Interlacing . 327

41.4 Sums of polynomials . 330

41.5 Random Swaps . 331

CONTENTS xx

42 Quadrature for the Finite Free Convolution 333

42.1 Overview . 333

42.2 The Finite Free Convolution . 333

42.3 Quadrature . 335

42.4 Quadrature by Invariance . 336

42.5 Structure of the Orthogonal Group . 337

42.6 The Formula . 339

42.7 Question . 340

43 Ramanujan Graphs of Every Size 341

43.1 Overview . 341

43.2 The Approach . 341

43.3 Interlacing Families of Polynomials . 342

43.4 Root Bounds for Finite Free Convolutions . 344

43.5 The Calculation . 345

43.6 Some explanation of Theorem 43.4.1 . 346

43.7 Some thoughts . 347

44 Bipartite Ramanujan Graphs 349

44.1 Overview . 349

44.2 2-Lifts . 350

44.3 Random 2-Lifts . 351

44.4 Laplacianized Polynomials . 351

44.5 Interlacing Families of Polynomials . 352

44.6 Common Interlacings . 354

44.7 Real Rootedness . 355

44.8 Conclusion . 356

45 The Matching Polynomial 357

45.1 Overview . 357

45.2 The Matching Polynomial . 357

CONTENTS xxi

45.3 Properties of the Matching Polynomial . 358

45.4 The Path Tree . 359

45.5 Root bounds . 362

Bibliography 363

Notation

This section lists the notation that I try to use throughout the book. I sometimes fall into
different notations when the conventions surrounding a topic are so strong that failing to follow
them would make it difficult for experts to understand this book, or would cause cognitive stress.

I almost always treat vectors as functions, and thus write x (i) for the ith component of the vector
x . In spectral and algebraic graph theory, we usually treat vectors as functions from vertices to
the real numbers, so you are more likely to encounter x (a) for a vertex named a. Similarly, we
denote the entry in row a and column b of a matrix M by M (a, b). I place subscripts on vectors,
like x i, to indicate the ith vector in a set of vectors.

I An identity matrix
J An all-1s matrix
D The diagonal matrix of weighted degrees of a graph
L Laplacian Matrix
M Adjacency Matrix or a generic matrix, Page 3
N Normalized Laplacian Matrix
W The diagonal matrix of edge weights, or
W The Walk Matrix, MD−1

W̃ Lazy Walk Matrix, I /2 + W /2
A+ The Moore-Penrose pseudoinverse of A.

A+/2 The square root of of A+.

xxii

NOTATION xxiii

V The set of vertices, Page 2
E The set of edges, Page 2
n usually the number of vertices in a graph, Page 3
a, b vertices
(a, b) an edge
w(a, b) or wa,b the weight of edge (a, b)
w(e) the weight of edge e
x (a) the component of the vector x corresponding to vertex a.
d(a) the weighted degree of vertex a
d the vector of weighted degrees of the vertices in a graph.
w(F) the sum of the weights of edges in F ⊂ E
λ an eigenvalue, usually of a graph Laplacian
µ an eigenvalue, usually of an adjacency matrix, Page 35
ν an eigenvalue of a normalized Laplacian matrix
ω an eigenvalue of a walk matrix
φ an eigenvector, usually of M
ψi the ith eigenvector, associated with eigenvalue λi, usually of a Laplacian
δa the elementary unit vector in direction a; δa(a) = 1, Page 29
Ψ the orthogonal matrix with columns ψi
π the stable distribution of a random walk
λmax(M) the largest eigenvalue of M
λmin(M) the smallest eigenvalue of M
µk(M) the kth largest eigenvalue of M
λk(L) the kth smallest eigenvalue of L
Tr (M) the trace of the matrix M , Page 20
‖M ‖ the operator norm of the matrix M
|x | the Hamming weight of the vector x
1S the characteristic vector of the set S, Page 38

a ∼ b a is a neighbor of b, Page 34
G(S) the subgraph induced on the vertices in S Page 37
M (S) the submatrix of M induced on the rows and columns in S, Page 37
χ(G) the chromatic number of the graph G, Page 164
α(G) the independence number of the graph G, Page 164
∂(S) the boundary of a set of vertices, Pages 44 and 171
θ(S) the isoperimetric ratio of S, Pages 44 and 171
φ(S) the conductance of S
θG the isoperimetric ratio of G
φG the conductance of G
A < B A−B is positive semidefinite, Page 53
G < H LG < LH , Page 54
c ·G the result of multiplying all edge weights of G by c, Page 54
[n] the set {1, 2, . . . , n}
bxc the “floor” of x, Page 38
Fp the field with p elements, aka the integers modulo the prime p

Part I

Introduction and Background

1

Chapter 1

Introduction

In this chapter we present essential background on graphs and spectral theory. We also introduce
some spectral and algebraic graph theory, describe some of the topics covered in this book, and
try to give some useful intuition about graph spectra.

1.1 Graphs

First, we recall that a graph G = (V,E) is specified by its vertex1 set, V , and edge set, E. In an
undirected graph, the edge set is a set of unordered pairs of vertices. We use the notation (a, b) to
indicate an edge between vertices a and b. As this edge is undirected, this is the same as edge
(b, a). Some prefer to write undirected edges using set notation, like {a, b}; but, we won’t do that.
Unless otherwise specified, all graphs discussed in this book will be undirected, simple (having no
loops or multiple edges) and finite. We will sometimes assign weights to edges. These will usually
be positive real numbers. If no weights have been specified, we will assume all edges have weight
1. This is an arbitrary choice, and we should remember that it has an impact.

Graphs (also called “networks”) are typically used to model connections or relations between
things, where “things” are vertices. When the edges in a graph are more important than the
vertices, we may just specify an edge set E and omit the ambient vertex set.

Common “natural” examples of graphs are:

• Friendship graphs: people are vertices, edges exist between pairs of people who are friends
(assuming the relation is symmetric).

• Network graphs: devices, routers and computers are vertices, edges exist between pairs that
are connected.

• Circuit graphs: electronic components, such as transistors, are vertices: edges exist between
pairs connected by wires.

1I will use the words “vertex” and “node” interchangeably. Sorry about that.

2

CHAPTER 1. INTRODUCTION 3

• Protein-Protein Interaction graphs: proteins are vertices. Edges exist between pairs that
interact. These should really have weights indicating the strength and nature of interaction.
So should most other graphs.

It is much easier to study abstract, mathematically defined graphs. For example,

• The path on n vertices. The vertices are {1, . . . n}. The edges are (i, i+ 1) for 1 ≤ i < n.

• The ring on n vertices. The vertices are {1, . . . n}. The edges are all those in the path, plus
the edge (1, n).

• The hypercube on 2k vertices. The vertices are elements of {0, 1}k. Edges exist between
vertices that differ in only one coordinate.

1.2 Matrices for Graphs

The naive view of a matrix is that it is essentially a spreadsheet—a table we use to organize
numbers. This is like saying that a car is an enclosed metal chair with wheels. It says nothing
about what it does!

We will use matrices to do two things. First, we will view a matrix M as providing a function
that maps a vector x to the vector Mx . That is, we view M as an operator. Second, we use the
matrix M to define a quadratic form: a function that maps a vector x to the number xTMx .

1.2.1 A spreadsheet

We will usually write V for the set of vertices of a graph, and let n denote the number of vertices.
There are times that we will need to order the vertices and assign numbers to them. In this case,
they will usually be {1, . . . , n}. For example, if we wish to draw a matrix as a table, then we need
to decide which vertex corresponds to which row and column.

The most natural matrix to associate with a graph G is its adjacency matrix2, MG, whose
entries MG(a, b) are given by

MG(a, b) =

{
1 if (a, b) ∈ E
0 otherwise.

If G is weighted with edge (a, b) having weight wa,b, we set MG(a, b) = wa,b.

It is important to realize that we index the rows and columns of the matrix by vertices, rather
than by numbers. Almost every statement that we make will remain true under renaming of
vertices. The first row of a matrix has no special importance. To understand this better see the
exercises at the end of this section.

2I am going to try to always use the letter M for the adjacency matrix, in contrast with my past practice which
was to use A. I will almost always use letters like a and b to denote vertices.

CHAPTER 1. INTRODUCTION 4

While the adjacency matrix is the most natural matrix to associate with a graph, I find it the
least useful. Eigenvalues and eigenvectors are most meaningful when used to understand a
natural operator or a natural quadratic form. The adjacency matrix provides neither.

1.2.2 An operator

The most natural operator associated with a graph G is probably its diffusion operator. This
operator describes the diffusion of stuff among the vertices of a graph. Imagine a process in which
each vertex can contain some amount of stuff, such as a gas or the probability that a random walk
is at that vertex. At each time step, the stuff at a vertex will be uniformly distributed to its
neighbors. None of the stuff that was at a vertex remains at the vertex, but stuff can enter from
other vertices. This is a discrete-time and slightly unnatural notion of diffusion, but it provides a
nice matrix. We define the operator for the continuous-time process below.

To construct the matrix realizing this process, which we call the walk matrix or the diffusion
matrix, let DG be the diagonal matrix in which DG(a, a) is the degree of vertex a. We will
usually write d(a) for the degree of vertex a. In an unweighted graph, the degree of a vertex is
the number of edges attached to it. In the case of a weighted graph, we call the number of edges
attached to a vertex its combinatorial degree, and the sum of the weights of the edges attached to
it the weighted degree. When we refer to the degree of a vertex in a weighted graph, you should
assume we mean the weighted degree. Algebraically, we can obtain the vector of degrees from the
expression

d
def
= MG1,

where 1 is the all-ones vector.

We then set
W G = MGD

−1
G .

When the graph is regular, that is when every vertex has the same degree, W G is merely a
rescaling of MG

3. In the event that a vertex a has degree 0, we adopt the convention that
W G(a, a) = 0.

Formally4, we use a vector p ∈ IRV to indicate how much “stuff” is at each vertex, with p(a)
being the amount of stuff at vertex a. After one time step, the distribution of stuff at each vertex
will be W Gp. To see this, first consider the case when p is an elementary unit vector, δa, where
we define δa to be the vector for which δa(a) = 1, and for every other vertex b, δa(b) = 0. The
vector D−1

G δa has the value 1/d(a) at vertex a, and is zero everywhere else. So, the vector
MGD

−1
G δa has value 1/d(a) at every vertex b that is a neighbor of a, and is zero everywhere else.

If this is not immediately obvious, think about it until it is.

It is sometimes more convenient to consider a lazy random walk . These are usually defined to be
walks that stay put with probability one half and take a step with probability one half. The
matrix corresponding to this operator is given by

W̃ G
def
= I /2 + W G/2.

3I think this is why researchers got away with studying the adjacency matrix for so long.
4We write IRV instead of IRn to emphasize that each coordinate of the vector corresponds to a vertex of the graph.

CHAPTER 1. INTRODUCTION 5

One of the purposes of spectral theory is to provide an understanding of what happens when one
repeatedly applies a linear operator like W G.

1.2.3 A quadratic form

The most natural quadratic form associated with a graph is defined in terms of its Laplacian
matrix,

LG
def
= DG −MG.

Given a function on the vertices, x ∈ IRV , the value of the Laplacian quadratic form of a weighted
graph in which edge (a, b) has weight wa,b > 0 is

xTLGx =
∑

(a,b)∈E

wa,b(x (a)− x (b))2. (1.1)

This form measures the smoothness of the function x . It will be small if the function x does not
vary too much between the vertices connected by any edge.

We will occasionally want to consider the Laplacians of graphs that have both positively and
negatively weighted edges. As there are many reasonable definitions of these Laplacians, we will
only define them when we need them.

1.3 Spectral Theory

We now review the highlights of the spectral theory for symmetric matrices. Almost all of the
matrices we consider will be symmetric or will be similar5 to symmetric matrices.

We recall that a vector ψ is an eigenvector of a matrix M with eigenvalue λ if ψ is not identically
zero and

Mψ = λψ. (1.2)

That is, λ is an eigenvalue if and only if λI −M is a singular matrix. Thus, the eigenvalues are
the roots of the characteristic polynomial of M :

det(xI −M).

Theorem 1.3.1. [The Spectral Theorem] For every n-by-n, real, symmetric matrix M , there
exist real numbers λ1, . . . , λn and n mutually orthogonal unit vectors ψ1, . . . ,ψn and such that ψi
is an eigenvector of M of eigenvalue λi, for each i.

This is the great fact about symmetric matrices. If the matrix is not symmetric, it might not have
n eigenvalues. And, even if it has n eigenvalues, their eigenvectors will not be orthogonal6. If M
is not symmetric, its eigenvalues and eigenvectors might be the wrong thing to study.

5A matrix M is similar to a matrix B if there is a non-singular matrix X such that X−1MX = B . In this case,
M and B have the same eigenvalues. See the exercises at the end of this section.

6You can prove that if the eigenvectors are orthogonal, then the matrix is symmetric.

CHAPTER 1. INTRODUCTION 6

Recall that the eigenvectors are not uniquely determined, although the eigenvalues are. If ψ is an
eigenvector, then −ψ is as well. Some eigenvalues can be repeated. If λi = λi+1, then ψi +ψi+1

will also be an eigenvector of eigenvalue λi. The eigenvectors of a given eigenvalue are only
determined up to an orthogonal transformation.

Definition 1.3.2. A matrix is positive definite, written M � 0, if it is symmetric and all of its
eigenvalues are positive. It is positive semidefinite, written M � 0, if it is symmetric and all of
its eigenvalues are nonnegative.

Fact 1.3.3. The Laplacian matrix of a graph is positive semidefinite.

Proof. Let ψ be a unit eigenvector of L of eigenvalue λ. Then,

ψTLψ = ψTλψ = λ(ψTψ) = λ =
∑

(a,b)∈E

wa,b(ψ(a)−ψ(b))2 ≥ 0.

We always number the eigenvalues of the Laplacian from smallest to largest. Thus, λ1 = 0. We
will refer to λ2, and in general λk for small k, as low-frequency eigenvalues. λn is a high-frequency
eigenvalue. We will see why soon.

1.4 Some examples

Before we start proving theorems, we will see examples that should convince you that the
eigenvalues and eigenvectors of graphs are meaningful.

1.4.1 Paths

A path graph on n vertices has vertices {1, . . . , n} and edges (i, i+ 1) for 1 ≤ i < n. Here is the
adjacency matrix of a path graph on 4 vertices.

M = path_graph(4)

Matrix(M)

0.0 1.0 0.0 0.0

1.0 0.0 1.0 0.0

0.0 1.0 0.0 1.0

0.0 0.0 1.0 0.0

And, here is its Laplacian matrix

Matrix(lap(M))

1.0 -1.0 0.0 0.0

CHAPTER 1. INTRODUCTION 7

-1.0 2.0 -1.0 0.0

0.0 -1.0 2.0 -1.0

0.0 0.0 -1.0 1.0

Here are the eigenvalues of a longer path.

L = lap(path_graph(10))

E = eigen(Matrix(L))

E.values’

0.0 0.097887 0.381966 0.824429 1.38197 2.0 2.61803 3.17557 3.61803 3.90211

The eigenvector of the zero-eigenvalue is a constant vector (up to numerical issues):

E.vectors[:,1]

0.31622776601683755

0.31622776601683716

0.31622776601683766

0.3162277660168381

0.31622776601683855

0.3162277660168381

0.3162277660168385

0.31622776601683805

0.3162277660168378

0.3162277660168378

The eigenvector of λ2 is the lowest frequency eigenvector. As we can see, it increases
monotonically along the path:

v2 = E.vectors[:,2]

0.44170765403093926

0.3984702312962002

0.31622776601683794

0.20303072371134548

0.0699596195707542

-0.06995961957075394

-0.2030307237113458

-0.3162277660168378

-0.39847023129619985

-0.44170765403093826

Let’s plot that.

CHAPTER 1. INTRODUCTION 8

plot(v2,marker=5,legend=false)

xlabel!("vertex number")

ylabel!("value in eigenvector")

The x-axis is the name/number of the vertex, and the y-axis is the value of the eigenvector at
that vertex. Now, let’s look at the next few eigenvectors.

plot(E.vectors[:,2:4],label=["v2" "v3" "v4"],marker = 5)

xlabel!("Vertex Number")

ylabel!("Value in Eigenvector")

You may now understand why we refer to these as the low-frequency eigenvectors. The curves
they trace out resemble the low-frequency modes of vibration of a string. The reason for this is
that the path graph can be viewed as a discretization of the string, and its Laplacian matrix is a

CHAPTER 1. INTRODUCTION 9

discretization of the Laplace operator. We will relate the low-frequency eigenvalues to
connectivity.

In contrast, the highest frequency eigenvalue alternates positive and negative with every vertex.
We will see that the high-frequency eigenvectors may be related to problems of graph coloring
and finding independent sets.

2 4 6 8 10

-0.4

-0.2

0.0

0.2

0.4

Vertex Number

V
al

ue
 in

 E
ig

en
ve

ct
or

v10

Plots.plot(E.vectors[:,10],label="v10",marker=5)

xlabel!("Vertex Number")

ylabel!("Value in Eigenvector")

1.5 Highlights

We now attempt to motivate this book, and the course on which it is based, by surveying some of
its highlights.

1.5.1 Spectral Graph Drawing

We can often use the low-frequency eigenvalues to obtain a nice drawing of a graph. For example,
here is 3-by-4 grid graph, and its first two non-trivial eigenvectors. Looking at them suggests that
they might provide nice coordinates for the vertices.

M = grid2(3,4)

L = lap(M)

E = eigen(Matrix(L))

V = E.vectors[:,2:3]

-0.377172 0.353553

CHAPTER 1. INTRODUCTION 10

-0.15623 0.353553

0.15623 0.353553

0.377172 0.353553

-0.377172 -1.66533e-16

-0.15623 -4.16334e-16

0.15623 -5.82867e-16

0.377172 2.77556e-16

-0.377172 -0.353553

-0.15623 -0.353553

0.15623 -0.353553

0.377172 -0.353553

In the figure below, we use these eigenvectors to draw the graph. Vertex a has been plotted at
coordinates ψ2(a),ψ3(a). That is, we use ψ2 to provide a horizontal coordinate for every vertex,
and ψ3 to obtain a vertical coordinate. We then draw the edges as straight lines.

plot_graph(M,V[:,1],V[:,2])

Figure 1.1: A 3-by-4 grid graph.

Let’s do a fancier example that should convince you something interesting is going on. We begin
in Fig. 1.2 by generating points by sampling them from the Yale logo.

We then construct a graph on the points by forming their Delaunay triangulation7, and use the
edges of the triangles to define a graph on the points. We draw those edges as straight lines in
Fig. 1.3.

Since the vertices came with coordinates, it was easy to draw a nice picture of the graph. But,
what if we just knew the graph, and not the coordinates? As we did with the grid, we could

7While it does not make sense to cover Delaunay triangulations in this book, they are fascinating and I recommend
that you look them up.

CHAPTER 1. INTRODUCTION 11

1.00 1.25 1.50 1.75 2.00
1.00

1.25

1.50

1.75

2.00

@load "yale.jld2"

scatter(xy[:,1],xy[:,2],legend=false)

Figure 1.2: Dots sampled from the Yale logo

plot_graph(a,xy[:,1],xy[:,2])

Figure 1.3: Dots sampled from the Yale logo

generate coordinates by computing two eigenvectors, and using each as a coordinate. In Fig. 1.4,
we plot vertex a at position ψ2(a),ψ3(a), and again draw the edges as straight lines.

CHAPTER 1. INTRODUCTION 12

E = eigen(Matrix(lap(a)))

V = E.vectors[:,2:3]

plot_graph(a,V[:,1],V[:,2], dots=false);

Figure 1.4: The spectral drawing of the graph of the Delaunay triangulation.

That’s a great way to draw a graph if you start out knowing nothing about it8. Note that the
middle of the picture is almost planar, although edges do cross near the boundaries.

1.5.2 Graph Isomorphism

It is important to note that the eigenvalues do not change if we relabel the vertices. Moreover, if
we permute the vertices then the entries of the eigenvectors are similarly permuted. That is, if P
is a permutation matrix, then

Lψ = λψ if and only if (PLPT)(Pψ) = PLψ = λ(Pψ),

because PTP = I . To prove it by experiment, let’s randomly permute the vertices, and plot the
permuted graph.

8It’s the first thing I do whenever I meet a strange graph.

CHAPTER 1. INTRODUCTION 13

Random.seed!(3)

p = randperm(size(a,1))

M = a[p,p]

E = eigen(Matrix(lap(M)))

V = E.vectors[:,2:3]

plot_graph(M,V[:,1],V[:,2], dots=false);

Note that this picture is slightly different from the previous one: it has flipped vertically. That’s
because eigenvectors are only determined up to signs, and that’s only if they have multiplicity 1.
This gives us a powerful heuristic for testing if one graph is a permutation of another (this is the
famous “Graph Isomorphism Testing Problem”). First, check if the two graphs have the same sets
of eigenvalues. If they don’t, then they are not isomorphic. If they do, and the eigenvalues have
multiplicity one, then draw the pictures above. If the pictures are the same, up to horizontal or
vertical flips, and no vertex is mapped to the same location as another, then by lining up the
pictures we can recover the permutation.

As some vertices can map to the same location, this heuristic doesn’t always work. We will learn
about the extent to which it does. In particular, we will see in Chapter 39 that if every eigenvalue
of two graphs G and H has multiplicity 1, then we can efficiently test whether or not they are
isomorphic.

These algorithms have been extended to handle graphs in which the multiplicity of every
eigenvalue is bounded by a constant [BGM82]. But, there are graphs in which every non-trivial
eigenvalue has large multiplicity. In Chapter 9 We will learn how to construct and analyze some,
as they constitute fundamental examples and counter-examples to many natural conjectures. For
example, here are the eigenvalues of a Latin Square Graph on 25 vertices. These are a type of
Strongly Regular Graph.

M = latin_square_graph(5);

println(eigvals(Matrix(lap(M))))

CHAPTER 1. INTRODUCTION 14

[0.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0,

15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0]

All Latin Square Graphs of the same size have the same eigenvalues, whether or not they are
isomorphic. We will learn some surprisingly fast (but still not polynomial time) algorithms for
checking whether or not Strongly Regular Graphs are isomorphic.

1.5.3 Platonic Solids

Of course, some graphs are not meant to be drawn in two dimensions. For example let’s try
drawing the skeleton of the dodecahedron using ψ2 and ψ3.

M = read_graph("dodec.txt")

E = eigen(Matrix(lap(M)))

x = E.vectors[:,2]

y = E.vectors[:,3]

plot_graph(M, x, y; setaxis=false);

Figure 1.5: The 1-skeleton of the dodecahedron.

You will notice that this looks like what you would get if you squashed the dodecahedron down to
the plane. The reason is that we really shouldn’t be drawing this picture in two dimensions: the
smallest non-zero eigenvalue of the Laplacian has multiplicity three.

E = eigen(Matrix(lap(M)))

E.values’

3.55271e-15 0.763932 0.763932 0.763932 2.0 2.0 2.0 2.0 2.0

3.0 3.0 3.0 3.0 5.0 5.0 5.0 5.0 5.23607 5.23607 5.23607

CHAPTER 1. INTRODUCTION 15

So, we can’t reasonably choose just two eigenvectors. We should be choosing three that span the
eigenspace. When we do, we get the canonical representation of the dodecahedron in three
dimensions.

x = E.vectors[:,2]

y = E.vectors[:,3]

z = E.vectors[:,4]

plot_graph(M, x, y, z; setaxis=false)

As you would guess, this happens for all Platonic solids. In fact, if you properly re-weight the
edges, it happens for every graph that is the one-skeleton of a convex polytope [Lov01].

We finish this section by contemplating an image of the high-frequency eigenvectors of the
dodecahedron. This code plots them in three dimensions, although we can only print them in two.
Observe that vertices are approximately opposite their neighbors.

CHAPTER 1. INTRODUCTION 16

x = E.vectors[:,20]

y = E.vectors[:,19]

z = E.vectors[:,18]

plot_graph(M, x, y, z; setaxis=false);

1.5.4 The Fiedler Value

We prove in Lemma 3.1.1 that the second-smallest eigenvalue of the Laplacian matrix of a graph
is zero if and only if the graph is disconnected. If G is disconnected, then we can partition it into
two graphs G1 and G2 with no edges between them, and then write

LG =

(
LG1 0

0 LG2

)
.

As the eigenvalues of LG are the union, with multiplicity, of the eigenvalues of LG1 and LG2 we
see that LG inherits a zero eigenvalue from each. Conversely, if G is connected then we can show
that the only vectors x for which xTLGx = 0 are the constant vectors: if x is not constant and G
is connected then there must be an edge (a, b) for which x (a) 6= x (b). This edge will contribute a
positive term to the sum (1.1).

Fiedler suggested that we make this qualitative observation quantitative by considering λ2 a
measure of how well connected the graph is. For this reason, he called it the “Algebraic
Connectivity” of a graph, and we call it the “Fiedler value”.

Fiedler [Fie73] proved that the further λ2 is from 0, the better connected the graph is. In Chapter
21 we will the prove ultimate extension of this result: Cheeger’s inequality.

In short, we say that a graph is poorly connected if one can cut off many vertices by removing
only a few edges. We measure how poorly connected it is by the ratio of these quantities (almost).
Cheeger’s inequality gives a tight connection between this ratio and λ2. If λ2 is small, then for
some t, the set of vertices

Si
def
= {i : ψ2(i) < t}

CHAPTER 1. INTRODUCTION 17

may be removed by cutting many fewer than |Si| edges. This spectral graph partitioning heuristic
has proved very successful in practice.

In general, it will be interesting to turn qualitative statements like “G is connected if and only if
λ2 > 0” into quantitative ones. For example, the smallest eigenvalue of the diffusion matrix is
zero if and only if the graph is bipartite. Trevisan [Tre09] showed that the magnitude of this
eigenvalue is related to how far a graph is from being bipartite.

1.5.5 Bounding Eigenvalues

We will often be interested in the magnitudes of certain eigenvalues. For this reason, we will learn
multiple techniques for proving bounds on eigenvalues. The most prominent of these will be
proofs by test vectors (Section 5.4) and proofs by comparison with simpler graphs (Chapter 6).

1.5.6 Planar Graphs

We will prove that graphs that can be drawn nicely must have small Fiedler value, and we will
prove very tight results for planar graphs (Chapter 25).

In Chapter 15 we will see how to use the graph Laplacian to draw planar graphs: Tutte [Tut63]
showed that if one reasonably fixes the locations of the vertices on a face of a planar graph and
then lets the others settle into the positions obtained by treating the edges as springs, then one
obtains a planar drawing of the graph!

1.5.7 Random Walks on Graphs

Spectral graph theory is one of the main tools we use for analyzing random walks on graphs. We
will devote a few chapters to this theory, connect it to Cheeger’s inequality, and use tools
developed to study random walks to derive a fascinating proof of Cheeger’s inequality
(Chapter 16).

1.5.8 Expanders

We will be particularly interested in graphs that are very well connected. These are called
expanders. Roughly speaking, expanders are sparse graphs (say having a number of edges linear
in the number of vertices), in which λ2 is bounded away from zero by a constant. They are among
the most important examples of graphs, and play a prominent role in Theoretical Computer
Science.

Expander graphs have numerous applications. We will see how to use random walks on expander
graphs to construct pseudo-random generators about which one can actually prove something. We
will also use them to construct good error-correcting codes.

CHAPTER 1. INTRODUCTION 18

Error-correcting codes and expander graphs are both fundamental objects of study in the field of
extremal combinatorics and are extremely useful. We will also use error-correcting codes to
construct crude expander graphs. In Chapter 30 we will see a simple construction of good
expanders. The best expanders are the Ramanujan graphs. These were first constructed by
Margulis [Mar88] and Lubotzky, Phillips and Sarnak [LPS88]. In Chapters 44 and 43 we will
prove that there exist infinite families of bipartite Ramanujan graphs.

1.5.9 Approximations of Graphs

We will ask what it means for one graph to approximate another. Given graphs G and H, we will
measure how well G approximates H by the closeness of their Laplacian quadratic forms. We will
see that expanders are precisely the sparse graphs that provide good approximations of the
complete graph, and we will use this perspective for most of our analysis of expanders in
Chapter 27. In Chapters 32 and 33 we show that every graph can be well-approximated by a
sparse graph through a process called sparsification.

1.5.10 Solving equations in and computing eigenvalues of Laplacians

We will also ask how well a graph can be approximated by a tree, and see in Chapter 36 that
low-stretch spanning-trees provide good approximations under this measure.

Our motivation for this material is the need to design fast algorithms for solving systems of linear
equations in Laplacian matrices and for computing their eigenvectors. This first problem arises in
numerous contexts, including the solution of elliptic PDEs by the finite element method, the
solution of network flow problems by interior point algorithms, and in classification problems in
Machine Learning.

In fact, our definition of graph approximation is designed to suit the needs of the Preconditioned
Conjugate Gradient algorithm.

1.5.11 Advice on reading this book

Throughout this book, we have tried to strike a balance between the simplicity and generality of
the results that we prove. But, whenever you want to understand a proof, you should try to make
as many simplifying assumptions as are reasonable. For example, that the graph under
consideration is connected, all of its edges have weight 1, and that of its eigenvalues have
multiplicity one.

When seeking generalizations of the material in this book, you should consult the source material
of the notes at the end of each chapter.

CHAPTER 1. INTRODUCTION 19

1.6 Exercises

The following exercises are intended to help you get back in practice at doing linear algebra. You
should solve all of them.

1. Orthogonal eigenvectors. Let M be a symmetric matrix, and let ψ and φ be vectors so
that

Mψ = µψ and Mφ = νφ.

Prove that if µ 6= ν then ψ must be orthogonal to φ. Your proof should exploit the symmetry of
M , as this statement is false otherwise.

2. Invariance under permutations.

Let Π be a permutation matrix. That is, there is a permutation π : V → V so that

Π(u, v) =

{
1 if u = π(v), and

0 otherwise.

Prove that if
Mψ = λψ,

then (
ΠMΠT

)
(Πψ) = λ(Πψ).

That is, permuting the coordinates of the matrix merely permutes the coordinates of the
eigenvectors, and does not change the eigenvalues.

3. Invariance under rotations.

Let Q be an orthogonal matrix. That is, a matrix such that QTQ = I . Prove that if

Mψ = λψ,

then (
QMQT

)
(Qψ) = λ(Qψ).

4. Similar Matrices.

A matrix M is similar to a matrix B if there is a non-singular matrix X such that
X−1MX = B . Prove that similar matrices have the same eigenvalues.

5. Spectral decomposition.

Let M be a symmetric matrix with eigenvalues λ1, . . . , λn and let ψ1, . . . ,ψn be a corresponding
set of orthonormal column eigenvectors. Let Ψ be the orthogonal matrix whose ith column is ψi.
Prove that

ΨTMΨ = Λ,

where Λ is the diagonal matrix with λ1, . . . , λn on its diagonal. Conclude that

M = ΨΛΨT =
∑
i∈V

λiψiψ
T
i .

CHAPTER 1. INTRODUCTION 20

6. Traces.

Recall that the trace of a matrix A, written Tr (A), is the sum of the diagonal entries of A. Prove
that for two matrices A and B ,

Tr (AB) = Tr (BA) .

Note that the matrices do not need to be square for this to be true: they can be rectangular
matrices of dimensions n×m and m× n.

Use this fact and the previous exercise to prove that

Tr (A) =

n∑
i=1

λi,

where λ1, . . . , λn are the eigenvalues of A. You are probably familiar with this fact about the
trace, or it may have been the definition you were given. This is why I want you to remember
how to prove it.

7. The Characteristic Polynomial

Let M be a symmetric matrix. Recall that the eigenvalues of M are the roots of the
characteristic polynomial of M :

p(x)
def
= det(xI −M) =

n∏
i=1

(x− µi).

Write

p(x) =

n∑
k=0

xn−kck(−1)k.

Prove that
ck =

∑
S⊆[n],|S|=k

det(M (S, S)).

Here, we write [n] to denote the set {1, . . . , n}, and M (S, S) to denote the submatrix of M with
rows and columns indexed by S.

8. Reversing products.

Let M be a d-by-n matrix. Prove that the multiset of nonzero eigenvalues of MM T is the same
as the multiset of nonzero eigenvalues of M TM .

Chapter 2

Eigenvalues and Optimization: The
Courant-Fischer Theorem

One of the reasons that the eigenvalues of matrices have meaning is that they arise as the solution
to natural optimization problems. The formal statement of this is given by the Courant-Fischer
Theorem. We begin by using the Spectral Theorem to prove the Courant-Fischer Theorem. We
then give a self-contained proof of the Spectral Theorem for symmetric matrices by leveraging a
special case of the Courant-Fischer Theorem.

The Rayleigh quotient of a vector x with respect to a matrix M is defined to be

xTMx

xTx
. (2.1)

The Rayleigh quotient of an eigenvector is its eigenvalue: if Mψ = µψ, then

ψTMψ

ψTψ
=
ψTµψ

ψTψ
= µ.

The Courant-Fischer Theorem tells us that the vectors that maximize the Rayleigh quotient are
exactly the eigenvectors of the largest eigenvalue of M . In fact it supplies a similar
characterization of all the eigenvalues of a symmetric matrix.

Theorem 2.0.1 (Courant-Fischer Theorem). Let M be a symmetric matrix with eigenvalues
µ1 ≥ µ2 ≥ · · · ≥ µn. Then,

µ1 = max
x 6=0

xTMx

xTx
, µn = min

x 6=0

xTMx

xTx
,

and for all k ≥ 1,

µk = max
S⊆IRn

dim(S)=k

min
x∈S
x 6=0

xTMx

xTx
= min

T⊆IRn

dim(T)=n−k+1

max
x∈T
x 6=0

xTMx

xTx
,

21

CHAPTER 2. EIGENVALUES AND OPTIMIZATION 22

where the maximization and minimization are over subspaces S and T of IRn.

The corresponding eigenvectors satisfy

ψ1 ∈ arg max
‖x‖=1

xTMx , and ψn ∈ arg min
‖x‖=1

xTMx ,

and for 2 ≤ k ≤ n

ψk ∈ arg min
‖x‖=1

xTψj=0, for j > k

xTMx , and ψk ∈ arg max
‖x‖=1

xTψj=0, for j < k

xTMx . (2.2)

2.1 The First Proof

As with many proofs in spectral theory, we begin by expanding a vector x in the basis of
eigenvectors of M . Let’s recall how this is done.

Let ψ1, . . . ,ψn be an orthonormal basis of eigenvectors of M corresponding to µ1, . . . , µn. For
every1 vector x , we may write

x =
∑
i

ciψi, where ci = ψTi x . (2.3)

There are many ways to verify this. Let Ψ be the matrix whose columns are ψ1, . . . ,ψn, and
recall that the matrix Ψ is said to be orthogonal if its columns are mutually orthogonal unit
vectors. Also recall that the orthogonal matrices are exactly those matrices Ψ for which
ΨΨT = I , and that this implies that ΨTΨ = I . We now verify (2.3) by

∑
i

ciψi =
∑
i

(ψTi x)ψi =
∑
i

ψi(ψ
T
i x) =

(∑
i

ψiψ
T
i

)
x =

(
ΨΨT

)
x = I x = x .

As you gain comfort with linear algebra, you will avoid summation over indices and instead write
c = ΨTx and x = Ψc. Until you get used to orthonormal bases, just pretend that they are the
basis of elementary unit vectors. For example, you know that

x (i) = δTi x , and that x =
∑
i

x (i)δi.

The first step in the proof of Theorem 2.0.1 is to express the Laplacian quadratic form of x in
terms of the expansion of x in the eigenbasis. We will use this expansion often.

Lemma 2.1.1. Let M be a symmetric matrix with eigenvalues µ1, . . . , µn and a corresponding
orthonormal basis of eigenvectors ψ1, . . . ,ψn. Let x be a vector whose expansion in this basis is

x =

n∑
i=1

ciψi.

1When we say “every”, assume we mean every vector of the dimension of M .

CHAPTER 2. EIGENVALUES AND OPTIMIZATION 23

Then,

xTMx =
n∑
i=1

c2
iµi.

Proof. Compute:

xTMx =

(∑
i

ciψi

)T
M

∑
j

cjψj


=

(∑
i

ciψi

)T ∑
j

cjMψj


=

(∑
i

ciψi

)T ∑
j

cjµjψj


=
∑
i,j

cicjµjψ
T
i ψj

=
∑
i

c2
iµi,

as

ψTi ψj =

{
0 for i 6= j

1 for i = j.

Proof of Theorem 2.0.1. Let ψ1, . . . ,ψn be an orthonormal set of eigenvectors of M
corresponding to µ1, . . . , µn. We will just verify the identity

µk = max
S⊆IRn

dim(S)=k

min
x∈S
x 6=0

xTMx

xTx
,

as the expressions for µ1 and µn are special cases of this, and the proof of the other
characterization is similar.

First, let’s verify that µk is achievable. Let S be the span of ψ1, . . . ,ψk. We can expand every
x ∈ S as

x =
k∑
i=1

ciψi.

Applying Lemma 2.1.1 we obtain

xTMx

xTx
=

∑k
i=1 µic

2
i∑k

i=1 c
2
i

≥ µk
∑k

i=1 c
2
i∑k

i=1 c
2
i

= µk.

CHAPTER 2. EIGENVALUES AND OPTIMIZATION 24

So, 2

min
x∈S

xTMx

xTx
≥ µk.

To show that this is in fact the maximum, we will prove that for all subspaces S of dimension k,

min
x∈S

xTMx

xTx
≤ µk.

Let T be the span of ψk, . . . ,ψn. As T has dimension n− k + 1, every subspace S of dimension k
has an intersection with T of dimension at least 1. In particular, S ∩ T is non-empty so we can
write

min
x∈S

xTMx

xTx
≤ min

x∈S∩T

xTMx

xTx
≤ max

x∈T

xTMx

xTx
.

Let x be a vector in T at which this maximum is achieved, and expand x in the form

x =
n∑
i=k

ciψi,

Again applying Lemma 2.1.1 we obtain

xTMx

xTx
=

∑n
i=k µic

2
i∑n

i=k c
2
i

≤ µk
∑n

i=k c
2
i∑n

i=k c
2
i

= µk.

As ψTkMψk = µk, and T =
{
x : xTψj = 0, for j < k

}
,

ψk ∈ arg max
‖x‖=1

xTψj=0, for j < k

xTMx .

The other expression for ψk follows from S =
{
x : xTψj = 0, for j > k

}
.

2.2 Proof of the Spectral Theorem by Optimization

We now give a self-contained proof that the Rayleigh quotient is maximized at an eigenvector of
M .

Theorem 2.2.1. Let M be a symmetric matrix and let x be a non-zero vector that maximizes
the Rayleigh quotient with respect to M :

xTMx

xTx
.

Then, Mx = µ1x , where µ1 is the largest eigenvalue of M . Conversely, the minimum is achieved
by eigenvectors of the smallest eigenvalue of M .

2Be warned that we will often neglect to mention the condition x 6= 0, but we always intend it.

CHAPTER 2. EIGENVALUES AND OPTIMIZATION 25

Proof. We first observe that the maximum is achieved: as the Rayleigh quotient is homogeneous,
it suffices to consider unit vectors x . As the Rayleigh quotient is continuous on the set of unit
vectors and this set is closed and compact, the maximum is achieved on this set3.

Now, let x be any non-zero vector that maximizes the Rayleigh quotient. We recall that the
gradient of a function at its maximum must be the zero vector. Let’s compute that gradient.

We have4

∇xTx = 2x ,

and
∇xTMx = 2Mx .

So,

∇xTMx

xTx
=

(xTx)(2Mx)− (xTMx)(2x)

(xTx)2
.

In order for this to be zero, we must have

(xTx)Mx = (xTMx)x ,

which implies

Mx =
xTMx

xTx
x .

That is, if and only if x is an eigenvector of M with eigenvalue equal to its Rayleigh quotient. As
x maximizes the Rayleigh quotient, this eigenvalue must be the largest of M .

Corollary 2.2.2. Every non-zero symmetric matrix M has at least one eigenvector with
non-zero eigenvalue.

Proof. We first show that there is some vector x for which xTMx 6= 0. If M (i, i) 6= 0 for some i,
then δi, the elementary unit vector in direction i, is such a vector. If all diagonals of M are zero,
let M (i, j) be a non-zero entry of M and set x = δi + δj . This suffices because
xTMx = 2M (i, j) 6= 0.

If xTMx > 0, we can use Theorem 2.2.1 to obtain an eigenvector ψ of M with eigenvalue µ > 0.
If xTMx < 0, then apply Theorem 2.2.1 to −M to obtain an eigenvector ψ of −M with
eigenvalue ν > 0, and observe that ψ as an eigenvector of M with eigenvalue µ = −ν < 0.

We now give a self-contained proof of the Spectral Theorem for symmetric matrices. The idea of
the proof is to use Theorem 2.2.1 to obtain ψ1 and µ1, and then proceed by induction.

3Here’s an explanation for those not familiar with analysis: we need to avoid the situation in which there are x
on which the function is arbitrarily close to its maximum, but there are none on which it is achieved. We also need
to avoid the situation in which the maximum is undefined. These conditions guarantee that the maximum is defined
and that there is a unit vector x at which it is achieved. You can read almost all of this book without knowing
analysis, as long as you are willing to accept this result.

4In case you are not used to computing gradients of functions of vectors, you can derive these directly by reasoning
like

∂

∂x (a)
xTx =

∂

∂x (a)

∑
b

x (b)2 = 2x (a).

CHAPTER 2. EIGENVALUES AND OPTIMIZATION 26

Theorem 2.2.3. For every real symmetric matrix M of rank r, there exist non-zero real numbers
µ1, . . . , µr and orthonormal vectors ψ1, . . . ,ψr such that

M =
r∑
i=1

µiψiψ
T
i . (2.4)

The content of this theorem is equivalent to that of Theorem 1.3.1, because multiplying Eq. (2.4)
on the right by ψi gives Mψi = µiψi.

We first recall an elementary property of symmetric matrices.

Theorem 2.2.4. The span of a symmetric matrix is orthogonal to its nullspace.

Proof. Let M be a symmetric matrix. Recall that its span is the set of vectors of the form Mx ,
and its nullspace is the set of vectors z for which Mz = 0. For y = Mx , we have

z Ty = z TMx = (z TM)x = 0Tx = 0,

because M is symmetric.

The following lemma is the key to the inductive proof of Theorem 2.2.3.

Lemma 2.2.5. Let M be a symmetric matrix, and let ψ be a unit eigenvector of M with
non-zero eigenvalue µ. Let

M̂ = M − µψψT .
Then, the nullspace of M̂ contains the span of ψ and the nullspace of M . And, the rank of M is
larger by one than the rank of M̂ .

Proof. We first show that the nullspace of M is contained in the nullspace of M̂ . Let x be a
vector for which Mx = 0. As ψ is in the span of M , x is orthogonal to ψ. So,

M̂ x = Mx − µψψTx = 0−ψ0 = 0.

As µ 6= 0, ψ is not in the nullspace of M . However, our construction of M̂ forces ψ to lie in its
nullspace:

M̂ψ = Mψ − µψ(ψTψ) = µψ − µψ = 0,

where the second equality uses the fact that ψ is a unit vector.

Now, Theorem 2.2.4 tells us that ψ is orthogonal to the span of M̂ . Together with the fact that
M = M̂ + µψψT , this implies that the span of M equals the span of M̂ and ψ, and thus is 1
dimensional larger than the span of M̂ .

Proof of Theorem 2.2.3. We proceed by induction on the rank of M . If M is the zero matrix,
then the theorem is trivial.

CHAPTER 2. EIGENVALUES AND OPTIMIZATION 27

We now assume that the theorem has been proved for all matrices of rank r, and prove it for
matrices of rank r+ 1. Let M be a symmetric matrix of rank r+ 1. We know from Corollary 2.2.2
that there is a unit eigenvector ψ of M of eigenvalue µ 6= 0. Let M̂ = M − µψψT .

By Lemma 2.2.5, the rank of M̂ is r. Our inductive hypothesis now implies that there are
orthonormal vectors ψ1, . . . ,ψr and non-zero µ1, . . . , µr such that

M̂ =
r∑
i=1

µiψiψ
T
i .

Setting ψr+1 = ψ and µr+1 = µ, we have

M =

r+1∑
i=1

µiψiψ
T
i .

To show that ψr+1 is orthogonal to ψi for i ≤ r, note that ψi is in the span of M̂ and ψr+1 is in
its nullspace.

2.3 Singular Values for Asymmetric Matrices

The characterization of eigenvalues by maximizing or minimizing the Rayleigh quotient only
works for symmetric matrices. The analogous quantities for non-symmetric matrices A are the
singular vectors and singular values of A, which are the eigenvectors of AAT and ATA, and the
square roots of the eigenvalues of those matrices.

Definition 2.3.1. The singular value decomposition of a matrix A is an expression of the form

A = UΣV T ,

where U and V are matrices with orthonormal columns and Σ is a diagonal matrix with
non-negative entries. The diagonal entries of Σ are the singular values of A, and the columns of
U and V are its left and right singular vectors.

Even rectangular matrices have singular value decompositions. If A is an m-by-n matrix and
r = min(m,n), we can assume that Σ is square of dimension r, and that U and V are m-by-r
and n-by-r matrices with orthonormal columns. Let σ1 ≥ . . . ≥ σr be the diagonal entries of Σ,
and let u1, . . . ,ur and v1, . . . , v r be the columns of U and V . Then, the above decomposition
can be written

A =
r∑
i=1

σiu iv
T
i .

As the columns of V are orthonormal, it follows that

Av i = σiu i

for any singular vector v i.

We can use techniques similar to those we used to prove the Courtant-Fischer Theorem to obtain
the following characterization of the singular values.

CHAPTER 2. EIGENVALUES AND OPTIMIZATION 28

Theorem 2.3.2. Let A be an arbitrary real m-by-n matrix, and let σ1 ≥ . . . ≥ σr be its singular
values, where r = min(m,n). Then,

σ1 = max
‖u‖=1
‖v‖=1

uTAv ,

and
σk = max

dim(S)=k
dim(T)=k

min
u∈S,v∈T
‖u‖=1,‖v‖=1

uTAv ,

where in the minima above, u ∈ IRm, v ∈ IRn, S is a subspace of IRm and T is a subspace of IRn.

2.4 Exercise

1. Prove Theorem 2.3.2.

2. A tighter characterization.

Tighten Theorem 2.2.3 by proving that for every sequence of vectors x 1, . . . ,xn such that

x i ∈ arg max
‖x‖=1

xT x j=0,for j<i

xTMx ,

each x i is an eigenvector of M .

Chapter 3

The Laplacian and Graph Drawing

3.1 The Laplacian Matrix

We begin this section by establishing the equivalence of multiple expressions for the Laplacian.

The Laplacian Matrix of a weighted graph G = (V,E,w), w : E → IR+, is designed to capture the
Laplacian quadratic form:

xTLGx =
∑

(a,b)∈E

wa,b(x (a)− x (b))2. (3.1)

We will now use this quadratic form to derive the structure of the matrix. To begin, consider a
graph with just two vertices and one edge of weight 1. Let’s call it G1,2. We have

xTLG1,2x = (x (1)− x (2))2. (3.2)

Consider the vector δ1 − δ2, where δa is the elementary unit vector with a 1 in coordinate a. We
have

x (1)− x (2) = δT1 x − δT2 x = (δ1 − δ2)Tx ,

so

(x (1)− x (2))2 =
(
(δ1 − δ2)Tx

)2
= xT (δ1 − δ2) (δ1 − δ2)T x

= xT
[

1
−1

] [
1 −1

]
x = xT

[
1 −1
−1 1

]
x .

Thus,

LG1,2 =

[
1 −1
−1 1

]
.

Now, let Ga,b be the graph with just one edge between vertices a and b. It can have as many
other vertices as you like. The Laplacian of Ga,b can be written in the same way:

LGa,b
= (δa − δb)(δa − δb)T .

29

CHAPTER 3. THE LAPLACIAN AND GRAPH DRAWING 30

This is the matrix that is zero except at the intersection of rows and columns indexed by a and b,
where it looks looks like [

1 −1
−1 1

]
.

Summing the matrices for every edge, we obtain

LG =
∑

(a,b)∈E

wa,b(δa − δb)(δa − δb)T =
∑

(a,b)∈E

wa,bLGa,b
. (3.3)

You should check that this agrees with the definition of the Laplacian from Section 1.2.3:

LG = DG −AG,

where
DG(a, a) =

∑
b

wa,b.

This formula turns out to be useful when we view the Laplacian as an operator. For every vector
x we have

(LGx)(a) = d(a)x (a)−
∑

(a,b)∈E

wa,bx (b) =
∑

(a,b)∈E

wa,b(x (a)− x (b)), (3.4)

because d(a) =
∑

(a,b)∈E wa,b.

From (3.1), we see that if all entries of x are the same, then xTLx equals zero. From (3.4), we
can immediately see that L1 = 0, so the constant vectors are eigenvectors of eigenvalue zero. If
the graph is connected, these are the only eigenvectors of eigenvalue zero.

Lemma 3.1.1. Let G = (V,E) be a weighted graph, and let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn be the
eigenvalues of its Laplacian matrix, L. Then, λ2 > 0 if and only if G is connected.

Proof. We first show that λ2 = 0 if G is disconnected. If G is disconnected, then it can be
described as the disjoint union of two graphs, G1 and G2, with no edges between them. After
suitably reordering the vertices, we can write

L =

[
LG1 0

0 LG2

]
.

So, L has at least two orthogonal eigenvectors of eigenvalue zero:[
0
1

]
and

[
1
0

]
.

where we have partitioned the vectors as we did the matrix L.

On the other hand, assume that G is connected and that ψ is an eigenvector of L of eigenvalue 0.
As

Lψ = 0,

CHAPTER 3. THE LAPLACIAN AND GRAPH DRAWING 31

we have
xTLx =

∑
(a,b)∈E

wa,b(ψ(a)−ψ(b))2 = 0.

Thus, for every pair of vertices (a, b) connected by an edge, we have1 ψ(a) = ψ(b). As every pair
of vertices a and b are connected by a path, we may inductively apply this fact along the path to
show that ψ(a) = ψ(b) for all vertices a and b. Thus, ψ must be a constant vector. We conclude
that the eigenspace of eigenvalue 0 has dimension 1.

3.2 Drawing with Laplacian Eigenvalues

The idea of drawing graphs using eigenvectors demonstrated in Section 1.5.1 was suggested by
Hall [Hal70] in 1970.

To explain Hall’s approach, we first consider the problem of drawing a graph on a line. That is,
mapping each vertex to a real number. It isn’t easy to see what a graph looks like when you do
this, as all of the edges sit on top of one another. One can fix this either by drawing the edges of
the graph as curves, or by wrapping the line around a circle.

Let x ∈ IRV be the vector that describes the assignment of a real number to each vertex. We
would like vertices that are neighbors to be close to one another. For an unweighted graph, Hall
suggested choosing an x minimizing

xTLx =
∑

(a,b)∈E

(x (a)− x (b))2. (3.5)

Unless we place restrictions on x , the solution will be degenerate. For example, all of the vertices
could map to 0. To avoid this, and to fix the scale of the drawing overall, we require∑

a∈V
x (a)2 = ‖x‖2 = 1. (3.6)

Even with this restriction, another degenerate solution is possible: it could be that every vertex
maps to 1/

√
n. To prevent this from happening, we impose the additional restriction that∑

a

x (a) = 1Tx = 0. (3.7)

On its own, this restriction fixes the shift of the drawing along the line. When combined with
(3.6), it guarantees that we get something interesting.

As 1 is the eigenvector of smallest eigenvalue of the Laplacian, Theorem 2.0.1 implies that a unit
eigenvector of λ2 minimizes xTLx subject to (3.6) and (3.7).

Of course, we really want to draw a graph in two dimensions. So, we will assign two coordinates
to each vertex given by x and y . As opposed to minimizing (3.5), we will minimize the sum of

1Recall that edges weights are assumed to be positive.

CHAPTER 3. THE LAPLACIAN AND GRAPH DRAWING 32

the squares of the lengths of the edges in the drawing:∑
(a,b)∈E

∥∥∥∥(x (a)
y(a)

)
−
(
x (b)
y(b)

)∥∥∥∥2

.

This turns out not to be so different from minimizing (3.5), as it equals∑
(a,b)∈E

(x (a)− x (b))2 + (y(a)− y(b))2 = xTLx + yTLy .

As before, we impose the scale conditions

‖x‖2 = 1 and ‖y‖2 = 1,

and the centering constraints
1Tx = 0 and 1Ty = 0.

However, this still leaves us with the degenerate solution x = y = ψ2. To ensure that the two
coordinates are different, Hall introduced the restriction that x be orthogonal to y . This is how
we drew the pictures in Figs. 1.1, 1.4 and 1.5. To draw a graph in k dimensions, Hall suggested
choosing k orthonormal vectors x 1, . . . ,x k that are orthogonal to 1 and minimize

∑
i x

T
i Lx i. A

natural choice for these is ψ2 through ψk+1, and this choice achieves objective function value∑k+1
i=2 λi.

The following theorem says that this choice is optimal. It is a variant of [Fan49, Theorem 1].

Theorem 3.2.1. Let L be a Laplacian matrix with eigenvalues 0 = λ1 < λ2 ≤ · · · ≤ λn
corresponding to orthonormal eigenvectors ψ1, . . . ,ψn, and let x 1, . . . ,x k be any orthonormal
vectors that are all orthogonal to 1. Then

k∑
i=1

xTi Lx i ≥
k+1∑
i=2

λi,

and this inequality is tight only when xTi ψj = 0 for all j such that λj > λk+1.

We would have liked to have said “this inequality is tight only when xTi ψj = 0 for all j > k + 1,”
but this could be wrong if there are repeated eigenvalues.

Proof. Let x k+1, . . . ,xn be vectors such that x 1, . . . ,xn is an orthonormal basis. We can find
these by choosing x k+1, . . . ,xn to be an orthonormal basis of the space orthogonal to x 1, . . . ,x k.
We now know that for all 1 ≤ i ≤ n

n∑
j=1

(ψTj x i)
2 = 1 and

n∑
j=1

(xTj ψi)
2 = 1.

That is, the matrix with i, j entry (ψTj x i)
2 is doubly-stochastic2.

2This theorem is really about majorization, which is easily established through multiplication by a doubly-
stochastic matrix.

CHAPTER 3. THE LAPLACIAN AND GRAPH DRAWING 33

We can assume that ψ1 = 1/
√
n. For i ≤ k, ψT1 x i = 0; so, Lemma 2.1.1 implies

xTi Lx i =
n∑
j=2

λj(ψ
T
j x i)

2

= λk+1 +

n∑
j=2

(λj − λk+1)(ψTj x i)
2, by

n∑
j=2

(ψTj x i)
2 = 1

≥ λk+1 +

k+1∑
j=2

(λj − λk+1)(ψTj x i)
2,

as λj ≥ λk+1 for j > k + 1. This inequality is only tight when (ψTj x i)
2 = 0 for all j such that

λj > λk+1.

Summing over i we obtain

k∑
i=1

xTi Lx i ≥ kλk+1 +
k+1∑
j=2

(λj − λk+1)
k∑
i=1

(ψTj x i)
2

≥ kλk+1 +
k+1∑
j=2

(λj − λk+1)

=
k+1∑
j=2

λj ,

where the second inequality follows from the facts that λj − λk+1 ≤ 0 and
∑k

i=1(ψTj x i)
2 ≤ 1.

This inequality is tight under the same conditions as the previous one.

The beautiful pictures that we sometimes obtain from Hall’s graph drawing should convince you
that eigenvectors of the Laplacian should reveal a lot about the structure of graphs. But, it is
worth pointing out that there are many graphs for which this approach does not produce nice
images, and there are in fact graphs that can not be nicely drawn. Expander graphs are good
examples of these.

Many other approaches to graph drawing borrow ideas from Hall’s work: they try to minimize
some function of the distances of the edges subject to some constraints that keep the vertices well
separated. However, very few of these have compactly describable solutions, or even solutions
that can provably be computed in polynomial time. The algorithms that implement them
typically use a gradient based method to attempt to minimize the function of the distances
subject to constraints, but can not guarantee that they actually minimize it. For many of these
methods, relabeling the vertices could produce very different drawings! Thus, one must be careful
before using these images to infer some truth about a graph.

Chapter 4

Adjacency matrices, Eigenvalue
Interlacing, and the Perron-Frobenius
Theorem

In this chapter, we examine the meaning of the smallest and largest eigenvalues of the adjacency
matrix of a graph. Note that the largest eigenvalue of the adjacency matrix corresponds to the
smallest eigenvalue of the Laplacian. Our focus in this chapter will be on the features that
adjacency matrices possess but which Laplacians do not. Where the smallest eigenvector of the
Laplacian is a constant vector, the largest eigenvector of an adjacency matrix, called the Perron
vector, need not be. The Perron-Frobenius theory tells us that the largest eigenvector of an
adjacency matrix is non-negative, and that its value is an upper bound on the absolute value of
the smallest eigenvalue. These are equal precisely when the graph is bipartite.

We will examine the relation between the largest adjacency eigenvalue and the degrees of vertices
in the graph. This is made more meaningful by the fact that we can apply Cauchy’s Interlacing
Theorem to adjacency matrices. We will use it to prove a theorem of Wilf [Wil67] which says that
a graph can be colored using at most 1 + bµ1c colors. We will learn more about eigenvalues and
graph coloring in Chapter 19.

4.1 The Adjacency Matrix

Let M be the adjacency matrix of a (possibly weighted) graph G. As an operator, M acts on a
vector x ∈ IRV by

(Mx)(a) =
∑

(a,b)∈E

wa,bx (b). (4.1)

When the edge set E is understood, we use the notation a ∼ b as shorthand for (a, b) ∈ E. Thus,
we may write (Mx)(a) =

∑
b∼awa,bx (b).

We will denote the eigenvalues of M by µ1, . . . , µn. But, we order them in the opposite direction

34

CHAPTER 4. ADJACENCY, INTERLACING, AND PERRON-FROBENIUS 35

than we did for the Laplacian: we assume

µ1 ≥ µ2 ≥ · · · ≥ µn.

The reason for this convention is so that µi corresponds to the ith Laplacian eigenvalue, λi. If G
is a d-regular graph, then D = I d,

L = dI −M ,

and so
λi = d− µi.

Thus the largest adjacency eigenvalue of a d-regular graph is d, and its corresponding eigenvector
is the constant vector. We could also prove that the constant vector is an eigenvector of
eigenvalue d by considering the action of M as an operator (4.1): if x (a) = 1 for all a ∈ V , then
(Mx)(b) = d for all b ∈ V .

4.2 The Largest Eigenvalue, µ1

We now examine µ1 for graphs which are not necessarily regular. Let G be a graph, let dmax be
the maximum degree of a vertex in G and let dave be the average degree of a vertex in G. We will
show that µ1 lies between these. This naturally holds when we measure degrees by weight.

Lemma 4.2.1. For a weighted graph G with n vertices, we define

dave
def
=

1

n

∑
a

d(a) and dmax
def
= max

a
d(a).

If µ1 is the largest adjacency eigenvalue of G, then

dave ≤ µ1 ≤ dmax.

Proof. The lower bound follows by considering the Rayleigh quotient of 1 with respect to M :

µ1 = max
x

xTMx

xTx
≥ 1TM1

1T1
=

1Td

n
=

∑
a d(a)

n
= dave.

To prove the upper bound, let φ1 be an eigenvector of eigenvalue µ1. We may assume without
loss of generality that φ1 has a positive value, because we can replace it by −φ1 if it does not.
Let a be the vertex on which φ1 takes its maximum value. We show that µ1 ≤ d(a):

µ1 =
1

φ1(a)
(Mφ1)(a) =

1

φ1(a)

∑
b:b∼a

wa,bφ1(b) ≤ 1

φ1(a)

∑
b:b∼a

wa,bφ1(a) = d(a) ≤ dmax. (4.2)

Lemma 4.2.2. If G is connected and µ1 = dmax, then G is dmax-regular.

CHAPTER 4. ADJACENCY, INTERLACING, AND PERRON-FROBENIUS 36

Proof. If we have equality in (4.2), then it must be the case that d(a) = dmax and φ1(b) = φ1(a)
for all (a, b) ∈ E. Thus, we may apply the same argument to every neighbor of a. As the graph is
connected, we may keep applying this argument to neighbors of vertices to which it has already
been applied to show that φ1(c) = φ1(a) and d(c) = dmax for all c ∈ V .

The following is a commonly used extension of Lemma 4.2.1.

Theorem 4.2.3. Let M be an arbitrary n-by-n matrix with complex entries, and let λ be an
eigenvalue of M . Then,

|λ| ≤ max
a

∑
b

|M (a, b)| def
= ‖M ‖∞ .

Proof. Let φ be an eigenvector of M with eigenvalue λ, and let a be the index on which φ has
largest magnitude. We have

|λ| |φ(a)| = |λφ(a)| = |(Mφ)(a)| =
∣∣∣∣∣∑
b

M (a, b)φ(b)

∣∣∣∣∣
≤
∑
b

|M (a, b)| |φ(b)| ≤
∑
b

|M (a, b)| |φ(a)| = |φ(a)|
∑
b

|M (a, b)| .

So, |λ| ≤∑b |M (a, b)|.

There are graphs for which the bounds in Lemma 4.2.1 are very loose. Consider a large complete
d-ary tree, T . It will have maximum degree d, an average degree just a little under 2, and µ1 close
to 2
√
d− 1. The following theorem establishes a tight upper bound on µ1 by re-scaling the matrix

to average out the low and high degree vertices. We save the lower bound for an exercise.

Theorem 4.2.4. Let d ≥ 2 and let T be a tree in which every vertex has degree at most d. Then,
all adjacency eigenvalues of T have absolute value at most 2

√
d− 1.

Proof. Let M be the adjacency matrix of T . Choose some vertex to be the root of the tree, and
define its height to be 0. For every other vertex a, define its height, h(a), to be its distance to the
root. Define D to be the diagonal matrix with

D(a, a) =
(√

d− 1
)h(a)

.

Recall that multiplying a matrix by a diagonal matrix from the left scales its rows, that
multiplying by a diagonal matrix from the right scales its columns, and that the eigenvalues of M
are the same as the eigenvalues of DMD−1, Theorem 4.2.3 tells us that the magnitude of these
eigenvalues is at most the largest row sum of DMD−1.

So, we need to prove that all row sums of DMD−1 are at most 2
√
d− 1. There are three types

of vertices to consider. First, the row of the root has up to d entries that are all 1/
√
d− 1. For

d ≥ 2, d/
√
d− 1 ≤ 2

√
d− 1. Second, every leaf has exactly one nonzero entry in its row, and that

entry equals
√
d− 1 The rest of the vertices have one entry in their row that equals

√
d− 1, and

up to d− 1 entries that are equal to 1/
√
d− 1, for a total of 2

√
d− 1.

CHAPTER 4. ADJACENCY, INTERLACING, AND PERRON-FROBENIUS 37

4.3 Eigenvalue Interlacing

We can strengthen the lower bound in Lemma 4.2.1 by proving that µ1 is at least the average
degree of every subgraph of G. We will prove this by applying Cauchy’s Interlacing Theorem.

For a graph G = (V,E) and S ⊂ V , we define the vertex-induced subgraph induced by S, written
G(S), to be the graph with vertex set S and all edges in E connecting vertices in S:

{(a, b) ∈ E : a ∈ S and b ∈ S} .

For a symmetric matrix M whose rows and columns are indexed by a set V and subset S of V ,
we write M (S) for the symmetric submatrix with rows and columns in S.

Theorem 4.3.1 (Cauchy’s Interlacing Theorem). Let A be an n-by-n symmetric matrix and let
B be a principal submatrix of A of dimension n− 1 (that is, B is obtained by deleting the same
row and column from A). Then,

α1 ≥ β1 ≥ α2 ≥ β2 ≥ · · · ≥ αn−1 ≥ βn−1 ≥ αn,

where α1 ≥ α2 ≥ · · · ≥ αn and β1 ≥ β2 ≥ · · · ≥ βn−1 are the eigenvalues of A and B , respectively.

Proof. Without loss of generality we will assume that B is obtained from A by removing its first
row and column. We now apply the Courant-Fischer Theorem, which tells us that

αk = max
S⊆IRn

dim(S)=k

min
x∈S

xTAx

xTx
.

Applying this to B gives

βk = max
S⊆IRn−1

dim(S)=k

min
x∈S

xTBx

xTx
= max

S⊆IRn−1

dim(S)=k

min
x∈S

(
0
x

)T
A

(
0
x

)
xTx

.

We see that the right-hand expression is a maximum over the special family of subspaces of IRn of
dimension k in which all vectors in the subspaces must have first coordinate 0. As the maximum
over all subspaces of dimension k can only be larger,

αk ≥ βk.

We may prove the inequalities in the other direction, such as βk ≥ αk+1, by replacing A and B
with −A and −B , or by using the other characterization of eigenvalues in the Courant-Fischer
Theorem as a minimum over subspaces.

Lemma 4.3.2. For any S ⊆ V , let dave(S) be the average degree of G(S). Then,

dave(S) ≤ µ1.

CHAPTER 4. ADJACENCY, INTERLACING, AND PERRON-FROBENIUS 38

Proof. If M is the adjacency matrix of G, then M (S) is the adjacency matrix of G(S). Lemma
4.2.1 says that dave(S) is at most the largest eigenvalue of the adjacency matrix of G(S), and
Theorem 4.3.1 says that this is at most µ1.

We can also prove this without using Cauchy’s Interlacing Theorem. Consider the Rayleigh
quotient in the characteristic vector of S, 1S , where

1S(a) =

{
1 if a ∈ S
0 otherwise.

Theorem 2.2.1 tells us that µ1 is at least

1TSM1S

1TS1S
=

∑
a,b∈S,(a,b)∈E wa,b

|S| = dave(S).

If we remove the vertex of smallest degree from a graph, the average degree can increase. On the
other hand, Cauchy’s Interlacing Theorem says that µ1 can only decrease when we remove a
vertex.

Lemma 4.3.2 is a good demonstration of Cauchy’s Theorem. But, using Cauchy’s Theorem to
prove it was overkill. A more direct way to prove it is to emulate the proof of Lemma 4.2.1, but
computing the quadratic form in the characteristic vector of S instead of 1.

4.4 Wilf’s Theorem

We now apply Lemma 4.3.2 to obtain an upper bound on the chromatic number of a graph.
Recall that a coloring of a graph is an assignment of colors to vertices in which adjacent vertices
have distinct colors. A graph is said to be k-colorable if it can be colored with only k colors1. The
chromatic number of a graph, written χ(G), is the least k for which G is k-colorable. The
bipartite graphs are exactly the graph of chromatic number 2.

It is easy to show that every graph is (dmax + 1)-colorable. Assign colors to the vertices
one-by-one. As each vertex has at most dmax neighbors, there is always some color one can assign
that vertex that is different than those assigned to its neighbors. The following theorem of Wilf
[Wil67] improves upon this bound.

Recall that for a real number x, bxc is the largest integer less than or equal to x.

Theorem 4.4.1.
χ(G) ≤ bµ1c+ 1.

Proof. We prove this by induction on the number of vertices in the graph. To ground the
induction, consider the graph with one vertex and no edges. It has chromatic number 1 and

1To be precise, we often identify these k colors with the integers 1 through k. A k-coloring is then a function
c : {1, . . . , k} → V such that c(a) 6= c(b) for all (a, b) ∈ E.

CHAPTER 4. ADJACENCY, INTERLACING, AND PERRON-FROBENIUS 39

largest adjacency eigenvalue zero2. Now, assume the theorem is true for all graphs on n− 1
vertices, and let G be a graph on n vertices. Let a be the vertex of minimum degree in G.
Lemma 4.2.1 tells us that the average degree of a vertex of G is at most a is at most µ1, and so
the degree of a can be no larger. As the degree of a must be an integer, it can be at most bµ1c.
Let S = V \ {a}. By Lemma 4.3.2, the largest eigenvalue of G(S) is at most µ1, and so our
induction hypothesis implies that G(S) has a coloring with at most bµ1c+ 1 colors. Let c be any
such coloring. We just need to show that we can extend c to a. As a has at most bµ1c neighbors,
there is some color in {1, . . . , bµ1c+ 1} that does not appear among its neighbors, and which it
may be assigned. Thus, G has a coloring with bµ1c+ 1 colors.

The simplest example in which this theorem improves over the naive bound of dmax + 1 is the
path graph on 3 vertices: it has dmax = 2 but µ1 < 2. Thus, Wilf’s theorem tells us that it can be
colored with 2 colors, which is tight.

Star graphs provide more extreme examples. A star graph with n vertices has dmax = n− 1 but
µ1 =

√
n− 1. So, the upper bound on the chromatic number given by Wilf’s theorem is much

better than the naive dmax + 1. But its is far from the actual chromatic number of a star graph, 2.

4.5 Perron-Frobenius Theory for symmetric matrices

The eigenvector corresponding to the largest eigenvalue of the adjacency matrix of a graph is
usually not a constant vector. However, it is always a positive vector if the graph is connected.
This follows from the Perron-Frobenius theory (discovered independently by Perron [Per07] and
Frobenius [Fro12]). In fact, the Perron-Frobenius theory says much more, and it can be applied to
adjacency matrices of strongly connected directed graphs. Note that these need not even be
diagonalizable!

In the symmetric case, the theory is made much easier by both the spectral theory and the
characterization of eigenvalues as extreme values of Rayleigh quotients.

Theorem 4.5.1. [Perron-Frobenius, Symmetric Case] Let G be a connected weighted graph, let A
be its adjacency matrix, let H be a nonnegative diagonal matrix, let M = A + H , and let
µ1 ≥ µ2 ≥ · · · ≥ µn be its eigenvalues. Then

a. The eigenvalue µ1 has a strictly positive eigenvector,

b. µ1 ≥ −µn, and

c. µ1 > µ2.

For simplicity, we just prove the theorem in the case where H is the zero matrix.

We begin with a helpful lemma. It says that a non-negative eigenvector of the adjacency matrix
of a connected graph must be strictly positive.

2If this makes you uncomfortable, you could use both graphs on two vertices

CHAPTER 4. ADJACENCY, INTERLACING, AND PERRON-FROBENIUS 40

Lemma 4.5.2. Under the conditions of Theorem 4.5.1, assume that some non-negative vector φ
is an eigenvector of M . Then, φ is strictly positive.

Proof. If φ is not strictly positive, there is some vertex a for which φ(a) = 0. As G is connected,
and φ is not identically zero, there must be some edge (b, c) for which φ(b) = 0 but φ(c) > 0. Let
µ be the eigenvalue of φ. As φ(b) = 0, we obtain a contradiction from

0 = µφ(b) = (Mφ)(b) =
∑

(b,z)∈E

wb,zφ(z) ≥ wb,cφ(c) > 0,

where the inequalities follow from the fact that the terms wb,z and φ(z) are non-negative.

So, we conclude that φ must be strictly positive.

Proof of Theorem 4.5.1. Let φ1 be an eigenvector of µ1 of norm 1, and construct the vector x
such that

x (u) = |φ1(u)| , for all u.

We will show that x is an eigenvector of eigenvalue µ1.

We have xTx = φT1 φ1. Moreover,

µ1 = φT1 Mφ1 =
∑
a,b

M (a, b)φ1(a)φ1(b) ≤
∑
a,b

M (a, b) |φ1(a)| |φ1(b)| = xTMx .

So, the Rayleigh quotient of x is at least µ1. As µ1 is the maximum possible Rayleigh quotient for
a unit vector, the Rayleigh quotient of x must be µ1 and Theorem 2.2.1 implies that x must be
an eigenvector of µ1. As x is non-negative, Lemma 4.5.2 implies that it is strictly positive and
satisfies the promise of part a.

To prove part b, let φn be the eigenvector of µn and let y be the vector for which y(u) = |φn(u)|.
In the spirit of the previous argument, we can again show that

|µn| = |φnMφn| ≤
∑
a,b

M (a, b)y(a)y(b) = yTMy ≤ µ1y
Ty = µ1. (4.3)

To show that the multiplicity of µ1 is 1 (that is, µ2 < µ1), consider an eigenvector φ2. As φ2 is
orthogonal to φ1, it must contain both positive and negative values. We now construct the vector
y such that y(u) = |φ2(u)| and repeat the argument that we used for x . We find that

µ2 = φT2 Mφ2 ≤ yTMy ≤ µ1.

If µ2 = µ1, then y is a nonnegative eigenvector of eigenvalue µ1, and so Lemma 4.5.2 says that it
is strictly positive. Thus, φ2 does not have any zero entries. As it has both positive and negative
entries and the graph is connected, there must be some edge (a, b) for which φ2(a) < 0 < φ2(b).
This forces the inequality φT2 Mφ2 < yTMy to be strict because the edge (a, b) will make a
negative contribution to φT2 Mφ2 and a positive contribution to yTMy . This contradicts our
assumption that µ2 = µ1.

CHAPTER 4. ADJACENCY, INTERLACING, AND PERRON-FROBENIUS 41

Finally, we show that for a connected graph G, µn = −µ1 if and only if G is bipartite. In fact, if
µn = −µ1, then µn−i = −µi+1 for every i.

Proposition 4.5.3. If G is a connected graph and µn = −µ1, then G is bipartite.

Proof. Consider the conditions necessary to achieve equality in (4.3). First, y must be an
eigenvector of eigenvalue µ1. Thus, y must be strictly positive, φn can not have any zero values,
and there must be an edge (a, b) for which φn(a) < 0 < φn(b). It must also be the case that all of
the terms in ∑

(a,b)∈E

M (a, b)φn(a)φn(b)

have the same sign, and we have established that this sign must be negative. Thus, for every edge
(a, b), φn(a) and φn(b) must have different signs. That is, the signs provide the bipartition of the
vertices.

Proposition 4.5.4. If G is bipartite then the eigenvalues of its adjacency matrix are symmetric
about zero.

Proof. As G is bipartite, we may divide its vertices into sets S and T so that all edges go between
S and T . Let φ be an eigenvector of M with eigenvalue µ. Define the vector x by

x (a) =

{
φ(a) if a ∈ S, and
−φ(a) if a ∈ T .

To see that x is an eigenvector with eigenvalue −µ, note that for a ∈ S,

(Mx)(a) =
∑

(a,b)∈E

M (a, b)x (b) =
∑

(a,b)∈E

M (a, b)(−φ(b)) = −(Mφ)(a) = −µφ(a) = −µx (a).

We may similarly show that (Mx)(a) = −µx (a) for a ∈ T .

4.6 Singular Values and Directed Graphs

If G is bipartite, with all edges going between the sets S and T , then the adjacency matrix of G
can be written in the form

M =

(
0 B

BT 0

)
,

where the first set of rows and columns are indexed by S and the second by T . Instead of
examining the entire matrix M , we can instead understand G in terms of the spectral properties
of B . But, B is not necessarily symmetric nor even square. Instead of its eigenvalues, we consider
its singular values and singular vectors, defined in Section 2.3.

Returning to bipartite graphs, let s = |S|, t = |T |, and assume without loss of generality that
s ≤ t. One can show that the singular values of B are the square roots of the eigenvalues of BBT .

CHAPTER 4. ADJACENCY, INTERLACING, AND PERRON-FROBENIUS 42

The multiset of eigenvalues of M is comprised of t− s zeros and {±σ1, . . . ,±σs} where σ1, . . . , σs
are the singular values of B . The matrix of form M is often referred to as the dilation of B .

For a treatment of the general Perron-Frobenius theory, we recommend Seneta [Sen06] or Bapat
and Raghavan [BR97].

4.7 Exercises

1. Trees.

Prove that the bound prove in Theorem 4.2.4 is tight. Begin by figuring out how to state that
formally.

Part II

The Zoo of Graphs

43

Chapter 5

Fundamental Graphs

We will bound and derive the eigenvalues of the Laplacian matrices of some fundamental graphs,
including complete graphs, star graphs, ring graphs, path graphs, and products of these that yield
grids and hypercubes. As all these graphs are connected, they all have eigenvalue zero with
multiplicity one. We will have to do some work to compute the other eigenvalues.

We will see in Part IV that the Laplacian eigenvalues that reveal the most about a graph are the
smallest and largest ones. To interpret the smallest eigenvalues, we will exploit a relation between
λ2 and the isoperimetric ratio of a graph that is derived in Chapter 20, and which we state here
for convenience. The boundary of a set of vertices S, written ∂(S), is the set of edges with exactly
one endpoint in S. The isoperimetric ratio of S, written θ(S), is the size of the boundary of S
divided by size of S:

θ(S)
def
=
|∂(S)|
|S| .

In Theorem 20.1.1, we show
θ(S) ≥ λ2(1− s). (5.1)

5.1 The complete graph

The complete graph on n vertices, Kn, has edge set {(a, b) : a 6= b}.

Lemma 5.1.1. The Laplacian of Kn has eigenvalue 0 with multiplicity 1 and n with multiplicity
n− 1.

Proof. To compute the non-zero eigenvalues, let ψ be any non-zero vector orthogonal to the all-1s
vector, so ∑

a

ψ(a) = 0. (5.2)

We now compute the first coordinate of LKnψ. Using (3.4), the expression for the action of the

44

CHAPTER 5. FUNDAMENTAL GRAPHS 45

Laplacian as an operator, we find

(LKnψ) (1) =
∑
b≥2

(ψ(1)−ψ(b)) = (n− 1)ψ(1)−
n∑
b=2

ψ(b) = nψ(1), by (5.2).

As the choice of coordinate was arbitrary, we have Lψ = nψ. So, every vector orthogonal to the
all-1s vector is an eigenvector of eigenvalue n.

Alternative approach. Observe that LKn = nI − 11T .

We often think of the Laplacian of the complete graph as being a scaling of the identity. For
every x orthogonal to the all-1s vector, Lx = nx .

Now, let’s see how our bound on the isoperimetric ratio works out. Let S ⊂ [n]. Every vertex in S
has n− |S| edges connecting it to vertices not in S. So,

θ(S) =
|S| (n− |S|)
|S| = n− |S| = λ2(LKn)(1− s),

where s = |S| /n. Thus, Theorem 20.1.1 is sharp for the complete graph.

5.2 The star graphs

The star graph on n vertices, denoted Sn, has edge set {(1, a) : 2 ≤ a ≤ n}. The degrees of
vertices in star graphs vary considerably, and their Laplacian and adjacency matrices have very
different eigenvalues.

To determine the eigenvalues of Sn, we first observe that each vertex a ≥ 2 has degree 1, and that
each of these degree-one vertices has the same neighbor. We now show that, in every graph,
whenever two whenever two degree-one vertices share the same neighbor, they provide an
eigenvector of eigenvalue 1.

Lemma 5.2.1. Let G = (V,E) be a graph, and let a and b be vertices of degree one with the same
neighbor. Then, the vector ψ = δa − δb is an eigenvector of LG of eigenvalue 1.

Proof. Just multiply LG by ψ, and check (using (3.4)) vertex-by-vertex that it equals ψ.

While the star graph has
(
n−1

2

)
pairs of degree-one vertices with the same neighbor, the span of

the space of the corresponding eigenvectors only has dimension n− 1.

As eigenvectors of different eigenvalues are orthogonal, for every eigenvector ψ of the Laplacian of
the star with eigenvalue other than 1 and for every a and b of degree one, we have
ψT (δa − δb) = 0, and thus that ψ(a) = ψ(b).

Lemma 5.2.2. The graph Sn has eigenvalue 0 with multiplicity 1, eigenvalue 1 with multiplicity
n− 2, and eigenvalue n with multiplicity 1.

CHAPTER 5. FUNDAMENTAL GRAPHS 46

Proof. Applying Lemma 5.2.1 to vertices i and i+ 1 for 2 ≤ i < n, we find n− 2 linearly
independent eigenvectors of the form δi − δi+1, all with eigenvalue 1. As 0 is also an eigenvalue,
only one eigenvalue remains to be determined.

Recall that the trace of a matrix equals both the sum of its diagonal entries and the sum of its
eigenvalues. We know that the trace of LSn is 2n− 2, and we have identified n− 1 eigenvalues
that sum to n− 2. So, the remaining eigenvalue must be n.

To determine the corresponding eigenvector, recall that it must be orthogonal to the other
eigenvectors we have identified. This tells us that it must have the same value at each of the
points of the star. Let this value be 1, and let x be the value at vertex 1. As the eigenvector is
orthogonal to the constant vectors, it must be that

(n− 1) + x = 0,

so x = −(n− 1).

5.3 Products of graphs

We now define a product on graphs. If we apply this product to two paths, we obtain a grid. If
we apply it repeatedly to one edge, we obtain a hypercube.

Definition 5.3.1. Let G = (V,E, v) and H = (W,F,w) be weighted graphs. Then G×H is the
graph with vertex set V ×W and edge set(

(a, b), (â, b)

)
with weight va,â, where (a, â) ∈ E and(

(a, b), (a, b̂)

)
with weight w

b,̂b
, where (b, b̂) ∈ F .

Figure 5.1: An m-by-n grid graph is the product of a path on m vertices with a path on n vertices.
This is a drawing of a 5-by-4 grid made using Hall’s algorithm from Section 3.2.

CHAPTER 5. FUNDAMENTAL GRAPHS 47

Theorem 5.3.2. Let G = (V,E, v) and H = (W,F,w) be weighted graphs with Laplacian
eigenvalues λ1, . . . , λn and µ1, . . . , µm, and eigenvectors α1, . . . ,αn and β1, . . . ,βm, respectively.
Then, for each 1 ≤ i ≤ n and 1 ≤ j ≤ m, the Laplacian of G×H has an eigenvector γi,j of
eigenvalue λi + µj such that

γi,j(a, b) = αi(a)βj(b).

Proof. Let α be an eigenvector of LG of eigenvalue λ, let β be an eigenvector of LH of eigenvalue
µ, and let γ be defined as above.

To see that γ is an eigenvector of eigenvalue λ+ µ, we compute

(LG×Hγ)(a, b) =
∑

(a,â)∈E

va,â (γ(a, b)− γ(â, b)) +
∑

(b,̂b)∈F

w
b,̂b

(
γ(a, b)− γ(a, b̂)

)
=

∑
(a,â)∈E

va,â (α(a)β(b)−α(â)β(b)) +
∑

(b,̂b)∈F

w
b,̂b

(
α(a)β(b)−α(a)β(̂b)

)
=

∑
(a,â)∈E

va,âβ(b) (α(a)−α(â)) +
∑

(b,̂b)∈F

w
b,̂b
α(a)

(
β(b)− β(̂b)

)
= β(b)λα(a) +α(a)µβ(b)

= (λ+ µ)(α(a)β(b)).

An alternative approach to defining the graph product and proving Theorem 5.3.2 is via
Kronecker products. Recall that the Kronecker product A⊗B of an m1-by-n1 matrix A and an
m2-by-n2 matrix B is the (m1m2)-by-(n1n2) matrix of form A(1, 1)B A(1, 2)B · · · A(1, n1)B

...
...

. . .
...

A(m1, 1)B A(m1, 2)B · · · A(m1, n1)B

 .
G×H is the graph with Laplacian matrix

(LG ⊗ IW) + (I V ⊗ LH).

5.3.1 The Hypercube

The d-dimensional hypercube graph, Hd, is the graph with vertex set {0, 1}d that has edges
between vertices whose names differ in exactly one coordinate. The hypercube may also be
expressed as the product of the one-edge graph with itself d− 1 times.

Let H1 be the graph with vertex set {0, 1} and one edge between those vertices. Its Laplacian
matrix has eigenvalues 0 and 2. As Hd = Hd−1 ×H1, we may use this to calculate the eigenvalues
and eigenvectors of Hd for every d.

CHAPTER 5. FUNDAMENTAL GRAPHS 48

The eigenvectors of H1 are (
1
1

)
and

(
1
−1

)
,

with eigenvalues 0 and 2, respectively. Thus, if ψ is an eigenvector of Hd−1 with eigenvalue λ, then(
ψ
ψ

)
and

(
ψ
−ψ

)
,

are eigenvectors of Hd with eigenvalues λ and λ+ 2, respectively. This means that Hd has
eigenvalue 2i for each 0 ≤ i ≤ d with multiplicity

(
d
i

)
. Moreover, each eigenvector of Hd can be

identified with a vector y ∈ {0, 1}d:

ψy (x) = (−1)y
T x ,

where x ∈ {0, 1}d ranges over the vertices of Hd. Each y ∈ {0, 1}d−1 indexing an eigenvector of
Hd−1 leads to the eigenvectors of Hd indexed by (y , 0) and (y , 1).

Using Theorem 20.1.1 and the fact that λ2(Hd) = 2, we can immediately prove the following
isoperimetric theorem for the hypercube.

Corollary 5.3.3.
θHd
≥ 1.

In particular, for every set of at most half the vertices of the hypercube, the number of edges on
the boundary of that set is at least the number of vertices in that set.

This result is tight, as you can see by considering one face of the hypercube, such as all the
vertices whose labels begin with 0. It is possible to prove this by more concrete combinatorial
means. In fact, very precise analyses of the isoperimetry of sets of vertices in the hypercube can
be obtained. See [Har76] or [Bol86].

5.4 Bounds on λ2 by test vectors

If we can guess an approximation of ψ2, we can often plug it in to the Laplacian quadratic form
to obtain a good upper bound on λ2. The Courant-Fischer Theorem tells us that every vector v
orthogonal to 1 provides an upper bound on λ2:

λ2 ≤
vTLv

vTv
.

When we use a vector v in this way, we call it a test vector.

Let’s see what a natural test vector can tell us about λ2 of a path graph on n vertices. I would
like to use the vector that simply maps each vertex to its index on the path, but that vector is not

CHAPTER 5. FUNDAMENTAL GRAPHS 49

orthogonal to 1. So, we will use the next best thing. Let x be the vector such that
x (a) = (n+ 1)− 2a, for 1 ≤ a ≤ n. This vector satisfies x ⊥ 1, so

λ2(Pn) ≤
∑

1≤a<n(x(a)− x(a+ 1))2∑
a x(a)2

=

∑
1≤a<n 22∑

a(n+ 1− 2a)2

=
4(n− 1)

(n+ 1)n(n− 1)/3
(clearly, the denominator is at least n3/c for some c)

=
12

n(n+ 1)
. (5.3)

We will soon see that this bound is of the right order of magnitude. This means that the relation
between λ2 and the isoperimetric ratio given in Eq. (5.1) (and proved in Theorem 20.1.1) is very
loose for the path graph: The isoperimetric ratio is minimized by the set S = {1, . . . , n/2}, which
has θ(S) = 2/n. However, the lower bound provided by Eq. (5.1) is of the form c/n2. Cheeger’s
inequality, which appears in Chapter 21, will tell us that the error of this approximation can not
be worse than quadratic.

The Courant-Fischer theorem is not as helpful when we want to prove lower bounds on λ2. To
prove lower bounds, we need the form with a maximum on the outside, which gives

λ2 ≥ max
S:dim(S)=n−1

min
v∈S

vTLv

vTv
.

This is not too helpful, as it is difficult to prove lower bounds on

min
v∈S

vTLv

vTv

over a space S of large dimension. We will see a technique that lets us prove such lower bounds
next section.

But, first we compute the eigenvalues and eigenvectors of the path graph exactly.

5.5 The Ring Graph

The ring graph on n vertices, Rn, may be viewed as having a vertex set corresponding to the
integers modulo n. In this case, we view the vertices as the numbers 0 through n− 1, with edges
(a, a+ 1), computed modulo n.

Theorem 5.5.1. The Laplacian of Rn has eigenvectors

x k(a) = cos(2πka/n), for 0 ≤ k ≤ n/2, and

yk(a) = sin(2πka/n), for 1 ≤ k < n/2.

Eigenvectors x k and yk have eigenvalue 2− 2 cos(2πk/n).

CHAPTER 5. FUNDAMENTAL GRAPHS 50

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) The ring graph on 9 vertices.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) The eigenvectors for k = 2.

Figure 5.2:

Note that x 0 is the all-ones vector. When n is even the vector xn/2 exists, and it alternates ±1.

Proof. We will first see that x 1 and y1 are eigenvectors by drawing the ring graph on the unit
circle in the natural way: plot vertex a at point (cos(2πa/n), sin(2πa/n)).

You can see that the average of the neighbors of a vertex is a vector pointing in the same
direction as the vector associated with that vertex. This should make it obvious that both the x
and y coordinates in this figure are eigenvectors of the same eigenvalue. The same holds for all k.

Alternatively, we can verify that these are eigenvectors by a simple computation, recalling that

cos(a+ b) = cos a cos b− sin a sin b, and

sin(a+ b) = sin a cos b+ cos a sin b.

(LRnx k) (a) = 2x k(a)− x k(a+ 1)− x k(a− 1)

= 2 cos(2πka/n)− cos(2πk(a+ 1)/n)− cos(2πk(a− 1)/n)

= 2 cos(2πka/n)− cos(2πka/n) cos(2πk/n) + sin(2πka/n) sin(2πk/n)

− cos(2πka/n) cos(2πk/n)− sin(2πka/n) sin(2πk/n)

= 2 cos(2πka/n)− cos(2πka/n) cos(2πk/n)− cos(2πka/n) cos(2πk/n)

= (2− 2 cos(2πk/n)) cos(2πka/n)

= (2− cos(2πk/n))x k(a).

The computation for yk follows similarly.

Of course, rotating these pairs of eigenvectors results in another eigenvector of the same

CHAPTER 5. FUNDAMENTAL GRAPHS 51

eigenvalue. To see this algebraically, observe

cos(2πka/n+ θ) = cos(2πka/n) cos θ − sin(2πka/n) sin θ

= (cos θ)x k − (sin θ)yk.

and thus is in the span of x k and yk.

5.6 The Path Graph

We will derive the eigenvalues and eigenvectors of the path graph from those of the ring graph.
To begin, I will number the vertices of the ring a little differently, as in Figure 5.3.

1

23

4

8

7 6

5

Figure 5.3: The ring on 8 = 2n vertices, numbered differently. In this picture, vertex a appears
above vertex n+ a, and every edge appears above another edge.

Theorem 5.6.1. Let Pn = (V,E) where V = {1, . . . , n} and E = {(a, a+ 1) : 1 ≤ a < n}. The
Laplacian of Pn has the same eigenvalues as R2n, excluding 2. That is, Pn has eigenvalues
2(1− cos(πk/n)), with corresponding eigenvectors

vk(a) = cos(πka/n− πk/2n).

for 0 ≤ k < n

Proof. We derive the eigenvectors and eigenvalues by treating Pn as a quotient of R2n: we will
identify vertex a of Pn with vertices a and a+ n of R2n (under the new numbering of R2n). These
are pairs of vertices that are above each other in the figure that I drew.

Let I n be the n-dimensional identity matrix. You should check that(
I n I n

)
LR2n

(
I n
I n

)
= 2LPn .

CHAPTER 5. FUNDAMENTAL GRAPHS 52

For any eigenvector ψ of R2n with eigenvalue λ for which ψ(a) = ψ(a+ n) for 1 ≤ a ≤ n, the
above equation gives us a way to turn this into an eigenvector of Pn. Let φ ∈ IRn be the vector
for which

φ(a) = ψ(a), for 1 ≤ a ≤ n.
Then,(

I n
I n

)
φ =

(
φ
φ

)
= ψ, LR2n

(
I n
I n

)
φ = λψ = λ

(
φ
φ

)
, and

(
I n I n

)
LR2n

(
I n
I n

)
ψ = 2λφ.

So, if we can find such a vector ψ, then the corresponding φ is an eigenvector of Pn of eigenvalue
λ.

As you’ve probably guessed, we can find such vectors ψ by rotating those derived in
Theorem 5.5.1. For each of the n− 1 two-dimensional eigenspaces of R2n, we get one such vector.
I’ve drawn Figure 5.3 so that the horizontal coordinate provides one.

For each 1 ≤ k < n, we rotate the eigenvectors x k and yk of R2n by θ = −πk/2n to obtain
ψ = (cos θ)x k − (sin θ)yk, so that, under the new ordering of the ring,

ψ(a) =

{
cos(2πka/(2n)− πk/2n) for 1 ≤ a ≤ n,
cos(2πk(2n+ 1− a)/(2n)− πk/2n) for n < a ≤ 2n.

To verify that ψ(a+ n) = ψ(a), we use cos(−x) = cosx and

cos(2πk(2n+ 1− a)/(2n)− πk/2n) = cos(2π − 2πka/(2n) + πk/n− πk/2n)

= cos(−2πka/(2n) + πk/2n)

= cos(2πka/(2n)− πk/2n).

We now set
vk(a) = ψ(a) = cos(πka/n− πk/2n).

The corresponding eigenvalue is

2− 2 cos(2πk/(2n)) = 2(1− cos(πk/n)),

for 1 ≤ k < n.

We now know n− 1 distinct eigenvalues. The last, of course, is zero and comes from the constant
vector.

The type of quotient used in the above argument is known as an equitable partition. You can find
a extensive exposition of these in Godsil’s book [God93].

Chapter 6

Comparing Graphs

6.1 Overview

It is rare than one can analytically determine the eigenvalues of an abstractly defined graph.
Often the best one can do is prove loose bounds on some eigenvalues. It is usually easy to prove
lower bounds on the largest eigenvalues or upper bounds on the smallest eigenvalues: one need
merely compute the value of the quadratic form in a suitably chosen test vector, and then apply
the Courant-Fischer Theorem (see Theorem 2.0.1 and Section 5.4). Proving bounds in the other
direction is more difficult.

In this chapter we will see a powerful technique that allows one to compare one graph with
another, and thereby prove things like lower bounds on the second-smallest eigenvalue of a
Laplacian. The technique often goes by the name “Poincaré Inequalities” (see
[DS91, SJ89, GLM99]), or “Graphic inequalities”.

6.2 The Loewner order

I begin by recalling an extremely useful piece of notation that is used in the optimization
community. For a symmetric matrix A, we write

A < 0

if A is positive semidefinite. That is, if all of the eigenvalues of A are nonnegative. This is
equivalent to

vTAv ≥ 0,

for all v . We similarly write
A < B

if
A−B < 0,

53

CHAPTER 6. COMPARING GRAPHS 54

which is equivalent to
vTAv ≥ vTBv

for all v .

The relation < is called the Loewner partial order. It is partial because it orders some pairs of
symmetric matrices, while others are incomparable. But, for all pairs to which it does apply, it
acts like an order. For example, we have

A < B and B < C implies A < C ,

and
A < B implies A + C < B + C ,

for symmetric matrices A, B and C .

We will overload this notation by defining it for graphs as well. Thus, we write

G < H

if LG < LH . When we write this, we are always describing an inequality on Laplacian matrices.

For example, if G = (V,E) is a graph and H = (V, F) is a subgraph of G with the same vertex
set, then

LG < LH .

To see this, recall the Laplacian quadratic form:

xTLGx =
∑

(u,v)∈E

wu,v(x (u)− x (v))2.

It is clear that dropping edges can only decrease the value of the quadratic form, because all
edges weights are positive. The same holds for decreasing the weights of edges.

This notation is particularly useful when we consider some multiple of a graph, such as when we
write

G < c ·H,
for some c > 0. What is c ·H? It is the same graph as H, but the weight of every edge is
multiplied by c. More formally, it is the graph such that Lc·H = cLH .

We usually use this notation for the inequalities it implies on the eigenvalues of LG and LH .

Lemma 6.2.1. For any c > 0, if G and H are graphs such that

G < c ·H,

then
λk(G) ≥ cλk(H),

for all k.

CHAPTER 6. COMPARING GRAPHS 55

Proof. The Courant-Fischer Theorem tells us that

λk(G) = min
S⊆IRn

dim(S)=k

max
x∈S

xTLGx

xTx
≥ min

S⊆IRn

dim(S)=k

max
x∈S

c
xTLHx

xTx
= c min

S⊆IRn

dim(S)=k

max
x∈S

xTLHx

xTx
= cλk(H).

Corollary 6.2.2. Let G be a graph and let H be obtained by either removing an edge from G or
decreasing the weight of an edge in G. Then, for all k

λk(G) ≥ λk(H).

6.3 Approximations of Graphs

We consider one graph to be a good approximation of another if their Laplacian quadratic forms
are similar. For example, we will say that H is a c-approximation of G if

cH < G < H/c.

We consider this approximation to be good if c is just slightly larger than 1. Surprisingly good
approximations exist. For example, random regular and random Erdös-Rényi graphs are good
approximations of complete graphs (see Chapter 8). Infinite families of expander graphs provide
explicit sparse graphs that are good approximations of complete graphs, even though they have
many fewer edges. For every ε > 0 there is a d > 0 such that for all n > 0 there is a d-regular
graph Gn that is a (1 + ε)-approximation of Kn.

In Chapters 32 and 33 we will see that every graph can be well-approximated by a sparse graph.

6.4 The Path Inequality

By now you should be wondering, “how do we prove that G < c ·H for some graph G and H?”
Not too many ways are known. We’ll do it by proving some inequalities of this form for some of
the simplest graphs, and then extending them to more general graphs. For example, we will prove

(n− 1) · Pn < G1,n, (6.1)

where Pn is the path from vertex 1 to vertex n, and G1,n is the graph with just the edge (1, n).
All of these edges are unweighted.

The following very simple proof of this inequality was discovered by Sam Daitch.

Lemma 6.4.1.
(n− 1) · Pn < G1,n.

CHAPTER 6. COMPARING GRAPHS 56

Proof. As

xTLPnx =
n−1∑
a=1

(x (a+ 1)− x (a))2 and xTLG1,nx = (x (n)− x (1))2,

we need to show that for every x ∈ IRn,

(n− 1)

n−1∑
a=1

(x (a+ 1)− x (a))2 ≥ (x (n)− x (1))2.

For 1 ≤ a ≤ n− 1, set
∆(a) = x (a+ 1)− x (a),

and note that
∑

a ∆(a) = x (n)− x (1). The inequality we need to prove then becomes

(n− 1)
n−1∑
a=1

∆(a)2 ≥
(
n−1∑
a=1

∆(a)

)2

.

This follows from the Cauchy-Schwartz inequality, which I remind you is the fact that the inner
product of two vectors is at most the product of their norms. In this case, those vectors are ∆
and the all-ones vector of length n− 1:(

n−1∑
a=1

∆(a)

)2

=
(
1Tn−1∆

)2 ≤ (‖1n−1‖ ‖∆‖)2 = ‖1n−1‖2 ‖∆‖2 = (n− 1)
n−1∑
i=1

∆(i)2.

6.4.1 Lower bounding λ2 of a Path Graph

In Theorem 5.6.1 we proved that λ2(Pn) = 2(1− cos(π/n)), which is approximately π2/n2 for
large n. We now demonstrate the power of Lemma 6.4.1 by using it to prove a lower bound on
λ2(Pn) that is very close to this.

To prove a lower bound on λ2(Pn), we will prove that some multiple of the path is at least the
complete graph. To use this bound, we need to know the eigenvalues of the complete graph. In
Lemma 5.1.1, we show that all the non-zero eigenvalues of the Laplacian of the complete graph
are n, and in particular λ2(Kn) = n.

Let Ga,b denote the graph containing only edge (a, b), and write

LKn =
∑
a<b

LGa,b
.

For every a < b, let Pa,b be the subgraph of the path graph induced on vertices with indices
between a and b. Note that this a path graph of length b− a.

For every edge (a, b) in the complete graph, we apply the only inequality available in the path:

Ga,b 4 (b− a)Pa,b 4 (b− a)Pn. (6.2)

CHAPTER 6. COMPARING GRAPHS 57

This inequality says that Ga,b is at most (b− a) times the part of the path connecting a to b, and
that this part of the path is less than the whole.

Summing inequality (6.2) over all edges (a, b) ∈ Kn gives

Kn =
∑
a<b

Ga,b 4
∑
a<b

(b− a)Pn.

To finish the proof, we compute

∑
1≤a<b≤n

(b− a) =
n−1∑
c=1

c(n− c) = n(n+ 1)(n− 1)/6.

So,

LKn 4
n(n+ 1)(n− 1)

6
LPn .

Rewriting this inequality in the form

LPn <
6

n(n+ 1)(n− 1)
LKn ,

recalling that λ2(Kn) = n, and applying Lemma 6.2.1, gives us a pretty good lower bound on the
second-smallest eigenvalue of Pn:

λ2(Pn) ≥ 6

(n+ 1)(n− 1)
.

6.5 The Complete Binary Tree

Let’s do the same analysis for the complete binary tree.

One way of understanding the complete binary tree of depth d+ 1 is to identify the vertices of the
tree with strings over {0, 1} of length at most d. The root of the tree is the empty string. Every
non-leaf node has two children, obtained by appending one character to its label. And, every node
other than the root has one ancestor, obtained by removing the last character. For example, the
node with label 10 has children labeled 100 and 101, and its ancestor has label 1.

Alternatively, you can describe it as the graph on n = 2d+1 − 1 nodes with edges of the form
(i, 2i) and (i, 2i+ 1) for i < n. We will name this graph Tn. See figure 6.1 for pictures of these.

Let’s first upper bound λ2(Tn) by constructing a test vector x . Set x (1) = 0, x (2) = 1, and
x (3) = −1. Then, for every vertex u that we can reach from node 2 without going through node
1, we set x (a) = 1. For all the other nodes, we set x (a) = −1.

We have constructed x symmetrically, so that 1Tx = 0. Thus, by the Courant-Fischer Theorem
(Theorem 2.0.1),

λ2 ≤
xTLx

xTx
=

∑
a∼b(x (a)− x (b))2∑

a x (a)2
=

(x (1)− x (2))2 + (x (1)− x (3))2

n− 1
= 2/(n− 1).

CHAPTER 6. COMPARING GRAPHS 58

1 1

1

2
2

2

3 3

3

5 6

74

Figure 6.1: T3, T7 and T15. Node 1 is at the top, 2 and 3 are its children. Some other nodes have
been labeled as well.

0

1
−1

1

11

1

11

−1
−1

−1−1−1−1

Figure 6.2: The test vector we use to upper bound λ2(T15).

We will again prove a lower bound by comparing Tn to the complete graph. For each a < b, let
T a,b denote the unique path in T from a to b. This path will have length at most 2d ≤ 2 log2 n.
So, we have

Kn =
∑
a<b

Ga,b 4
∑
a<b

(2d)T a,b 4
∑
a<b

(2 log2 n)Tn =

(
n

2

)
(2 log2 n)Tn.

This gives the bound (
n

2

)
(2 log2 n)λ2(Tn) ≥ λ2(Kn) = n,

which implies

λ2(Tn) ≥ 1

(n− 1) log2 n
.

You should now wonder which bound is closer to the truth: the lower bound of 1/(n− 1) log2 n or
the upper bound of 2/(n− 1). A small experiment suggests that the correct answer is close to 1/n:

julia> d = 12; n = 2^d - 1

julia> e = fiedler(complete_binary_tree(n))

julia> e[1][1], 1/n

(0.0002453419413893766, 0.0002442002442002442)

Using the generalization of Lemma 6.4.1 presented in the next section, we will improve the lower
bound to 1/2n.

CHAPTER 6. COMPARING GRAPHS 59

6.6 The weighted path

We now generalize the the inequality in Lemma 6.4.1 to weighted path graphs. Allowing for
weights on the edges of the path greatly extends it applicability.

Lemma 6.6.1. Let w1, . . . , wn−1 be positive. Then

G1,n 4

(
n−1∑
a=1

1

wa

)
n−1∑
a=1

waGa,a+1.

Proof. Let x ∈ IRn. As in the proof of Lemma 6.4.1, set ∆(a) = x (a+ 1)− x (a). We again have
that

xTLG1,nx = (x (1)− x (n))2 =

(∑
a

∆(a)

)2

.

But, we will need to weight the entries in ∆ before applying Cauchy-Schwarz. Set

γ(a) = ∆(a)
√
wa,

and let w−1/2 denote the vector for which

w−1/2(a) =
1√
wa
.

Then, ∑
a

∆(a) = γTw−1/2,

∥∥∥w−1/2
∥∥∥2

=
∑
a

1

wa
,

and
‖γ‖2 =

∑
a

∆(a)2wa.

So,

xTLG1,nx =

(∑
a

∆(a)

)2

=
(
γTw−1/2

)2

≤
(
‖γ‖

∥∥∥w−1/2
∥∥∥)2

=

(∑
a

1

wa

)∑
a

∆(a)2wa =

(∑
a

1

wa

)
xT

(
n−1∑
a=1

waLGa,a+1

)
x .

CHAPTER 6. COMPARING GRAPHS 60

6.7 A better lower bound on λ2(Tn)

Theorem 6.7.1.
λ2(Tn) ≥ 1/2n.

Proof. Let n = 2d+1 − 1. Define the depth of a vertex in Tn to be its distance from the root, and
define the depth of an edge to be the maximum of the depths of its vertices. So, the lowest
possible depth of an edge is 1 and the largest possible is d.

For each pair of vertices (a, b), we let T a,b contain exactly the edges on the unique path from a to
b in Tn, but we assign weight 2i to the edges at depth i. Note that each such path contains at
most two edges from each depth, 1 through d, and so Lemma 6.6.1 implies

Ga,b 4 2(2−1 + 2−2 + · · ·+ 2−(d−1)) · T a,b 4 2 · T a,b.

So,

Kn =
∑
a<b

Ga,b 4 2 ·
∑
a<b

T a,b.

It now remains to upper bound the right-hand term by some multiple of Tn. To this end, observe
that each depth i edge has 2d+1−i − 1 vertices beneath it. So, it appears on

(2d+1−i − 1)(n− 2d+1−i + 1) ≤ (2d+1−i − 1)n

paths between pairs (a, b). As the weight of such an edge in the sum is 2i each time it appears, it
appears with total weight at most (2d+1 − 2i)n ≤ n2. Thus, we find∑

a<b

T a,b 4 n2Tn,

and may conclude
Kn 4 2n2Tn.

As λ2(Kn) = n, it follows from Lemma 6.2.1 that

λ2(Tn) ≥ n

2n2
= 1/2n.

Chapter 7

Cayley Graphs

7.1 Cayley Graphs

Ring graphs and hypercubes are types of Cayley graphs. In general, the vertices of a Cayley
graph are the elements of some group Γ. In the case of the ring, the group is the set of integers
modulo n. The edges of a Cayley graph are specified by a set S ⊂ Γ, which are called the
generators of the Cayley graph. The set of generators must be closed under inversion. That is, if
s ∈ S, then s−1 ∈ S. Vertices a, b ∈ Γ are connected by an edge if there is an s ∈ S such that

a ◦ s = b,

where ◦ is the group operation. In the case of Abelian groups, like the integers modulo n, this
would usually be written a+ s = b. The generators of the ring graph are {1,−1}.
The d-dimensional hypercube, Hd, is a Cayley graph over the additive group (Z/2)d: that is the
set of vectors in {0, 1}d under addition modulo 2. The generators are given by the vectors in
{0, 1}d that have a 1 in exactly one position. This set is closed under inverse, because every
element of this group is its own inverse.

We require S to be closed under inverse so that the graph is undirected:

a+ s = b ⇐⇒ b+ (−s) = a.

Cayley graphs over Abeliean groups are particularly convenient because we can find an
orthonormal basis of eigenvectors without knowing the set of generators. They just depend on the
group1. Knowing a basis of eigenvectors makes it much easier to compute the eigenvalues. We
give the computations of the eigenvectors in sections 7.4 and 7.8.

We will now examine two exciting types of Cayley graphs: Paley graphs and generalized
hypercubes.

1More precisely, the characters always form an orthonormal set of eigenvectors, and the characters just depend
upon the group. When two different characters have the same eigenvalue, we obtain an eigenspace of dimension
greater than 1. These eigenspaces do depend upon the choice of generators.

61

CHAPTER 7. CAYLEY GRAPHS 62

7.2 Paley Graphs

The Paley graph are Cayley graphs over the group of integer modulo a prime, p, where p is
equivalent to 1 modulo 4. Such a group is often written Z/p.

I should begin by reminding you a little about the integers modulo p. The first thing to remember
is that the integers modulo p are actually a field, written Fp. That is, they are closed under both
addition and multiplication (completely obvious), have identity elements under addition and
multiplication (0 and 1), and have inverses under addition and multiplication. It is obvious that
the integers have inverses under addition: −x modulo p plus x modulo p equals 0. It is a little less
obvious that the integers modulo p have inverses under multiplication (except that 0 does not
have a multiplicative inverse). That is, for every x 6= 0, there is a y such that xy = 1 modulo p.
When we write 1/x, we mean this element y.

The generators of the Paley graphs are the squares modulo p (usually called the quadratic
residues). That is, the set of numbers s such that there exits an x for which x2 ≡p s. Thus, the
vertex set is {0, . . . , p− 1}, and there is an edge between vertices u and v if u− v is a square
modulo p. I should now prove that −s is a quadratic residue if and only if s is. This will hold
provided that p is equivalent to 1 modulo 4. To prove that, I need to tell you one more thing
about the integers modulo p: their multiplicative group is cyclic.

Fact 7.2.1. For every prime p, there exists a number g such that for every number x between 1
and p− 1, there is a unique i between 1 and p− 1 such that

x ≡ gi mod p.

In particular, gp−1 ≡ 1. And, the mapping between x and i is a bijection.

Corollary 7.2.2. If p is a prime equivalent to 1 modulo 4, then −1 is a square modulo p.

Proof. Let i be the number between 1 and p− 1 such that gi ≡ −1 modulo p. Then, g2i ≡ 1
modulo p and so by Fact 7.2.1 we know that 2i must be equivalent to p− 1 modulo p. The only
number between 1 and p that satisfies this relation is i = (p− 1)/2.

As 4 divides p− 1, (p− 1)/4 is an integer. So, we can set s = g(p−1)/4, and finish the proof by
observing that s2 ≡ g(p−1)/2 ≡ −1 modulo p.

We now understand a lot about the squares modulo p (formally called quadratic residues). The
squares are exactly the elements gi where i is even. As gigj = gi+j , the fact that −1 is a square
implies that s is a square if and only if −s is a square. So, S is closed under negation, and the
Cayley graph of Z/p with generator set S is in fact a graph. As |S| = (p− 1)/2, it is regular of
degree

d =
p− 1

2
.

CHAPTER 7. CAYLEY GRAPHS 63

7.3 Eigenvalues of the Paley Graphs

Let L be the Laplacians matrix of the Paley graph on p vertices. A remarkable feature of Paley
graph is that L2 can be written as a linear combination of L, J and I , where J is the all-1’s
matrix. We will prove that

L2 = pL +
p− 1

4
J − p(p− 1)

4
I . (7.1)

The proof will be easiest if we express L in terms of a matrix X defined by the quadratic
character :

χ(x) =


1 if x is a quadratic residue modulo p

0 if x = 0, and

−1 otherwise.

This is called a character because it satisfies χ(xy) = χ(x)χ(y). We will use this to define a
matrix X by

X (a, b) = χ(a− b).
Using the fact that

L(a, b) =


p−1

2 if a = b,

−1 if χ(a− b) = 1, and

0 otherwise,

we find that
2L = pI − J −X . (7.2)

Equation (7.1) follows from this relation, the following lemma, and the relations J 2 = pJ and
XJ = JX = 0. The latter follows from the fact that each row and column of X has exactly
(p− 1)/2 entries that are 1, (p− 1)/2 entries that are −1, and one entry that is 0.

Lemma 7.3.1.
X 2 = pI − J .

Proof. The diagonal entries of X 2 are the squares of the norms of the columns of X . As each
contains (p− 1)/2 entries that are 1, (p− 1)/2 entries that are −1, and one entry that is 0, its
squared norm is p− 1.

To handle the off-diagonal entries, we observe that X is symmetric, and so the off-diagonal
entries of X 2 are the inner products of columns of X . That is,

X (a, b) =

p−1∑
x=0

χ(a− x)χ(b− x) =

p−1∑
y=0

χ(y)χ((b− a) + y),

where we have set y = a− x. For convenience, set w = b− a, so we can write this more simply as

p−1∑
y=0

χ(y)χ(w + y).

CHAPTER 7. CAYLEY GRAPHS 64

As we are considering a non-diagonal entry, w 6= 0. The term in the sum for y = 0 is zero. When
y 6= 0, χ(y) ∈ ±1, so

χ(y)χ(w + y) = χ(w + y)/χ(y) = χ(w/y + 1).

As y varies over {1, . . . , p− 1}, w/y also varies over all of {1, . . . , p− 1}. So, w/y + 1 varies over
all elements other than 1. This means that

p−1∑
y=0

χ(y)χ(w + y) =

(
p−1∑
z=0

χ(z)

)
− χ(1) = 0− 1 = −1.

So, every off-diagonal entry in X 2 is −1.

Corollary 7.3.2. The nonzero eigenvalues of the Laplacian of the Paley graph on p vertices are

1

2
(p±√p) .

Proof. Let φ be an eigenvector of L of eigenvalue λ 6= 0. As φ is orthogonal to the all-1s vector,
Jφ = 0. So, Equation (7.1) implies

λ2φ = L2φ = pLφ− p(p− 1)

4
Iφ = (pλ− p(p− 1)/4)φ.

This equation tells us that λ satisfies

λ2 − pλ+
p(p− 1)

4
= 0,

which implies

λ ∈ 1

2
(p±√p) .

The fact that Paley graphs have only two nonzero eigenvalues means that they are strongly
regular graphs. We will discuss those further in Chapter 9. The fact that those eigenvalues are
very close to each other means that 2 times a Paley graph (the graph we obtain by assigning
weight 2 to every edge) is a 1 +

√
1/p approximation of the complete graph, up to a very small

factor. Paley graphs have also been shown by Chung, Graham, and Wilson to have many
properties in common with random graphs [CGW89].

7.4 Generalizing Hypercubes

To generalize the hypercube, we will consider Cayley graphs over the same group, but with more
generators. Recall that we view the vertex set as the vectors in {0, 1}d, modulo 2. Each
generator, g1, . . . , gk, is in the same group. As g + g = 0 modulo 2 for all g ∈ {0, 1}d, the set of
generators is automatically closed under negation.

CHAPTER 7. CAYLEY GRAPHS 65

Let G be the Cayley graph with these generators. To be concrete, set V = {0, 1}d, and note that
G has edge set {

(x ,x + g j) : x ∈ V, 1 ≤ j ≤ k
}
.

Using the analysis of products of graphs in Theorem 5.3.2, we derived a set of eigenvectors of Hd.
We will now verify that these are eigenvectors for all generalized hypercubes. Knowing these will
make it easy to describe the eigenvalues.

For each b ∈ {0, 1}d, define the function ψb from V to the reals given by

ψb(x) = (−1)b
T x .

When we write bTx , you might wonder if we mean to take the sum over the reals or modulo 2.
As both b and x are {0, 1}-vectors, and the result is used as the exponent of −1, you get the
same answer either way you do it.

While it is natural to think of b as being a vertex, that is the wrong perspective. Instead, you
should think of b as indexing a Fourier coefficient (if you don’t know what a Fourier coefficient is,
just don’t think of it as a vertex).

The eigenvectors and eigenvalues of the graph are determined by the following theorem. As this
graph is k-regular, the eigenvectors of the adjacency and Laplacian matrices will be the same.

Lemma 7.4.1. For each b ∈ {0, 1}d the vector ψb is a Laplacian matrix eigenvector with
eigenvalue

k −
k∑
i=1

(−1)b
T g i .

Proof. We begin by observing that

ψb(x + y) = (−1)b
T (x+y) = (−1)b

T x (−1)b
T y = ψb(x)ψb(y). (7.3)

Let L be the Laplacian matrix of the graph. For any b ∈ {0, 1}d and any vertex x ∈ V , we use
(7.3) to compute

(Lψb)(x) = kψb(x)−
k∑
i=1

ψb(x + g i)

= kψb(x)−
k∑
i=1

ψb(x)ψb(g i)

= ψb(x)

(
k −

k∑
i=1

ψb(g i)

)
.

So, ψb is an eigenvector of eigenvalue

k −
k∑
i=1

ψb(g i) = k −
k∑
i=1

(−1)b
T g i .

CHAPTER 7. CAYLEY GRAPHS 66

7.5 A random set of generators

We will now show that if we choose the set of generators uniformly at random, for k some
constant multiple of the dimension, then we obtain a graph that is a good approximation of the
complete graph. That is, all the eigenvalues of the Laplacian will be close to k. This construction
comes from the work of Alon and Roichman [AR94]. We will set k = cd, for some c > 1. Think of
c = 2, c = 10, or c = 1 + ε.

For b ∈ {0, 1}d but not the zero vector, and for g chosen uniformly at random from {0, 1}d, bTg
modulo 2 is uniformly distributed in {0, 1}, and so

(−1)b
T g

is uniformly distributed in ±1. So, if we pick g1, . . . , gk independently and uniformly from
{0, 1}d, the eigenvalue corresponding to the eigenvector ψb is

λb
def
= k −

k∑
i=1

(−1)b
T g i .

The right-hand part is a sum of independent, uniformly chosen ±1 random variables. So, we
know it is concentrated around 0, and thus λb will be concentrated around k. To determine how
concentrated the sum actually is, we use a Chernoff bound. There are many forms of Chernoff
bounds. We will not use the strongest, but settle for one which is simple and which gives results
that are qualitatively correct.

Theorem 7.5.1. Let x1, . . . , xk be independent ±1 random variables. Then, for all t > 0,

Pr

[∣∣∣∣∣∑
i

xi

∣∣∣∣∣ ≥ t
]
≤ 2e−t

2/2k.

This becomes very small when t is a constant fraction of k. In fact, it becomes so small that it is
unlikely that any eigenvalue deviates from k by more than t.

Theorem 7.5.2. With high probability, all of the nonzero eigenvalues of the generalized hypercube
differ from k by at most

k

√
2

c
,

where k = cd.

Proof. Let t = k
√

2/c. Then, for every nonzero b,

Pr [|k − λb | ≥ t] ≤ 2e−t
2/2k ≤ 2e−k/c = 2e−d.

Now, the probability that there is some b for which λb violates these bounds is at most the sum
of these terms:

Pr [∃b : |k − λb | ≥ t] ≤
∑

b∈{0,1}d,b 6=0d

Pr [|k − λb | ≥ t] ≤ (2d − 1)2e−d,

which is always less than 1 and goes to zero exponentially quickly as d grows.

CHAPTER 7. CAYLEY GRAPHS 67

We initially suggested thinking of c = 2 or c = 10. The above bound works for c = 10. To get a
useful bound for c = 2, we need to sharpen the analysis. A naive sharpening will work down to
c = 2 ln 2. To go lower than that, you need a stronger Chernoff bound.

7.6 Conclusion

We have now seen that a random generalized hypercube of degree k probably has all non-zero
Laplacian eigenvalues between

k(1−
√

2/c) and k(1 +
√

2/c).

If we let n be the number of vertices, and we now multiply the weight of every edge by n/k, we
obtain a graph with all nonzero Laplacian eigenvalues between

n(1−
√

2/c) and n(1 +
√

2/c).

Thus, this is essentially a 1 +
√

2/c approximation of the complete graph on n vertices. But, the
degree of every vertex is only c log2 n. Expanders are infinite families of graphs that are
constant-factor approximations of complete graphs, but with constant degrees.

We know that random regular graphs are probably expanders. If we want explicit constructions,
we need to go to non-Abelian groups.

Explicit constructions that achieve bounds approaching those of random generalized hypercubes
come from error-correcting codes.

Explicit constructions allow us to use these graphs in applications that require us to implicitly
deal with a very large graph. In Chapter 31, we will see how to use such graphs to construct
pseudo-random generators.

7.7 Non-Abelian Groups

In the homework, you will show that it is impossible to make constant-degree expander graphs
from Cayley graphs of Abelian groups. The best expanders are constructed from Cayley graphs of
2-by-2 matrix groups. In particular, the Ramanujan expanders of Margulis [Mar88] and
Lubotzky, Phillips and Sarnak [LPS88] are Cayley graphs over the Projective Special Linear
Groups PSL(2, p), where p is a prime. These are the 2-by-2 matrices modulo p with determinant
1, in which we identify A with −A.

They provided a very concrete set of generators. For a prime q congruent to 1 modulo 4, it is
known that there are p+ 1 solutions to the equation

a2
1 + a2

2 + a2
3 + a2

4 = p,

where a1 is odd and a2, a3 and a4 are even. We obtain a generator for each such solution of the
form:

1√
p

[
a0 + ia1 a2 + ia3

−a2 + ia3 a0 − ia1

]
,

CHAPTER 7. CAYLEY GRAPHS 68

where i is an integer that satisfies i2 = −1 modulo p.

Even more explicit constructions, which do not require solving equations, may be found
in [ABN+92].

7.8 Eigenvectors of Cayley Graphs of Abelian Groups

The wonderful thing about Cayley graphs of Abelian groups is that we can construct an
orthornormal basis of eigenvectors for these graphs without even knowing the set of generators S.
That is, the eigenvectors only depend upon the group. Related results also hold for Cayley graphs
of arbitrary groups, and are related to representations of the groups. See [Bab79] for details.

As Cayley graphs are regular, it won’t matter which matrix we consider. For simplicity, we will
consider adjacency matrices.

Let n be an integer and let G be a Cayley graph on Z/n with generator set S. When S = {±1},
we get the ring graphs. For general S, I think of these as generalized Ring graphs. Let’s first see
that they have the same eigenvectors as the Ring graphs.

Recall that we proved that the vectors x k and yk were eigenvectors of the ring graphs, where

x k(u) = sin(2πku/n), and

yk(u) = cos(2πku/n),

for 1 ≤ k ≤ n/2.

Let’s just do the computation for the x k, as the yk are similar. For every u modulo n, we have

(Ax k)(u) =
∑
g∈S

x k(u+ g)

=
1

2

∑
g∈S

x k(u+ g) + x k(u− g)


=

1

2

∑
g∈S

sin(2πk(u+ g)/n) + sin(2πk(u− g)/n)


=

1

2

∑
g∈S

2 sin(2πku/n) cos(2πkg/n)


= sin(2πku/n)

∑
g∈S

cos(2πkg/n)

= x k(u)
∑
g∈S

cos(2πkg/n).

So, the corresponding eigenvalue is ∑
g∈S

cos(2πkg/n).

Chapter 8

Eigenvalues of Random Graphs

Notation: at many points during this chapter, we will write [n] to indicate the set {1, 2, . . . , n}.
In this chapter we examine the adjacency matrix eigenvalues of Erdös-Rényi random graphs.
These are graphs in which each edge is chosen to appear with probability p, and the choices are
made independently for each edge. We will find that these graphs typically have one large
eigenvalue around pn, and that all of the others probably have absolute value at most
(1 + o(1))2

√
p(1− p)n. In fact, their distribution within this region follows Wigner’s [Wig58]

semicircle law: their histogram looks like a semicircle.

For example, let’s consider p = 1/2. Here is the histogram of all but the largest eigenvalue of a
random graph on 4,000 vertices.

The following image is the histogram of the 99 smallest adjacency eigenvalues of 10,000 random
graphs on 100 vertices.

69

CHAPTER 8. EIGENVALUES OF RANDOM GRAPHS 70

Note that the eigenvalues are almost never outside −10, 10. We are going to prove something like
that today.

Here is a histogram of the second-largest eigenvalues of 10,000 matrices on 1,000 vertices. Note
that

√
1000 ≈ 31.62, which is at the very right end of the histogram.

8.1 Transformation

Let M be the adjacency matrix of an Erdös-Rényi random graph. We understand M by writing
it in the form

M = p(J − I) + R,

where J is the all-1s matrix, and R is a random symmetric whose diagonal entries are zero and
whose off-diagonal entries have distribution

R(a, b) =

{
1− p with probability p, and

−p with probability 1− p.

The reason we write it this way is that the expectation of every entry of R, and thus of R itself is
zero. We will show that with high probability all of the eigenvalues of R are small, and thus we
can view M as being approximately p(J − I).

CHAPTER 8. EIGENVALUES OF RANDOM GRAPHS 71

As p(J − I) has one eigenvalue of p(n− 1) and n− 1 eigenvalues of −p, the bulk of the
distribution of eigenvalues of M is very close to the distribution of eigenvalues of R, minus p. To
see this, first subtract pI from R. This shifts all the eigenvalues down by p. We must now add
pJ . As J is a rank-1 matrix, we can show that the eigenvalues of pJ + (R − pI) interlace the
eigenvalues of R − pI (see the exercise at the end of the chapter). So, the largest eigenvalue
moves up a lot, and all the other n− 1 move up to at most the next eigenvalue.

Our first analysis will be a crude but simple upper bound on the norm of R.

8.2 The extreme eigenvalues

For this section, we make the simplifying assumption that p = 1/2. At the end, we will explain
how to handle the general case.

Recall that

‖R‖ = max
x

∣∣∣∣xTRx

xTx

∣∣∣∣ .
Each R(i, j) is a random variable that is independently and uniformly distributed in ±1/2.

To begin, we fix any unit vector x , and consider

xTRx =
∑
i<j

2R(i, j)x (i)x (j).

This is a sum of independent random variables, and so may be proved to be tightly concentrated
around its expectation, which in this case is zero. There are many types of concentration bounds,
with the most popular being the Chernoff and Hoeffding bounds. In this case we will apply
Hoeffding’s inequality.

Theorem 8.2.1 (Hoeffding’s Inequality). Let a1, . . . , am and b1, . . . , bm be real numbers and let
X1, . . . , Xm be independent random variables such that Xi takes values between ai and bi. Let
µ = E [

∑
iXi]. Then, for every t > 0,

Pr
[∑

Xi ≥ µ+ t
]
≤ exp

(
− 2t2∑

i(bi − ai)2

)
.

To apply this theorem, we view
Xi,j = 2ri,jx (i)x (j)

as our random variables. As ri,j takes values in ±1/2, we can set

ai,j = −x (i)x (j) and bi,j = x (i)x (j).

We then compute

∑
i<j

(bi − ai)2 =
∑
i<j

4x (i)2x (j)2 = 2
∑
i 6=j

x (i)2x (j)2 ≤ 2

(∑
i

x (i)2

)(∑
i

x (j)2

)
= 2,

CHAPTER 8. EIGENVALUES OF RANDOM GRAPHS 72

as x is a unit vector.

We thereby obtain the following bound on xTRx .

Lemma 8.2.2. For every unit vector x ,

PrR
[∣∣xTRx

∣∣ ≥ t] ≤ 2e−t
2
.

Proof. The expectation of xTRx is 0. The preceding argument tells us that

Pr
[∣∣xTRx

∣∣ ≥ t] ≤ Pr
[
xTRx ≥ t

]
+ Pr

[
xTRx ≤ −t

]
≤ Pr

[
xTRx ≥ t

]
+ Pr

[
xT (−R)x ≥ t

]
≤ 2e−t

2
,

where we have exploited the fact that R and −R are identically distributed.

8.2.1 Vectors near v 1

You might be wondering what good the previous argument will do us. We have shown that it is
unlikely that the Rayleigh quotient of any given x is large. But, we have to reason about all x of
unit norm. The standard way to do this is to use a construction called an ε-net. We will instead
use Bayes’ rule and the following lemma.

Lemma 8.2.3. For any symmetric matrix R and a uniform random unit vector u ,

Pru
[
uTRu ≥ ‖R‖ /2

]
≥ 1√

πn2n−1
.

We show how to use this lemma now and defer its proof.

Theorem 8.2.4. Let R be a symmetric matrix with zero diagonal and independent off-diagonal
entries uniformly chosen from ±1/2. Then,

Pr [‖R‖ ≥ t] ≤ √πn2ne−t
2/4.

Proof. The events
∣∣uTRu

∣∣ ≥ ‖R‖ /2 and ‖R‖ ≥ t together imply that uTRu ≥ t/2. So,

PrR,u
[∣∣uTRu

∣∣ ≥ t/2] ≥ PrR,u
[
‖R‖ ≥ t and

∣∣uTRu
∣∣ ≥ ‖R‖ /2]

= PrR [‖R‖ ≥ t] Pru ,R

[∣∣uTRu
∣∣ ≥ ‖R‖ /2∣∣∣ ‖R‖ ≥ t] , by Bayes’ rule,

≥ PrR [‖R‖ ≥ t]√
πn2n−1

,

by Lemma 8.2.3.

On the other hand, Lemma 8.2.2 tells us that for every unit vector u ,

PrR
[∣∣uTRu

∣∣ ≥ t/2] ≤ 2e−(t/2)2 .

CHAPTER 8. EIGENVALUES OF RANDOM GRAPHS 73

Thus, by the law of total probability

PrR,u
[∣∣uTRu

∣∣ ≥ t/2] ≤ 2e−(t/2)2 .

The theorem follows by substituting this into the previous inequality.

The probability in Theorem 8.2.4 becomes small once et
2/4 exceeds

√
πn2n. As n grows large, this

happens for
t > 2

√
ln 2
√
n ∼ (5/3)

√
n.

In fact, it is known that the norm of R is unlikely to be much more than
√
n. This is proved by

Füredi and Komlós [FK81] and Vu [Vu07], using a very different technique that we introduce in
the next section.

Lemma 8.2.3 is a consequence of the following two lemmas.

Lemma 8.2.5. Let R be a symmetric matrix and let ψ be a unit eigenvector of R whose
eigenvalue has absolute value ‖R‖. If x is another unit vector such that

ψTx ≥
√

3/2,

then ∣∣xTRx
∣∣ ≥ 1

2
‖R‖ .

Proof. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of R and let ψ1, . . . ,ψn be a corresponding set
of orthonormal eigenvectors. Assume without loss of generality that λ1 ≥ |λn| and that ψ = ψ1.
Expand x in the eigenbasis as

x =
∑
i

civ i.

We know that c1 ≥
√

3/2 and
∑

i c
2
i = 1. This implies that

xTRx =
∑
i

c2
iλi ≥ c2

1λ1 −
∑
i≥2

c2
i |λ1| = λ1

c2
1 −

∑
i≥2

c2
i

 = λ1(2c2
1 − 1) ≥ λ1/2.

Lemma 8.2.6. Let ψ be an arbitrary unit vector, and let x be a random unit vector. Then,

Pr
[
ψTx ≥

√
3/2
]
≥ 1√

πn2n−1

Proof. Let Bn denote the unit ball in IRn, and let C denote the cap on the surface of Bn

containing all vectors x such that
ψTx ≥

√
3/2.

We need to lower bound the ratio of the surface area of the cap C to the surface area of Bn.

CHAPTER 8. EIGENVALUES OF RANDOM GRAPHS 74

Recall that the surface area of Bn is
nπn/2

Γ(n2 + 1)
,

where I recall that for positive integers n

Γ(n) = (n− 1)!,

and that Γ(x) is an increasing function for real x ≥ 1.

Now, consider the (n− 1)-dimensional hypersphere whose boundary is the boundary of the cap C.
As the cap C lies above this hypersphere, the (n− 1)-dimensional volume of this hypersphere is a
lower bound on the surface area of the cap C. Recall that the volume of a sphere in IRn of radius
R is

rn
πn/2

Γ(n2 + 1)
.

In our case, the radius of the hypersphere is

r = sin(acos
√

3/2) = 1/2.

So, the ratio of the (n− 1)-dimensional volume of the hypersphere to the surface area of Bn is at
least

rn−1 π(n−1)/2

Γ(n−1
2

+1)

nπn/2

Γ(n
2

+1)

=
rn−1

√
πn

Γ(n2 + 1)

Γ(n−1
2 + 1)

≥ 1√
πn2n−1

.

8.3 The Trace Method

A good way to characterize the general shape of a distribution is through its moments. Let
ρ1, . . . , ρn be the eigenvalues of R. Their first moment is simply their sum, which is the trace of
R and thus zero. Their kth moment is

n∑
i=1

ρki = Tr
(
Rk
)
.

One of the easiest ways to reason about the distribution of the eigenvalues is to estimate the
expectations of the traces of powers of R. This is called Wigner’s trace method.

Before proceeding with our analysis, we recall a formula for the entries of a power of matrices.
For matrices A and B whose rows and columns are indexed by V ,

(AB)(a, b) =
∑
c∈V

A(a, c)B(c, b).

Applying this formula inductively, we find that

(Al)(a, b) =
∑

c1,...,cl−1∈V
A(a, c1)A(c1, c2) · · ·A(cl−1, b).

CHAPTER 8. EIGENVALUES OF RANDOM GRAPHS 75

We can use good bounds on the moments of the eigenvalues of R to obtain a good upper bound
on the norm of R that holds with high probability. We will do this by estimating the trace of a
high power of R. For an even power l, this should be relatively close to ‖R‖. In particular, we
use the fact that for every even l

‖R‖l ≤ Tr
(
Rl
)

and thus

‖R‖ ≤
(

Tr
(
Rl
))1/l

.

We will prove in Theorem 8.4.2 that for every even l such that np(1− p) ≥ 2l8,

ETr
(
Rl
)
≤ 2n(4np(1− p))l/2.

This will allow us to show that the norm of R is usually less than u where

u
def
=
(

2n(4np(1− p))l/2
)1/l

= (2n)1/l2
√
np(1− p).

We establish this by an application of Markov’s inequality. For all ε > 0,

Pr [‖R‖ > (1 + ε)u] ≤ Pr
[
Tr
(
Rl
)
> (1 + ε)lul

]
≤ Pr

[
Tr
(
Rl
)
> (1 + ε)lETr

(
Rl
)]

≤ (1 + ε)−l,

by Markov’s inequality.

To understand this probability, remember that for small ε, (1 + ε) is approximately exp(ε). So,
(1 + ε)−l is approximately exp(−εl). This probability becomes small when l > 1/ε. Concretely, for
ε < 1/2, 1 + ε < exp(4ε/5). Thus, we can take ε approximately (n/2)−1/8. While this bound is not
very useful for n that we encounter in practice, it is nice asymptotically. In particular, this bound
goes to zero as n goes to infinity. The bound can be substantially improved by more careful
arguments, as we explain at the end of the Chapter.

We should also examine the term (2n)1/l:

(2n)1/l = exp(ln(2n)/l) ≤ 1 + 1.1 ln(2n)/l,

for ln(2n)/l < 1/2. Thus, for l >> ln(2n) this term is close to 1.

8.4 Expectation of the trace of a power

Recall that the trace is the sum of the diagonal entries in a matrix. By expanding the formula for
matrix multiplication, one can also show

Rl(a0, a0) =
∑

a1,...,al−1∈V
R(a0, al−1)

l−1∏
i=1

R(ai−1, ai),

CHAPTER 8. EIGENVALUES OF RANDOM GRAPHS 76

and so

ERl(a0, a0) =
∑

a1,...,al−1∈V
ER(a0, al−1)

l−1∏
i=1

R(ai−1, ai).

To simplify this expression, we will recall that if X and Y are independent random variables, then
E(XY) = E(X)E(Y). So, to the extent that the terms in this product are independent, we can
distribute this expectation across this product. As the entries of R are independent, up to the
symmetry condition, the only terms that are dependent are those that are identical. So, if
{bj , cj}j is the set of pairs that occur in

{a0, a1} , {a1, a2} , . . . , {al−2, al−1} , {al−1, a0} , (8.1)

and pair {bj , cj} appears dj times, then

ER(a0, al−1)
l−1∏
i=1

R(ai−1, ai) =
∏
j

ER(bj , cj)
dj .

As each entry of R has expectation 0,
ER(bj , cj)

dj

is zero if dj is 1. In general

ERd
(bj ,cj) = p(1− p)

[
(1− p)d−1 − (−p)d−1

]
≤ p(1− p), (8.2)

for d ≥ 2.

So, ERl(a0, a0) is at most the sum over sequences a1, . . . , al−1 such that each pair in (8.1) appears
at least twice, times p(1− p) for each pair that appears in the sequence.

To describe this more carefully, we say that a sequence a0, a1, . . . , al is a closed walk of length l on
n vertices if each ai ∈ {1, . . . , n} and al = a0. In addition, we say that it is significant if for every
tuple {b, c} there are at least two indices i for which {ai, ai+1} = {b, c}. Let Wn,l,k denote the
number of significant closed walks of length l on n vertices such that a1, . . . , al−1 contains exactly
k distinct elements. As a sequence with k distinct elements must contain at least k distinct pairs,
we obtain the following upper bound on the trace.

Lemma 8.4.1.

ETr
(
Rl
)
≤

l/2∑
k=1

Wn,l,k(p(1− p))k.

In the next section, we prove that

Wn,l,k ≤ nk+12ll4(l−2k).

Theorem 8.4.2. If l is even and np(1− p) ≥ 2l8, then

ETr
(
Rl
)
≤ 2n(4np(1− p))l/2.

CHAPTER 8. EIGENVALUES OF RANDOM GRAPHS 77

Proof. Let
tk = nk+12ll4(l−2k)(p(1− p))k.

We will show that the sequence tk is geometrically increasing, and thus it is dominated by its
largest term. We compute

tk
tk−1

=
nk+12ll4(l−2k)(p(1− p))k
nk2ll4(l−2k+2)(p(1− p))k−1

=
n(p(1− p))

l8

≥ 2.

Thus,

ETr
(
Rl
)
≤

l/2∑
k=1

W (n, l, k)(p(1− p))k ≤
l/2∑
k=1

tk ≤ tl/2
l/2∑
k=1

21−k ≤ 2tl/2 ≤ 2n2l(np(1− p))l/2.

Of course, better bounds on Wn,l,k provide better bounds on the trace. Vu [Vu07] proves that

Wn,l,k ≤ nk+1

(
l

2k

)
(k + 1)2(l−2k)22k.

This bound allows us to apply much higher powers of the matrix.

8.5 The number of walks

Our goal is to prove an upper bound on Wn,l,k. We will begin by proving a crude upper bound,
and then refine it.

As it is tricky to obtain a clean formula for the number of such walks, we will instead derive ways
of describing such walks, and then count how many such descriptions there can be.

Let S ⊂ {1, . . . , l − 1} be the set of i for which ai does not appear earlier in the walk:

ai 6∈ {aj : j < i} .

There are at most
(
l−1
k

)
choices for the set S. Given S, we wish to record the identities of the

elements ai for i ∈ S. Each is an element of [n], and we record them in the order in which they
appear in the walk. You may wish to think of this data as a map

σ : S → [n].

There are at most nk such maps. We also record the identity of a0.

CHAPTER 8. EIGENVALUES OF RANDOM GRAPHS 78

For each i 6∈ S there is a j ∈ S ∪ {0} for which aj = ai. We record which element of S this is, or
we record 0 if it is a0. As S has k elements, we only need one of k + 1 numbers to record this j.
Again, you may wish to think of this data as a map

τ : [l − 1] \ S → S ∪ {0} .

There are at most (k + 1)l−1−k choices for τ . See figure 8.1 for an example.

Figure 8.1: An example walk along with S, σ, and τ .

While not every choice of a0, S, σ and τ corresponds to a significant walk, every significant walk
with k distinct elements corresponds to some a0, S, σ and τ . Thus,

Wn,l,k ≤
(
l − 1

k

)
nk+1(k + 1)l−1−k. (8.3)

This bound is too loose to obtain the result we desire. It merely allows us to prove that
‖R‖ ≤ c

√
np(1− p) log n for some constant c. This bound is loosest when k = l/2. This is

fortunate both because this is the case in which it is easiest to tighten the bound, and because the
computation in Theorem 8.4.2 is dominated by this term.

Consider the graph with edges (ai−1, ai) for i ∈ S. This graph must be a tree because it contains
exactly the edges from which the walk first hits each vertex. Formally, this is because the graph
contains k edges, touches k + 1 vertices, and we can prove by induction on the elements in S that
it is connected, starting with a0. See Figure 8.2.

We can use this tree to show that, when k = l/2, every pair {ai−1, ai} that appears in the walk
must appear exactly twice: the walk only takes l steps, and each pair of the k = l/2 in the tree
must be covered at least twice.

We now argue that when l = 2k the map τ is completely unnecessary: the walk is determined by
S and σ alone. That is, for every i 6∈ S there is only one edge that the walk can follow. For i 6∈ S,
the tuple {ai−1, ai} must have appeared exactly once before in the walk. We will show that at
step i the vertex ai−1 is adjacent to exactly one edge with this property.

To this end, we keep track of the graph of edges that have appeared exactly once before in the
walk. We could show by induction that at step i this graph is precisely a path from a0 to ai−1.
But, we take an alternate approach. Consider the subgraph of the tree edges that have been used

CHAPTER 8. EIGENVALUES OF RANDOM GRAPHS 79

Figure 8.2: The tree edges for this walk.

exactly once up to step i. We will count both its number of vertices, v, and its number of edges,
f . At step i we include ai in this subgraph regardless of whether it is adjacent to any of the
edges, so initially v = 1 and e = 0. The walk ends in the same state.

For steps in which i ∈ S, both v and f increase by 1: the edge {ai−1, ai} and the vertex ai is
added to the subgraph. When i 6∈ S and {ai−1, ai} is the only tree edge adjacent to ai−1 that has
been used exactly once, both e and v decrease: e because we use the pair {ai−1, ai} a second time
and v because ai−1 is no longer adjacent to any tree edge that has been used exactly once, and
the walk moves to ai.

If for some i 6∈ S it were the case that ai−1 was adjacent to two tree edges that had been used
exactly once, then e would decrease but v would not. As the process starts and ends with
v − e = 1, this is not possible.

Thus

Wn,l,l/2 ≤ nl/2+1

(
l

l/2

)
.

Now that we know Wn,l,l/2 is much less than the bound suggested by (8.3), we should suspect
that Wn,l,k is also much lower when k is close to l/2. To show this, we extend the idea used in the
previous argument to show that with very little information we can determine where the walk
goes for almost every step not in S.

We say that the ith step in the walk is extra if the pair {ai−1, ai} is not a tree edge or if it appears
at least twice in the walk before step i. Let x denote the number of extra steps. As each of the
tree edges appears in at least two steps, the number of extra steps is at most l− 2k. We will use τ
to record the destination vertex ai of each extra step, again by indicating its position in S.

During the walk, we keep track of the set of tree edges that have been used exactly once. Let T
be the set of steps in which in which ai−1 is adjacent to exactly one tree edge that has been used
exactly once and the walk follows that edge. That is, the edge is {ai−1, ai} and we can infer ai
given i ∈ T . If ai−1 is adjacent to exactly one tree edge that has been used exactly once but the
walk does not follow that edge, then step i is extra: it either follows an edge that is not in the
tree or it follows a tree edge that has been used at least twice.

This leaves us to account for the steps in which ai−1 is adjacent to more than one tree edge that

CHAPTER 8. EIGENVALUES OF RANDOM GRAPHS 80

has been used exactly once and follows such an edge. In this case, we call step i ambiguous,
because we need some way to indicate which of those edges it used. In ambiguous steps we also
use τ to record ai. Every step not in S or T is extra or ambiguous. So,

τ : ([l − 1] \ (S ∪ T))→ S ∪ {0} .

The data a0, S, T , σ, and τ determine the walk. It remains to determine how many ways we can
choose them.

We will show that the number of ambiguous steps is at most the number of extra steps. This
implies that |V \ (S ∪ T)| ≤ 2x. Thus, the number of possible maps τ is at most

(k + 1)2x.

The number of choices for S and T may be upper bounded by(
l − 1

k

)(
l − 1− k

2x

)
≤ 2l−1(l − 1− k)2x.

Thus
Wn,l,k ≤ nk+12l−1(l − k − 1)2x(k + 1)2x ≤ nk+12l−1(lk)2(l−2k) ≤ nk+12ll4(l−2k). (8.4)

We now finish by arguing that the number of ambiguous edges is at most the number of extra
edges. As before, keep track of the subgraph of the tree edges that have been used exactly once
up to step i. We will count both its number of vertices, v, and its number of edges, e. At step i
we include ai in this subgraph regardless of whether it is adjacent to any of the graphs edges, so
initially v = 1 and e = 0. The walk ends in the same state.

For steps in which i ∈ S, both v and e increase by 1. For steps in which i ∈ T , the vertex ai−1 has
degree one in this graph. When we follow the edge (ai−1, ai), we remove it from this graph. As
ai−1 is no longer adjacent to any edge of the graph, both v and e decrease by 1.

At ambiguous steps i, we decrement e. But, because ai−1 was adjacent to at least two tree edges
that had been used exactly once, it is not removed from the graph and v does not decrease. The
ambiguous steps may be compensated by extra steps. An extra step does not change f , but it can
decrease v. This happens when ai−1 is not adjacent to any tree edges that have been used exactly
once, but ai is. Thus, ai−1 contributes 1 to v during step i− 1, but is removed from the count as
soon as the walk moves to ai. As the walk starts and ends with v − f = 1, neither the steps in S
nor T change this difference, ambiguous steps increase it, and extra steps can decrease it, the
number of extra steps must be at least the number of ambiguous steps.

8.6 Notes

The proof in this chapter is a slight simplification and weakening of result due to Vu [Vu07]. The
result was first claimed by Füredi and Komlos [FK81]. However, there were a few mistakes in
their paper. Vu’s paper also provides concentration results that lower bound µ2, whereas the
argument in this chapter merely provides an upper bound.

CHAPTER 8. EIGENVALUES OF RANDOM GRAPHS 81

8.7 Exercise

1. Interlacing.

Let A be a symmetric matrix with eigenvalues α1 ≥ α2 ≥ . . . ≥ αn. Let B = A + xxT for some
vector x and let β1 ≥ β2 ≥ . . . ≥ βn be the eigenvalues of B . Prove that for all i

βi ≥ αi ≥ βi+1.

CHAPTER 8. EIGENVALUES OF RANDOM GRAPHS 82

Figure 8.3: An example walk along with v and e

Chapter 9

Strongly Regular Graphs

This Chapter Needs Editing

9.1 Introduction

In this and the next lecture, I will discuss strongly regular graphs. Strongly regular graphs are
extremal in many ways. For example, their adjacency matrices have only three distinct
eigenvalues. If you are going to understand spectral graph theory, you must have these in mind.

In many ways, strongly-regular graphs can be thought of as the high-degree analogs of expander
graphs. However, they are much easier to construct.

The Paley graphs we encountered in Chapter 7 are Strongly Regular Graphs.

Many times someone has asked me for a matrix of 0s and 1s that “looked random”, and strongly
regular graphs provided a resonable answer.

Warning: I will use the letters that are standard when discussing strongly regular graphs. So λ
and µ will not be eigenvalues in this lecture.

9.2 Definitions

Formally, a graph G is strongly regular if

1. it is k-regular, for some integer k;

2. there exists an integer λ such that for every pair of vertices x and y that are neighbors in G,
there are λ vertices z that are neighbors of both x and y;

3. there exists an integer µ such that for every pair of vertices x and y that are not neighbors
in G, there are µ vertices z that are neighbors of both x and y.

83

CHAPTER 9. STRONGLY REGULAR GRAPHS 84

These conditions are very strong, and it might not be obvious that there are any non-trivial
graphs that satisfy these conditions. Of course, the complete graph and disjoint unions of
complete graphs satisfy these conditions.

For the rest of this lecture, we will only consider strongly regular graphs that are connected and
that are not the complete graph. I will now give you some examples.

9.3 The Pentagon

The simplest strongly-regular graph is the pentagon. It has parameters

n = 5, k = 2, λ = 0, µ = 1.

9.4 Lattice Graphs

For a positive integer n, the lattice graph Ln is the graph with vertex set {1, . . . n}2 in which
vertex (a, b) is connected to vertex (c, d) if a = c or b = d. Thus, the vertices may be arranged at
the points in an n-by-n grid, with vertices being connected if they lie in the same row or column.
Alternatively, you can understand this graph as the line graph of a bipartite complete graph
between two sets of n vertices.

It is routine to see that the parameters of this graph are:

k = 2(n− 1), λ = n− 2, µ = 2.

9.5 Latin Square Graphs

A Latin Square is an n-by-n grid, each entry of which is a number between 1 and n, such that no
number appears twice in any row or column. For example,1 2 3

2 3 1
3 1 2


Let me remark that the number of different latin squares of size n grows very quickly, at least as
fast as n!(n− 1)!(n− 2)! . . . 2!.

From such a latin square, we construct a Latin Square Graph. It will have n2 nodes, one for each
cell in the square. Two nodes are joined by an edge if

1. they are in the same row,

2. they are in the same column, or

CHAPTER 9. STRONGLY REGULAR GRAPHS 85

3. they hold the same number.

So, such a graph has degree k = 3(n− 1). Any two nodes in the same row will both be neighbors
with every other pair of nodes in their row. They will have two more common neighors: the nodes
in their columns holding the other’s number. So, they have n common neighbors. The same
obviously holds for columns, and is easy to see for nodes that have the same number. So, every
pair of nodes that are neighbors have exactly λ = n common neighbors.

On the other hand, consider two vertices that are not neighbors, say (1, 1) and (2, 2). They lie in
different rows, lie in different columns, and hold different numbers. The vertex (1, 1) has two
common neighbors of (2, 2) in its row: the vertex (1, 2) and the vertex holding the same number
as (2, 2). Similarly, it has two common neighbors of (2, 2) in its column. Finally, we can find two
more common neighbors of (2, 2) that are in different rows and columns by looking at the nodes
that hold the same number as (1, 1), but which are in the same row or column as (2, 2). So, µ = 6.

9.6 The Eigenvalues of Strongly Regular Graphs

We will consider the adjacency matrices of strongly regular graphs. Let A be the adjacency
matrix of a strongly regular graph with parameters (k, λ, µ). We already know that A has an
eigenvalue of k with multiplicity 1. We will now show that A has just two other eigenvalues.

To prove this, first observe that the (u, v) entry of A2 is the number of common neighbors of
vertices u and v. For u = v, this is just the degree of vertex u. We will use this fact to write A2 as
a linear combination of A, I and J . To this end, observe that the adjacency matrix of the
complement of A (the graph with non-edges where A has edges) is J − I −A. So,

A2 = λA+ µ(J − I −A) + kI = (λ− µ)A+ µJ + (k − µ)I.

For every vector v orthogonal to 1,

A2v = (λ− µ)Av + (k − µ)v .

So, every eigenvalue θ of A other than k satisfies

θ2 = (λ− µ)θ + k − µ.

The eigenvalues of A other than k are those θ that satisfy this quadratic equation, and so are
given by

λ− µ±
√

(λ− µ)2 + 4(k − µ)

2
.

These eigenvalues are always denoted r and s, with r > s. By convention, the multiplicty of the
eigenvalue r is always denoted f , and the multiplicty of s is always denoted g.

For example, for the pentagon we have

r =

√
5− 1

2
, s = −

√
5 + 1

2
.

CHAPTER 9. STRONGLY REGULAR GRAPHS 86

For the lattice graph Ln, we have
r = n− 2, s = −2.

For the latin square graphs of order n, we have

r = n− 3, s = −3.

9.7 Regular graphs with three eigenvalues

We will now show that every regular connected graph with at most 3 eigenvalues must be a
strongly regular graph. Let G be k-regular, and let its eigenvalues other than k be r and s. As G
is connected, its adjacency eigenvalue k has multiplicty 1.

Then, for every vector orthogonal to 1, we have

(A− rI)(A− sI)v = 0.

Thus, for some β,
(A− rI)(A− sI) = βJ,

which gives

A2 − (r + s)A+ rsI = βJ =⇒
A2 = (r + s)A− rsI + βJ

= (r + s+ β)A+ β(J −A− I) + (rs+ β)I.

So, the number of common neighbors of two nodes just depends on whether or not they are
neighbors, which implies that A is strongly regular.

9.8 Integrality of the eigenvalues

We will now see that, unless f = g, both r and s must be integers. We do this by observing a few
identities that they both must satisfy. First, from the quadratic equation above, we know that

r + s = λ− µ (9.1)

and
rs = µ− k. (9.2)

As the trace of an adjacency matrix is zero, and is also the sum of the eigenvalues times their
multiplicites, we know

k + fr + gs = 0. (9.3)

So, it must be the case that s < 0. Equation 9.1 then gives r > 0.

If f 6= g, then equations (9.3) and (9.1) provide independent constraints on r and s, and so
together they determine r and s. As the coefficients in both equations are integers, they tell us

CHAPTER 9. STRONGLY REGULAR GRAPHS 87

that both r and s are rational numbers. From this, and the fact that r and s are the roots of a
quadratic equation with integral coefficients, we may conclude that r and s are in fact integers.
Let me remind you as to why.

Lemma 9.8.1. If θ is a rational number that satisfies

θ2 + bθ + c = 0,

where b and c are integers, then θ must be an integer.

Proof. Write θ = x/y, where the greatest common divisor of x and y is 1. We then have

(x/y)2 + b(x/y) + c = 0,

which implies
x2 + bxy + cy2 = 0,

which implies that y divides x2. As we have assumed the greatest common divisor of x and y is 1,
this implies y = 1.

9.9 The Eigenspaces of Strongly Regular Graphs

It is natural to ask what the eigenspaces can tell us about a strongly regular graph. But, we will
find that they don’t tell us anything we don’t already know.

Let u1, . . .uf be an orthonormal set of eigenvectors of the eigenvalue r, and let U be the matrix
containing these vectors as columns. Recall that U is only determined up to an orthnormal
transformation. That is, we could equally take UQ for any f -by-f orthnormal matrix Q.

To the ith vertex, we associate the vector

x i
def
= (u1(i), . . . ,uf (i)).

While the vectors U are determined only up to orthogonal transformations, these transformations
don’t effect the geometry of these vectors. For example, for vertices i and j, the distance between
x i and x j is

‖x i − x j‖ ,
and

‖x i − x j‖2 = ‖x i‖2 + ‖xxj‖2 − 2x ix
T
j .

On the other hand,

‖x iQ− x jQ‖2 = ‖x iQ‖2+‖xxjQ‖2−2(x iQ)(x jQ)T = ‖x iQ‖2+‖xxjQ‖2−2x iQQ
TxTj = ‖x i‖2+‖xxj‖2−2x ix

T
j .

In fact, all the geometrical information about the vectors x i is captured by their Gram matrix,
whose (i, j) entry is x ix

T
j . This matrix is also given by

UUT .

CHAPTER 9. STRONGLY REGULAR GRAPHS 88

Let W be the analogous matrix for the eigenvalue s. We then have

A = rUUT + sWW T + k
1

n
J.

As each of the matrices UUT , WW T and 1
nJ are projections (having all eigenvalues 0 or 1), and

are mutually orthogonal, we also have

A2 = r2UUT + s2WW T + k2 1

n
J.

Consider the polynomial

P (X) =
(X − s)(X − k)

(r − s)(r − k)
.

We have

P (X) =


1 if X = r

0 if X = s, and

0 if X = k.

So,

P (A) = P (r)UUT + P (s)WW T + P (k)
1

n
J = UUT .

That is, the Gram matrix of the point set x 1, . . . ,xn is a linear combination of the identity, A
and A2. So, the distance between any pair of points in this set just depends on whether or not the
corresponding vertices are neighbors in G.

In particular, this means that the point set x 1, . . . ,xn is a two-distance point set : a set of points
such that there are only two different distances between them. Next lecture, we will use this fact
to prove a lower bound on the dimensions f and g.

9.10 Triangular Graphs

For a positive integer n, the triangular graph Tn may be defined to be the line graph of the
complete graph on n vertices. To be more concrete, its vertices are the subsets of size 2 of
{1, . . . , n}. Two of these sets are connected by an edge if their intersection has size 1.

You are probably familiar with some triangular graphs. T3 is the triangle, T4 is the skeleton of the
octahedron, and T5 is the complement of the Petersen graph.

Let’s verify that these are strongly-regular, and compute their parameters. As the construction is
competely symmetric, we may begin by considering any vertex, say the one labeled by the set
{1, 2}. Every vertex labeled by a set of form {1, i} or {2, i}, for i ≥ 3, will be connected to this
set. So, this vertex, and every vertex, has degree 2(n− 2).

For any neighbor of {1, 2}, say {1, 3}, every other vertex of from {1, i} for i ≥ 4 will be a neighbor
of both of these, as will the set {2, 3}. Carrying this out in general, we find that
λ = (n− 3) + 1 = n− 2.

CHAPTER 9. STRONGLY REGULAR GRAPHS 89

Finally, any non-neighbor of {1, 2}, say {3, 4}, will have 4 common neighbors with {1, 2}:

{1, 3} , {1, 4} , {2, 3} , {2, 4} .

So, µ = 4.

9.11 Two-distance point sets

Recall from last lecture that each eigenspace of a strongly regular graph supply a set of points on
the unit sphere such that the distance between a pair of points just depends on whether or not
they are adjacent. If the graph is connected and not the complete graph, then we can show that
these distances are greater than zero, so no two vertices map to the same unit vector. If we take
the corresponding point sets for two strongly regular graphs with the same parameters, we can
show that the graphs are isomorphic if and only if there is an orthogonal transformation that
maps one point set to the other. In low dimensions, it is easy to find such an orthogonal
transformation if one exists.

Consider the eigenspace of r, which we recall has dimension f . Fix any set of f independent
vectors corresponding to f vertices. An orthogonal transformation is determined by its action on
these vectors. So, if there is an orthogonal transformation that maps one vector set onto the
other, we will find it by examining all orthogonal transformations determined by mapping these f
vectors to f vectors in the other set. Thus, we need only examine

(
n
f

)
f ! transformations. This

would be helpful if f were small. Unfortunately, it is not. We will now prove that both f and g
must be at least

√
2n− 2.

Let x 1, . . . ,xn be a set of unit vectors in IRf such that there are two values α, β < 1 such that〈
x i,x j

〉
= α or β.

We will prove a lower bound on f in terms of n.

The key to our proof is to define an f -variate polynomial for each point. In particular, we set

pi(y) = (yTx i − α)(yTx i − β),

for y ∈ IRf . We first note that each polynomial pi is a polynomial of degree 2 in f variables (the
coordinates of y). As each f -variate polynomial of degree 2 can be expressed in the form

a+
∑
i

biyi +
∑
i≤k

ci,jyiyj ,

we see that the vector space of degree-2 polynomials in f variables has dimension

1 + 2f +

(
f

2

)
.

To prove a lower bound on f , we will show that these polynomials are linearly independent.
Assume by way of contradiction that they are not. Then, without loss of generality, there exist

CHAPTER 9. STRONGLY REGULAR GRAPHS 90

coefficients γ1, . . . , γn with γ1 6= 0 and ∑
i

γipi(y) = 0.

To obtain a contradiction, plug in y = x 1, to find∑
i

γipi(x
1) = γ1p1(x 1) 6= 0.

Thus, we may conclude

n ≤ 1 + 2f +

(
f

2

)
,

which implies
f ≥
√

2n− 2.

Part III

Physical Metaphors

91

Chapter 10

Random Walks on Graphs

We will examine how the eigenvalues of a graph govern the convergence of a random walk.

10.1 Random Walks

We will consider random walks on undirected graphs. Let’s begin with the definitions. Let
G = (V,E,w) be a weighted undirected graph. A random walk on a graph is a process that
begins at some vertex, and at each time step moves to another vertex. When the graph is
unweighted, the vertex the walk moves to is chosen uniformly at random among the neighbors of
the present vertex. When the graph is weighted, it moves to a neighbor with probability
proportional to the weight of the corresponding edge. While the transcript (the list of vertices in
the order they are visited) of a particular random walk is sometimes of interest, it is often more
productive to reason about the expected behavior of a random walk. To this end, we will
investigate the probability distribution over vertices after a certain number of steps.

We will let the vector pt ∈ IRV denote the probability distribution at time t. We write pt(a) to
indicate the value of pt at a vertex a—the probability of being at vertex a at time t. A
probability vector p is a vector such that p(a) ≥ 0, for all a ∈ V , and∑

a

p(a) = 1.

Our initial probability distribution, p0, will typically be concentrated on one vertex. That is,
there will be some vertex a for which p0(a) = 1. In this case, we say that the walk starts at a.

To derive a pt+1 from pt, note that the probability of being at a vertex a at time t+ 1 is the sum
over the neighbors b of a of the probability that the walk was at b at time t, times the probability
it moved from b to a in time t+ 1. We can state this algebraically as

pt+1(a) =
∑

b:(a,b)∈E

w(a, b)

d(b)
pt(b), (10.1)

where d(b) =
∑

aw(a, b) is the weighted degree of vertex b.

92

CHAPTER 10. RANDOM WALKS ON GRAPHS 93

We may write this in matrix form using the walk matrix of the graph, which is given by

W
def
= MD−1.

We then have
pt+1 = Wpt = W t+1p0.

To see why this holds, consider how W acts as an operator on an elementary unit vector.

MD−1δb = M (δb/d(b)) =
∑
a∼b

(wa,b/d(b))δa.

We will often consider lazy random walks, which are the variant of random walks that stay put
with probability 1/2 at each time step, and walk to a random neighbor the other half of the time.
These evolve according to the equation

pt+1(a) = (1/2)pt(a) + (1/2)
∑

b:(a,b)∈E

w(a, b)

d(b)
pt(b), (10.2)

and satisfy
pt+1 = W̃ pt,

where W̃ is the lazy walk matrix , given by

W̃
def
=

1

2
I +

1

2
W =

1

2
I +

1

2
MD−1.

We will usually work with lazy random walks.

10.2 Spectra of Walk Matrices

While the walk matrices are not symmetric, they are similar to symmetric matrices. We will see
that this implies that they have n real eigenvalues, although their eigenvectors are generally not
orthogonal. Define the normalized adjacency matrix by

A
def
= D−1/2WD1/2 = D−1/2MD−1/2.

So, A is symmetric.

Claim 10.2.1. The vector ψ is an eigenvector of A of eigenvalue ω if and only if D1/2ψ is an
eigenvector of W of eigenvalue ω.

Proof. As A = D−1/2WD1/2, D1/2A = WD1/2. Thus, ωψ = Aψ if and only if

ω(D1/2ψ) = D1/2ωψ = D1/2Aψ = W (D1/2ψ).

CHAPTER 10. RANDOM WALKS ON GRAPHS 94

Of course, W̃ has the same eigenvectors as W . Claim 10.2.1 lets us use the spectra of A to
reason about W and W̃ .

We next observe that the degree vector, d , is a Perron vector of W of eigenvalue 1:

MD−1d = M1 = d .

From Claim 10.2.1, we now know that

ψ1
def
=

d1/2∥∥∥d1/2
∥∥∥

is the unit-norm Perron vector of A, where

d1/2(a)
def
= d(a)1/2,

and that it has eigenvalue 1.

So, the Perron-Frobenius theorem (Theorem 4.5.1) tells us that all the eigenvalues of A lie
between −1 and 1. As we did in Proposition 4.5.3, one can show that G is bipartite if and only if
−1 is an eigenvalue of A.

As W̃ = W /2 + I /2, this implies that all the eigenvalues of W̃ lie between 0 and 1. We denote

the eigenvalues of W̃ and I /2 + A/2 by

1 = ω1 ≥ ω2 ≥ · · · ≥ ωn ≥ 0.

While the letter ω, pronounced “omega,” is not a greek equivalent of “w”, we use it because it
looks like one.

10.3 The stable distribution

Regardless of the starting distribution, the lazy random walk on a connected graph always
converges to one distribution: the stable distribution. This is the other reason that we forced our
random walk to be lazy. Without laziness1, there can be graphs on which the random walks never
converge. For example, consider a non-lazy random walk on a bipartite graph. Every-other step
will bring it to the other side of the graph. So, if the walk starts on one side of the graph, its
limiting distribution at time t will depend upon the parity of t.

In the stable distribution, every vertex is visited with probability proportional to its weighted
degree. We denote the vector encoding this distribution by π, where

π
def
= d/(1Td).

1Strictly speaking, any nonzero probability of staying put at any vertex in a connected graph will guarantee that
the Markov chain is aperiodic and converges. We don’t really need a half probability at every vertex.

CHAPTER 10. RANDOM WALKS ON GRAPHS 95

We have already seen that π is a right-eigenvector of eigenvalue 1. To show that the lazy random
walk converges to π, we will exploit the fact that all the eigenvalues other than 1 are in [0, 1).
And, we expand the vectors pt in the eigenbasis of A, after first multiplying by D−1/2.

Let ψ1, . . . ,ψn be orthonormal eigenvectors of A corresponding to eigenvalues ω1, . . . , ωn of W̃
(caution: the corresponding eigenvalues of A are 2ωi − 1). For any initial distribution p0, write

D−1/2p0 =
∑
i

ciψi, where ci = ψTi D
−1/2p0.

Note that

c1 = ψT1 (D−1/2p0) =
(d1/2)T

‖d1/2‖
(D−1/2p0) =

1Tp0

‖d1/2‖
=

1

‖d1/2‖
,

as p0 is a probability vector. One of the reasons we do not expand in a basis of eigenvectors of

W̃ is that it, not being orthogonal, they do not allow such a nice expression for the coefficients.
We have

pt = W̃
t
p0

= D1/2D−1/2W̃
t
D1/2D−1/2p0

= D1/2
(
D−1/2W̃D1/2

)t
D−1/2p0

= D1/2 (I /2 + A/2)tD−1/2p0

= D1/2 (I /2 + A/2)t
∑
i

ciψi

= D1/2
∑
i

ωticiψi

= D1/2c1ψ1 + D1/2
∑
i≥2

ωticiψi

= π + D1/2
∑
i≥2

ωticiψi,

because ψ1 = d1/2/‖d1/2‖ implies

D1/2c1ψ1 = D1/2

(
1

‖d1/2‖

)
d1/2

‖d1/2‖
=

d

‖d1/2‖2
=

d∑
a d(a)

= π.

As 0 ≤ ωi < 1 for i ≥ 2, the right-hand term must go to zero.

This is a perfect example of one of the main uses of spectral theory: to understand what happens
when we repeatedly apply an operator.

10.4 The Rate of Convergence

The rate of convergence of a lazy random walk to the stable distribution is dictated by ω2: a
small value of ω2 implies fast convergence.

CHAPTER 10. RANDOM WALKS ON GRAPHS 96

There are many ways of measuring convergence of a random walk. We will do so point-wise.
Assume that the random walk starts at some vertex a ∈ V . For every vertex b, we will bound how
far pt(b) can be from π(b).

Theorem 10.4.1. For all a, b and t, if p0 = δa, then

|pt(b)− π(b)| ≤
√

d(b)

d(a)
ωt2.

Proof. Observe that
pt(b) = δTb pt.

From the analysis in the previous section, we know

pt(b) = δTb pt = π(b) + δTb D
1/2
∑
i≥2

ωticiψi.

We need merely prove an upper bound on the magnitude of the right-hand term. To this end,
recall that

ci = ψTi D
−1/2δa =

1√
d(a)

ψTi δa, and note δTb D
1/2 =

√
d(b)δTb .

So,

δTb D
1/2
∑
i≥2

ωticiψi =

√
d(b)

d(a)
δTb
∑
i≥2

ωtiψiψ
T
i δa.

Analyzing the right-hand part of this last expression, we find∣∣∣∣∣∣δTb
∑
i≥2

ωtiψiψ
T
i δa

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
i≥2

ωti
(
δTb ψi

) (
ψTi δa

)∣∣∣∣∣∣
≤
∑
i≥2

ωti
∣∣δTb ψi∣∣ ∣∣ψTi δa∣∣

≤ ωt2
∑
i≥2

∣∣δTb ψi∣∣ ∣∣ψTi δa∣∣
≤ ωt2

∑
i≥1

∣∣δTb ψi∣∣ ∣∣ψTi δa∣∣
≤ ωt2

√∑
i≥1

(
δTb ψi

)2√∑
i≥1

(
δTaψi

)2
by Cauchy-Schwartz

= ωt2 ‖δb‖ ‖δa‖ , as the eigenvectors form an orthonormal basis,

= ωt2

CHAPTER 10. RANDOM WALKS ON GRAPHS 97

10.5 Relation to the Normalized Laplacian

The walk matrix is closely related to the normalized Laplacian, which is defined by

N = D−1/2LD−1/2 = I −D−1/2MD−1/2 = I −A.

We let 0 ≤ ν1 ≤ ν2 ≤ · · · ≤ νn denote the eigenvalues of N , and note that they have the same
eigenvectors as A. Other useful relations include

νi = 2− 2ωi, ωi = 1− νi/2,

and

W̃ = I − 1

2
D1/2ND−1/2.

The eigenvector of eigenvalue 0 of N is d1/2, by which I mean the vector whose entry for vertex a
is the square root of the degree of a. Observe that

D−1/2LD−1/2d1/2 = D−1/2L1 = D−1/20 = 0.

The eigenvectors of ν2 is given by

arg min
x⊥d1/2

xTNx

xTx
.

Changing variables into y = D−1/2x , and observing that

xTd1/2 = yTD1/2d1/2 = yTd ,

we find

ν2 = min
y⊥d

yTLy

yTDy
.

The normalized Laplacian is positive semidefinite and has the same rank as the ordinary
(sometimes called “combinatorial”) Laplacian. There are many advantages of working with the
normalized Laplacian: the mean of its eigenvalues is 1, so they are always on a degree-independent
scale. One can prove that νn ≤ 2, with equality if and only if the graph is bipartite.

The bound in Theorem 10.4.1 can be expressed in the eigenvalues of the normalized Laplacian as

|pt(b)− π(b)| ≤
√

d(b)

d(a)
(1− ν2/2)t.

We will say that a walk has mixed if

|pt(b)− π(b)| ≤ π(b)/2,

CHAPTER 10. RANDOM WALKS ON GRAPHS 98

for all vertices b. Using the inequality 1− x ≤ exp(−x), which we recall is almost tight for small
x, we see that this should happen once√

d(b)

d(a)
(1− ν2/2)t ≤ d(b)/2d(V) ⇐⇒

(1− ν2/2)t ≤
√
d(b)d(a)/2d(V) which is implied by

exp(−tν2/2) ≤
√

d(b)d(a)/2d(V) ⇐⇒
−tν2/2 ≤ ln

(√
d(b)d(a)/2d(V)

)
⇐⇒

t ≥ 2 ln
(

2d(V)/
√
d(b)d(a)

)
/ν2.

So, for graphs in which all degrees are approximately constant, this upper bound on the time to
mix is approximately 2 ln(n)/ν2. For some graphs the lnn term does not appear. Note that
multiplying all edge weights by a constant does not change any of these expressions.

While we have explicitly worked out λ2 for many graphs, we have not yet done this for ν2. The
following lemma will allow us to relate bounds on λ2 to bounds on ν2:

Lemma 10.5.1. Let L be the Laplacian matrix of a graph, with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn,
and let N be its normalized Laplacian, with eigenvalues ν1 ≤ ν2 ≤ · · · ≤ ν2. Then, for all i

λi
dmin

≥ νi ≥
λi
dmax

,

where dmin and dmax are the minimum and maximum degrees of vertices in the graph.

Proof. The Courant-Fischer theorem tells us that

νi = min
dim(S)=i

max
x∈S

xTNx

xTx
.

As the change of variables y = D−1/2x is non-singular, this equals

min
dim(T)=i

max
y∈T

yTLy

yTDy
.

So,

ν2 = min
dim(T)=i

max
y∈T

yTLy

yTDy
≥ min

dim(T)=i
max
y∈T

yTLy

dmaxyTy
=

1

dmax
min

dim(T)=i
max
y∈T

yTLy

yTy
=

λi
dmax

.

The other bound may be proved similarly.

10.6 Examples

We now do some examples. For each we think about the random walk in two ways: by bounding
ν2 and by reasoning intuitively about how a random walk on each graph should behave.

CHAPTER 10. RANDOM WALKS ON GRAPHS 99

10.6.1 The Path

As every vertex in the path on n vertices has degree 1 or 2, ν2 is approximately λ2, which is
approximately c/n2 for some constant c.

To understand the random walk on the path, think about what happens when the walk starts in
the middle. Ignoring the steps on which it stays put, it will either move to the left or the right
with probability 1/2. So, the position of the walk after t steps is distributed as the sum of t
random variables taking values in {1,−1}. Recall that the standard deviation of such a sum is

√
t.

So, we need to have
√
t comparable to n/4 for there to be a reasonable chance that the walk is on

the left or right n/4 vertices. This means that we need t ≥ O(n2) steps before the walk will mix.

10.6.2 The Complete Binary Tree

As with the path, ν2 for the tree is within a constant of λ2 for the tree, and so is approximately
c/n for some constant c. To understand the random walk on Tn, first note that whenever it is at a
vertex, it is twice as likely to step towards a leaf as it is to step towards the root. If the walk
starts at a leaf, there is no way the walk can mix before it reaches the root. The height of the
walk is like a sum of ±1 random variables, except that they are twice as likely to be −1 as they
are to be 1, and their sum never goes below 0. One can show that we need to wait approximately
n steps before such a walk will hit the root. Once it does hit the root, the walk mixes rapidly.

10.6.3 The Dumbbell

The dumbell graph Dn consists of two complete graphs on n vertices, joined by one edge called
the “bridge”. So, there are 2n vertices in total, and all vertices have degree n− 1 or n.

To understand the random walk on this graph, consider starting it at some vertex that is not
attached to the bridge edge. After the first step the walk will be well mixed on the vertices in the
side on which it starts. Because of this, the chance that it finds the edge going to the other side is
only around 1/n2: there is only a 1/n chance of being at the vertex attached to the bridge edge,
and only a 1/n chance of choosing that edge when at that vertex. So, we must wait some multiple
of n2 steps before there is a reasonable chance that the walk reaches the other side of the graph.
After this point, it is reasonable to expect the walk to have mixed.

The isoperimetric ratio of this graph is

θDn ∼
1

n
.

Using the test vector that is 1 on one complete graph and −1 on the other, we can show that

λ2(Dn) ≤ 4/n.

Lemma 10.5.1 then tells us that

ν2(Dn) ≤ 4/dminn ≈ 8/n2.

To prove that this bound is almost tight, we use the following lemma.

CHAPTER 10. RANDOM WALKS ON GRAPHS 100

Lemma 10.6.1. Let G be an unweighted graph of diameter at most r. Then,

λ2(G) ≥ 2

r(n− 1)
.

Proof. For every pair of vertices (a, b), let Pa,b be a path in G of length at most r. We have

Ga,b 4 r · Pa,b 4 r ·G.

So,

Kn =
∑
a<b

Ga,b 4

(
n

2

)
rG,

and

n ≤ r
(
n

2

)
λ2(G),

from which the lemma follows.

The diameter of Dn is 3, so we have λ2(Dn) ≥ 2/3(n− 1). As every vertex of Dn has degree at
least n− 1, we may conclude ν2(Dn) ≥ 2/3(n− 1)2.

10.6.4 The Bolas Graph

We define the bolas2 graph Bn to be a graph containing two n-cliques connected by a path of
length n. The bolas graph has a value of ν2 that is almost as small as possible. Equivalently,
random walks on a bolas graph mix almost as slowly as possible.

The analysis of the random walk on a bolas is similar to that on a dumbbell, except that when
the walk is on the first vertex of the path the chance that it gets to the other end before moving
back to the clique at which we started is only 1/n. So, we must wait around n3 steps before there
is a reasonable chance of getting to the other side.

We can upper bound ν2 with a test vector using the fact that

ν2 = min
x⊥d

xTLx

xTDx
.

To prove an upper bound on ν2, form a test vector that is n/2 on one clique, −n/2 on the other,
and increases by 1 along the path. We can use the symmetry of the construction to show that this
vector is orthogonal to d . The numerator of the generalized Rayleigh quotient is n, and the
denominator is the sum of the squares of the entries of the vectors times the degrees of the
vertices, which is some constant times n4. This tells us that ν2 is at most some constant over n3.

To see that ν2 must be at least some constant over n3, and in fact that this must hold for every
connected, unweighted graph, apply Lemmas 10.5.1 and 10.6.1.

2A bolas is a hunting weapon consisting of two balls or rocks tied together with a cord.

CHAPTER 10. RANDOM WALKS ON GRAPHS 101

10.7 Diffusion

There are a few types of diffusion that people study in a graph, but the most common is closely
related to random walks. In a diffusion process, we imagine that we have some substance that can
occupy the vertices, such as a gas or fluid. At each time step, some of the substance diffuses out
of each vertex. If we say that half the substance stays at a vertex at each time step, and the other
half is distributed among its neighboring vertices, then the distribution of the substance will
evolve according to equation (10.2). That is, probability mass in lazy random walks obeys this
diffusion equation.

People often consider finer time steps in which smaller fractions of the mass leave the vertices. In
the limit, this results in continuous random walks that are modeled by the matrix exponential: if
the walk stays put with probability 1− ε in each step, and we view each step as taking time ε,
then the transition matrix of the walk after time t will be

((1− ε)I + εW)t/ε → exp(t(W − I)).

These are in many ways more natural than discrete time random walks.

10.8 Final Notes

The procedure we have described—repeatedly multiplying a vector by W̃ and showing that the
result approximates π—is known in Numerical Linear Algebra as the power method. It is one of
the common ways of approximately computing eigenvectors.

In the proof of Theorem 10.4.1, we were a little loose with some of the terms. The slack comes
from two sources. First, we upper bounded ωi by ω2 for all i, while many of the ωi are probably
significantly less than ω2. This phenomenon is often called “eigenvalue decay”, and it holds in
many graphs. This sloppiness essentially costs us a multiplicative factor of log n in the number of
steps t we need to achieve the claimed bound. You will note that in the examples above, the time
to approximate convergence is typically on the order of 1/ν2, not (log n)/ν2. This is because of
eigenvalue decay.

The second source of slack appeared when we upper bounded the absolute value of a sum by the
sum of the absolute value.

Chapter 11

Walks, Springs, and Resistor
Networks

11.1 Overview

In this chapter we will see how the analysis of random walks, spring networks, and resistor
networks leads to the consideration of systems of linear equations in Laplacian matrices and their
submatrices. This exposition introduces language and concepts that will prove useful in the rest
of the book.

11.2 Harmonic Functions

The theme of this chapter is harmonic functions on graphs. These will be defined in terms of a
weighted graph G = (V,E,w) and a set of boundary vertices B ⊆ V . We let S = V −B (I use
“−” for set-minus). We will assume throughout this lecture that G is connected and that B is
nonempty.

A function x : V → R is said to be harmonic at a vertex a if the value of x at a is the weighted
average of its values at the neighbors of a where the weights are given by w:

x (a) =
1

da

∑
b∼a

wa,bx (b). (11.1)

The function x is harmonic on S if it is harmonic for all a ∈ S.

102

CHAPTER 11. WALKS, SPRINGS, AND RESISTOR NETWORKS 103

11.3 Random Walks with absorbing nodes

Consider the standard (not lazy) random walk on the graph G. Recall that when the walk is at a
vertex a, the probability it moves to a neighbor b is

wa,b
da

.

Distinguish two special nodes in the graph that we will call s and t, and run the random walk
until it hits either s or t. We view s and t as the boundary, so B = {s, t}. Nodes at which a
random walk stops are sometimes called absorbing nodes or absorbing states.

Let x (a) be the probability that a walk that starts at a will stop at s, rather than at t. We have
the boundary conditions x (s) = 1 and x (t) = 0. For every other node a the chance that the walk
stops at s is the sum over its neighbors b of the chance that the walk moves from a to b, times the
chance that a walk from b stops at s. That is,

x (a) =
∑
b∼a

wa,b
da

x (b).

So, the function x is harmonic at every vertex in V −B.

For example, consider the path graph Pn. Let’s make s = n and t = 1. So, the walk stops at
either end. We then have x (n) = 1, x (1) = 0. It is easy to construct at least one solution to the
harmonic equations (11.1): we can set

x (a) =
a− 1

n− 1
.

It essentially follows from the definitions that there can be only one vector x that solves these
equations. But, we will prove this algebraically later in lecture.

These solutions tell us that if the walk starts at node a, the chance that it ends at node n is
(a− 1)/(n− 1). This justifies some of our analysis of the bolas graph from Section 10.6.4.

Of course, the exact same analysis goes through for the lazy random walks: those give

x (a) = (1/2)x (a) + (1/2)
∑
b∼a

wa,b
da

x (b) ⇐⇒ x (a) =
∑
b∼a

wa,b
da

x (b).

11.4 Spring Networks

Imagine that every edge of a graph G = (V,E) is an ideal spring or rubber band, and that they
are joined together at the vertices. Given such a structure, we will pick a subset of the vertices
B ⊆ V and fix the location of every vertex in B. For example, you could nail each vertex in B
onto a point in the real line or onto a board in IR2. We will then study where the other vertices
wind up.

CHAPTER 11. WALKS, SPRINGS, AND RESISTOR NETWORKS 104

We can use Hooke’s law to figure this out. To begin, assume that each rubber band is an ideal
spring with spring constant 1. If your graph is weighted, then the spring constant of each edge
should be its weight. If a rubber band connects vertices a and b, then Hooke’s law tells us that
the force it exerts at node a is in the direction of b and is proportional to the distance between a
and b. Let x (a) be the position of each vertex a. You should begin by thinking of x (a) being in
IR, but you will see that it is just as easy to make it a vector in IR2 or IRk for any k.

The force the rubber band between a and b exerts on a is

x (b)− x (a).

In a stable configuration, all of the vertices that have not been nailed down must experience a
zero net force. That is, for all a 6∈ B,∑

b∼a
(x (b)− x (a)) = 0 ⇐⇒

∑
b∼a

x (b) = dax (a)

⇐⇒ 1

da

∑
b∼a

x (b) = x (a).

In a stable configuration, every vertex that is not on the boundary must be the average of its
neighbors.

In the weighted case, where the spring constant of edge (a, b) is wa,b, we would have for each
a ∈ V −B

1

da

∑
b∼a

wa,bx (b) = x (a).

That is, x is harmonic on V −B.

We will next show that the equations (11.1) have a solution, and that it is unique1 if the
underlying graph is connected and B is nonempty But first, consider again the path graph Pn
with the endpoints fixed: B = {1, n}. Let us fix them to the values x (1) = 1 and x (n) = n. The
only solution to the equations (11.1) is the obvious one: vertex i is mapped to i: x (i) = i for all i.

11.5 Laplacian linear equations

If we rewrite equation (11.1) as

dax (a)−
∑
b∼a

wa,bx (b) = 0, (11.2)

we see that it corresponds to the row a of the Laplacian. So, we may find a solution to the
equations (11.1) by solving a system of equations in the submatrix of the Laplacian indexed by
vertices in V −B.

1It can only fail to be unique if there is a connected component that contains no vertices of B.

CHAPTER 11. WALKS, SPRINGS, AND RESISTOR NETWORKS 105

To be more concete, I will set up those equations. For each vertex a ∈ B, let its position be fixed
to f (a). Then, for each a 6∈ B, we can re-write equation (11.2) by moving the contribution of
vertices in B to the right-hand side:

dax (a)−
∑

b 6∈B:(a,b)∈E

wa,bx (b) =
∑

b∈B:(a,b)∈E

wa,bf (b).

So, all of the boundary terms wind up in the right-hand vector.

Let S = V −B. We now see that this is an equation of the form

L(S, S)x (S) = r , with r = M (S,B)f (B). (11.3)

By L(S, S) we mean the submatrix of L indexed by rows and columns of S. M (S,B) is the
submatrix of L indexed by rows in S and columns in B, and x (S) is the sub-vector of x with
entries indexed by S.

We can then write the condition that entries of B are fixed to f by

x (B) = f (B).

We have reduced the problem of computing x to that of solving a system of equations in a
submatrix of the Laplacian.

Submatrices of Laplacians are a lot like Laplacians, except that they are positive definite. To see
this, note that all of the off-diagonals of the submatrix L(S, S) agree with all the off-diagonals of
the Laplacian of the induced subgraph LG(S). But, some of the diagonals of L(S, S) are larger:
the diagonals of nodes in the submatrix account for both edges in the induced subgraph and
edges to the vertices in B.

Claim 11.5.1. Let L be the Laplacian of G = (V,E,w), let B ⊂ V , and let S = V −B. Then,

L(S, S) = LG(S) + X S ,

where G(S) is the subgraph induced on the vertices in S and X S is the diagonal matrix with
entries

X S(a, a) =
∑
b∼a
b∈B

wa,b, for a ∈ S.

Lemma 11.5.2. Let L be the Laplacian matrix of a connected graph and let X be a nonnegative,
diagonal matrix with at least one nonzero entry. Then, L + X is positive definite.

Proof. We will prove that xT (L + X)x > 0 for every nonzero vector x . As both L and X are
positive semidefinite, we have

xT (L + X)x ≥ min
(
xTLx ,xTXx

)
.

As the graph is connected, xTLx is positive unless x is a constant vector. If x = c1 for some
c 6= 0, then we obtain

c21T (L + X)1 = c21TX1 = c2
∑
i

X (i, i) > 0.

CHAPTER 11. WALKS, SPRINGS, AND RESISTOR NETWORKS 106

Lemma 11.5.3. Let L be the Laplacian matrix of a connected graph G = (V,E,w), let B be a
nonempty, proper subset of V , and let S = V −B. Then, L(S, S) is positive definite.

Proof. Let S1, . . . , Sk be the connected components of vertices of G(S). We can use these to write
L(S, S) as a block matrix with blocks equal to L(Si, Si). Each of these blocks can be written

L(Si, Si) = LGSi
+XSi .

As G is connected, there must be some vertex in Si with an edge to a vertex not in Si. This
implies that XSi is not the zero matrix, and so we can apply Lemma 11.5.2 to prove that L(Si, Si)
is invertible. Thus, L is invertible and zero is not among its eigenvalues. Since L is positive
semi-definite, this implies it is positive definite.

As the matrix L(S, S) is invertible, equation (11.3) has a solution, and it must be unique.

In fact, we can show that all of the entries of the inverse of L(S, S) are non-negative.

Theorem 11.5.4. Let L be the Laplacian matrix of a connected graph and let X be a
nonnegative, diagonal matrix with at least one nonzero entry. Then, all the entries of (L + X)−1

are positive.

Proof. Let L = D −M , where D is the diagonal degree matrix and M is the adjacency matrix.
And, let H = D + X . Lemma 11.5.2 tells us that L + X is positive definite, and thus

H−1/2(L + X)H−1/2 = H−1/2(D + X −M)H−1/2 = I −H−1/2MH−1/2

is positive definite as well. Let B = H−1/2MH−1/2. We now know that the largest eigenvalue of
B is less than 1. As this matrix has non-negative entries, the Perron-Frobenius theorem tells us
that ‖B‖ < 1.

The reason we care about this is that it implies that the infinite series for the inverse of I −B
converges:

(I −B)−1 = I +
∑
i≥1

B i.

Moreover, all of the entries of every entry of every matrix in this sum are non-negative. As the
graph is connected, for every a and b there is an i for which B i(a, b) > 0, and thus every entry of
this sum is positive.

To finish, note that
(I −B)−1 = H 1/2 (I −B)−1 H 1/2.

The entries of this matrix are positive as well, because H 1/2 is a diagonal matrix of positive
entries.

CHAPTER 11. WALKS, SPRINGS, AND RESISTOR NETWORKS 107

11.6 Energy

Physics also tells us that the vertices will settle into the position that minimizes the potential
energy. The potential energy of an ideal linear spring with constant w when stretched to length l
is

1

2
wl2.

So, the potential energy in a configuration x is given by

E (x)
def
=

1

2

∑
(a,b)∈E

wa,b(x (a)− x (b))2. (11.4)

For any x that minimizes the energy, the partial derivative of the energy with respect to each
variable must be zero. In this case, the variables are x (a) for a ∈ S. The partial derivative with
respect to x (a) is

1

2

∑
b:b∼a

wa,b2(x (a)− x (b)) =
∑
b:b∼a

wa,b(x (a)− x (b)).

Setting this to zero gives the equations we previously derived: (11.1).

For future reference, we state this result as a theorem.

Theorem 11.6.1. Let G = (V,E,w) be a connected, weighted graph, let B ⊂ V , and let
S = V −B. Given x (B), E (x) is minimized by setting x (S) so that x is harmonic on S. In
particular, if x (B) = f , then

x (S) = −L(S, S)−1L(S,B)f .

11.7 Resistor Networks

We now consider a related physical model of a graph in which we treat every edge as a resistor. If
the graph is unweighted, we will assume that each resistor has resistance 1. If an edge e has
weight we, we will give the corresponding resistor resistance re = 1/we. The reason is that when
the weight of an edge is very small, the edge is barely there and so it should correspond to very
high resistance. Having no edge corresponds to having a resistor of infinite resistance.

Recall Ohm’s law:
V = IR.

That is, the voltage drop across a resistor (V) is equal to the current flowing over the resistor (I)
times the resistance (R). To apply this in a graph, we will define for each edge (a, b) the current
flowing from a to b to be i(a, b). As this is a directed quantity, we define

i(b, a) = −i(a, b).

Let v ∈ IRV be a vector of voltages (a.k.a. potentials) at vertices. Given these voltages, we can
figure out how much current flows on each edge by the formula

i(a, b) =
1

ra,b
(v(a)− v(b)) = wa,b (v(a)− v(b)) .

CHAPTER 11. WALKS, SPRINGS, AND RESISTOR NETWORKS 108

That is, we adopt the convention that current flows from high voltage to low voltage. We would
like to write this equation in matrix form. The one complication is that each edge comes up twice
in i . So, to treat i as a vector we will have each edge show up exactly once. Since
i(b, a) = −i(a, b), this amounts to choosing an orientation for each edge. For example, we could
choose to list each edge (a, b) only when a < b. But, an arbitrary choice of orientation will work
just as well. We now define the signed edge-vertex adjacency matrix, U , of the graph to be the
matrix with rows indexed by edges and columns indexed by vertices such that

U ((a, b), c) =


1 if a = c

−1 if b = c

0 otherwise.

Thus the row of U corresponding to edge (a, b) is U((a, b), ·) = δTa − δTb .

Define W to be the diagonal matrix with rows and columns indexed by edges with the weights of
the edges on the diagonals. We then have

i = WUv .

Also recall that resistor networks cannot hold current. So, all the current entering a vertex a from
edges in the graph must exit a to an external source. Let i ext ∈ IRV denote the external currents,
where i ext(a) is the amount of current entering the graph through node a. We then have

i ext(a) =
∑
b∼a

i(a, b).

In matrix form, this becomes
i ext = U T i = U TWUv . (11.5)

For example, consider a graph on three vertices labeled 1, 2, and 3 with an edge of weight 1
between vertices 1 and 2 and an edge of weight 2 between vertices 2 and 3. This gives the matrices

U =

(
1 −1 0
0 1 −1

)
and W =

(
1 0
0 2

)
.

If we set

v =

1
2
4

 ,

we find

Uv =

(
−1
−2

)
and i = WUv =

(
−1
−4

)
.

Thus, i(1, 2) = −1 and i(2, 3) = −4, and

i ext =

−1
−3
4

 .

CHAPTER 11. WALKS, SPRINGS, AND RESISTOR NETWORKS 109

The fact that i ext(1) = −1 means that one unit of current is flowing out of the network from
vertex 1. This unit of current comes from vertex 2, because i(2, 1) = 1.

The matrix
L

def
= U TWU

is, of course, the Laplacian. This is another way of writing the expression that we derived in
equation (3.3) of Chapter 3

L =
∑
a∼b

wa,b(δa − δb)(δa − δb)T .

It is often helpful to think of the nodes a for which i ext(a) 6= 0 as being boundary nodes. We will
call the other nodes internal. Let’s see what the equation

i ext = Lv .

means for the internal nodes. Row a of this equation is

0 = (δTaL)v =
∑
b:b∼a

wa,b(v(a)− v(b)) = dav(a)−
∑
b:b∼a

wa,bv(b).

That is,

v(a) =
1

da

∑
b:b∼a

wa,bv(b),

which means that v is harmonic at a.

A flow on edges i that is induced by voltages v by the equation i = WUv is called a potential
flow. We have just shown that the voltages are harmonic at precisely the vertices aaa for which
i ext(aaa) = 0.

11.8 Solving for currents

We are often interested in applying (11.5) in the reverse: given a vector of external currents i ext
we would like to solve for the induced voltages by

v = L−1i ext.

This at first appears problematic because the Laplacian matrix does not have an inverse. The way
around this problem is to observe that we are only interested in solving these equations for vectors
i ext for which the system has a solution. In the case of a connected graph, this equation will have
a solution if the sum of the values of i ext is zero. That is, if the current going in to the circuit
equals the current going out. These are precisely the vectors that are in the span of the Laplacian.

To obtain the solution to this equation, we multiply i ext by the Moore-Penrose pseudo-inverse of
L.

CHAPTER 11. WALKS, SPRINGS, AND RESISTOR NETWORKS 110

Definition 11.8.1. The pseudo-inverse of a symmetric matrix L, written L+, is the matrix that
has the same span as L and that satisfies

L+LL+ = L+, LL+L = L, and L+L = LL+ = Π,

where Π is the symmetric projection onto the span of L.

I remind you that a matrix Π is a symmetric projection if Π is symmetric and Π2 = Π. This is
equivalent to saying that all of its eigenvalues are 0 or 1. When L is the Laplacian of a connected
graph, Π = (1/n)LKn .

It is easy to find a formula for the pseudo-inverse.

Claim 11.8.2. Let ψ1, . . . ,ψn be an orthonormal basis of eigenvectors of L with eigenvalues
λ1, . . . , λn. Then,

L+ =
∑
i:λi 6=0

(1/λi)ψiψ
T
i .

If v satisfies v = L+i ext, then v is the unique solution to the equation Lv = i ext, and v is
harmonic everywhere i ext is zero.

11.9 Exercise

Prove that for every p > 0

Lp = ΨΛpΨT =
∑
i

λpiψiψ
T
i .

Moreover, this holds for any symmetric matrix. Not just Laplacians.

Chapter 12

Effective Resistance and Schur
Complements

The effective resistance between two vertices a and b in an electrical network is the resistance of
the entire network when we treat it as one complex resistor. That is, we reduce the rest of the
network to a single edge. Similarly, we can view a networks of springs as one complex spring
connecting two of its vertices, and define its effective spring constant. When (a, b) is an edge in a
graph, the effective resistance between a and b can be used as a measure of the importance of that
edge. For example, in Chapter 13 we show that it determines the probability that edge (a, b) will
appear in a randomly chosen spanning tree. In Chapter 32 we show that if one samples O(n log n)
edges with probabilities proportional to the product of their weight and effective resistances, the
resulting graph will probably be a good approximation of the original.

In general, we will see that if we wish to restrict our attention to a subset of the vertices, B, and
if we require all other vertices to be internal, then we can construct a network just on B that
factors out the contributions of the internal vertices. The process by which we do this is Gaussian
elimination, and the Laplacian of the resulting network on B is called a Schur complement. In
particular, we will learn that Schur complements of Laplacians are also Laplacians.

12.1 Electrical Flows and Effective Resistance

We now know that if a resistor network has external currents i ext, then the voltages induced at
the vertices will be given by

v = L+i ext.

Consider what this means when i ext corresponds to a flow of one unit from vertex a to vertex b.
The resulting voltages are

v = L+(δa − δb).

The effective resistance between vertices a and b is the resistance between a and b when we view

111

CHAPTER 12. EFFECTIVE RESISTANCE AND SCHUR COMPLEMENTS 112

the entire network as one complex resistor. To figure out what this is, recall that Ohm’s law tells
us that the flow over a resistor equals the voltage difference divided by the resistance:

i(a, b) =
v(a)− v(b)

ra,b
.

We use the same equation to define the effective resistance of the whole network between a and b.
That is, we consider an electrical flow that sends one unit of current into node a and removes one
unit of current from node b. We then measure the voltage difference between a and b that is
required to realize this current, define this to be the effective resistance between a and b, and
write it Reff(a, b). As it equals the voltage difference between a and b in a flow of one unit of
current from a to b:

Reff(a, b)
def
= (δa − δb)TL+(δa − δb).

In Section 12.9 we show that effective resistance is a distance. For now, we observe that effective
resistance is the square of a Euclidean distance.

To this end, let L+/2 denote the square root of L+. Recall that every positive semidefinite matrix
has a square root: the square root of a symmetric matrix M is the symmetric matrix M 1/2 such
that (M 1/2)2 = M . If

M =
∑
i

λiψiψ
T

is the spectral decomposition of M , then

M 1/2 =
∑
i

λ
1/2
i ψiψ

T .

We now have

(δa − δb)TL+(δa − δb) =
(
L+/2(δa − δb)

)T
L+/2(δa − δb) =

∥∥∥L+/2(δa − δb)
∥∥∥2

=
∥∥∥L+/2δa − L+/2δb

∥∥∥2
= dist(L+/2δa,L

+/2δb)
2.

12.2 Effective Resistance through Energy Minimization

As you would imagine, we can also define effective spring constants. In this case, we view the
network of springs as one large compound network. Recall that for an individual spring between
two vertices s and t, the effective spring constant is the number w so that when s and t are
stretched to distance l, the potential energy in the spring is wl2/2. So, we define the effective
spring constant in a network to be twice the minimum possible energy of the network,

2E (x) =
∑

(a,b)∈E

wa,b(x (a)− x (b))2,

when the difference between x (s) and x (t) is fixed to 1. From Theorem 11.6.1, we know that the
vector minimizing E (x) will be harmonic on V − {s, t}.

CHAPTER 12. EFFECTIVE RESISTANCE AND SCHUR COMPLEMENTS 113

We already know how compute such a vector x . Set

x = L+(δt − δs)/Reff(t, s).

We have
x (t)− x (s) = (δt − δs)TL+(δt − δs)/Reff(s, t) = 1,

and x is harmonic on V − {s, t}. We compute the potential energy in the network by

Ceff(s, t) = xTLx =
1

(Reff(s, t))2

(
L+(δt − δs)

)T
L
(
L+(δt − δs)

)
=

1

(Reff(s, t))2
(δt − δs)TL+LL+(δt − δs)

=
1

(Reff(s, t))2
(δt − δs)TL+(δt − δs)

=
1

Reff(s, t)
.

As the weights of edges are the reciprocals of their resistances, and the spring constant
corresponds to the weight, this is the formula we would expect. We denote this quantity by
Ceff(s, t), and sometimes also call it the effective conductance.

12.3 Reciprocity and Monotonicity

Consider a unit flow from vertex a to vertex b, and let c and d be two other vertices in the
network. The voltage difference between c and d is

v(c)− v(d) = (δc − δd)Tv = (δc − δd)TL+(δa − δb).
Note the amazing reciprocity here: as L is symmetric this is equal to

(δa − δb)TL+(δc − δd).
So, the voltage difference between c and d when we flow one unit from a to b is the same as the
voltage difference between a and b when we flow one unit from c to d.

Rayleigh’s Monotonicity Principle tells us that if we alter the spring network by decreasing some
of the spring constants, then the effective spring constant between s and t will not increase. In
terms of effective resistance, this says that if we increase the resistance of some resistors then the
effective resistance can not decrease. This sounds obvious. But, it is in fact a very special
property of linear elements like springs and resistors.

Theorem 12.3.1. Let G = (V,E,w) be a weighted graph and let Ĝ = (V,E, ŵ) be another
weighted graph with the same edges and such that

ŵa,b ≤ wa,b
for all (a, b) ∈ E. For vertices s and t, let cs,t be the effective spring constant between s and t in

G and let ĉs,t be the analogous quantity in Ĝ. Then,

ĉs,t ≤ cs,t.

CHAPTER 12. EFFECTIVE RESISTANCE AND SCHUR COMPLEMENTS 114

Proof. Let x be the vector of minimum energy in G such that x (s) = 0 and x (t) = 1. Then, the
energy of x in Ĝ is no greater:

1

2

∑
(a,b)∈E

ŵa,b(x (a)− x (b))2 ≤ 1

2

∑
(a,b)∈E

wa,b(x (a)− x (b))2 = cs,t.

So, the minimum energy of a vector x in Ĝ such that x (s) = 0 and x (t) = 1 will be at most cs,t,
and so ĉs,t ≤ cs,t.

Similarly, if we let R̂eff(s, t) be the effective resistance in G between s and t, then
R̂eff(s, t) ≥ Reff(s, t). That is, increasing the resistance of resistors in the network cannot decrease
effective resistances.

While this principle seems very simple and intuitively obvious, it turns out to fail in just slightly
more complicated situations.

12.4 Examples: Series and Parallel

If we have k parallel edges between two nodes s and t of resistances r1, . . . , rk, then the effective
resistance between s and t is

Reff(s, t) =
1

1/r1 + · · ·+ 1/rk
.

In terms of weights, the expression is simpler: if the weights of the edges are w1, . . . , wk, then the
effective conductance is w1 + . . .+ wk. That is, we add the weights. To see this, impose a voltage
difference of 1 between s and t. This will induce a flow of 1/ri = wi on edge i. So, the total flow
will be ∑

i

1/ri =
∑
i

wi,

and this is the effective conductance (or weight) of the network of parallel edges.

In the case of a path graph with n vertices and edges of weight 1, the effective resistance between
the extreme vertices is n− 1.

In general, if a path consists of edges of resistance r1,2, . . . , rn−1,n then the effective resistance
between the extreme vertices is

r1,2 + · · ·+ rn−1,n.

To see this, we construct a potential flow of one unit from 1 to n by setting the voltage of vertex i
to

v(i) = ra,a+1 + · · ·+ rn−1,n.

Ohm’s law then tells us that the current flow over the edge (a, a+ 1) will be

(v(a)− v(a+ 1)) /ra,a+1 = 1.

CHAPTER 12. EFFECTIVE RESISTANCE AND SCHUR COMPLEMENTS 115

Because the total flow at each internal vertex is zero, this potential flow harmonic for all a
between 2 and n− 1. So, the effective resistance of the path is the voltage difference of this unit
flow, which is v(1)− v(n), the sum of the resistances.

This provides another proof of the weighted path inequality, Lemma 6.6.1. That inequality said
that for all vectors x ,

(x (1)− x (n))2 ≤
(
n−1∑
a=1

1

wa

)
n−1∑
a=1

wa(x (a)− x (a+ 1))2.

If we view the path weighted path as a spring network, then we know that the minimum potential
energy in the network, given the position of x (1) and x (n), is half the effective spring constant
between 1 and n times the square of the distance between x (1) and x (n):

1

2

(
n−1∑
a=1

1

wa

)−1

(x (1)− x (n))2 .

This minimum energy will be achieved when x is harmonic on a between 2 and n− 1, and in
particular will be lower bounded by the potential energy of any other configuration,

1

2

n−1∑
a=1

wa(x (a)− x (a+ 1))2.

12.5 Equivalent Networks, Elimination, and Schur Complements

We have shown that the impact of the entire network on two vertices can be reduced to a network
with one edge between them. We will now see that we can do the same for any subset of the
vertices. We will do this in two ways: first by viewing L as an operator, and then by considering
it as a quadratic form.

Let B be the subset of nodes that we would like to keep. We will call the nodes not in B internal,
and label them S = V −B.

As an operator, the Laplacian maps vectors of voltages to vectors of external currents. We want
to examine what happens if we fix the voltages at vertices in B, and require the voltages on S to
be harmonic. Let v(B) ∈ IRB be the voltages at B. We want the matrix LB such that

iB = LBv(B)

is the vector of external currents at vertices in B when we impose voltages v(B) at vertices of B.
As the internal vertices will have their voltages set to be harmonic, they will not have any
external currents.

The remarkable fact that we will discover is that LB is in fact a Laplacian matrix1, and that it is
obtained by performing Gaussian elimination to remove the internal vertices. To prove this, we

1Warning: LB is not a submatrix of L.

CHAPTER 12. EFFECTIVE RESISTANCE AND SCHUR COMPLEMENTS 116

will move from V to B by removing one vertex at a time. We’ll start with a graph G = (V,E,w),
we will set B = {2, . . . , n}, and we will treat vertex 1 as internal. Let N denote the set of
neighbors of vertex 1.

We want to compute Lv given the values of v(b) for b ∈ B, and the condition that v is harmonic
at vertex 1:

v(1) =
1

d(1)

∑
a∈N

w1,av(a). (12.1)

That is, we want to substitute the value on the right-hand side for v(1) everywhere that it appears
in the equation i ext = Lv . The variable v(1) only appears in the equation for i ext(a) for vertices
a ∈ N . When it does, it appears with coefficient w1,a. Recall that the equation for i ext(b) is

i ext(b) = d(b)v(b)−
∑
c∼b

wb,cv(c).

For b ∈ N we expand this by making the substitution for v(1) given by (12.1).

i ext(b) = d(b)v(b)− wb,1v(1)−
∑

c∼b,c 6=1

wb,cv(c)

= d(b)v(b)− wb,1
1

d(1)

∑
a∈N

w1,av(a)−
∑

c∼b,c6=1

wb,cv(c)

= d(b)v(b)−
∑
a∈N

wb,1wa,1
d(1)

v(a)−
∑

c∼b,c6=1

wb,cv(c).

To finish, observe that b ∈ N , so we are counting b in the middle sum above. Moving this to the
coefficient of v(b) gives

i ext(b) =

(
d(b)−

w2
b,1

d(1)

)
v(b)−

∑
a∈N,a6=b

wb,1w1,a

d(1)
v(a)−

∑
c∼b,c 6=1

wb,cv(c).

We will show that these revised equations have two interesting properties: they are the result of
applying Gaussian elimination to eliminate vertex 1, and the resulting equations are Laplacian.

Let’s look at exactly how the matrix of these equations has changed. In the row for vertex b, the
coefficient of −wb,1 multiplying v(1) was removed, the diagonal was decreased by

wb,1w1,b

d(1) , and for

each a ∈ N other than b, the coefficient of v(a) was decreased by
wb,1w1,a

d(1) . So, the sum of the
changes in the coefficients in this row is

wb,1 −
wb,1w1,b

d(1)
−

∑
a∈N,a6=b

wb,1wa,1
d(1)

= wb,1 −
∑
a∈N

wb,1wa,1
d(1)

= wb,1 − wb,1
∑
a∈N

wa,1
d(1)

= 0.

As the sum of the coefficients in row b was zero before this operation, it remains zero.

To see that this new system of equations comes from a Laplacian, it suffices to check that its
off-diagonal entries are non-positive, its row-sums are zero, and that it is symmetric. To see that
it is symmetric, observe that the only changes to the off-diagonal entries in B are the subtraction

CHAPTER 12. EFFECTIVE RESISTANCE AND SCHUR COMPLEMENTS 117

of
wb,1wa,1

d(1) in row a and column b, and in row b and in column a. This change is symmetric. And,
it can only decrease the off-diagonal edges.

To see why this is the same as the result of using Gaussian elimination to eliminate the first
column of L, recall that Gaussian elimination works by adding multiples of a row to other rows,
so as to zero out the entries in a column. When we use the first row to eliminate the first column,
we subtract L(b, 1)/L(1, 1) times the first row from row b. And, L(b, 1)/L(1, 1) = −wb,1/d(1).
This only changes the rows for which L(b, 1) is non-zero. In such a row, the diagonal is decreased
by L(b, 1)L(1, b)/L(1, 1) = w2

b,1/d(1), and the off-diagonal entry in column a is decreased by
L(b, 1)L(1, a)/L(1, 1) = wb,1wa,1/d(1). This is exactly the change we made to the system of
equations by making substition (12.1).

12.5.1 In matrix form by energy

We now do this in terms of the quadratic form. That is, we will compute the matrix LB so that

v(B)TLBv(B) = vTLv ,

given that v is harmonic at vertex 1 and agrees with v(B) elsewhere. The quadratic form that we
want to compute is thus given by(1

d(1)

∑
b∼1w1,bv(b)

v(B)

)T
L

(1
d(1)

∑
b∼1w1,bv(b)

v(B)

)
.

So that we can write this in terms of the entries of the Laplacian matrix, note that
d(1) = L(1, 1),

∑
b∼1w1,bv(b) = L(1, B)v(B), and so

v(1) =
1

d(1)

∑
b∼1

w1,bv(b) = −(1/L(1, 1))L(1, B)v(B).

Thus, we can write the quadratic form as(
−(1/L(1, 1))L(1, B)v(B)

v(B)

)T
L

(
−(1/L(1, 1))L(1, B)v(B)

v(B)

)
.

If we expand this out, we find that it equals

v(B)TL(B,B)v(B) + L(1, 1)

(
−L(1, B)v(B)

L(1, 1)

)2

+ 2v(1)L(1, B)

(
−L(1, B)v(B)

L(1, 1)

)
= v(B)TL(B,B)v(B) +

(L(1, B)v(B))2

L(1, 1)
− 2 (L(1, B)v(B))2

L(1, 1)

= v(B)TL(B,B)v(B)− (L(1, B)v(B))2

L(1, 1)
.

Thus,

LB = L(B,B)− L(B, 1)L(1, B)

L(1, 1)
.

CHAPTER 12. EFFECTIVE RESISTANCE AND SCHUR COMPLEMENTS 118

To see that this is the matrix that appears in rows and columns 2 through n when we use
Gaussian elimination to zero out the entries in the first column of L by adding multiples of the
first row, note that we eliminate entry L(a, 1) by adding −L(a, 1)/L(1, 1) times the first row of
the matrix to L(a, :). Doing this for all rows in B = {2, . . . , n} results in this formula.

We can again check that LB is a Laplacian matrix. It is clear from the formula that it is
symmetric and, as the entries of L(1, B) are non-positive while L(1, 1) is positive, that the
off-diagonal entries are non-positive. To check that the constant vectors are in the nullspace, let’s
see what we can learn from expanding L1 = 0:(

L(1, 1) L(1, B)
L(B, 1) L(B,B)

)(
1

1B

)
=

(
0

0B

)
implies that L(1, B)1B = −L(1, 1), and L(B,B)1B = −L(B, 1). So,

LB1B = L(B,B)1B −
L(B, 1)L(1, B)

L(1, 1)
1B

= −L(B, 1) + L(B, 1)

= 0B.

12.6 Eliminating Many Vertices

We can of course use the same procedure to eliminate many vertices. We begin by partitioning
the vertex set into boundary vertices B and internal vertices S. We can then use Gaussian
elimination to eliminate all of the internal vertices. You should recall that the submatrices
produced by Gaussian elimination do not depend on the order of the eliminations. So, you may
conclude that the matrix LB is uniquely defined.

Or, observe that to eliminate the entries in row a ∈ B and columns in S, using the rows in S, we
need to add those rows, L(S, :) to row L(a, :) with coefficients c so that

L(a, S) + cL(S, S) = 0.

This gives
c = −L(a, S)L(S, S)−1,

and thus row a becomes
L(a, :)− L(a, S)L(S, S)−1L(S, :).

Restricting to rows and columns in B, we are left with the matrix

L(B,B)− L(B,S)L(S, S)−1L(S,B).

This is called the Schur complement on B (or with respect to S).

To see that this is equivalent to requiring that the variables in S be harmonic. Partition the
vector v into v(B) and v(S). The harmonic equations become

L(S, S)v(S) + L(S,B)v(B) = 0,

CHAPTER 12. EFFECTIVE RESISTANCE AND SCHUR COMPLEMENTS 119

which implies
v(S) = −L(S, S)−1L(S,B)v(B) = L(S, S)−1M (S,B)v(B),

as M (S,B) = −L(S,B) because off-diagonal blocks of the Laplacian equal the negative of the
corresponding blocks in the adjacency matrix. This gives

i ext(B) = L(B,S)v(S) + L(B,B)v(B) = −L(B,S)L(S, S)−1L(S,B)v(B) + L(B,B)v(B),

and so
i ext(B) = LBv(B), where LB = L(B,B)− L(B,S)L(S, S)−1L(S,B)

is the Schur complement.

We now verify (again) that LB is a Laplacian matrix. That is, it is symmetric (direct from
formula), has non-positive off-diagonal entries, and row-sums 0. We can verify that LB1B = 0B in
the same way that we did when S = {1}. Multiplying L by 1 by blocks gives

L(B,B)1B = −L(B,S)1S and L(S,B)1B = −L(S, S)1S .

So,

LB1B = L(B,B)1B − L(B,S)L(S, S)−1L(S,B)1B

= −L(B,S)1S − L(B,S)L(S, S)−1(−L(S, S)1S)

= 0B.

To see that the off-diagonal entries of this matrix are non-positive, note that this is true of
L(B,B), and that the entries of LB at upper bounded by those of L(B,B), because
L(B,S)L(S, S)−1L(S,B) is non-negative. This follows from the fact established in
Theorem 11.5.4 that L(S, S)−1 is positive and the non-positivity of L(S,B).

12.7 The Schur Complement

Schur complements are defined for general matrices. We will just consider the symmetric case.
Let M be a symmetric matrix with rows and columns indexed by a set V that is partitioned into
sets B and S. The Schur complement of M with respect to S is defined if M (S, S) is invertible,
and if so it equals

MB
def
= M (B,B)−M (B,S)M (S, S)−1M (S,B)

The following theorem is one of the reasons that Schur complements are so useful. It says that
the restriction of M−1 to the rows and columns of B equals the inverse of the Schur complement.

Theorem 12.7.1. If both M and M (S, S) are invertible, then(
M−1

)
(B,B) = (MB)−1 .

CHAPTER 12. EFFECTIVE RESISTANCE AND SCHUR COMPLEMENTS 120

Proof. The easiest way to prove this is to write out a formula for the inverse of M by blocks, and
confirm that the product with M is the identity. That inverse is(

(MB)−1 −(MB)−1M (B,S)M (S, S)−1

−M (S, S)−1M (S,B)(MB)−1 M (S, S)−1 + M (S, S)−1M (S,B)M−1
B M (B,S)M (S, S)−1.

)
This should be multiplied by (

M (B,B) M (B,S)
M (S,B) M (S, S)

)
.

12.8 An interpretation of Gaussian elimination

This gives us a way of understand how Gaussian elimination solves a system of equations like
i ext = Lv . It constructs a sequence of graphs, G2, . . . , Gn, so that Gi is the effective network on
vertices i, . . . , n. It then solves for the entries of v backwards. Given v(i+ 1), . . . , v(n) and
i ext(i), we can solve for v(i). If i ext(i) = 0, then v(i) is set to the weighted average of its
neighbors. If not, then we need to take i ext(i) into account here and in the elimination as well. In
the case in which we fix some vertices and let the rest be harmonic, there is no such complication.

12.9 Effective Resistance is a Distance

A distance is any function on pairs of vertices such that

1. δ(a, a) = 0 for every vertex a,

2. δ(a, b) ≥ 0 for all vertices a, b,

3. δ(a, b) = δ(b, a), and

4. δ(a, c) ≤ δ(a, b) + δ(b, c).

We claim that the effective resistance is a distance. The only non-trivial part to prove is the
triangle inequality, (4).

From the previous section, we know that it suffices to consider graphs with only three vertices: we
can reduce any graph to one on just vertices a, b and c without changing the effective resistances
between them.

Lemma 12.9.1. Let a, b and c be vertices in a graph. Then

Reff(a, b) + Reff(b, c) ≥ Reff(a, c).

CHAPTER 12. EFFECTIVE RESISTANCE AND SCHUR COMPLEMENTS 121

Proof. Let
z = wa,b, y = wa,c, and x = wb,c.

If we eliminate vertex c, we create an edge between vertices a and b of weight

xy

x+ y
.

Adding this to the edge that is already there produces weight z + xy
x+y , for

Reffa,b =
1

z + xy
x+y

=
1

zx+zy+xy
x+y

=
x+ y

zx+ zy + xy

Working symmetrically, we find that we need to prove that for all positive x, y, and z

x+ y

zx+ zy + xy
+

y + z

zx+ zy + xy
≥ x+ z

zx+ zy + xy
,

which is of course true.

Chapter 13

Random Spanning Trees

13.1 Introduction

In this chapter we present one of the most fundamental results in Spectral Graph Theory: the
Matrix-Three Theorem. It relates the number of spanning trees of a connected graph to the
determinants of principal minors of the Laplacian. We then extend this result to relate the
fraction of spanning trees that contain a given edge to the effective resistance of the entire graph
between the edge’s endpoints.

13.2 Determinants

To begin, we review some facts about determinants of matrices and characteristic polynomials.
We first recall the Leibniz formula for the determinant of a square matrix A:

det(A) =
∑
π

(
sgn(π)

n∏
i=1

A(i, π(i))

)
, (13.1)

where the sum is over all permutations π of {1, . . . , n}.
Also recall that the determinant is multiplicative, so for square matrices A and B

det(AB) = det(A) det(B). (13.2)

Elementary row operations do not change the determinant. If the columns of A are the vectors
aaa1, . . . ,aaan, then for every c

det
(
aaa1,aaa2, . . . ,aaan

)
= det

(
aaa1,aaa2, . . . ,aaan + caaa1

)
.

This fact gives us two ways of computing the determinant. The first comes from the fact that we
can apply elementary row operations to transform A into an upper triangular matrix, and (13.1)
tells us that the determinant of an upper triangular matrix is the product of its diagonal entries.

122

CHAPTER 13. RANDOM SPANNING TREES 123

The second comes from the observation that the determinant is the volume of the parallelepiped
with axes aaa1, . . . ,aaan: the polytope whose corners are the origin and

∑
i∈S aaai for every

S ⊆ {1, . . . , n}. Let
Πaaa1

be the symmetric projection orthogonal to aaa1. As this projection amounts to subtracting off a
multiple of aaa1 and elementary row operations do not change the determinant,

det
(
aaa1,aaa2, . . . ,aaan

)
= det

(
aaa1,Πaaa1aaa2, . . . ,Πaaa1aaan

)
.

The volume of this parallelepiped is ‖aaa1‖ times the volume of the parallelepiped formed by the
vectors Πaaa1aaa2, . . . ,Πaaa1aaan. I would like to write this as a determinant, but must first deal with
the fact that these are n− 1 vectors in an n dimensional space. The way we first learn to handle
this is to project them into an n− 1 dimensional space where we can take the determinant.
Instead, we will employ other elementary symmetric functions of the eigenvalues.

13.3 Characteristic Polynomials

Recall that the characteristic polynomial of a matrix A is

det(xI −A).

I will write this as
n∑
k=0

xn−k(−1)kσk(A),

where σk(A) is the kth elementary symmetric function of the eigenvalues of A, counted with
algebraic multiplicity:

σk(A) =
∑
|S|=k

∏
i∈S

λi.

Thus, σ1(A) is the trace and σn(A) is the determinant. From this formula, we know that these
functions are invariant under similarity transformations.

In Exercise 3 from Lecture 2, you were asked to prove that

σk(A) =
∑
|S|=k

det(A(S, S)). (13.3)

This follows from applying the Leibnitz formula (13.1) to det(xI −A).

If we return to the vectors Πaaa1aaa2, . . . ,Πaaa1aaan from the previous section, we see that the volume of
their parallelepiped may be written

σn−1

(
0n,Πaaa1aaa2, . . . ,Πaaa1aaan

)
,

as this will be the product of the n− 1 nonzero eigenvalues of this matrix.

CHAPTER 13. RANDOM SPANNING TREES 124

Recall that the matrices BBT and BTB have the same eigenvalues, up to some zero eigenvalues
if they are rectangular. So,

σk(BBT) = σk(B
TB).

This gives us one other way of computing the absolute value of the product of the nonzero
eigenvalues of the matrix (

Πaaa1aaa2, . . . ,Πaaa1aaan
)
.

We can instead compute their square by computing the determinant of the square matrixΠaaa1aaa2
...

Πaaa1aaan

(Πaaa1aaa2, . . . ,Πaaa1aaan
)
.

When B is a singular matrix of rank k, σk(B) acts as the determinant of B restricted to its span.
Thus, there are situations in which σk is multiplicative. For example, if A and B both have rank
k and the range of A is orthogonal to the nullspace of B , then

σk(BA) = σk(B)σk(A). (13.4)

We will use this identity in the case that A and B are symmetric and have the same nullspace.

13.4 The Matrix Tree Theorem

We will state a slight variant of the standard Matrix-Tree Theorem. Recall that a spanning tree
of a graph is a subgraph that is a tree.

Theorem 13.4.1. Let G = (V,E,w) be a connected, weighted graph. Then

σn−1(LG) = n
∑

spanning trees T

∏
e∈T

we.

Thus, the eigenvalues allow us to count the sum over spanning trees of the product of the weights
of edges in those trees. When all the edge weights are 1, we just count the number of spanning
trees in G.

We first prove this in the case that G is just a tree.

Lemma 13.4.2. Let G = (V,E,w) be a weighted tree. Then,

σn−1(LG) = n
∏
e∈E

we.

Proof. For a ∈ V , let Sa = V − {a}. We know from (13.3)

σn−1(LG) =
∑
a∈V

det(LG(Sa, Sa).

CHAPTER 13. RANDOM SPANNING TREES 125

We will prove that for every a ∈ V ,

det(LG(Sa, Sa)) =
∏
e∈E

we.

Write LG = U TWU , where U is the signed edge-vertex adjacency matrix and W is the
diagonal matrix of edge weights. Write B = W 1/2U , so

LG(Sa, Sa) = B(:, Sa)
TB(:, Sa),

and
det(LG(Sa, Sa)) = det(B(:, Sa))

2,

where we note that B(:, Sa) is square because a tree has n− 1 edges and so B has n− 1 rows.

To see what is going on, first consider the case in which G is a weighted path and a is the first
vertex. Then,

U =


1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
0 0 0 · · · −1

 , and B(:, S1) =


−√w1 0 · · · 0√
w2 −√w2 · · · 0
...

...
0 0 · · · −√wn−1

 .

We see that B(:, S1) is a lower-triangular matrix, and thus its determinant is the product of its
diagonal entries, −√wi.
To see that the same happens for every tree, renumber the vertices (permute the columns) so that
a comes first, and that the other vertices are ordered by increasing distance from 1, breaking ties
arbitrarily. This permutations can change the sign of the determinant, but we do not care
because we are going to square it. For every vertex c 6= 1, the tree now has exactly one edge (b, c)
with b < c. Put such an edge in position c− 1 in the ordering, and let wc indicate its weight.
Now, when we remove the first column to form B(:, S1), we produce a lower triangular matrix
with the entry −√wc on the cth diagonal. So, its determinant is the product of these terms and

det(B(:, Sa))
2 =

n∏
c=2

wc.

Proof of Theorem 13.4.1 . As in the previous lemma, let LG = U TWU and B = W 1/2U . So,

σn−1(LG) = σn−1(BTB)

= σn−1(BBT)

=
∑

|S|=n−1,S⊆E

σn−1(B(S, :)B(S, :)T) (by (13.3))

=
∑

|S|=n−1,S⊆E

σn−1(B(S, :)TB(S, :))

=
∑

|S|=n−1,S⊆E

σn−1(LGS
),

CHAPTER 13. RANDOM SPANNING TREES 126

where by GS we mean the graph containing just the edges in S. As S contains n− 1 edges, this
graph is either disconnected or a tree. If it is disconnected, then its Laplacian has at least two
zero eigenvalues and σn−1(LGS

) = 0. If it is a tree, we apply the previous lemma. Thus, the sum
equals ∑

spanning trees T⊆E
σn−1(LGT

) = n
∑

spanning trees T

∏
e∈T

we.

13.5 Leverage Scores and Marginal Probabilities

The leverage score of an edge, written `e is defined to be weReff(e). That is, the weight of the
edge times the effective resistance between its endpoints. The leverage score serves as a measure
of how important the edge is. For example, if removing an edge disconnects the graph, then
Reff(e) = 1/we, as all current flowing between its endpoints must use the edge itself, and `e = 1.

Consider sampling a random spanning tree with probability proportional to the product of the
weights of its edges. We will now show that the probability that edge e appears in the tree is
exactly its leverage score.

Theorem 13.5.1. If we choose a spanning tree T with probability proportional to the product of
its edge weights, then for every edge e

Pr [e ∈ T] = `e.

For simplicity, you might want to begin by thinking about the case where all edges have weight 1.

Recall that the effective resistance of edge e = (a, b) is

(δa − δb)TL+
G(δa − δb),

and so
`a,b = wa,b(δa − δb)TL+

G(δa − δb).
We can write a matrix Γ that has all these terms on its diagonal by letting U be the edge-vertex
adjacency matrix, W be the diagonal edge weight matrix, B = W 1/2U , and setting

Γ = BL+
GB

T .

The rows and columns of Γ are indexed by edges, and for each edge e,

Γ(e, e) = `e.

For off-diagonal entries corresponding to edges (a, b) and (c, d), we have

Γ((a, b), (c, d)) =
√
wa,b
√
wc,d(δa − δb)TL+

G(δc − δd).

Claim 13.5.2. The matrix Γ is a symmetric projection matrix and has trace n− 1.

CHAPTER 13. RANDOM SPANNING TREES 127

Proof. The matrix Γ is clearly symmetric. To show that it is a projection, it suffices to show that
all of its eigenvalues are 0 or 1. This is true because, excluding the zero eigenvalues, Γ has the
same eigenvalues as

L+
GB

TB = L+
GLG = Π,

where Π is the projection orthogonal to the all 1 vector. As Π has n− 1 eigenvalues that are 1,
so does Γ.

As the trace of Γ is n− 1, so is the sum of the leverage scores:∑
e

`e = n− 1.

This is a good sanity check on Theorem 13.5.1: every spanning tree has n− 1 edges, and thus the
probabilities that each edge is in the tree must sum to n− 1.

We also obtain another formula for the leverage score. As a symmetric projection is its own
square,

Γ(e, e) = Γ(e, :)Γ(e, :)T = ‖Γ(e, :)‖2 .
This is the formula I introduced in Section ??. If we flow 1 unit from a to b, the potential
difference between c and d is (δa − δb)TL+

G(δc − δd). If we plug these potentials into the
Laplacian quadratic form, we obtain the effective resistance. Thus this formula says

wa,bReffa,b = wa,b
∑

(c,d)∈E

wc,d
(
(δa − δb)TL+

G(δc − δd)
)2
.

Proof of Theorem 13.5.1. Let Span(G) denote the set of spanning trees of G. For an edge e,

PrT [e ∈ T] =
∑

T∈Span(G):e∈T

σn−1(LGT
)

σn−1(LG)

=
∑

T∈Span(G):e∈T

σn−1(LGT
)σn−1(L+

G)

=
∑

T∈Span(G):e∈T

σn−1(LGT
L+
G),

by (13.4). Recalling that the subsets of n− 1 edges that are not spanning trees contribute 0
allows us to re-write this sum as ∑

|S|=n−1,e∈S

σn−1(LGS
L+
G).

To evaluate the terms in the sum, we compute

σn−1(LGS
L+
G) = σn−1(B(:, S)B(:, S)TL+

G)

= σn−1(B(:, S)TL+
GB(:, S))

= σn−1(Γ(S, S))

= σn−1(Γ(S, :)Γ(:, S)).

CHAPTER 13. RANDOM SPANNING TREES 128

Let γe = Γ(e, :) and let Πγe
denote the projection orthogonal to γe. As e ∈ S, we have

σn−1(Γ(S, :)Γ(:, S)) = ‖γe‖2 σn−2(Γ(S, :)Πγe
Γ(:, S)) = ‖γe‖2 σn−2((ΓΠγe

Γ)(S, S)).

As γe is in the span on Γ, the matrix ΓΠγe
Γ is a symmetric projection onto an n− 2 dimensional

space, and so
σn−2(ΓΠγe

Γ) = 1.

To exploit this identity, we return to our summation:∑
|S|=n−1,e∈S

σn−1(LGS
L+
G) =

∑
|S|=n−1,e∈S

‖γe‖2 σn−2((ΓΠγe
Γ)(S, S))

= ‖γe‖2
∑

|S|=n−1,e∈S

σn−2((ΓΠγe
Γ)(S, S))

= ‖γe‖2 σn−2(ΓΠγe
Γ)

= ‖γe‖2

= `e.

Chapter 14

Approximating Effective Resistances

In this chapter, we will see how to use the Johnson-Lindenstrauss Lemma, one of the major
techniques for dimension reduction, to approximately represent and compute effective resistances.

Throughout this chapter, G = (V,E,w) will be a connected, weighted graph with n vertices and
m edges.

14.1 Representing Effective Resistances

We begin by considering the problem of building a data structure from which one can quickly
estimate the effective resistance between every pair of vertices a, b ∈ V . To do this, we exploit the
fact from Section 12.1 that effective resistances can be expressed as squares of Euclidean distances:

Reff(a, b) = (δa − δb)TL+(δa − δb)

=
∥∥∥L+/2(δa − δb)

∥∥∥2

=
∥∥∥L+/2δa − L+/2δb

∥∥∥2

= dist(L+/2δa,L
+/2δb)

2.

One other way of expressing the above terms is through a matrix norm . For a positive
semidefinite matrix A, the matrix norm in A is defined by

‖x‖A =
√
xTAx =

∥∥∥A1/2x
∥∥∥ .

It is worth observing that this is in fact a norm: it is zero when x is zero, it is symmetric, and it
obeys the triangle inequality: for x + y = z ,

‖z‖A =
∥∥∥A1/2z

∥∥∥ =
∥∥∥A1/2(x + y)

∥∥∥ ≤ ∥∥∥A1/2x
∥∥∥+

∥∥∥A1/2y
∥∥∥ = ‖x‖A + ‖y‖A .

129

CHAPTER 14. APPROXIMATING EFFECTIVE RESISTANCES 130

The Johnson-Lindenstrauss Lemma [JL84] tells us that every Euclidean metric on n points is
well-approximated by a Euclidean metric in O(log n) dimensions, regardless of the original
dimension of the points. Johnson and Lindenstrauss proved this by applying a random orthogonal
projection to the points. As is now common, we will analyze the simpler operation of applying a
random matrix of Gaussian random variables (also known as Normal variables). All Gaussian
random variables that appear in this chapter will have mean 0.

We recall that a Gaussian random variable of variance 1 has probability density

p(x) =
1√
2π

exp(−x2/2),

and that a Gaussian random variable of variance σ2 has probability density

p(x) =
1√
2πσ

exp(−x2/2σ2).

The distribution of such a variable is written N (0, σ2), where the 0 corresponds to the mean
being 0. A variable with distribution N (0, σ2) may be obtained by sampling one with distribution
N (0, 1), and then multiplying it by σ. Gaussian random variables have many special properties,
some of which we will see in this chapter. For those who are not familiar with them, we begin by
mentioning that they are the limit of a binomial distribution. If X is the sum of n ±1 random
variables for large n, then

Pr
[
X/
√
n = t

]
→ p(t).

Theorem 14.1.1. Let x 1, . . . ,xn be vectors in IRk. For any ε, δ > 0, let d = 8(ln(n2/δ)/ε2. If R
is a d-by-k matrix of independent N (0, 1/d) variables, then with probability at least 1− δ, for all
a 6= b,

(1− ε)dist(x a,x b)
2 ≤ dist(Rx a,Rx b)

2 ≤ (1 + ε)dist(x a,x b)
2.

Thus, if we set d = 8(ln(n2/δ)/ε2, let R be a d-by-n matrix of independent N(0, 1/d) variables,
and set ya = RL+/2δa for each a ∈ V , then with probability at least 1− δ we will have that for
every a and b, Reff(a, b) is within a 1± ε factor of dist(ya,y b)

2. Whereas writing all effective
resistances would require

(
n
2

)
numbers, storing y1, . . . ,yn only requires ?nd.

We remark that the 8 in the theorem can be replace with a constant that tends towards 4 as ε
goes to zero.

14.2 Computing Effective Resistances

Note that the naive way of computing one effective resistance requires solving one Laplacian
system: (δa − δb)TL+(δa − δb). We will see that we can approximate all of them by solving a
logarithmic number of such systems.

If we could quickly multiply a vector by L+/2, then this would give us a fast way of approximately
computing all effective resistances. All we would need to do is multiply each of the d rows of R by
L+/2. This would provide the matrix RL+/2, from which we could compute RL+/2δa by selecting

CHAPTER 14. APPROXIMATING EFFECTIVE RESISTANCES 131

the ath column. This leads us to ask how quickly we can multiply a vector by L+/2. Cheng,
Cheng, Liu, Peng and Teng [CCL+15] show that this can be done in nearly-linear time. In this
section, we will present a more elementary approach that merely requires solving systems of
equations in Laplacian matrices. We will see in Chapter ?? that this can be done very quickly.

The key is to realize that we do not actually need to multiply by the square root of the
pseudoinverse of the Laplacian. Any matrix M such that M TM = L+ will suffice.

Recall that we can write L = U TWU , where U is the signed edge-vertex adjacency matrix and
W is the diagonal matrix of edge weights. We then have

L+U TW 1/2W 1/2UL+ = L+LL+ = L+.

So, ∥∥∥W 1/2UL+(δa − δb)
∥∥∥2

= Reff(a, b).

Now, we let R be a d-by-m matrix of independent N (0, 1/d) entries, and compute

RW 1/2UL+ = (RW 1/2U)L+.

This requires multiplying d vectors in IRm by W 1/2U , and solving d systems of linear equations
in L. We then set

ya = (RW 1/2U)L+δa.

Each of these is a vector in d dimensions, and with high probability ‖ya − y b‖2 is a good
approximation of Reff(a, b).

14.3 Properties of Gaussian random variables

The sum a Gaussian random variables is another Gaussian random variable.

Claim 14.3.1. If r1, . . . , rn are independent Gaussian random variables of variances σ2
1, . . . , σ

2
n,

respectively, then
n∑
i=1

ri

is a Gaussian random variable of variance

n∑
i=1

σ2
i .

One way to remember this is to recall that for a N (0, σ2) random variable r, Er2 = σ2, and the
variance of the sum of independent random variables is the sum of their variances. The above
claim adds the fact that the sum is also Gaussian.

In particular, if x is an arbitrary vector and r is a vector of independent N (0, 1) random
variables, then xT r is a Gaussian random variable of variance ‖x‖2. This follows because
x (i)r(i) has variance x (i)2, and

xT r =
∑

x (i)r(i).

CHAPTER 14. APPROXIMATING EFFECTIVE RESISTANCES 132

If x ∈ IRk and R is a matrix of independent N (0, σ2) variables, then each entry of Rx is an
independent N (0, σ2 ‖x‖2) random variable. They are independent because each entry comes
from a separate row of R, and the variables in different rows are independent from each other.

The norm of a vector of identical independent N (0, 1) random variables is called a χ random
variable, and its square is a χ2 random variable. A lot is known about the distribution of χ2

random variables. If the vector has dimension d, then its expectation is d. It is very unlikely to
deviate too much from this.

For example, the following bound appears as Lemma 1 of [LM00].

Lemma 14.3.2. Let r1, . . . , rd be independent N (0, 1) random variables and let X =
∑

i r
2
i .

Then, for all t > 0,

Pr
[
X ≥ d+ 2

√
dt+ 2t

]
≤ exp(−t), and

Pr
[
X ≤ d− 2

√
dt
]
≤ exp(−t).

We use the following corollary.

Corollary 14.3.3. For ε < 1,

Pr [|X − d| ≥ εd] ≤ 2 exp(−ε2d/8).

Proof. Set t = ε2d/8. This gives

2
√
dt+ 2t ≤ 2

εd√
8

+
ε2d

4
≤ 2

εd√
8

+
εd

4
< εd.

Finally, the probability that X − d > εd or X − d < −εd is at most the sum of these probabilities,
which is at most 2 exp(−t).

We remark that for small ε the term 2εd/
√

8 dominates, and the upper bound of εd approaches
εd/
√

2. If one pushes this into the proof below, we see that it suffices to project into a space of
dimension dimension of just a little more than 4(ln(n2/δ)/ε2, instead of 8(ln(n2/δ)/ε2.

14.4 Proof of Johnson-Lindenstrauss

Proof of Theorem 14.1.1. First consider an arbitrary a and b, and let ∆ = ‖x a − x b‖2. Each
entry of R(x a − x b) is a d-dimensional vector of N (0, σ2) variables, where σ2 = ∆/d. Thus,
Corollary 14.3.3 tells us that

Pr
[∣∣dist(Rx a,Rx b)

2 − dist(x a,x b)
2
∣∣ > εdist(x a,x b)

2
]

=

Pr
[∣∣∣‖R(x a − x b)‖2 −∆

∣∣∣ ≥ ε∆] ≤ 2 exp(−ε2d/8).

CHAPTER 14. APPROXIMATING EFFECTIVE RESISTANCES 133

Thus the choice of d = 8(ln(n2/δ)/ε2 makes this probability at most

2 exp(−ε2d/8) ≤ 2 exp(− ln(n2/δ)) =
2δ

n2
.

As there
(
n
2

)
possible choices for a and b, the probability that there is one such that

‖R(x a − x b)‖2 6∈ (1± ε) ‖x a − x b‖2

is at most (
n

2

)
2δ

n2
< δ.

Chapter 15

Tutte’s Theorem: How to draw a
graph

We prove Tutte’s theorem [Tut63], which shows how to use spring embeddings to obtain planar
drawings of 3-connected planar graphs. One begins by selecting a face, and then nailing down the
positions of its vertices to the corners of a strictly convex polygon. Of course, the edges of the
face should line up with the edges of the polygon. Every other vertex goes where the springs say
they should—to the center of gravity of their neighbors. Tutte proved that the result is a planar
embedding of the planar graph. Here is an image of such an embedding

The proof presented in this chapter is a based on one constructed by Jim Geelen [Gee12]. I begin
by recalling some standard results about planar graphs that we will assume.

15.1 3-Connected, Planar Graphs

A graph G = (V,E) is k-connected if there is no set of k − 1 vertices whose removal disconnects
the graph. That is, for every S ⊂ V with |S| < k, G(V − S) is connected. In a classical graph
theory course, one usually spends a lot of time studying things like 3-connectivity.

134

CHAPTER 15. TUTTE’S THEOREM: HOW TO DRAW A GRAPH 135

A planar drawing of a graph G = (V,E) consists of mapping from the vertices to distinct points
in the plane, z : V → IR2, along with interior-disjoint curves for each edge. The curve for edge
(a, b) starts at z (a), ends at z (b), never crosses itself, and its interior does not intersect the curve
for any other edge or any other vertex. A graph is planar if it has a planar drawing. There can, of
course, be many planar drawings of a graph.

If one removes the curves corresponding to the edges in a planar drawing, one divides the plane
into connected regions called faces. In a 3-connected planar graph, the sets of vertices and edges
that border each face are the same in every planar drawing. There are planar graphs that are not
3-connected, like those in Figures 15.1 and 15.2, in which different planar drawings result in
combinatorially different faces. We will only consider 3-connected planar graphs.

Figure 15.1: Planar graphs that are merely one-connected. Edge (c, d) appears twice on a face in
each of them.

Figure 15.2: Two different planar drawings of a planar graph that is merely two-connected. Vertices
g and h have switched positions, and thus appear in different faces in each drawing.

We state a few properties of 3-connected planar graphs that we will use. We will not prove these
properties, as we are more concerned with algebra and these properly belong in a class on
combinatorial graph theory.

Claim 15.1.1. Let G = (V,E) be a 3-connected planar graph. Then, there exists a set of faces F ,
each of which corresponds to a simple cycle1in G, such that every edge of G appears in exactly two
faces.

1A cycle is simple if it does not use any vertex or edge more than once.

CHAPTER 15. TUTTE’S THEOREM: HOW TO DRAW A GRAPH 136

We call the face on the outside of the drawing the outside face. The edges that lie along the
outside face are the boundary edges.

Figure 15.3: 3-connected planar graphs. Some faces of the graph on the left are abf , fgh, and
afhe. The outer face is abcde. The graph on the right is obtained by contracting edge (g, h).

Another standard fact about planar graphs is that they remain planar under edge contractions.
Contracting an edge (a, b) creates a new graph in which a and b become the same vertex, and all
edges that went from other vertices to a or b now go to the new vertex. Contractions also preserve
3-connectivity. Figure 15.1 depicts a 3-connected planar graph and the result of contracting an
edge.

A graph H = (W,F) is a minor of a graph G = (V,E) if H can be obtained from G by
contracting some edges and possibly deleting other edges and vertices. This means that each
vertex in W corresponds to a connected subset of vertices in G, and that there is an edge between
two vertices in W precisely when there is some edge between the two corresponding subsets. This
leads to Kuratowski’s Theorem [Kur30], one of the most useful characterizations of planar graphs.

Theorem 15.1.2. A graph G is planar if and only if it does not have a minor isomorphic to the
complete graph on 5 vertices, K5, or the bipartite complete graph between two sets of 3 vertices,
K3,3.

We will use one other important fact about planar graphs, whose utility in this context was
observed by Geelen.

Lemma 15.1.3. Let (a, b) be an edge of a 3-connected planar graph and let S1 and S2 be the sets
of vertices on the two faces containing (a, b). Let P be a path in G that starts at a vertex of
S1 − {a, b}, ends at a vertex of S2 − {a, b}, and that does not intersect a or b. Then, every path in
G from a to b either intersects a vertex of P or the edge (a, b).

Proof. Let s1 and s2 be the vertices at the ends of the path P . Consider a planar drawing of G
and the closed curve in the plane that follows the path P from s2 to s1, and then connects s1 to
s2 by following a curve in that moves through the interior of faces S1 and S2, except for where it
crosses the curve for edge (a, b). This curve separates vertex a from vertex b. Thus, every path in
G that connects a to b must intersect this curve. This means that it must either consist of just
edge (a, b), or it must intersect a vertex of P . See Figure 15.1.

CHAPTER 15. TUTTE’S THEOREM: HOW TO DRAW A GRAPH 137

Figure 15.4: The Peterson graph appears on the left. On the right is a minor of the Peterson graph
that is isomorphic to K5, proving that the Peterson graph is not planar.

Figure 15.5: A depiction of Lemma 15.1.3. S1 = abcde, S2 = abf , and the path P starts at d, ends
at f , and contains the other unlabeled vertices.

15.2 Strictly Convex Polygons

This is a good time to remind you what exactly a convex polygon is. A subset C ⊆ IR2 is convex
if for every two points x and y in C, the line segment between x and y is also in C. A convex
polygon is a convex region of IR2 whose boundary is comprised of a finite number of straight lines.
It is strictly convex if in addition the angle at every corner is less than π. We will always assume
that the corners of a strictly convex polygon are distinct. Two corners form an edge of the
polygon if the interior of the polygon is entirely on one side of the line through those corners.
This leads to another definition of a strictly convex polygon: a convex polygon is strictly convex if
for every edge, all of the corners of the polygon other than those two defining the edge lie entirely
on one side of the polygon. In particular, none of the other corners lie on the line.

Definition 15.2.1. Let G = (V,E) be a 3-connected planar graph. We say that z : V → IR2 is a
Tutte embedding if

CHAPTER 15. TUTTE’S THEOREM: HOW TO DRAW A GRAPH 138

(a) A polygon (b) A convex polygon (c) A strictly convex
polygon

Figure 15.6: Polygons

a. There is a face F of G such that z maps the vertices of F to the corners of a strictly convex
polygon so that every edge of the face joins consecutive corners of the polygon;

b. The function z is harmonic at every vertex not in F . That is, if every vertex not in F lies
at the weighted average of its neighbors.

One can show that if G is 3-connected, then these conditions imply that every vertex not in F lies
strictly inside the convex polygon whose corners are F .

We will prove Tutte’s theorem by proving that every face of G is embedded as a strictly convex
polygon. In fact, we will not use the fact that every non-boundary vertex is exactly the average of
its neighbors. We will only use the fact that every non-boundary vertex is inside the convex hull
of its neighbors. This corresponds to allowing arbitrary spring constants in the embedding.

Theorem 15.2.2. Let G = (V,E) be a 3-connected planar graph, and let z be a Tutte embedding
of G. If we represent every edge of G as the straight line between the embedding of its endpoints,
then we obtain a planar drawing of G.

Note that if the graph were not 3-connected, then the embedding could be rather degenerate. If
there are two vertices a and b whose removal disconnects the graph into two components, then all
of the vertices in one of those components will embed on the line segment from a to b.

Henceforth, G will always be a 3-connected planar graph and z will always be a Tutte embedding.

15.3 Consequences of Harmonicity

We now observe two simple consequences of the fact that every vertex must lie at the average of
its neighbors.

Claim 15.3.1. Let a be a vertex and let ` be any line in IR2 through z (a). If a has a neighbor
that lines on one side of `, then it has a neighbor that lies on the other.

Claim 15.3.2. All vertices not in F must lie strictly inside the convex hull of the polygon of
which the vertices in F are the corners.

CHAPTER 15. TUTTE’S THEOREM: HOW TO DRAW A GRAPH 139

Proof. For every vertex a not in F , we can show that the position of a is a weighted average of
the positions of vertices in F by eliminating every vertex not in F ∪ {a}. As we learned in Lecture
13, this results in a graph in which all the neighbors of a are in F , and thus the position of a is
some weighted average of the position of the vertices in F . As the graph is 3-connected, we can
show that this average must assign nonzero weights to at least 3 of the vertices in F .

Note that it is also possible to prove Claim 15.3.2 by showing that one could reduce the potential
energy by moving vertices inside the polygon. See Claim 8.8.1 from my lecture notes from 2015.

Lemma 15.3.3. Let H be a halfspace in IR2 (that is, everything on one side of some line). Then
the subgraph of G induced on the vertices a such that z (a) ∈ H is connected.

Proof. Let t be a vector so that we can write the line ` in the form tTx = µ, with the halfspace
consisting of those points x for which tTx ≥ µ. Let a be a vertex such that z (a) ∈ H and let b be
a vertex that maximizes tT z (b). So, z (b) is as far from the line defining the halfspace as possible.
By Claim 15.3.2, b must be on the outside face, F .

For every vertex c, define t(c) = tT z (c). We will see that there is a path in G from a to b along
which the function t never decreases, and thus all the vertices along the path lie in the halfspace.
We first consider the case in which t(a) = t(b). In this case, we also know that a ∈ F . As the
vertices in F embed to a strictly convex polygon, this implies that (a, b) is an edge of that
polygon, and thus the path from a to b.

If t(a) < t(b), it suffices to show that there is a path from a to some other vertex c for which
t(c) > t(a) and along which t never decreases: we can then proceed from c to obtain a path to b.
Let U be the set of all vertices u reachable from a for which t(u) = t(a). As the graph is
connected, there must be a vertex u ∈ U that has a neighbor c 6∈ U . By Claim 15.3.1 u must have
a neighbor c for which t(c) > t(u). Thus, the a path from a through U to c suffices.

Lemma 15.3.4. No vertex is colinear with all of its neighbors.

Proof. This is trivially true for vertices in F , as no three of them are colinear.

Assume by way of contradiction that there is a vertex a that is colinear with all of its neighbors.
Let ` be that line, and let S+ and S− be all the vertices that lie above and below the line,
respectively. Lemma 15.3.3 tells us that both sets S+ and S− are connected. Let U be the set of
vertices u reachable from a and such that all of us neighbors lie on `. The vertex a is in U . Let W
be the set of nodes that lie on ` that are neighbors of vertices in U , but which themselves are not
in U . As vertices in W are not in U , Claim 15.3.1 implies that each vertex in W has neighbors in
both S+ and S−. As the graph is 3-connected, and removing the vertices in W would disconnect
U from the rest of the graph, there are at least 3 vertices in W . Let w1, w2 and w3 be three of the
vertices in W .

We will now obtain a contradiction by showing that G has a minor isomorphic to K3,3. The three
vertices on one side are w1, w2, and w3. The other three are obtained by contracting the vertex
sets S+, S−, and U .

CHAPTER 15. TUTTE’S THEOREM: HOW TO DRAW A GRAPH 140

Figure 15.7: An illustration of the proof of Lemma 15.3.4.

15.4 All faces are convex

We now prove that every face of G embeds as a strictly convex polygon.

Lemma 15.4.1. Let (a, b) be any non-boundary edge of the graph, and let ` be a line through
z (a) and z (b) (there is probably just one). Let F0 and F1 be the faces that border edge (a, b) and
let S0 and S1 be the vertices on those faces, other than a and b. Then all the vertices of S0 and S1

lie on opposite sides of `, and none lie on `.

Note: if z (a) = z (b), then we can find a line passing through them and one of the vertices of S0.
This leads to a contradiction, and thus rules out this type of degeneracy.

Proof. Assume by way of contradiction that the lemma is false. Without loss of generality, we
may then assume that there are vertices of both S0 and S1 on or below the line `. Let s0 and s1

be such vertices. By Lemma 15.3.4 and Claim 15.3.1, we know that both s0 and s1 have
neighbors that lie strictly below the line `. By Lemma 15.3.3, we know that there is a path P
that connects s0 and s1 on which all vertices other than s0 and s1 lie strictly below `.

On the other hand, we can similarly show that that both a and b have neighbors above the line `,
and that they are joined by a path that lies strictly above `. Thus, this path cannot consist of the
edge (a, b) and must be disjoint from P . This contradicts Lemma 15.1.3.

So, we now know that the embedding z contains no degeneracies, that every face is embedded as
a strictly convex polygon, and that the two faces bordering each edge embed on opposites sides of
that edge. This is all we need to know to prove Tutte’s Theorem. We finish the argument in the
proof below.

Proof of Theorem 15.2.2. We say that a point of the plane is generic if it does not lie on any z (a)
for on any segment of the plane corresponding to an edge (a, b). We first prove that every generic
point lies in exactly one face of G.

CHAPTER 15. TUTTE’S THEOREM: HOW TO DRAW A GRAPH 141

Figure 15.8: An illustration of the proof of Lemma 15.4.1.

Begin with a point that is outside the polygon on which F is drawn. Such a point lies only in the
outside face. For any other generic point we can draw a curve between these points that never
intersects a z (a) and never crosses the intersection of the drawings of edges. That is, it only
crosses drawings of edges in their interiors. By Lemma 15.4.1, when the curve does cross such an
edge it moves from one face to another. So, at no point does it ever appear in two faces.

Now, assume by way of contradiction that the drawings of two edges cross. There must be some
generic point near their intersection that lies in at least two faces. This would be a
contradiction.

15.5 Notes

This is the simplest proof of Tutte’s theorem that I have seen. Over the years, I have taught
many versions of Tutte’s proof by building on expositions by Lovász [LV99] and Geelen [Gee12],
and an alternative proof of Gortler, Gotsman and Thurston [GGT06].

Chapter 16

The Lovàsz - Simonovits Approach to
Random Walks

This Chapter Needs Editing

16.1 Introduction

These notes are still very rough, and will be finished later.

For a vector f and an integer k, we define f {k} to be the sum of the largest k entries of f . For
convenience, we define f {0} = 0. Symbolically, you can define this by setting π to be a
permutation for which

f (π(1)) ≥ f (π(2)) ≥ ... ≥ f (π(n)),

and then setting

f {k} =

k∑
i=1

f (π(i)).

For real number x between 0 and n, we define f {x} by making it be piece-wise linear between
consecutive integers. This means that for x between integers k and k + 1, the slope of f {} at x is
f (π(k + 1)). As these slopes are monotone nonincreasing, the function f {x} is concave.

We will prove the following theorem of Lovàsz and Simonovits [LS90] on the behavior of Wf .

Theorem 16.1.1. Let W be the transition matrix of the lazy random walk on a d-regular graph
with conductance at least φ. Let g = Wf . Then for all integers 0 ≤ k ≤ n

g{k} ≤ 1

2
(f {k − φh}+ f {k + φh}) ,

where h = min(k, n− k).

142

CHAPTER 16. THE LOVÀSZ - SIMONOVITS APPROACH TO RANDOM WALKS 143

I remark that this theorem has a very clean extension to irregular, weighted graphs. I just present
this version to simplify the exposition.

We can use this theorem to bound the rate of convergence of random walks in a graph. Let pt be
the probability distribution of the walk after t steps, and plot the curves pt{x}. The theorem tells
us that these curves lie beneath each other, and that each curve lies beneath a number of chords
drawn across the previous. The walk is uniformly mixed when the curve reaches a straight line
from (0, 0) to (n, 1). This theorem tells us how quickly the walks approach the straight line.

Today, we will use the theorem to prove a variant of Cheeger’s inequality.

16.2 Definitions and Elementary Observations

We believe that larger conductance should imply faster mixing. In the case of Theorem 16.1.1, it
should imply lower curves. This is because wider chords lie beneath narrower ones.

Claim 16.2.1. Let h(x) be a convex function, and let z > y > 0. Then,

1

2
(h(x− z) + h(x+ z)) ≤ 1

2
(h(x− y) + h(x+ y)) .

Claim 16.2.2. Let f be a vector, let k ∈ [0, n], and let α1, . . . , αn be numbers between 0 and 1
such that ∑

i

αi = k.

Then, ∑
i

αif (i) ≤ f {k}.

This should be obvious, and most of you proved something like this when solving problem 2 on
homework 1. It is true because the way one would maximize this sum is by setting x to 1 for the
largest values.

Throughout this lecture, we will only consider lazy random walks on regular graphs. For a set S
and a vertex a, we define γ(a, S) to be the probability that a walk that is at vertex a moves to S
in one step. If a is not in S, this equals one half the fraction of edges from a to S. It is one half
because there is a one half probability that the walk stays at a. Similarly, if a is in S, then γ(a, S)
equals one half plus one half the fraction of edges of a that end in S.

16.3 Warm up

We warm up by proving that the curves must lie under each other.

For a vector f and a set S, we define

f (S) =
∑
a∈S

f (a).

CHAPTER 16. THE LOVÀSZ - SIMONOVITS APPROACH TO RANDOM WALKS 144

For every k there is at least one set S for which

f (S) = f {k}.

If the values of f are distinct, then the set S is unique.

Lemma 16.3.1. Let f be a vector and let g = Wf . Then for every x ∈ [0, n],

g{x} ≤ f {x}.

Proof. As the function g{x} is piecewise linear between integers, it suffices to prove it at integers
k. Let k be an integer and let S be a set of size k for which f (S) = f {k}. As g = Wf ,

g(S) =
∑
a∈V

γ(a, S)f (a).

As the graph is regular, ∑
a∈V

γ(a, S) = k.

Thus, Claim 16.2.2 implies ∑
a∈V

γ(a, S)f (a) ≤ f {k}.

16.4 The proof

Recall that the conductance of a subset of vertices S in a d-regular graph is defined to be

φ(S)
def
=

|∂(S)|
dmin(|S| , n− |S|) .

Our proof of the main theorem improves the previous argument by exploiting the conductance
through the following lemma.

Lemma 16.4.1. Let S be any set of k vertices. Then∑
a6∈S

γ(a, S) = (φ(S)/2) min(k, n− k).

Proof. For a 6∈ S, γ(a, S) equals half the fraction of the edges from a that land in S. And, the
number of edges leaving S equals dφ(S) min(k, n− k).

Lemma 16.4.2. Let W be the transition matrix of the lazy random walk on a d-regular graph,
and let g = Wf . For every set S of size k with conductance at least φ,

g(S) ≤ 1

2
(f {k − φh}+ f {k + φh}) ,

where h = min(k, n− k).

CHAPTER 16. THE LOVÀSZ - SIMONOVITS APPROACH TO RANDOM WALKS 145

Proof. To ease notation, define γ(a) = γ(a, S). We prove the theorem by rearranging the formula

g(S) =
∑
a∈V

γ(a)f (a).

Recall that
∑

a∈V γ(a) = k.

For every vertex a define

α(a) =

{
γ(a)− 1/2 if a ∈ S
0 if a 6∈ S

and β(a) =

{
1/2 if a ∈ S
γ(a) if a 6∈ S.

As α(a) + β(a) = γ(a),

g(S) =
∑
a∈V

α(a)f (a) +
∑
a∈V

β(a)f (a).

We now come to the point in the argument where we exploit the laziness of the random walk,
which manifests as the fact that γ(a) ≥ 1/2 for a ∈ S, and so 0 ≤ α(a) ≤ 1/2 for all a. Similarly,
0 ≤ β(a) ≤ 1/2 for all a. So, we can write∑

a∈V
α(a)f (a) =

1

2

∑
a∈V

(2α(a))f (a), and
∑
a∈V

β(a)f (a) =
1

2

∑
a∈V

(2β(a))f (a)

with all coefficients 2α(a) and 2β(a) between 0 and 1. As∑
a∈V

β(a) =
k

2
+
∑
a6∈S

γ(a),

we can set
z =

∑
a6∈S

γ(a)

and write ∑
a∈V

(2α(a)) = k − 2z and
∑
a∈V

(2β(a)) = k + 2z.

Lemma 16.4.1 implies that
z ≥ φh/2.

By Claim 16.2.2,

g(S) ≤ 1

2
(f {k − z}+ f {k + z}) .

So, Claim 16.2.1 implies

g(S) ≤ 1

2
(f {k − φh}+ f {k + φh}) .

Theorem 16.1.1 follows by applying Lemma 16.4.2 to sets S for which f (S) = f {k}, for each
integer k between 0 and n.

CHAPTER 16. THE LOVÀSZ - SIMONOVITS APPROACH TO RANDOM WALKS 146

16.5 Andersen’s proof of Cheeger’s inequality

Reid Andersen observed that the technique of Lovàsz and Simonovits can be used to give a new
proof of Cheeger’s inequality. I will state and prove the result for the special case of d-regular
graphs that we consider in this lecture. But, one can of course generalize this to irregular,
weighted graphs.

Theorem 16.5.1. Let G be a d-regular graph with lazy random walk matrix W , and let
ω2 = 1− λ be the second-largest eigenvalue of W . Then there is a subset of vertices S for which

φ(S) ≤
√

8λ.

Proof. Let ψ be the eigenvector corresponding to ω2. As ψ is orthogonal to the constant vectors,
ψ{n} = 0. Define

k = arg max
0≤k≤n

ψ{k}√
min(k, n− k)

.

Then, set γ to be the maximum value obtained:

γ =
ψ{k}√

min(k, n− k)
.

We will assume without loss of generality that k ≤ n/2: if it is not then we replace ψ by −ψ to
make it so and obtain the same γ. Now, ψ{k} = γ

√
k.

We let S be a set (there is probably only one) for which

ψ(S) = ψ{k}.
As ψ is an eigenvector with positive eigenvalue, we also know that

(Wψ)(S) = Wψ{k}.
We also know that

(Wψ)(S) = (1− λ)ψ(S) = (1− λ)γ
√
k.

Let φ be the conductance of S. Lemma 16.4.2 tells us that

(Wψ)(S) ≤ 1

2
(ψ{k − φk}+ψ{k + φk}) .

By the construction of k and γ at the start of the proof, we know this quantity is at most

1

2

(
γ
√
k − φk + γ

√
k + φk

)
= γ
√
k

1

2

(√
1− φ+

√
1 + φ

)
.

Combining the inequalities derived so far yields

(1− λ) ≤ 1

2

(√
1− φ+ γ

√
1 + φ

)
.

An examination of the Taylor series for the last terms reveals that

1

2

(√
1− φ+ γ

√
1 + φ

)
≤ 1− φ2/8.

This implies λ ≥ φ2/8, and thus φ(S) ≤
√

8λ.

Chapter 17

Monotonicity and its Failures

This Chapter Needs Editing

These notes are not necessarily an accurate representation of what happened in class. They are a
combination of what I intended to say with what I think I said. They have not been carefully
edited.

17.1 Overview

17.2 Effective Spring Constants

Consider a spring network. As in last lecture, we model it by a weighted graph G = (V,E,w),
where wa,b is the spring constant of the edge (a, b). Recall that a stronger spring constant results
in a stronger connection between a and b.

Now, let s and t be arbitrary vertices in V . We can view the network as a large, complex spring
connecting s to t. We then ask for the spring constant of this complex spring. We call it the
effective spring constant between s and t.

To determine what it is, we recall the definition of the spring constant for an ordinary spring: the
potential energy in a spring connecting a to b is the spring constant times times the square of the
length of the spring, divided by 2. We use this definition to determine the effective spring
constant between s and t.

Recall again that if we fix the positions of s and t on the real line, say to 0 and 1, then the
positions x of the other vertices will minimize the total energy:

E (x)
def
=

1

2

∑
(a,b)∈E

wa,b(x (a)− x (b))2. (17.1)

As s and t are separated by a distance of 1, we may define twice this quantity to be the effective
spring constant of the entire network between s and t. To verify that this definition is consistent,

147

CHAPTER 17. MONOTONICITY AND ITS FAILURES 148

we should consider what happens if the displacement between s and t is something other than 1.
If we fix the position of s to 0 and the position of t to y, then the homogeniety of the expression
for energy (17.1) tells us that the vector yx will minimize the energy subject to the boundary
conditions. Moreover, the energy in this case will be y2/2 times the effective spring constant.

17.3 Monotonicity

Rayleigh’s Monotonicity Principle tells us that if we alter the spring network by decreasing some
of the spring constants, then the effective resistance between s and t will not increase.

Theorem 17.3.1. Let G = (V,E,w) be a weighted graph and let Ĝ = (V,E, ŵ) be another
weighted graph with the same edges and such that

ŵa,b ≤ wa,b

for all (a, b) ∈ E. For vertices s and t, let cs,t be the effective spring constant between s and t in

G and let ĉs,t be the analogous quantity in Ĝ. Then,

ĉs,t ≤ cs,t.

Proof. Let x be the vector of minimum energy in G such that x (s) = 0 and x (t) = 1. Then, the
energy of x in Ĝ is no greater:

1

2

∑
(a,b)∈E

ŵa,b(x (a)− x (b))2 ≤ 1

2

∑
(a,b)∈E

wa,b(x (a)− x (b))2 = cs,t.

So, the minimum energy of a vector x in Ĝ such that x (s) = 0 and x (t) = 1 will be at most cs,t,
and so ĉs,t ≤ cs,t.

While this principle seems very simple and intuitively obvious, it turns out to fail in just slightly
more complicated situtations. Before we examine them, I will present the analogous material for
electrical networks.

17.4 Effective Resistance

There are two (equivalent) ways to define the effective resistance between two vertices in a
network of resistors. The first is to start with the formula

V = IR,

or, as I prefer to write it,

i(a, b) =
v(a)− v(b)

ra,b
,

CHAPTER 17. MONOTONICITY AND ITS FAILURES 149

This formula tells us that if we have one resistor between a and b and we fix the voltage of a to 1
and the voltage of b to 0, then the amount of current that will flow from a to b is the reciprocal of
the resistance. It also tells us that if we want to flow one unit of current, then we need to place a
potential difference of ra,b between a and b. Recall that we define the weight of an edge to be the
reciprocal of its resistance, as high resistance corresponds to poor connectivity. We can use this
formula to define the effective resistance between two vertices s and t in an arbitrary complex
network of resistors: we define the effective resistance between s and t to be the potential
difference needed to flow one unit of current from s to t.

Algebraically, define i ext to be the vector

i ext(a) =


1 if a = s

−1 if a = t

0 otherwise

.

This corresponds to a flow of 1 from s to t. We then solve for the voltages that realize this flow:

Lv = i ext,

by
v = L+i ext.

We thus have
v(s)− v(t) = iTextv = iTextL

+i ext
def
= Reff(s, t).

This agrees with the other natural approach to defining effective resistance: twice the energy
dissipation when we flow one unit of current from s to t.

Theorem 17.4.1. Let i be the electrical flow of one unit from vertex s to vertex t in a graph G.
Then,

Reffs,t = E (i) .

Proof. Recalling that i ext = Lv , we have

Reffs,t = iTextL
+i ext = vTLL+Lv = vTLv = E (v) .

Rayleigh’s Monotonicity Theorem was originally stated for electrical networks.

Theorem 17.4.2 (Rayleigh’s Monotonicity). The effective resistance between a pair of vertices
cannot be decreased by increasing the resistance of some edges.

CHAPTER 17. MONOTONICITY AND ITS FAILURES 150

17.5 Examples

In the case of a path graph with n vertices and edges of weight 1, the effective resistance between
the extreme vertices is n− 1.

In general, if a path consists of edges of resistance r(1, 2), . . . , r(n− 1, n) then the effective
resistance between the extreme vertices is

r(1, 2) + · · ·+ r(n− 1, n).

To see this, set the potential of vertex i to

v(i) = r(i, i+ 1) + · · ·+ r(n− 1, n).

Ohm’s law then tells us that the current flow over the edge (i, i+ 1) will be

(v(i)− v(i+ 1)) /r(i, i+ 1) = 1.

If we have k parallel edges between two nodes s and t of resistances r1, . . . , rk, then the effective
resistance is

Reff(s, t) =
1

1/r1 + · · ·+ 1/rk
.

Again, to see this, note that the flow over the ith edge will be

1/ri
1/r1 + · · ·+ 1/rk

,

so the total flow will be 1.

17.6 Breakdown of Monotonicity

We will now exhibit a breakdown of monotonicity in networks of nonlinear elements. In this case,
we will consider a network of springs and wires. For examples in electrical networks with resistors
and diodes or for networks of pipes with valves, see [PP03] and [CH91].

There will be 4 important vertices in the network that I will describe, a, b, c and d. Point a is
fixed in place at the top of my aparatus. Point d is attached to an object of weight 1. The
network has two springs of spring constant 1: one from point a to point b and one from point c to
point d. There is a very short wire connecting point b to point c.

As each spring is supporting one unit of weight, each is stretched to length 1. So, the distance
from point a to point d is 2.

I now add two more wires to the network. One connects point a to point c and the other connects
point b to point d. Both have lengths 1 + ε, and so are slack. Thus, the addition of these wires
does not change the position of the weight.

CHAPTER 17. MONOTONICITY AND ITS FAILURES 151

I now cut the small wire connecting point b to point c. While you would expect that removing
material from the supporting structure would cause the weight to go down, it will in fact move
up. To see why, let’s analyze the resulting structure. It consists of two suppors in parallel. One
consists of a spring from point a to point b followed by a wire of length 1 + ε from point b to d.
The other has a wire of length 1 + ε from point a to point c followed by a spring from point c to
point d. Each of these is supporting the weight, and so each carries half the weight. This means
that the length of the springs will be 1/2. So, the distance from a to d should be essentially 3/2.

This sounds like a joke, but we will see in class that it is true. The measurements that we get will
not be exactly 2 and 3/2, but that is because it is difficult to find ideal springs at Home Depot.

In the example with resistors and diodes, one can increase electrical flow between two points by
cutting a wire!

17.7 Traffic Networks

I will now explain some analogous behavior in traffic networks. We will examine the more
formally in the next lecture.

We will use a very simple model of a road in a traffic network. It will be a directed edge between
two vertices. The rate at which traffic can flow on a road will depend on how many cars are on
the road: the more cars, the slower the traffic. I will assume that our roads are linear. That is,
when a road has flow f , the time that it takes traffic to traverse the road is

af + b,

for some nonnegative constants a and b. I call this the characteristic function of the road.

We first consider an example of Pigou consisting of two roads between two vertices, s and t. The
slow road will have characteristic function 1: think of a very wide super-highway that goes far out
of the way. No matter how many cars are on it, the time from s to t will always be 1. The fast
road is better: its characteristic is f . Now, assume that there is 1 unit of traffic that would like to
go from s to t.

A global planner that could dictate the route that everyone takes could minimize the average time
of the traffic going from s to t by assigning half of the traffic to take the fast road and half of the
traffic to take the slow road. In this case, half of the traffic will take time 1 and half will take time
1/2, for an average travel time of 3/4. To see that this is optimal, let f be the fraction of traffic
that takes the fast road. Then, the average travel time will be

f · f + (1− f) · 1 = f2 − f + 1.

Taking derivatives, we see that this is minimized when

2f − 1 = 0,

which is when f = 1/2.

CHAPTER 17. MONOTONICITY AND ITS FAILURES 152

On the other hand, this is not what people will naturally do if they have perfect information and
freedom of choice. If a f < 1 fraction of the flow is going along the fast road, then those travelling
on the fast road will get to t faster than those going on the slow road. So, anyone going on the
slow road would rather take the fast road. So, all of the traffic will wind up on the fast road, and
it will become not-so-fast. All of the traffic will take time 1.

We call this the Nash Optimal solution, because it is what everyone will do if they are only
maximizing their own benefit. You should be concerned that this is not as well as they would do
if they allowed some authority to dictate their routes. For example, the authority could dictate
that half the cars go each way every-other day, or one way in the morning and another at night.

Let’s see an even more disturbing example.

17.8 Braes’s Paradox

We now examine Braes’s Paradox, which is analogous to the troubling example we saw with
springs and wires. This involves a network with 4 vertices, a, b, c, and d. All the traffic starts at
s = a and wants to go to t = d. There are slow roads from s to c and from d to t, and fast roads
from s to d and from c to t. If half of the traffic goes through route sct and the other half goes
through route sdt, then all the traffic will go from s to t in time 3/2. Moroever, noone can
improve their lot by taking a different route, so this is a Nash equilibrium.

We now consider what happens if some well-intentioned politician decides to build a very fast
road connecting c to d. Let’s say that its characteristic function is 0. This opens up a faster
route: traffic can go from s to c to d to t. If no one else has changed route, then this traffic will
reach t in 1 unit of time. Unfortunately, once everyone realizes this all the traffic will take this
route, and everyone will now require 2 units of time to reach t.

Let’s prove that formally. Let p1, p2 and p3 be the fractions of traffic going over routes sct, sdt,
and scdt, respectively. The cost of route sct is p1 + p3 + 1. The cost of route sdt is p2 + p3 + 1.
And, the cost of route scdt is p3 + p3. So, as long as p3 is less than 1, the cheapest route will be
scdt. So, all the traffic will go that way, and the cost of every route will be 2.

17.9 The Price of Anarchy

In any traffic network, we can measure the average amount of time it takes traffic to go from s to
t under the optimal flow. We call this the cost of the social optimum, and denote it by Opt(G).
When we let everyone pick the route that is best for themselves, the resulting solution is a Nash
Equilibrium, and we denote it by Nash(G).

The “Price of Anarchy” is the cost to society of letting everyone do their own thing. That is, it is
the ratio

Nash(G)

Opt(G)
.

In these examples, the ratio was 4/3. In the next lecture, we will show that the ratio is never

CHAPTER 17. MONOTONICITY AND ITS FAILURES 153

more than 4/3 when the cost functions are linear. If there is time today, I will begin a more
formal analysis of Opt(G) and Nash(G) that we will need in our proof.

17.10 Nash optimum

Let the set of s-t paths be P1, . . . , Pk, and let αi be the fraction of the traffic that flows on path
Pi. In the Nash equilibrium, no car will go along a sub-optimal path. Assuming that each car has
a negligible impact on the traffic flow, this means that every path Pi that has non-zero flow must
have minimal cost. That is, for all i such that αi > 0 and all j

c(Pi) ≤ c(Pj).

17.11 Social optimum

Society in general cares more about the average time its takes to get from s to t. If we have a flow
that makes this average time low, everyone could rotate through all the routes and decrease the
total time that they spend in traffic. So, the social cost of the flow f is

c(α1, . . . , αk) =
def
=∑

i

αic(Pi) =
∑
i

αi
∑
e∈Pi

ce(fe)

=
∑
e

ce(fe)
∑
i:e∈Pi

αi

=
∑
e

ce(fe)fe.

Theorem 17.11.1. All local minima of the social cost function are global minima. Moreover, the
set of global minima is convex.

Proof. This becomes easy once we re-write the cost function as∑
e

ce(fe)fe =
∑
e

aef
2
e + befe

and recall that we assumed that ae and be are both at least zero. The cost function on each edge
is convex. It is strictly convex if ae > 0, but that does not matter for this theorem.

If you take two flows, say f0 and f1, the line segments of flows between them contains the flows of
the form f t where

f te = tf1
e + (1− t)f0

e ,

for 0 ≤ t ≤ 1.

By the convexity of each cost function, we know that the cost of any flow f t is at most the
maximum of the costs of f0 and f1. So, if f1 is the global optimum and f0 is any other flow with

CHAPTER 17. MONOTONICITY AND ITS FAILURES 154

higher cost, the flow f ε will have a social cost lower than f0. This means that f0 cannot be a
local optimum. Similarly, if both f0 and f1 are global optima, then f t must be as well.

Chapter 18

Dynamic and Nonlinear Networks

This Chapter Needs Editing

These notes are not necessarily an accurate representation of what happened in class. They are a
combination of what I intended to say with what I think I said. They have not been carefully
edited.

18.1 Overview

In this lecture we will consider two generalizations of resistor networks: resistor networks with
non-linear resistors and networks whose resistances change over time. While they were introduced
over 50 years ago, non-linear resistor networks seem to have been recently rediscovered in the
Machine Learning community. We will discuss how they can be used to improve the technique we
learned in Lecture 13 for semi-supervised learning.

The material on time-varying networks that I will present comes from Cameron Musco’s senior
thesis from 2012.

18.2 Non-Linear Networks

A non-linear resistor network, as defined by Duffin [Duf47], is a like an ordinary resistor network
but the resistances depend on the potential differences across them. In fact, it might be easier not
to talk about resistances, and just say that the amount of flow across an edge increases as the
potential difference across the edge does. For every resistor e, there is a function

φe(v)

that gives the flow over resistor e when there is a potential difference of v between its terminals.

We will restrict our attention to functions φ that are

155

CHAPTER 18. DYNAMIC AND NONLINEAR NETWORKS 156

a. continuous,

b. monotone increasing,

c. symmetric, by which I mean φe(−v) = −φe(v).

Note that condition c implies that φe(0) = 0. For an ordinary resistor of resistance r, we have

φe(v) = v/r.

However, we can and will consider more interesting functions.

If the graph is connected and we fix the voltages at some of the vertices, then there exists a
setting of voltages at the other vertices that results in a flow satisfying flow-in equals flow-out at
all non-boundary vertices. Moreover, this flow is unique.

We will prove this in the next section through the use of a generalization of energy dissipation.

18.3 Energy

We define the energy dissipation of an edge that has a potential difference of v to be

Φe(v)
def
=

∫ v

0
φe(t)dt.

We will show that the setting of the voltages that minimizes the total energy provides the flow I
claimed exists.

In the case of linear resistors, where φe(v) = v/r,

Φe(v) =
1

2

v2

r
,

which is exactly the energy function we introduced in Lecture 13.

The conditions on φe imply that

d. Φe is strictly convex1,

e. Φe(0) = 0, and

f. Φe(−x) = Φe(x).

We remark that a function that is strictly convex has a unique minimum, and that a sum of
strictly convex functions is strictly convex.

1That is, for all x 6= y and all 0 < λ < 1, Φe(λx+ (1− λ)y) < λΦe(x) + (1− λ)Φe(y).

CHAPTER 18. DYNAMIC AND NONLINEAR NETWORKS 157

Theorem 18.3.1. Let G = (V,E) be a non-linear resistor network with functions fe satisfying
conditions a, b and c for every e ∈ E. For every set S ⊆ V and fixed voltages wa for a ∈ S, there
exists a setting of voltages va for a 6∈ S that result in a flow of current that satisfies the flow-in
equals flow-out conditions at every a 6∈ S. Moreover, these voltages are unique.

Proof. For a vector of voltages v, define

Φ(v) =
∑

(a,b)∈E

Φ(a,b)(va − vb).

As each of the functions Φ(a,b) are strictly convex, Φ is as well. So, Φ has a minimum subject to
the fixed voltages. At this minimum point, we know that for every a 6∈ S

0 =
∂Φ(v)

∂va

=
∑

b:(a,b)∈E

∂Φ(a,b)(va − vb)
∂va

=
∑

b:(a,b)∈E

φ(a,b)(va − vb).

We may now set
f(a,b) = φ(a,b)(va − vb).

This is a valid flow because for every vertex a 6∈ S the sum of the flows out of va, taken with
appropriate signs, is zero.

Conversely, for any setting of voltages that results in a flow that has no loss or gain at any a 6∈ S,
we can reverse the above equalities to show that the partial derivatives of Φ(v) are zero. As Φ(v)
is strictly convex, this can only happen at the unique minimum of Φ(v).

18.4 Uses in Semi-Supervised Learning

In Lecture 13, I suggested an approach to estimating a function f on the vertices of a graph given
its values at a set S ⊆ V :

min
x:f(a)=x(a) for a∈S

∑
(a,b)∈E

(x(a)− x(b))2.

Moreover, we saw that we can minimize such a function by solving a system of linear equations.

Unfortunately, there are situtations in which this approach does not work very well. In general,
this should not be surprising: sometimes the problem is just unsolvable. But, there are cases in
which it would be reasonable to solve the learning problem in which this approach fails.

Better results are sometimes obtained by modifying the penalty function. For example, Bridle
and Zhu [BZ13] (and, essentially, Herbster and Guy [HL09]) suggest

min
x:f(a)=x(a) for a∈S

∑
(a,b)∈E

|x(a)− x(b)|p ,

CHAPTER 18. DYNAMIC AND NONLINEAR NETWORKS 158

for 1 < p < 2.

While a well-selected p will often improve accuracy, the drawback of this approach is that we
cannot perform the minimization nearly as quickly as we can when p = 2.

18.5 Dual Energy

We can establish a corresponding, although different, energy for the flows. Let ψ be the inverse of
φ. We then define the flow-energy of an edge that carries a flow of f to be

Ψ(f)
def
=

∫ f

0
ψ(t)dt.

If we minimize the sum of the flow-energies over the space of flows, we again recover the unique
valid flow in the network. (The function Φ is implicit in the work of Duffin. The dual Ψ comes
from Millar [Mil51]).

In the classical case, Φ and Ψ are the same. While they are not the same here, their sum is. We
will later prove that when v = ψ(f),

Ψ(f) + Φ(v) = fv.

In fact, one can show that for all f and v,

Ψ(f) + Φ(v) ≥ fv,

with equality only when v = ψ(f).

Theorem 18.5.1. Under the conditions of Theorem 18.3.1, let fext be the vector of external flows
resulting from the induced voltages. Let f be the flow on the edges that is compatible with fext and
that minimizes

Ψ(f)
def
=

∑
(a,b)∈E

Ψ(a,b)(f(a,b)).

Then, f is the flow induced by the voltages shown to exist in Theorem 18.3.1.

Sketch. We first show that f is a potential flow. That is, that there exist voltages v so that for
every edge (a, b), f(a,b) = φ(a,b)(va − vb). The theorem then follows by the uniqueness established
in Theorem 18.3.1.

To prove that f is a potential flow, we consider the potential difference that the flow “wants” to
induce on each edge, ψ(f(a,b)). There exist vertex potentials that agree with these desired
potential differences if an only if for every pair of vertices and for every pair of paths between
them, the sum of the desired potential differences along the edges in the paths is the same. To see
this, arbitrarily fix the potential of one vertex, such as s. We may then set the potential of any
other vertex a by summing the desired potential differences along the edges in any path from s.

Equivalenty, the desired potential differences are realizable if and only if the sum of these desired
potential differences is zero around every cycle. To show that this is the case, we use the

CHAPTER 18. DYNAMIC AND NONLINEAR NETWORKS 159

minimality of the flow. Because Ψ(f) is strictly convex, small changes to the optimum have a
negligible effect on its value (that is, the first derivative is zero). So, pushing an ε amount of flow
around any cycle will not change the value of Ψ(f). That is, the sum of the derivatives around
any cycle will be zero. As

∂

∂f
Ψe(f) = ψe(f),

this means that the sum of the desired potential differences around every cycle is zero.

Theorem 18.5.2. If f = φ(v), then

Φ(v) + Ψ(f) = vf.

Proof. One can prove this theorem through “integration by parts”. But, I prefer a picture. In the
following two figures, the curve is the plot of φ. In the first figure, the shaded region is the
integral of φ between 0 and v (2 in this case). In the second figure, the shaded region is the
integral of ψ between 0 and φ(v) (just turn the picture on its side). It is clear that these are
complementary parts of the rectangle between the axes and the point (v, φ(v)).

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

v

f

(a) Φ(v)

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

v

f

(b) Ψ(f) when f = φ(v)

The bottom line is that almost all of the classical theory can be carried over to nonlinear networks.

CHAPTER 18. DYNAMIC AND NONLINEAR NETWORKS 160

18.6 Thermistor Networks

We now turn our attention to networks of resistors whose resistance changes over time. We
consider a natural model in which edges get “worn out”: as they carry more flow their resistance
increases. One physical model that does this is a thermistor. A thermistor is a resistor whose
resistance increases with its temperature. These are used in thermostats.

Remember the “energy dissipation” of a resistor? The energy dissipates as heat. So, the
temperature of resistor increases as its resistance times the square of the flow through it. To
prevent the temperatures of the resistors from going to infinity, we will assume that there is an
ambient temperature TA, and that they tend to the ambient temperature. I will denote by Te the
temperature of resistor e, and I will assume that there is a constant αe for each resistor so that its
resistance

re = αeTe. (18.1)

We do not allow temperatures to be negative.

Now, assume that we would like to either flow a current between two vertices s and t, or that we
have fixed the potentials of s and t. Given the temperature of every resistor at some moment, we
can compute all their resistances, and then compute the resulting electrical flow as we did in
Lecture 13. Let fe be the resulting flow on resistor e. The temperature of e will increase by ref

2
e ,

and it will also increase in proportion to the difference between its present temperature and the
ambient temperature.

This gives us the following differential equation for the change in the temperature of a resistor:

∂Te
∂t

= ref
2
e − (Te − TA). (18.2)

Ok, there should probably be some constant multiplying the (Te − TA) term. But, since I haven’t
specified the units of temperature we can just assume that the constant is 1.

By substituting in (18.1) we can eliminate the references to resistance. We thus obtain

∂Te
∂t

= αeTef
2
e − (Te − TA).

There are now two natural questions to ask: does the system converge, and if so, what does it
converge to? If we choose to impose a current flow between s and t, the system does not need to
converge. For example, consider just one resistor e between vertices s and t with αe = 2. We then
find

∂Te
∂t

= αeTef
2
e − (Te − TA) = 2Te − (Te − TA) = Te + TA.

So, the temperature of the resistor will go to infinity.

For this reason, I prefer to just fix the voltages of certain vertices. Under these conditions, we can
prove that the system will converge. While I do not have time to prove this, we can examine what
it will converge to.

CHAPTER 18. DYNAMIC AND NONLINEAR NETWORKS 161

If the system converges, that is if the voltages at the nodes converge along with the potential
drops and flows across edges, then

0 =
∂Te
∂t

= αeTef
2
e − (Te − TA).

To turn this into a relationship between fe and ve, we apply the identity fere = ve, which
becomes feαeTe = ve, to obtain

0 = vefe − Te + TA.

To eliminate the last occurence of Te, we then multiply by fe and apply the same identity to
produce

0 = vef
2
e − ve/αe + feTA.

The solutions of this equation in fe are given by

fe = ±
√

1

αe
+

(
TA
2ve

)2

− TA
2ve

.

The correct choice of sign is the one that gives this the same sign as ve:

fe =
1

2ve

√(2ve)2

αe
+ T 2

A − TA

 . (18.3)

When ve is small this approaches zero, so we define it to be zero when ve is zero. As ve becomes

large this expression approaches α
−1/2
e . Similarly, when ve becomes very negative, this approaches

−α−1/2
e . If we now define

φe(ve) =
1

2ve

√(2ve)2

αe
+ T 2

A − TA

 ,

we see that this function satisfies properties a, b and c. Theorem 18.3.1 then tells us that a stable
solution exists.

18.7 Low Temperatures

We now observe that when the ambient temperature is low, a thermistor network produces a
minimum s-t cut in a graph. The weights of the edges in the graph are related to αe. For
simplicity, we will just examine the case when all αe = 1. If we take the limit as TA approaches
zero, then the behavior of φe is

φe(ve) =


0 if ve = 0

1 if ve > 0

−1 if ve < 0.

We will obtain similar behavior for small TA: if there is a non-negligible potential drop across an
edge, then the flow on that edge will be near 1. So, every edge will either have a flow near 1 or a

CHAPTER 18. DYNAMIC AND NONLINEAR NETWORKS 162

negligible potential drop. When an edge has a flow near 1, its energy will be near 1. On the other
hand, the energy of edges with negligible potential drop will be near 0.

So, in the limit of small temperatures, the energy minimization problem becomes

min
v:v(s)=0,v(t)=1

∑
(a,b)∈E

|v(a)− v(b)| .

One can show that the minimum is achieved when all of the voltages are 0 or 1, in which case the
energy is the number of edges going between voltage 0 and 1. That is, the minimum is achieved
by a minimum s-t cut.

Part IV

Spectra and Graph Structure

163

Chapter 19

Independent Sets and Coloring

19.1 Introduction

We will see how high-frequency eigenvalues of the Laplacian and Adjacency matrix can be related
to independent sets and graph coloring. Recall the we number the Laplacian matrix eigenvalues
in increasing order:

0 = λ1 ≤ λ2 ≤ · · · ≤ λn.
We call the adjacency matrix eigenvalues µ1, . . . , µn, and number them in the reverse order:

µ1 ≥ · · · ≥ µn.
The reason we reverse the order of indexing is that for d-regular graphs, µi = d− λi. For a
non-empty graph, µn will be negative.

19.2 Graph Coloring and Independent Sets

A coloring of a graph is an assignment of one color to every vertex in a graph so that each edge
connects vertices of different colors. We are interested in coloring graphs while using as few colors
as possible. Formally, a k-coloring of a graph is a function c : V → {1, . . . , k} so that for all
(u, v) ∈ E, c(u) 6= c(v). A graph is k-colorable if it has a k-coloring. The chromatic number of a
graph, written χ(G), is the least k for which G is k-colorable. A graph G is 2-colorable if and
only if it is bipartite. Determining whether or not a graph is 3-colorable is an NP-complete
problem [Kar72]. The famous 4-Color Theorem [AH77a, AH77b] says that every planar graph is
4-colorable.

A set of vertices S is independent if there are no edges between vertices in S. In particular, each
color class in a coloring is an independent set. The size of the largest independent set in a graph,
which we call its independence number is written α(G). As a k-colorable graph with n vertices
must have a color class of size at least n/k, we have

α(G) ≥ n

χ(G)
.

164

CHAPTER 19. INDEPENDENT SETS AND COLORING 165

The problem of finding large independent sets in a graph is NP-Complete, and it is very difficult
to even approximate the size of the largest independent set in a graph [FK98, H̊as99]. However,
for some carefully chosen graphs, spectral analysis provides very good bounds on the sizes of
independent sets.

19.3 Hoffman’s Bound

One of the first results in spectral graph theory was Hoffman’s [Hof70] proof the following upper
bound on the size of an independent set in a graph G.

Theorem 19.3.1. Let G = (V,E) be a d-regular graph, and let µn be its smallest adjacency
matrix eigenvalue. Then

α(G) ≤ n −µn
d− µn

.

Recall that µn < 0. Otherwise this theorem would not make sense. We will prove a generalization
of Hoffman’s theorem due to Godsil and Newman [GN08]:

Theorem 19.3.2. Let G = (V,E) be a graph, let S be an independent set in G, and let dave(S)
be the average degree of a vertex in S. Then,

|S| ≤ n
(

1− dave(S)

λn

)
.

This is a generalization of Theorem 19.3.1 because in the d-regular case dave = d and λn = d− µn.
So, these bounds are the same for regular graphs:

1− dave(S)

λn
=
λn − d
λn

=
−µn
d− µn

.

Proof. The Courant-Fischer Theorem tells us that

λn = max
x

xTLx

xTx
.

Let S be an independent set of vertices, let 1S be the characteristic vector of S, and let d(S) be
the sum of the degrees of vertices in S. Consider the vector

x = 1S − s1,

where s = |S| /n. The vector x is the result of projecting 1S onto the subspace orthogonal to 1.
We will often apply this natural operation to vectors that we plan to multiply by a Laplacian. As
S is independent and L1 = 0, we have

xTLx = 1SL1S =
∑
a∼b

(1S(a)− 1S(b))2 = d(S) = dave(S) |S| ,

CHAPTER 19. INDEPENDENT SETS AND COLORING 166

where the third equality follows from the independence of S. The reason that we subtracted s1
from 1S is that this minimizes the norm of the result. We compute

xTx = |S| (1− s)2 + (|V | − |S|)s2 = |S| (1− 2s+ s2) + |S| s− |S| s2 = |S| (1− s) = n(s− s2).

Thus,

λn ≥
xTLx

xTx
=
dave(S) |S|
n(s− s2)

=
dave(S)sn

n(s− s2)
=
dave(S)

1− s .

Re-arranging terms, this gives

1− dave(S)

λn
≥ s,

which is equivalent to the claim of the theorem.

Remarkably, this theorem holds for weighted graphs, even though edge weights do not play a role
in independence of subsets of vertices.

We will use the computation of the norm of x often, so we will make it a claim.

Claim 19.3.3. Let S ⊆ V have size s |V |. Then

‖1S − s1‖2 = s(1− s) |V | .

Claim 19.3.4. For a vector x of length n, the value of t that minimizes the norm of x − t1 is
t = 1Tx/n.

Proof. The derivative of the square of the norm is

d

dt

∑
a

(x (a)− t)2 = 2
∑
a

(x (a)− t).

When the norm is minimized the derivative is zero, which implies

nt =
∑
a

x (a) = 1Tx .

19.4 Application to Paley graphs

Let’s examine what Hoffman’s bound on the size of the largest independent set tells us about
Paley graphs.

CHAPTER 19. INDEPENDENT SETS AND COLORING 167

Corollary 7.3.2 tells us that if G is a Paley graph on n = p vertices of degree d = (p− 1)/2, then
λn = (p+

√
p)/2. So, for an independent set S, Hoffman’s bound tells us that

|S| ≤ n
(

1− dave(S)

λn

)
= p

(
1− p− 1

p+
√
p

)
= p

(√
p+ 1

p+
√
p

)
=
√
p.

One can also show that every clique in a Paley graph has size at most
√
p.

A graph is called a k-Ramsey graph if it contains no clique or independent set of size k. It is a
challenge to find large k-Ramsey graphs. Equivalently, it is challenging to find k-Ramsey graphs
on n vertices for which k is small. In one of the first papers on the Probabilistic Method in
Combinatorics, Erdös proved that a random graph on n vertices in which each edge is included
with probability 1/2 is probably 2 log2 n Ramsey [Erd47].

However, constructing explicit Ramsey graphs has proved much more challenging. Until a decade
ago, Paley graphs were among the best known. A recent construction of Chattopadhyay and
Zuckerman [CZ19] provides explicit graphs on n vertices that do not have cliques or independent

sets of size 2(log logn)O(1)
.

19.5 Lower Bound on the chromatic number

As a k-colorable graph must have an independent set of size at least n/k, an upper bound on the
sizes of independent sets gives a lower bound on its chromatic number. However, this bound is
not always a good one.

For example, consider a graph on 2n vertices consisting of a clique (complete graph) on n vertices
and n vertices of degree 1, each of which is connected to a different vertex in the clique. The
chromatic number of this graph is n, because each of the vertices in the clique must have a
different color. However, the graph also has an independent set of size n, which would only give a
lower bound of 2 on the chromatic number.

Hoffman [Hof70] proved the following lower bound on the chromatic number of a graph that does
not require the graph to be regular, and which can be applied to weighted graphs. Numerically, it
is obtained by dividing n by the bound in Theorem 19.3.1. But, the proof is very different
because that theorem only applies to regular graphs.

Theorem 19.5.1.

χ(G) ≥ µ1 − µn
−µn

= 1 +
µ1

−µn
.

The proof of this theorem relies on the following inequality whose proof we defer to Section 19.6.

CHAPTER 19. INDEPENDENT SETS AND COLORING 168

To state it, we introduce the notation λmax(M) and λmin(M) to indicate the largest and smallest
eigenvalues of the matrix M .

Lemma 19.5.2. Let

M =


M 1,1 M 1,2 · · · M 1,k

M T
1,2 M 2,2 · · · M 2,k

...
...

. . .
...

M T
1,k M T

2,k · · · M k,k


be a block-partitioned symmetric matrix with k ≥ 2. Then

(k − 1)λmin(M) + λmax(M) ≤
∑
i

λmax(M i,i).

Proof of Theorem 19.5.1. Let G be a k-colorable graph. After possibly re-ordering the vertices,
the adjacency matrix of G can be written

0 M 1,2 · · · M 1,k

M T
1,2 0 · · · M 2,k
...

...
. . .

...

M T
1,k M T

2,k · · · 0

 . (19.1)

Each block corresponds to a color.

As each diagonal block is all-zero, Lemma 19.5.2 implies

(k − 1)λmin(M) + λmax(M) ≤ 0.

Recalling that λmin(M) = µn < 0, and λmax(M) = µ1, a little algebra yields

1 +
µ1

−µn
≤ k.

To return to our example of the n clique with n degree-1 vertices attached, I examined an
example with n = 6. We find µ1 = 5.19 and µ12 = −1.62. This gives a lower bound on the
chromatic number of 4.2, which implies a lower bound of 5. We can improve the lower bound by
re-weighting the edges of the graph. For example, if we give weight 2 to all the edges in the clique
and weight 1 to all the others, we obtain a bound of 5.18, which agrees with the chromatic
number of this graph which is 6.

19.6 Proofs for Hoffman’s lower bound on chromatic number

To prove Lemma 19.5.2, we begin with the case of k = 2. The general case follows from this one
by induction. While the lemma in the case k = 2 when there are zero blocks on the diagonal
follows from Proposition 4.5.4, we require the general statement for induction.

CHAPTER 19. INDEPENDENT SETS AND COLORING 169

Lemma 19.6.1. Let

A =

[
B C

C T D

]
be a symmetric matrix. Then

λmin(A) + λmax(A) ≤ λmax(B) + λmax(D).

Proof. Let x be a unit eigenvector of A of eigenvalue λmax(A). Write x =

(
x 1

x 2

)
, using the same

partition as we did for A.

We first consider the case in which neither x 1 nor x 2 is an all-zero vector. In this case, we set

y =

(‖x2‖
‖x1‖x 1

−‖x1‖
‖x2‖x 2

)
.

The reader may verify that y is also a unit vector, so

yTAy ≥ λmin(A).

We have

λmax(A) + λmin(A) ≤ xTAx + yTAy

= xT1 Bx 1 + xT1 Cx 2 + xT2 C
Tx 1 + xT2 Dx 2+

+
‖x 2‖2

‖x 1‖2
xT1 Bx 1 − xT1 Cx 2 − xT2 C

Tx 1 +
‖x 1‖2

‖x 2‖2
xT2 Dx 2

= xT1 Bx 1 + xT2 Dx 2 +
‖x 2‖2

‖x 1‖2
xT1 Bx 1 +

‖x 1‖2

‖x 2‖2
xT2 Dx 2

≤
(

1 +
‖x 2‖2

‖x 1‖2

)
xT1 Bx 1 +

(
1 +
‖x 1‖2

‖x 2‖2

)
xT2 Dx 2

≤ λmax(B)
(
‖x 1‖2 + ‖x 2‖2

)
+ λmax(D)

(
‖x 1‖2 + ‖x 2‖2

)
= λmax(B) + λmax(D),

as x is a unit vector.

We now return to the case in which ‖x 2‖ = 0 (or ‖x 1‖ = 0, which is really the same case).
Theorem 4.3.1 tells us that λmax(B) ≤ λmax(A). So, it must be the case that x 1 is an eigenvector
of eigenvalue λmax(A) of B , and thus λmax(B) = λmax(A). To finish the proof, also observe that
Theorem 4.3.1 implies

λmax(D) ≥ λmin(D) ≥ λmin(A).

CHAPTER 19. INDEPENDENT SETS AND COLORING 170

Proof of Lemma 19.5.2. For k = 2, this is exactly Lemma 19.6.1. For k > 2, we apply induction.
Let

B =


M 1,1 M 1,2 · · · M 1,k−1

M T
1,2 M 2,2 · · · M 2,k−1
...

...
. . .

...

M T
1,k−1 M T

2,k−1 · · · M k−1,k−1

 .
Theorem 4.3.1 now implies.

λmin(B) ≥ λmin(M).

Applying Lemma 19.6.1 to B and the kth row and column of M , we find

λmin(M) + λmax(M) ≤ λmax(M k,k) + λmax(B)

≤ λmax(M k,k) +
k−1∑
i=1

λmax(M i,i)− (k − 2)λmin(B) (by induction)

=

k∑
i=1

λmax(M i,i)− (k − 2)λmin(B)

≤
k∑
i=1

λmax(M i,i)− (k − 2)λmin(M),

because λmin(B) ≥ λmin(M). Rearranging terms gives

(k − 1)λmin(M) + λmax(M) ≤
k∑
i=1

λmax(M i,i).

Chapter 20

Graph Partitioning

Computer Scientists are often interested in cutting, partitioning, and finding clusters of vertices in
graphs. This usually means finding a set of vertices that is connected to the rest of the graph by a
small number of edges. There are many ways of balancing the size of the set of vertices with the
number of edges. We will examine isoperimetric ratio and conductance, and will find that they
are intimately related to the second-smallest eigenvalue of the Laplacian and the normalized
Laplacian. The motivations for measuring these range from algorithm design to data analysis.

20.1 Isoperimetry and λ2

Let S be a subset of the vertices of an unweighted graph. One way of measuring how well S can
be separated from the graph is to count the number of edges connecting S to the rest of the
graph. These edges are called the boundary of S, which we formally define by

∂(S)
def
= {(a, b) ∈ E : a ∈ S, b 6∈ S} .

We are less interested in the total number of edges on the boundary than in the ratio of this
number to the size of S itself. For now, we will measure this in the most natural way—by the
number of vertices in S. We will call this ratio the isoperimetric ratio of S, and define it by

θ(S)
def
=
|∂(S)|
|S| .

The isoperimetric ratio of a graph1 is the minimum isoperimetric ratio over all sets of at most
half the vertices:

θG
def
= min
|S|≤n/2

θ(S).

We will now derive a lower bound on θG in terms of λ2. We will present an approximate converse
to this lower bound, known as Cheeger’s Inequality, in Chapter 21.

1Other authors call this the isoperimetric number.

171

CHAPTER 20. GRAPH PARTITIONING 172

Theorem 20.1.1. For every S ⊂ V

θ(S) ≥ λ2(1− s),

where s = |S| / |V |. In particular,
θG ≥ λ2/2.

Proof. As

λ2 = min
x :xT 1=0

xTLGx

xTx
,

for every non-zero x orthogonal to 1 we know that

xTLGx ≥ λ2x
Tx .

To exploit this inequality, we need a vector related to the set S. A natural choice is 1S , the
characteristic vector of S,

1S(a) =

{
1 if a ∈ S
0 otherwise.

We find
1TSLG1S =

∑
(a,b)∈E

(1S(a)− 1S(b))2 = |∂(S)| .

However, χS is not orthogonal to 1. To fix this, use

x = 1S − s1,

so

x (a) =

{
1− s for a ∈ S, and

−s otherwise.

We have xT1 = 0, and

xTLGx =
∑

(a,b)∈E

((1S(a)− s)− (1S(b)− s))2 = |∂(S)| .

Claim 19.3.3 tells us that the square of the norm of x is

xTx = n(s− s2).

So,

λ2 ≤
1TSLG1S

1TS1S
=

|∂(S)|
|S| (1− s) .

CHAPTER 20. GRAPH PARTITIONING 173

This theorem says that if λ2 is big, then G is very well connected: the boundary of every small set
of vertices is at least λ2 times something just slightly smaller than the number of vertices in the
set.

Re-arranging terms slightly, Theorem 20.1.1 can be stated as

θ(S)

1− s = |V | |∂(S)|
|S| |V − S| ≥ λ2.

We sometimes favor the quantity in the middle above over the isoperimetric ratio because

|∂(S)|
|S| |V − S| ,

eliminates the need to restrict |S| ≤ |V | /2.

20.2 Conductance

Conductance is a variant of the isoperimetic ratio that applies to weighted graphs, and that
measures sets of vertices by the sum of their weighted degrees. Instead of counting the edges on
the boundary, it counts the sum of their weights. We write d(S) for the sum of the degrees of the
vertices in S. d(V) is twice the sum of the weights of edges in the graph, because each edge is
attached to two vertices. For a set of edges F , we write w(F) for the sum of the weights of edges
in F . We can now define the conductance of S to be

φ(S)
def
=

w(∂(S))

min(d(S), d(V − S))
.

Note that many slightly different definitions appear in the literature. For example, we could
instead use

d(V)
w(∂(S))

d(S)d(V − S)
,

which appears below in (20.3).

We define the conductance of a graph G to be

φG
def
= min

S⊂V
φ(S).

The conductance of a graph is more useful in many applications than the isoperimetric ratio. I
usually find that conductance is the more useful quantity when you are concerned about edges,
and that isoperimetric ratio is most useful when you are concerned about vertices. Conductance
is particularly useful when studying random walks in graphs.

20.3 The Normalized Laplacian

As
1TSL1S

1TSD1S
=
w(∂(S))

d(S)
,

CHAPTER 20. GRAPH PARTITIONING 174

it seems natural to try to relate the conductance to the following generalized Rayleigh quotient:

yTLy

yTDy
. (20.1)

If we make the change of variables
D1/2y = x ,

then this ratio becomes
xTD−1/2LD−1/2x

xTx
.

This is an ordinary Rayleigh quotient, which we understand a little better. The matrix in the
middle is called the normalized Laplacian (see [Chu97]). We reserve the letter N for this matrix:

N
def
= D−1/2LD−1/2.

This matrix often proves more useful when examining graphs in which the degrees of vertices
vary. We will let 0 = ν1 ≤ ν2 ≤ · · · ≤ νn denote the eigenvalues of N . Recall that we introduced
the normalized Laplacian in Section 10.5 and proved that

ν2 = min
y⊥d

yTLy

yTDy
.

The conductance is related to ν2 as the isoperimetric ratio is related to λ2:

ν2/2 ≤ φG. (20.2)

Lemma 20.3.1. For every S ⊂ V ,

ν2 ≤ d(V)
w(∂(S))

d(S)d(V − S)
.

Proof. We would again like to again use 1S as a test vector. But, we need to shift it so that it is
orthogonal to d . Set

y = 1S − σ1,

where
σ = d(S)/d(V).

You should now check that yTd = 0:

yTd = 1TSd − σ1Td = d(S)− (d(S)/d(V))d(V) = 0.

We already know that
yTLy = w(∂(S)).

CHAPTER 20. GRAPH PARTITIONING 175

It remains to compute yTDy . If you remember the computation in Claim 19.3.3, you would
guess that it is d(S)(1− σ) = d(S)d(V − S)/d(V), and you would be right:

yTDy =
∑
u∈S

d(u)(1− σ)2 +
∑
u6∈S

d(u)σ2

= d(S)(1− σ)2 + d(V − S)σ2

= d(S)− 2d(S)σ + d(V)σ2

= d(S)− d(S)σ, as d(S) = d(V)σ

= d(S)d(V − S)/d(V).

So,

ν2 ≤
yTLy

yTDy
= d(V)

w(∂(S))

d(S)d(V − S)
. (20.3)

Corollary 20.3.2. For every S ⊂ V ,
φ(S) ≥ ν2/2.

Proof. As the larger of d(S) and d(V − S) is at least half of d(V), we find

ν2 ≤ 2
w(∂(S))

min(d(S), d(V − S))
.

20.4 Notes

There are many variations on the definitions used in this chapter. For example, sometimes one
wants to measure the number of vertices on the boundary of a set, rather than the number of
edges. The ratio of the number of boundary vertices to internal vertices is often called expansion.
But, authors are not consistent about these and related terms. Cut ratio is sometimes used
instead of isoperimetric ratio. When reading anything in this area, be sure to check the formulas
for the definitions.

Chapter 21

Cheeger’s Inequality

In the last chapter we learned that φ(S) ≥ ν2/2 for every S ⊆ V . Cheeger’s inequality is a partial
converse. It says that there exists a set of vertices S for which

φ(S) ≤
√

2ν2,

and provides an algorithm for using the eigenvector of ν2 to find such a set.

Cheeger [Che70] first proved his famous inequality for manifolds. Many discrete versions of
Cheeger’s inequality were proved in the late 80’s [SJ89, LS88, AM85, Alo86, Dod84, Var85]. Some
of these consider the walk matrix instead of the normalized Laplacian, and some consider the
isoperimetic ratio instead of conductance. The proof in this chapter follows an approach
developed by Trevisan [Tre11].

21.1 Cheeger’s Inequality

Cheeger’s inequality proves that if we have a vector y , orthogonal to d , for which the generalized
Rayleigh quotient (20.1) is small, then one can obtain a set of small conductance from y . We
obtain such a set by carefully choosing a real number τ , and setting

Sτ = {a : y(a) ≤ τ} .

We should think of deriving y from an eigenvector of ν2 of the normalized Laplacian. If ψ2 is an
eigenvector of ν2, then y = D1/2ψ2 is orthogonal to d and the generalized Rayleigh quotient
(20.1) of y with respect to L and D equals ν2. But, the theorem can make use of any vector that
is orthogonal to d that makes the generalized Rayleigh quotient small. In fact, we prefer vectors
that are centered with respect to d .

Definition 21.1.1. A vector y is centered with respect to d if∑
a:y(a)>0

d(a) ≤ d(V)/2 and
∑

a:y(a)<0

d(a) ≤ d(V)/2.

176

CHAPTER 21. CHEEGER’S INEQUALITY 177

By renumbering the vertices, we may assume without loss of generality that

y(1) ≤ y(2) ≤ · · · ≤ y(n).

To center y , let j be the least number for which

j∑
a=1

d(a) ≥ d(V)/2.

We then set
z = y − y(j)1.

This vector z satisfies z (j) = 0. And, the following lemma tells us that

z TLz

z TDz
≤ yTLy

yTDy
.

Lemma 21.1.2. Let v s = y + s1. Then, the minimum of vTsDv s is achieved at the s for which
vTs d = 0.

Proof. The derivative with respect to s is 2dTv s, and this is zero at the minimum.

Theorem 21.1.3. Let G be a weighted graph, let L be its Laplacian, and let d be its vector of
weighted degrees. Let z be a vector that is centered with respect to d . Then, there is a number τ
for which the set Sτ = {a : z (a) < τ} satisfies

φ(Sτ) ≤
√

2
z TLz

z TDz
.

We assume without loss of generality that

z (1)2 + z (n)2 = 1.

This can be achieved by multiplying z by a constant. We begin our proof of Cheeger’s inequality
by defining

ρ =
z TLz

z TDz
.

So, we need to show that there is a τ for which φ(Sτ) ≤ √2ρ.

Recall that

φ(S) =
w(∂(S))

min(d(S), d(V − S))
.

We will define a distribution on τ for which we can prove that

E [w(∂(Sτ))] ≤
√

2ρ E [min(d(Sτ), d(V − Sτ))] .

CHAPTER 21. CHEEGER’S INEQUALITY 178

This implies1 that there is some τ for which

w(∂(Sτ)) ≤
√

2ρ min(d(Sτ), d(V − Sτ)),

which means φ(S) ≤ √2ρ.

To switch from working with y to working with z , we change the definition of Sτ to

Sτ
def
= {a : z (a) ≤ τ} .

As z is a constant shift of y , we hope this change won’t introduce too much confusion. Trevisan
had the remarkable idea of choosing τ between z (1) and z (n) with probability density 2 |t|. That
is, the probability that τ lies in the interval [a, b] is∫ b

t=a
2 |t| dt.

To see that the total probability is 1, observe that∫ z (n)

t=z (1)
2 |t| dt =

∫ 0

t=z (1)
2 |t| dt+

∫ z (n)

t=0
2 |t| dt = z (n)2 + z (1)2 = 1,

as z (1) ≤ 0 ≤ z (n).

Similarly, for a < b, the probability that τ lies in the interval [a, b] is∫ b

t=a
2 |t| dt = sgn(b)b2 − sgn(a)a2,

where

sgn(x) =


1 if x > 0

0 if x = 0, and

−1 if x < 0.

Lemma 21.1.4.

Et [w(∂(Sτ))] =
∑

(a,b)∈E

wa,bPrt [(a, b) ∈ ∂(Sτ)] ≤
∑

(a,b)∈E

wa,b |z (a)− z (b)| (|z (a)|+ |z (b)|). (21.1)

Proof. An edge (a, b) with z (a) ≤ z (b) is on the boundary of S if

z (a) ≤ τ < z (b).

The probability that this happens is sgn(z (b))z (b)2 − sgn(z (a))z (a)2. When sgn(a) 6= sgn(b),

sgn(z (b))z (b)2 − sgn(z (a))z (a)2 = z (a)2 + z (b)2

≤ (z (b)− z (a))2

= |z (a)− z (b)| (|z (a)|+ |z (b)|).
1If this is not immediately clear, note that it is equivalent to assert that E

[√
2ρmin(d(S), d(V − S))− w(∂(S))

]
≥

0, which means that there must be some S for which the expression is non-negative.

CHAPTER 21. CHEEGER’S INEQUALITY 179

On the other hand, when sgn(a) = sgn(b),

sgn(z (b))z (b)2 − sgn(z (a))z (a)2 =
∣∣z (a)2 − z (b)2

∣∣
= |(z (a)− z (b))(z (a) + z (b))|
= |z (a)− z (b)| (|z (a)|+ |z (b)|).

We now derive a formula for the expected denominator of φ.

Lemma 21.1.5.

Et [min(d(Sτ), d(V − Sτ))] = z TDz .

Proof. Observe that

Et [d(Sτ)] =
∑
a

Prt [a ∈ Sτ] d(a) =
∑
a

Prt [z (a) ≤ τ] d(a).

The result of our centering of z at j is that

τ < 0 =⇒ d(S) = min(d(S), d(V − S)), and

τ ≥ 0 =⇒ d(V − S) = min(d(S), d(V − S)).

That is, for a < j, a is in the smaller set if τ < 0; and, for a ≥ j, a is in the smaller set if τ ≥ 0.
So,

Et [min(d(Sτ), d(V − Sτ))] =
∑
a<j

Pr [z (a) < τ and τ < 0] d(a) +
∑
a≥j

Pr [z (a) > τ and τ ≥ 0] d(a)

=
∑
a<j

Pr [z (a) < τ < 0] d(a) +
∑
a≥j

Pr [z (a) > τ ≥ 0] d(a)

=
∑
a<j

z (a)2d(a) +
∑
a≥j

z (a)2d(a)

=
∑
a

z (a)2d(a)

= z TDz .

Recall that our goal is to prove that

E [w(∂(Sτ))] ≤
√

2ρ E [min(d(Sτ), d(V − Sτ))] ,

and we know that

Et [min(d(Sτ), d(V − Sτ))] = z TDz

and that

Et [w(∂(Sτ))] ≤
∑

(a,b)∈E

wa,b |z (a)− z (b)| (|z (a)|+ |z (b)|).

CHAPTER 21. CHEEGER’S INEQUALITY 180

We may use the Cauchy-Schwartz inequality to upper bound the term above by√ ∑
(a,b)∈E

wa,b(z (a)− z (b))2

√ ∑
(a,b)∈E

wa,b(|z (a)|+ |z (b)|)2. (21.2)

We have defined ρ so that the term under the left-hand square root is at most

z TLz ≤ ρz TDz .

To bound the right-hand square root, we observe∑
(a,b)∈E

wa,b(|z (a)|+ |z (b)|)2 ≤ 2
∑

(a,b)∈E

wa,b
(
z (a)2 + z (b)2

)
= 2

∑
a

z (a)2d(a) = 2z TDz .

Putting all these inequalities together yields

E [w(∂(S))] ≤
√
ρz TDz

√
2z TDz

=
√

2ρz TDz

=
√

2ρE [min (d(S), d(V − S))] .

Chapter 22

Local Graph Clustering

Local graph clustering algorithms discover small clusters of low conductance near a given input
vertex. Imagine that a graph has a cluster S that is not too big–d(S) is small relative to
d(V)–and that has low conductance. Also imagine that we know some vertex a ∈ S. Local
clustering algorithms give us a way of computing a cluster nearby S of similar size and
conductance. They are not guaranteed to work for all a ∈ S. But, we can show that they work for
“most” a ∈ S, where we have to measure “most” by weighted degree. In this chapter, we will see
an elegant analysis due to Kwok, Lau and Lee [KLL16] of a random-walk based local graph
clustering algorithm suggested by Spielman and Teng [ST04, ST13]

Most local clustering algorithms can be implemented to run on unweighted graphs in time
depending on d(S), rather that on the size of the graph. This means that they can find the
cluster without having to examine the entire graph! Many of the developments in these
algorithms have improved the running time, the size of the set returned, and the conductance of
the set returned. The end of the chapter contains pointers to major advances in these algorithms.

In this chapter, we focus on proving that we can find a cluster approximately as good as S,
without optimizing parameters or run time.

22.1 The Algorithm

The input to the algorithm is a target set size, s, a conductance bound φ, and a seed vertex, a.
We will prove that if G contains a set S with d(S) ≤ s ≤ d(V)/32 and φ(S) ≤ φ, then there is an
a ∈ S such that when the algorithm is run with these parameters, it will return a set T with
d(T) ≤ 16s and φ(T) ≤

√
8 ln(8s)φ. For the rest of this chapter we will assume that G does

contain a set S that satisfies these conditions.

Here is the algorithm.

1. Set p0 = δa.

2. Set t = 1/2φ (we will assume that t is an integer).

181

CHAPTER 22. LOCAL GRAPH CLUSTERING 182

3. Set y = D−1W̃
t
p0.

4. Return the set of the form Tτ = {b : y(b) > τ} that has least conductance among those with
d(Tτ) ≤ 8s.

Recall that the stable distribution of the random walk on a graph is d/(1Td). So, to measure
how close a probability distribution p is to the stable distribution, we could ask how close D−1p
is to being constant. In this chapter, we will measure this by the generalized Rayleigh quotient

pTD−1LD−1p

pTD−1p
.

When we want to apply Cheeger’s inequality, we will change variables to y = D−1p. In these
variables, the above quotient becomes

yTLy

yTDy
.

We will work with the lazy random walk matrix

W̃ =
1

2
(I + W) =

1

2
(I + MD−1).

22.2 Good choices for a

We will say that a vertex a ∈ S is good for S if

d(a)

d(S)
≥ 1

2 |S| and 1TSW̃
t
δa ≥ 1/2.

The second inequality says that after t steps the lazy walk that starts at a will be in S with
probability at least 1/2. In this section we show that S contains a good vertex. We will then show
that the local clustering algorithm succeeds if it begins at a good vertex.

Consider the distribution on vertices that corresponds to choosing a vertex at random from S
with probability proportional to its degree:

pS
def
=

{
d(a)/d(S), for a ∈ S
0, otherwise.

The following lemma says that if we start a walk from a random vertex in S chosen with
probability proportional to degree, then the probability it is outside S on the tth step of the lazy
walk is at most tφ(S)/2.

Lemma 22.2.1. Let S be a set with d(S) ≤ d(V)/2. Let pt = W̃
t
pS. Then

1TV−Spt ≤ tφ(S)/2.

CHAPTER 22. LOCAL GRAPH CLUSTERING 183

Proof. We will upper bound the probability that the lazy walk leaves S in each step by φ(S)/2. In
the first step, the probability that the lazy walk leaves S is exactly the sum over vertices a in S of
the probability the walk begins at a times the probability it follows an edge to a vertex not in S:∑

a∈S
pS(a)

1

2

∑
b∼a
b 6∈S

wa,b
d(a)

=
1

2

1

d(S)

∑
a∈S
b 6∈S

wa,b =
1

2

w(∂(S))

d(S)
=

1

2
φ(S).

We now wish to show that in every future step the probability that the lazy walk leaves S is at
most this large. To this end, let p0 = pS , and define

pi = W̃ pi−1.

We now show by induction that for every a ∈ V , pi(a) ≤ d(a)/d(S). This is true for p0, and in

fact the inequality is tight for a ∈ S. To establish the induction, note that all entries of W̃ and
pi−1 are nonnegative. So, the assumption that pi−1 is entrywise at most d(a)/d(S) implies that
for a ∈ S

δTa pi = δTa W̃ pi−1 ≤ δTa W̃ d/d(S) = δTa d/d(S) = d(a)/d(S).

Thus, the probability that the walk transitions from a vertex in S to a vertex not in S at step i
satisfies ∑

a∈S
pi(a)

1

2

∑
b∼a
b 6∈S

wa,b
d(a)

≤
∑
a∈S

pS(a)
1

2

∑
b∼a
b6∈S

wa,b
d(a)

=
1

2
φ(S).

Lemma 22.2.2. The set S contains a good vertex a.

Proof. After we expand pS in an elementary unit basis as

pS =
∑
a∈S

d(a)

d(S)
δa,

Lemma 22.2.1 tells us that ∑
a∈S

d(a)

d(S)
1TV−SW̃

t
δa ≤ tφ(S)/2.

Define fa to be the indicator1for the event that

1TV−SW̃
t
δa > tφ(S)

and let ba be the indicator for the event that

d(a)

d(S)
<

1

2 |S| .

1That is, fa = 1 if the event holds, and fa = 0 otherwise.

CHAPTER 22. LOCAL GRAPH CLUSTERING 184

By an application of what is essentially Markov’s inequality, we conclude∑
a∈S

d(a)

d(S)
fa <

1

2
.

As ∑
a∈S

d(a)

d(S)
ba <

∑
a∈S

1

2 |S|ba ≤
∑
a∈S

1

2 |S| = 1/2.

Thus, there is a vertex for which neither fa nor ba hold. As

1TSW̃
t
δa = 1− 1TV−SW̃

t
δa

and tφ(S) ≤ 1/2, such a vertex is good.

By slightly loosening the constants in the definition of “good”, we could prove that most vertices
of S are good, where “most” is defined by sampling with probability proportional to degree.

22.3 Bounding the D-norm

Claim 22.3.1. For a probability vector p,

pTD−1p ≥ (1TSp)2

d(S)
.

Proof. Write

1TSp =
∑
a∈S

p(a) =
∑
a∈S

√
d(a)

(
p(a)/

√
d(a)

)
and apply the Cauchy-Schwartz inequality to conclude

(
1TSp

)2 ≤ (∑
a∈S

d(a)

)(∑
a∈S

p(a)2/d(a)

)
≤
(∑
a∈S

d(a)

)(∑
a

p(a)2/d(a)

)
= d(S)pTD−1p.

If a is good for S, then 1TSpt ≥ 1/2, and so

pTt D
−1pt ≥

1

4d(S)
.

CHAPTER 22. LOCAL GRAPH CLUSTERING 185

22.4 Bounding the Generalized Rayleigh Quotient

The following lemma allows us to measure how close a walk is to convergence merely in terms of
the quadratic form pTt D

−1pt and the number of steps t.

Lemma 22.4.1. Let pt = W̃
t
p0 for some probability vector p0. Then

pTt D
−1LD−1pt

pTt D
−1pt

≤ 1

t
ln

(
p0D

−1p0

ptD
−1pt

)
.

The proof of Lemma 22.4.1 rests on the following standard inequality.

Theorem 22.4.2. [Power Means Inequality] For k > h > 0, nonnegative numbers w1, . . . , wn that
sum to 1, and nonnegative numbers λ1, . . . , λn,(

n∑
i=1

wiλ
k
i

)1/k

≥
(

n∑
i=1

wiλ
h
i

)1/h

Proof of Lemma 22.4.1. Define
z t = D−1/2pt,

so
pTt D

−1LD−1pt = z Tt D
−1/2LD−1/2z t = z Tt Nz t, and pTt D

−1pt = z Tt z t.

Write z 0 = D−1/2p0 in the eigenbasis of N as

z 0 =
∑
i

ciψi,

and set

γ =
1∑
i c

2
i

=
1

z T0 z 0

so that
∑

i γc
2
i = 1. We have

z t = D−1/2W̃
t
p0 = D−1/2W̃

t
D1/2z 0 =

(
D−1/2W̃D1/2

)t
z 0.

Recall from Chapter 10 that

D−1/2W̃D1/2 = I − 1

2
N ,

and that the eigenvalues of these matrices are related by

νi = 2− 2ωi.

Thus,

z t =
∑
i

ciω
t
iψi,

CHAPTER 22. LOCAL GRAPH CLUSTERING 186

and
z Tt Nz t =

∑
i

c2
i νiω

2t
i ≤ 2

∑
i

c2
iω

2t
i − 2

∑
i

c2
iω

2t+1
i .

Thus,

γz Tt Nz t

γz Tt z t
=

2
∑

i γc
2
iω

2t
i − 2

∑
i γc

2
iω

2t+1
i .∑

i γc
2
iω

2t
i

= 2− 2

∑
i γc

2
iω

2t+1
i∑

i γc
2
iω

2t
i

.

To upper bound this last term, we recall that
∑

i γc
2
i = 1 and apply the Power Means Inequality

to show (∑
i

γc2iω
2t+1
i

)1/(2t+1)

≥
(∑

i

γc2iω
2t
i

)1/(2t)

=⇒

(∑
i

γc2iω
2t+1
i

)
≥
(∑

i

γc2iω
2t
i

)1+1/(2t)

=⇒

∑
i γc

2
iω

2t+1
i∑

i γc
2
iω

2t
i

≥
(∑

i

γc2iω
2t
i

)1/(2t)

.

This implies

2− 2

∑
i γc

2
iω

2t+1
i∑

i γc
2
iω

2t
i

≤ 2− 2

(∑
i

γc2iω
2t
i

)1/2t

= 2− 2

(
z Tt z t

z T0 z 0

)1/2t

.

To finish the proof, let R =
zT
t z t

zT
0 z 0

, and note that for all R

R1/2t = exp(− ln(1/R)/2t) ≥ 1− ln(1/R)/2t.

So,

2− 2

(
z Tt z t

z T0 z 0

)1/2t

≤ 2− 2 (1− ln(1/R)/2t) = ln(1/R)/t =
1

t
ln

(
z T0 z 0

z Tt z t

)
.

For a vertex a that is good for S,

pTt D
−1pt

pT0 D
−1p0

≥ 1

4d(S)p0D
−1p0

≥ d(a)

4d(S)
≥ 1

8 |S| ;

so
pTt D

−1LD−1pt
pTt D

−1pt
≤ ln(8 |S|)

t
≤ 2φ ln(8 |S|).

CHAPTER 22. LOCAL GRAPH CLUSTERING 187

22.5 Rounding

To apply Cheeger’s inequality, Theorem 21.1.3, we first change variables from pt to y
def
= D−1pt.

As 1Tpt = 1, the vector y satisfies dTy = 1, and

pTt D
−1LD−1pt

pTt D
−1pt

=
yTLy

yTDy
.

So that we can be sure that the algorithm underlying Theorem 21.1.3 will find a set T that is not
too big, we will round to zero all the small entries of y and call the result x . While this is not
necessary for the algorithm, it does facilitate analysis.

Define
x (a) = max(0,y(a)− 1/16s). (22.1)

If s ≤ d(V)/32, then x will be balanced with respect to d . This is because at most half its entries
(measured by degree) will be positive. Formally,∑

a:y(a)>1/16s

d(a) =
∑

a:pt(a)>d(a)/16s

d(a) <
∑

a:pt(a)>d(a)/16s

16spt(a) ≤
∑
a

16spt(a) ≤ 16s.

As Cheeger’s inequality will produce a set of the form

Tτ = {a : y(a) > τ} ,

this set will satisify d(Tτ) ≤ 16s.

Lemma 22.5.1. Let y be a vector such that dTy = 1 and define the vector x by

x (a) = max(0,y(a)− ε).

Then, xTDx ≥ yTDy − 2ε.

Proof. We observe that for every number y and ε,

max(0, y − ε)2 ≥ y2 − 2yε :

If y ≤ ε then y2 − 2yε < 0, and for y > ε, (y − ε)2 = y2 − 2y + ε2. Thus,

xTDx =
∑
a

d(a) max(0,y(a)− ε)2

≥
∑
a

d(a)y(a)2 − 2y(a)ε

= yTDy − 2ε
∑
a

d(a)y(a)

= yTDy − 2ε.

CHAPTER 22. LOCAL GRAPH CLUSTERING 188

If a is good for S and p0 = δa, then

xTDx ≥ yTDy − 1/8d(S) ≥ yTDy/2.

Moreover, as shifting y and rounding entries to zero can not increase the length of any edge,

xTLx ≤ yTLy .

Together these imply
xTLx

xTDx
≤ 2

yTLy

yTDy
≤ 4 ln(8 |S|)φ.

As y is balanced with respect to d , we may apply Cheeger’s inequality to obtain a set T of
conductance at most √

8 ln(8 |S|)φ.

22.6 Notes

Explain where these come from, and give some references to where they are used in practice.

Chapter 23

Spectral Partitioning in a Stochastic
Block Model

In this chapter, show how eigenvectors can be used to partition graphs drawn from certain
natural models. These are called stochastic block models or a planted partition model, depending
on community and application.

The simplest model of this form is for the graph bisection problem. This is the problem of
partitioning the vertices of a graph into two equal-sized sets while minimizing the number of
edges bridging the sets. To create an instance of the planted bisection problem, we first choose a
partition of the vertices into equal-sized sets X and Y . When then choose probabilities p > q, and
place edges between vertices with the following probabilities:

Pr [(a, b) ∈ E] =


p if a ∈ X and b ∈ X
p if a ∈ Y and b ∈ Y
q otherwise.

The expected number of edges crossing between X and Y will be q |X| |Y |. If p is sufficiently
larger than q, for example if p = 1/2 and q = p− 17/

√
n, we will show that the partition can be

approximately recovered from the second eigenvector of the adjacency matrix of the graph. The
result, of course, extends to over values of p and q. The result we present is a simplified version of
an analysis of McSherry [McS01].

If p is too close to q, then the partition given by X and Y will not be the smallest. For example,
if q = p− ε/√n for small ε then the problem in information-theoretically unsolvable.

McSherry analyzed more general models than this, including planted coloring problems, and
sharp results have been obtained in a rich line of work. See, for example,
[MNS14, DKMZ11, BLM15, Mas14, Vu14].

McSherry’s analysis treats the adjacency matrix of the generated graph as a perturbation of the
expected adjacency matrix. In the expected matrix the second eigenvector provides a clean
partition of the two blocks. McSherry shows that the difference between the generated matrix and

189

CHAPTER 23. SPECTRAL PARTITIONING IN A STOCHASTIC BLOCK MODEL 190

the expected one is small, and so the generated matrix can be viewed as a small perturbation of
the expected one. He then uses matrix perturbation theory to show that the second eigenvector of
the generated matrix will probably be close to the second eigenvector of the expected matrix, and
so it reveals the partition. The idea of using perturbation theory to analyze random objects
generated from nice models has been very powerful.

Warning: stochastic block models have been the focus of a lot of research lately, and there are
now very good algorithms for solving problems on graphs generated from these models. But,
these are just models and very little real data resembles that produced by these models. There is
no reason to believe that algorithms that are optimized for these models will be useful in practice.
Nevertheless, some of them are.

23.1 The Perturbation Approach

As long as we don’t tell our algorithm, we can choose X = {1, . . . , n/2} and
Y = {n/2 + 1, . . . , n}. Let’s do this for simplicity.

Define the matrix

A =



0 p · · · p p q q · · · q q
p 0 · · · p p q q · · · q q
...

...
p p · · · 0 p q q · · · q q
p p · · · p 0 q q · · · q q
q q · · · q q 0 p · · · p p
q q · · · q q p 0 · · · p p
...

...
q q · · · q q p p · · · 0 p
q q · · · q q p p · · · p 0


=

[
pJ n/2 qJ n/2
qJ n/2 pJ n/2

]
− pI n,

where we write J n/2 for the square all-1s matrix of size n/2.

The adjacency matrix of the planted partition graph is obtained by setting

M (a, b) =

{
1 with probability A(a, b), and

0 with probability 1−A(a, b),

subject to M (a, b) = M (b, a) and M (a, a) = 0. Our analysis will heavily exploit the relation

E [M] = A. M is the adjacency matrix of a random graph, but unlike in Chapter 8 the
probabilities of some edges are different from others.

We will study a very simple algorithm for finding an approximation of the planted bisection:
compute ψ2, the eigenvector of the second-largest eigenvalue of M . Then, set
S = {a : ψ2(a) < 0}. We guess that S is one of the sets in the bisection. We will show that under
reasonable conditions on p and q, S will be mostly right. For example, we might consider p = 1/2

CHAPTER 23. SPECTRAL PARTITIONING IN A STOCHASTIC BLOCK MODEL 191

and q = 1/2− 17/
√
n. Intuitively, the reason this works is that M is a slight perturbation of A,

and so the eigenvectors of M should look like the eigenvectors of A.

To simplify some formulas, we henceforth work with

M̂
def
= M + pI and Â

def
= A + pI

Note that the eigenvectors of M̂ and M are the same, and so are those of Â and A. So
considering M̂ and Â won’t change our analysis at all. The matrix Â is convenient because it has
rank 2. We now consider the difference between M̂ and Â:

R = M̂ − Â = M −A = M − E [M] .

We will show that ‖R‖ is probability small, that the second eigenvector of A distinguishes X
from Y , and that if the difference between p and q is not too small then the second eigenvector of
M is close enough to the second eigenvector of A to also distinguish X from Y .

Let’s look at the eigenvectors of Â. Of course, the constant vectors are eigenvectors of Â. We have

Â1 =
n

2
(p+ q)1,

and so the corresponding eigenvalue is

α1
def
=

n

2
(p+ q).

The second eigenvector of Â has two values: one on X and one on Y . Let’s be careful to make
this a unit vector. We take

φ2(a) =

{
1√
n

a ∈ X
− 1√

n
a ∈ Y.

Then,

Âφ2 =
n

2
(p− q)φ2,

and the corresponding eigenvalue is

α2
def
=

n

2
(p− q).

In particular, φ2 distinguishes X from Y . But, our algorithm does not know φ2. As Â has rank
2, all the other eigenvalues of Â are zero.

For (a, b) in the same component,

R(a, b) =

{
1− p with probability p, and

−p with probability 1− p,

and for (a, b) in different components,

R(a, b) =

{
1− q with probability q, and

−q with probability 1− q.

CHAPTER 23. SPECTRAL PARTITIONING IN A STOCHASTIC BLOCK MODEL 192

We can use bounds similar to those proved in Chapter 8 to show that it is unlikely that R has
large norm. The bounds that we proved on the norm of a matrix in which entries are chosen from
{1− p,−p} applies equally well if each entry (a, b) is chosen from {1− qa,b,−qa,b} as long as
qa,b < p ≤ 1/2 and all have expectation 0, because (8.2) still applies. For a sharp result, we appeal
to a theorem of Vu [Vu07, Theorem 1.4], which implies the following.

Theorem 23.1.1. There exist constants c1 and c2 such that with probability approaching 1,

‖R‖ ≤ 2
√
p(1− p)n+ c1(p(1− p)n)1/4 lnn,

provided that

p ≥ c2
ln4 n

n
.

We use a crude corollary of this result.

Corollary 23.1.2. There exists a constant c0 such that with probability approaching 1,

‖R‖ ≤ 3
√
pn,

provided that

p ≥ c0
ln4 n

n
.

In fact, Alon, Krivelevich and Vu [AKV02] prove that the probability that the norm of R exceeds
this value by more than t is exponentially small in t. One could use this to sharpen the results we
present here.

23.2 Perturbation Theory for Eigenvectors

Let µ1 ≥ µ2 ≥ · · · ≥ µn be the eigenvalues of M̂ , and let α1 > α2 > 0 = α3 = · · · = αn be the
eigenvalues of Â. Weyl’s inequality, which one can prove using the Courant-Fischer theorem, says
that

|µi − αi| ≤ ‖R‖ . (23.1)

So, we can view µ2 as a perturbation of α2. We need a stronger fact, which is that we can view
ψ2 as a perturbation of φ2.

The Davis-Kahan theorem [DK70] says that ψ2 will be close to φ2, in angle, if the norm of R is
significantly less than the distance between α2 and the other eigenvalues of Â. That is, the
eigenvector does not move too much if its corresponding eigenvalue is isolated.

To see why the amount by which eigenvectors move depends upon how close their respective
eigenvalues are, consider this pair of matrices that are very close to each other:[

1 + ε 0
0 1

]
and

[
1 0
0 1 + ε

]
.

CHAPTER 23. SPECTRAL PARTITIONING IN A STOCHASTIC BLOCK MODEL 193

While these two matrices are very close, their leading eigenvectors are

(
1
0

)
and

(
0
1

)
, which are

90 degrees from each other.

Also, consider the matrix [
1 ε
ε 1

]
,

with eigenvectors

(
1
1

)
and

(
1
−1

)
, which are 45 degrees from the eigenvectors of the previous two

matrices.

The heart of the problem is that there is no unique eigenvector of an eigenvalue that has
multiplicity greater than 1.

Theorem 23.2.1. Let A and B be symmetric matrices. Let R = A−B . Let α1 ≥ · · · ≥ αn be
the eigenvalues of A with corresponding eigenvectors φ1, . . . ,φn and let Let β1 ≥ · · · ≥ βn be the
eigenvalues of B with corresponding eigenvectors ψ1, . . . ,ψn. Let θi be the angle between ±ψi
and ±φi. Then,

sin 2θi ≤
2 ‖R‖

minj 6=i |αi − αj |
.

The angle is never more than π/2, because this theorem is bounding the angle between the
eigenspaces rather than a particular choice of eigenvectors. We will prove and use a slightly
weaker statement in which we replace 2θ with θ.

23.3 Partitioning

When ‖R‖ is small, we can use Weyl’s inequality to show that µ2 has multiplicity one. Now, let
φ2 be the unit eigenvector of µ2 of least angle to ψ2. We can use ψ2 to guess a partition of the
vertices into X and Y by assigning vertex a to X if ψ2(a) > 0.

Consider
δ = ψ2 − φ2,

and let θ be the angle between them. For every vertex a that is misclassified by ψ2, we have
|δ(a)| ≥ 1√

n
. So, if ψ2 misclassifies k vertices, then

‖δ‖ ≥
√
k

n
.

As φ2 and ψ2 are unit vectors, we may apply the crude inequality

‖δ‖ ≤
√

2 sin θ

(the
√

2 disappears as θ gets small).

CHAPTER 23. SPECTRAL PARTITIONING IN A STOCHASTIC BLOCK MODEL 194

To combine this with the perturbation bound, we assume q > p/3, and find

min
j 6=2
|α2 − αj | = α2 − α3 = α2 =

n

2
(p− q).

Assuming that ‖R‖ ≤ 3
√
p(1− p)n, Theorem 23.2.1 implies

sin θ ≤ 2 ‖R‖
n
2 (p− q) ≤

2 · 3
√
p(1− p)n

n
2 (p− q) =

12
√
p(1− p)√
n(p− q) .

So, the number k of misclassified vertices satisfies√
k

n
≤
√

2 · 12
√
p(1− p)√

n(p− q) ,

which implies

k ≤ 288p(1− p)
(p− q)2

.

So, we expect to misclassify at most a constant number of vertices if p and q remain constant as n
grows large. An interesting case to consider is p = 1/2 and q = p− 17/

√
n. This gives

288p(1− p)
(p− q)2

=
n

4
,

so we expect to misclassify at most a constant fraction of the vertices. Of course, once one gets
most of the vertices correct is should be possible to use them to better classify the rest. Many of
the advances in the study of algorithms for this problem involve better and more rigorous ways of
doing this.

23.4 Proof of the Davis-Kahan Theorem

For simplicity, we will prove a statement that is weaker by a factor of 2.

Proof of a weak version of Theorem 23.2.1. By considering the matrices A− αiI and B − αiI
instead of A and B , we can assume that αi = 0: the shift does not change the eigenvectors or the
gaps between eigenvalues. As the theorem is vacuous if αi has multiplicity more than 1, we may
also assume that αi has multiplicity 1 as an eigenvalue, and that ψi is a unit vector in the
nullspace of B .

Our assumption that αi = 0 also leads to |βi| ≤ ‖R‖ by Weyl’s inequality (23.1).

Expand ψi in the eigenbasis of A, as

ψi =
∑
j

cjφj , where cj = φTj ψi.

Setting
δ = min

j 6=i
|αj | ,

CHAPTER 23. SPECTRAL PARTITIONING IN A STOCHASTIC BLOCK MODEL 195

we compute

‖Aψi‖2 =
∑
j

c2
jα

2
j

=
∑
j 6=i

c2
jα

2
j , because we assumed ci = 0,

≥
∑
j 6=i

c2
jδ

2

= δ2
∑
j 6=i

c2
j

= δ2(1− c2
i)

= δ2 sin2 θi.

On the other hand,

‖Aψi‖ = ‖(B + R)ψi‖ ≤ ‖Bψi‖+ ‖Rψi‖ = βi + ‖Rψi‖ ≤ 2 ‖R‖ .

So,

sin θi ≤
2 ‖R‖
δ

.

23.5 Further Reading

If you would like to know more about bounding norms and eigenvalues of random matrices, I
recommend [Ver10] and [Tro12].

Chapter 24

Nodal Domains

24.1 Overview

The goal of this section is to rigorously explain some of the behavior we observed when using
eigenvectors to draw graphs in the introduction First, recall some of the drawings we made of
graphs:

These images were formed by computing the eigenvectors corresponding to the second and third
smallest eigenvalues of the Laplacian for each graph, ψ2 and ψ3, and then using ψ2 to assign a
horizontal coordinate to each vertex and ψ3 to assign a vertical coordinate. The edges are drawn
as straight lines between their endpoints

We will show that the subgraphs obtained in the right and left halves of each image are connected.

Path graphs exhibited more interesting behavior: their kth eigenvector changes sign k times:

196

CHAPTER 24. NODAL DOMAINS 197

2 4 6 8 10

-0.4

-0.2

0.0

0.2

0.4

Vertex Number

V
al

ue
 in

 E
ig

en
ve

ct
or

v2
v3
v4

2 4 6 8 10

-0.4

-0.2

0.0

0.2

0.4

Vertex Number

V
al

ue
 in

 E
ig

en
ve

ct
or

v10

This remains true even when the edges of the path graphs have weights. Here are the analogous
plots for a path graph with edge weights randomly chosen in [0, 1]:

2 4 6 8 10

-0.4

-0.2

0.0

0.2

0.4

Vertex Number

V
al

ue
 in

 E
ig

en
ve

ct
or

v2
v3
v4

2 4 6 8 10
-0.50

-0.25

0.00

0.25

0.50

Vertex Number

V
al

ue
 in

 E
ig

en
ve

ct
or

v11

Here are the first few eigenvectors of another:

CHAPTER 24. NODAL DOMAINS 198

2 4 6 8 10

-0.50

-0.25

0.00

0.25

0.50

Vertex Number

V
al

ue
 in

 E
ig

en
ve

ct
or

v2
v3
v4

Random.seed!(1)

M = spdiagm(1=>rand(10))

M = M + M’

L = lap(M)

E = eigen(Matrix(L))

Plots.plot(E.vectors[:,2],label="v2",marker = 5)

Plots.plot!(E.vectors[:,3],label="v3",marker = 5)

Plots.plot!(E.vectors[:,4],label="v4",marker = 5)

xlabel!("Vertex Number")

ylabel!("Value in Eigenvector")

savefig("rpath2v24.pdf")

We see that the kth eigenvector still changes sign k times. We will prove that this always
happens. These are some of Fiedler’s theorems about “nodal domains”. Nodal domains are the
connected parts of a graph on which an eigenvector is negative or positive.

24.2 Sylvester’s Law of Inertia

Let’s begin with something obvious.

Claim 24.2.1. If A is positive semidefinite, then so is BTAB for every matrix B .

Proof. For every vector x ,
xTBTABx = (Bx)TA(Bx) ≥ 0,

since A is positive semidefinite.

We will make use of Sylvester’s Law of Inertia, which is a powerful generalization of this fact. I
will state and prove it now.

CHAPTER 24. NODAL DOMAINS 199

Theorem 24.2.2 (Sylvester’s Law of Inertia). Let M be any symmetric matrix and let B be any
non-singular matrix. Then, the matrix BMBT has the same number of positive, negative and
zero eigenvalues as M .

Note that if the matrix B were orthogonal, or if we used B−1 in place of BT , then these matrices
would have the same eigenvalues. What we are doing here is different, and corresponds to a
change of variables.

Proof. It is clear that M and BMBT have the same rank, and thus the same number of zero
eigenvalues.

We will prove that M has at least as many positive eigenvalues as BMBT . One can similarly
prove that that M has at least as many negative eigenvalues, which proves the theorem.

Let γ1 ≥ . . . ≥ γk be the positive eigenvalues of BMBT and let Yk be the span of the
corresponding eigenvectors. Now, let Sk be the span of the vectors BTy , for y ∈ Yk. As B is
non-singluar, Sk has dimension k. Let α1 ≥ · · · ≥ αn be the eigenvalues of M . By the
Courant-Fischer Theorem, we have

αk = max
S⊆IRn

dim(S)=k

min
x∈S

xTMx

xTx
≥ min

x∈Sk

xTMx

xTx
= min

y∈Yk

yTBMBTy

yTBBTy
≥ γky

Ty

yTBBTy
> 0.

So, M has at least k positive eigenvalues (The point here is that the denominators are always
positive, so we only need to think about the numerators.)

To finish, either apply the symmetric argument to the negative eigenvalues, or apply the same
argument with B−1 to reverse the roles of A and BABT .

24.3 Weighted Trees

We will now a slight simplification of a theorem of Fiedler [Fie75a].

Theorem 24.3.1. Let T be a weighted tree graph on n vertices, let LT have eigenvalues
0 = λ1 < λ2 · · · ≤ λn, and let ψk be an eigenvector of λk. If there is no vertex a for which
ψk(a) = 0, then there are exactly k − 1 edges (a, b) for which ψk(a)ψk(b) < 0.

One can extend this theorem to accommodate zero entries. We will just prove this theorem for
weighted path graphs, which are a special case of weighted trees. At the beginning of this section,
we plotted the eigenvectors of some weighted paths by using the index of a vertex along the path
as the horizontal coordinate, and the value of the eigenvector at that vertex as the vertical
coordinate. When we draw the edges as straight lines, the number of sign changes equals the
number of times the plot crosses the horizontal axis.

Our analysis will rest on an understanding of Laplacians of paths that are allowed to have
negative edges weights.

CHAPTER 24. NODAL DOMAINS 200

Lemma 24.3.2. Let M be the Laplacian matrix of a weighted path that can have negative edge
weights:

M =
∑

1≤a<n
wa,a+1La,a+1,

where the weights wa,a+1 are non-zero and we recall that La,b is the Laplacian of the edge (a, b).
The number of negative eigenvalues of M equals the number of negative edge weights.

Note that this is also true for weighted trees.

Proof. Note that

xTMx =
∑

(u,v)∈E

wu,v(x (u)− x (v))2.

We now perform a change of variables that will diagonalize the matrix M . Let δ(1) = x (1), and
for every a > 1 let δ(a) = x (a)− x (a− 1).

Every variable x (1), . . . ,x (n) can be expressed as a linear combination of the variables
δ(1), . . . , δ(n). In particular,

x (a) = δ(1) + δ(2) + · · ·+ δ(a).

So, there is a square matrix B of full rank such that

x = Bδ.

By Sylvester’s law of inertia, we know that

BTMB

has the same number of positive, negative, and zero eigenvalues as M . On the other hand,

δTBTMBδ =
∑

1≤a<n
wa,a+1(δ(a+ 1))2.

So, this matrix clearly has one zero eigenvalue, and as many negative eigenvalues as there are
negative wa,a+1.

Proof of Theorem 24.3.1. We assume that λk has multiplicity 1. One can prove it, but
we will skip it.

Let Ψk denote the diagonal matrix with ψk on the diagonal, and let λk be the corresponding
eigenvalue. Consider the matrix

X = Ψk(LP − λkI)Ψk.

The matrix LP − λkI has one zero eigenvalue and k − 1 negative eigenvalues. As we have
assumed that ψk has no zero entries, Ψk is non-singular, and so we may apply Sylvester’s Law of
Intertia to show that the same is true of X .

CHAPTER 24. NODAL DOMAINS 201

I claim that
X =

∑
(a,b)∈E

wa,bψk(a)ψk(b)La,b.

To see this, first check that this agrees with the previous definition on the off-diagonal entries. To
verify that these expressions agree on the diagonal entries, we will show that the sum of the
entries in each row of both expressions agree. In fact, they are zero. As we know that all the
off-diagonal entries agree, this will imply that the diagonal entries agree. We compute

Ψk(LP − λkI)Ψk1 = Ψk(LP − λkI)ψk = Ψk(λkψk − λkψk) = 0.

As Lu,v1 = 0 and X1 = 0, the row sums agree. Lemma 24.3.2 now tells us that the matrix X ,
and thus LP − λkI , has as many negative eigenvalues as there are edges (a, b) for which
ψk(a)ψk(b) < 0.

24.4 The Perron-Frobenius Theorem for Laplacians

In Theorem 4.5.1 we stated the Perron-Frobenius Theorem for non-negative matrices. I wish to
quickly observe that this theory may also be applied to Laplacian matrices, to principal
sub-matrices of Laplacian matrices, and to any matrix with non-positive off-diagonal entries. The
difference is that it then involves the eigenvector of the smallest eigenvalue, rather than the
largest eigenvalue.

Corollary 24.4.1. Let M be a matrix with non-positive off-diagonal entries, such that the graph
of the non-zero off-diagonally entries is connected. Let λ1 be the smallest eigenvalue of M and let
v1 be the corresponding eigenvector. Then v1 may be taken to be strictly positive, and λ1 has
multiplicity 1.

Proof. Consider the matrix B = σI −M , for some large σ. For σ sufficiently large, this matrix
will be non-negative, and the graph of its non-zero entries is connected. So, we may apply the
Perron-Frobenius theory to B to conclude that its largest eigenvalue α1 has multiplicity 1, and
the corresponding eigenvector v1 may be assumed to be strictly positive. We then have
λ1 = σ − α1, and v1 is an eigenvector of λ1.

24.5 Fiedler’s Nodal Domain Theorem

Given a graph G = (V,E) and a subset of vertices, W ⊆ V , recall that the graph induced by G on
W is the graph with vertex set W and edge set

{(i, j) ∈ E, i ∈W and j ∈W} .

This graph is sometimes denoted G(W).

CHAPTER 24. NODAL DOMAINS 202

Theorem 24.5.1 ([Fie75b]). Let G = (V,E,w) be a weighted connected graph, and let L be its
Laplacian matrix. Let 0 = λ1 < λ2 ≤ · · · ≤ λn be the eigenvalues of LG and let ψ1, . . . ,ψn be the
corresponding eigenvectors. For any k ≥ 2 and any t ≤ 0, let

Wk = {i ∈ V : ψk(i) ≥ t} .

Then, the graph induced by G on Wk has at most k − 1 connected components.

Proof. We prove this theorem for the case that t = 0. Some additional work is needed to handle
the general case.

To see that Wk is non-empty, recall that ψ1 = 1 and that ψk is orthogonal ψ1. So, ψk must have
both positive and negative entries.

Assume that G(Wk) has c connected components. After re-ordering the vertices so that the
vertices in each connected component of G(Wk) are contiguous, we may assume that L and ψk
have the forms

L =


B1 0 0 · · · C 1

0 B2 0 · · · C 2
...

...
. . .

...
...

0 0 · · · Bc C c

C T
1 C T

2 · · · C T
c D

 ψk =


x 1

x 2
...
x c
y

 ,

and 
B1 0 0 · · · C 1

0 B2 0 · · · C 2
...

...
. . .

...
...

0 0 · · · Bc C c

C T
1 C T

2 · · · C T
c D




x 1

x 2
...
x c
y

 = λk


x 1

x 2
...
x c
y

 .

The first c sets of rows and columns correspond to the c connected components. So, x i ≥ t for
1 ≤ i ≤ c and y < t ≤ 0 (when I write this for a vector, I mean it holds for each entry). We also
know that the graph of non-zero entries in each B i is connected, and that each C i is non-positive
and has at least one negative entry (otherwise the graph G would be disconnected).

We will now prove that the smallest eigenvalue of each B i is smaller than λk. We know that

B ix i + C iy = λkx i.

As each entry in C i is non-positive and y is strictly negative, each entry of C iy is non-negative.
As each C i has at least one negative entry, some entry of C iy is positive. This implies that x i
cannot be the zero vector. As we assumed that x i ≥ t = 0, we can multiply the equation

B ix i = λkx i −C iy ≤ λkx i
by x i to get

xTi B ix i ≤ λkxTi x i.
If x i is strictly positive, then xTi C iy > 0, and this inequality is strict:

xTi B ix i = λkx
T
i x i − xTi C iy < λkx

T
i x i,

CHAPTER 24. NODAL DOMAINS 203

and so the smallest eigenvalue of B i is less than λk. On the other hand, if x i has any zero entries,
then the Perron-Frobenius theorem tells us that x i cannot be the eigenvector of B i of smallest
eigenvalue, and so the smallest eigenvalue of B i is less than λk. Thus, the matrix

B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...
0 0 · · · Bc


has at least c eigenvalues less than λk. By the eigenvalue interlacing theorem, this implies that L
has at least c eigenvalues less than λk. We may conclude that c, the number of connected
components of G(Wk), is at most k − 1.

This theorem breaks down if we instead consider the set

W = {i : ψk(i) > 0} .

The star graphs provide counter-examples.

0 −3

1

1

1

Figure 24.1: The star graph on 5 vertices, with an eigenvector of λ2 = 1.

Chapter 25

The Second Eigenvalue of Planar
Graphs

This Chapter Needs Editing

25.1 Overview

Spectral Graph theory first came to the attention of many because of the success of using the
second Laplacian eigenvector to partition planar graphs and scientific meshes
[DH72, DH73, Bar82, PSL90, Sim91].

In this lecture, we will attempt to explain this success by proving, at least for planar graphs, that
the second smallest Laplacian eigenvalue is small. One can then use Cheeger’s inequality to prove
that the corresponding eigenvector provides a good cut.

This was already known for the model case of a 2-dimensional grid. If the grid is of size√
n-by-

√
n, then it has λ2 ≈ c/n. Cheeger’s inequality then tells us that it has a cut of

conductance c/
√
n. And, this is in fact the cut that goes right accross the middle of one of the

axes, which is the cut of minimum conductance.

Theorem 25.1.1 ([ST07]). Let G be a planar graph with n vertices of maximum degree d, and let
λ2 be the second-smallest eigenvalue of its Laplacian. Then,

λ2 ≤
8d

n
.

The proof will involve almost no calculation, but will use some special properties of planar
graphs. However, this proof has been generalized to many planar-like graphs, including the
graphs of well-shaped 3d meshes.

204

CHAPTER 25. THE SECOND EIGENVALUE OF PLANAR GRAPHS 205

25.2 Geometric Embeddings

We typically upper bound λ2 by evidencing a test vector. Here, we will upper bound λ2 by
evidencing a test embedding. The bound we apply is:

Lemma 25.2.1. For any d ≥ 1,

λ2 = min
v1,...,vn∈IRd:

∑
v i=0

∑
(i,j)∈E ‖v i − v j‖2∑

i ‖v i‖2 .
(25.1)

Proof. Let v i = (xi, yi, . . . , zi). We note that∑
(i,j)∈E

‖v i − v j‖2 =
∑

(i,j)∈E

(xi − xj)2 +
∑

(i,j)∈E

(yi − yj)2 + · · ·+
∑

(i,j)∈E

(zi − zj)2.

Similarly, ∑
i

‖v i‖2 =
∑
i

x2
i +

∑
i

y2
i + · · ·+

∑
i

z2
i .

It is now trivial to show that λ2 ≥ RHS: just let xi = yi = · · · = zi be given by an eigenvector of
λ2. To show that λ2 ≤ RHS, we apply my favorite inequality:
A+B+···+C
A′+B′+···+C′ ≥ min

(
A
A′ ,

B
B′ , . . . ,

C
C′

)
, and then recall that

∑
xi = 0 implies∑

(i,j)∈E(xi − xj)2∑
i x

2
i

≥ λ2.

For an example, consider the natural embedding of the square with corners (±1,±1).

The key to applying this embedding lemma is to obtain the right embedding of a planar graph.
Usually, the right embedding of a planar graph is given by Koebe’s embedding theorem, which I
will now explain. I begin by considering one way of generating planar graphs. Consider a set of
circles {C1, . . . , Cn} in the plane such that no pair of circles intersects in their interiors. Associate
a vertex with each circle, and create an edge between each pair of circles that meet at a boundary.
See Figure 25.2. The resulting graph is clearly planar. Koebe’s embedding theorem says that
every planar graph results from such an embedding.

Theorem 25.2.2 (Koebe). Let G = (V,E) be a planar graph. Then there exists a set of circles
{C1, . . . , Cn} in IR2 that are interior-disjoint such that circle Ci touches circle Cj if and only if
(i, j) ∈ E.

This is an amazing theorem, which I won’t prove today. You can find a beautiful proof in the
book “Combinatorial Geometry” by Agarwal and Pach.

Such an embedding is often called a kissing disk embedding of the graph. From a kissing disk
embedding, we obtain a natural choice of v i: the center of disk Ci. Let ri denote the radius of

CHAPTER 25. THE SECOND EIGENVALUE OF PLANAR GRAPHS 206

(a) Circles in the plane (b) Circles with their
intersection graph

this disk. We now have an easy upper bound on the numerator of (25.1):
‖v i − v j‖2 = (ri + rj)

2 ≤ 2r2
i + 2r2

j . On the other hand, it is trickier to obtain a lower bound on∑ ‖v i‖2. In fact, there are graphs whose kissing disk embeddings result in

(25.1) = Θ(1).

These graphs come from triangles inside triangles inside triangles. . . Such a graph is depicted
below:

Discs

Graph

We will fix this problem by lifting the planar embeddings to the sphere by stereographic
projection. Given a plane, IR2, and a sphere S tangent to the plane, we can define the
stereographic projection map, Π, from the plane to the sphere as follows: let s denote the point
where the sphere touches the plane, and let n denote the opposite point on the sphere. For any
point x on the plane, consider the line from x to n . It will intersect the sphere somewhere. We
let this point of intersection be Π(x).

The fundamental fact that we will exploit about stereographic projection is that it maps circles to
circles! So, by applying stereographic projection to a kissing disk embedding of a graph in the
plane, we obtain a kissing disk embedding of that graph on the sphere. Let Di = Π(Ci) denote
the image of circle Ci on the sphere. We will now let v i denote the center of Di, on the sphere.

CHAPTER 25. THE SECOND EIGENVALUE OF PLANAR GRAPHS 207

Figure 25.1: Stereographic Projection.

Figure 25.2: Stereographic Projection.

If we had
∑

i v i = 0, the rest of the computation would be easy. For each i, ‖v i‖ = 1, so the
denominator of (25.1) is n. Let ri denote the straight-line distance from v i to the boundary of
Di. We then have (see Figure 25.2)

‖v i − v j‖2 ≤ (ri + rj)
2 ≤ 2r2

i + 2r2
j .

So, the numerator of (25.1) is at most 2d
∑

i r
2
i . On the other hand, a theorem of Archimedes

tells us that the area of the cap encircled by Di is at exactly πr2
i . Rather than proving it, I will

convince you that it has to be true because it is true when ri is small, it is true when the cap is a
hemisphere and ri =

√
2, and it is true when the cap is the whole sphere and ri = 2.

As the caps are disjoint, we have ∑
i

πr2
i ≤ 4π,

which implies that the numerator of (25.1) is at most∑
(a,b)∈E

‖va − v b‖2 ≤ 2r2
a + 2r2

b ≤ 2d
∑
a

r2
a ≤ 8d.

CHAPTER 25. THE SECOND EIGENVALUE OF PLANAR GRAPHS 208

Figure 25.3: A Spherical Cap.

Putting these inequalities together, we see that

min
v1,...,vn∈IRd:

∑
v i=0

∑
(i,j)∈E ‖v i − v j‖2∑

i ‖v i‖2 .
≤ 8d

n
.

Thus, we merely need to verify that we can ensure that∑
i

v i = 0. (25.2)

Note that there is enough freedom in our construction to believe that we could prove such a
thing: we can put the sphere anywhere on the plane, and we could even scale the image in the
plane before placing the sphere. By carefully combining these two operations, it is clear that we
can place the center of gravity of the v is close to any point on the boundary of the sphere. It
turns out that this is sufficient to prove that we can place it at the origin.

25.3 The center of gravity

We need a nice family of maps that transform our kissing disk embedding on the sphere. It is
particularly convenient to parameterize these by a point ω inside the sphere. For any point α on
the surface of the unit sphere, I will let Πα denote the stereographic projection from the plane
tangent to the sphere at α.

I will also define Π−1
α . To handle the point −α, I let Π−1

α (−α) =∞, and Πα(∞) = −α. We also
define the map that dilates the plane tangent to the sphere at α by a factor a: Da

α. We then
define the following map from the sphere to itself

fω(x)
def
= Πω/‖ω‖

(
D

1−‖ω‖
ω/‖ω‖

(
Π−1
ω/‖ω‖(x)

))
.

For α ∈ S and ω = aα, this map pushes everything on the sphere to a point close to α. As a
approaches 1, the mass gets pushed closer and closer to α.

CHAPTER 25. THE SECOND EIGENVALUE OF PLANAR GRAPHS 209

Instead of proving that we can achieve (25.2), I will prove a slightly simpler theorem. The proof
of the theorem we really want is similar, but about just a few minutes too long for class. We will
prove

Theorem 25.3.1. Let v1, . . . , vn be points on the unit-sphere. Then, there exists an ω such that∑
i fω(v i) = 0.

The reason that this theorem is different from the one that we want to prove is that if we apply a
circle-preserving map from the sphere to itself, the center of the circle might not map to the
center of the image circle.

To show that we can achieve
∑

i v i = 0, we will use the following topological lemma, which
follows immediately from Brouwer’s fixed point theorem. In the following, we let B denote the
ball of points of norm less than 1, and S the sphere of points of norm 1.

Lemma 25.3.2. If φ : B → B be a continuous map that is the identity on S. Then, there exists
an ω ∈ B such that

φ(ω) = 0.

We will prove this lemma using Brouwer’s fixed point theorem:

Theorem 25.3.3 (Brouwer). If g : B → B is continuous, then there exists an α ∈ B such that
g(α) = α.

Proof of Lemma 25.3.2. Let b be the map that sends z ∈ B to z/ ‖z‖. The map b is continuous
at every point other than 0. Now, assume by way of contradiction that 0 is not in the image of φ,
and let g(z) = −b(φ(z)). By our assumption, g is continuous and maps B to B. However, it is
clear that g has no fixed point, contradicting Brouwer’s fixed point theorem.

Lemma 25.3.2, was our motivation for defining the maps fω in terms of ω ∈ B. Now consider
setting

φ(ω) =
1

n

∑
i

fω(v i).

The only thing that stops us from applying Lemma 25.3.2 at this point is that φ is not defined on
S, because fω was not defined for ω ∈ S. To fix this, we define for α ∈ S

fα(z) =

{
α if z 6= −α
−α otherwise.

We then encounter the problem that fα(z) is not a continuous function of α because it is
discontinuous at α = −v i. But, this shouldn’t be a problem because the point ω at which
φ(ω) = 0 won’t be on or near the boundary. The following argument makes this intuition formal.

We set

hω(z) =

{
1 if dist(ω, z) < 2− ε, and

(2− dist(ω, z))/ε otherwise.

CHAPTER 25. THE SECOND EIGENVALUE OF PLANAR GRAPHS 210

Now, the function fα(z)hα(z) is continuous on all of B. So, we may set

φ(ω)
def
=

∑
i fω(v i)hω(v i)∑

i hω(v i),

which is now continuous and is the identity map on S.

So, for any ε > 0, we may now apply Lemma 25.3.2 to find an ω for which

φ(ω) = 0.

To finish the proof, we need to get rid of this ε. That is, we wish to show that ω is bounded away
from S, say by µ, for all sufficiently small ε. If that is the case, then we will have
dist(ω, v i) ≥ µ > 0 for all sufficiently small ε. So, for ε < µ and sufficiently small, hω(v i) = 1 for
all i, and we recover the ε = 0 case.

One can verify that this holds provided that the points v i are distinct and there are at least 3 of
them.

Finally, recall that this is not exactly the theorem we wanted to prove: this theorem deals with
v i, and not the centers of caps. The difficulty with centers of caps is that they move as the caps
move. However, this can be overcome by observing that the centers remain inside the caps, and
move continuously with ω. For a complete proof, see [ST07, Theorem 4.2]

25.4 Further progress

This result has been improved in many ways. Jonathan Kelner [Kel06] generalized this result to
graphs of bounded genus. Kelner, Lee, Price and Teng [KLPT09] obtained analogous bounds for
λk for k ≥ 2. Biswal, Lee and Rao [BLR10] developed an entirely new set of techniques to prove
these results. Their techniques improve these bounds, and extend them to graphs that do not
have Kh minors for any constant h.

Chapter 26

Planar Graphs 2, the Colin de
Verdière Number

This Chapter Needs Editing

26.1 Introduction

In this lecture, I will introduce the Colin de Verdière number of a graph, and sketch the proof that
it is three for planar graphs. Along the way, I will recall two important facts about planar graphs:

1. Three-connected planar graphs are the skeletons of three-dimensional convex polytopes.

2. Planar graphs are the graphs that do not have K5 or K3,3 minors.

26.2 Colin de Verdière invariant

The Colin de Verdière graph parameter essentially measures the maximum multiplicity of the
second eigenvalue of a generalized Laplacian matrix of the graph. It is less than or equal to three
precisely for planar graphs.

We say that M is a Generalized Laplacian Matrix of a graph G = (V,E) if M can be expressed as
M = L+D where L is a the Laplacian matrix of a weighted version of G and D is an arbitrary
diagonal matrix. That is, we impose the restrictions:

M(i, j) < 0 if (i, j) ∈ E
M(i, j) = 0 if (i, j) 6∈ E and i 6= j

M(i, i) is arbitrary.

211

CHAPTER 26. PLANAR GRAPHS 2, THE COLIN DE VERDIÈRE NUMBER 212

The Colin de Verdière graph parameter, which we denote cdv(G) is the maximum multiplicity of
the second-smallest eigenvalue of a Generalized Laplacian Matrix M of G satisfying the following
condition, known as the Strong Arnold Property.

For every non-zero n-by-n matrix X such that X(i, j) = 0 for i = j and (i, j) ∈ E,
MX 6= 0.

That later restriction will be unnecessary for the results we will prove in this lecture.

Colin de Verdière [dV90] proved that cdv(G) is at most 2 if and only if the graph G is
outerplanar. That is, it is a planar graph in which every vertex lies on one face. He also proved
that it is at most 3 if and only if G is planar. Lovàsz and Schrijver [LS98] proved that it is at
most 4 if and only if the graph is linkless embeddable.

In this lecture, I will sketch proofs from two parts of this work:

1. If G is a three-connected planar graph, then cdv(G) ≥ 3.

2. If G is a three-connected planar graph, then cdv(G) ≤ 3.

The first requires the construction of a matrix, which we do using the representation of the graph
as a convex polytope. The second requires a proof that no Generalized Laplacian Matrix of the
graph has a second eigenvalue of high multiplicity. We prove this by using graph minors.

26.3 Polytopes and Planar Graphs

Let me begin by giving two definitions of convex polytope: as the convex hull of a set of points
and as the intersection of half-spaces.

Let x 1, . . . ,xn ∈ IRd (think d = 3). Then, the convex hull of x 1, . . . ,xn is the set of points{∑
i

aix i :
∑

ai = 1 and all ai ≥ 0

}
.

Every convex polytope is the convex hull of its extreme vertices.

A convex polytope can also be defined by its faces. For example, given vectors y1, . . . ,y l, the set
of points {

x : yTi x ≤ 1, for all i
}

is a convex polytope. Moreover, every convex polytope containing the origin in its interior can be
described in this way. Each vector y i defines a face of the polytope consisting of those points x in
the polytope such that yTi x = 1.

The vertices of a convex polytope are those points x in the polytope that cannot be expressed
non-trivially as a convex combination of any points other than themselves. The edges (or 1-faces)

CHAPTER 26. PLANAR GRAPHS 2, THE COLIN DE VERDIÈRE NUMBER 213

of a convex polytope are the line segments on the boundary of the polytope that go between two
vertices of the polytope and such that every point on the edge cannot be expressed non-trivially
as the convex hull of any vertices other than these two.

Theorem 26.3.1 (Steinitz’s Theorem). For every three-connected planar graph G = (V,E), there
exists a set of vectors x 1, . . . ,xn ∈ IR3 such that the line segment from x i to x j is an edge of the
convex hull of the vectors if and only if (i, j) ∈ E.

That is, every planar graph may be represented by the edges of a three-dimensional convex
polytope. We will use this representation to construct a Generalized Laplacian Matrix M whose
second-smallest eigenvalue has multiplicity 3.

26.4 The Colin de Verdière Matrix

Let G = (V,E) be a planar graph, and let x 1, . . . ,xn ∈ IR3 be the vectors given by Steinitz’s
Theorem. For 1 ≤ i ≤ 3, let v i ∈ IRn be the vector given by

v i(j) = x j(i).

So, the vector v i contains the ith coordinate of each vector x 1, . . . ,xn.

We will now see how to construct a generalized Laplacian matrix M having the vectors v1, v2 and
v3 in its nullspace. One can also show that the matrix M has precisely one negative eigenvalue.
But, we won’t have time to do that in this lecture. You can find the details in [Lov01].

Our construction will exploit the vector cross product. Recall that for two vectors x and y in IR3

that it is possible to define a vector x × y that is orthogonal to both x and y , and whose length
is the area of the parallelogram with sizes x and y . This determines the cross product up to sign.
You should recall that the sign is determined by an ordering of the basis of IR3, or by the right
hand rule. Also recall that

x × y = −y × x ,

(x 1 + x 2)× y = x 1 × y + x 2 × y , and

x × y = 0 if and only if x and y are parallel.

We will now specify the entries M(i, j) for (i, j) ∈ E. An edge (i, j) is on the boundary of two
faces of the polytope. Let’s say that the vectors defining these faces are ya and y b. So,

yTa x i = yTa x j = yTb x i = yTb x j = 1.

So,
(ya − y b)

Tx i = (ya − y b)
Tx j = 0.

This implies that ya − y b is parallel to x i × x j .

Assume ya comes before y b in the clockwise order about vertex x i. So, y b − ya points the same
direction as x i × x j . Set M(i, j) so that

M(i, j)x i × x j = ya − y b

CHAPTER 26. PLANAR GRAPHS 2, THE COLIN DE VERDIÈRE NUMBER 214

and M(i, j) < 0.

I will now show that we can choose the diagonal entries M(i, i) so that the coordinate vectors are
in the nullspace of M . First, set

x̂ i =
∑
j∼i

M(i, j)x j .

We will show that x̂ i is parallel to x i by observing that x̂ i × x i = 0. We compute

x i × x̂ i = x i ×
∑
j∼i

M(i, j)x j =
∑
j∼i

M(i, j)x i × x j .

This sum counts the difference y b − ya between each adjacent pair of faces that touch x i. By
going around x i in counter-clockwise order, we see that each of these vectors occurs once
positively and once negatively in the sum, so the sum is zero.

Thus, x i and x̂ i are parallel, and we may set M(i, i) so that

M(i, i)x i + x̂ i = 0.

This implies that the coordinate vectors are in the nullspace of M , asM

x 1

x 2
...
xn



i

= M(i, i)x i +
∑
j∼i

M(i, j)x j = M(i, i)x i + x̂ i.

One can also show that the matrix M has precisely one negative eigenvalue, so the multiplicity of
its second-smallest eigenvalue is 3.

26.5 Minors of Planar Graphs

I will now show you that cdv(G) ≤ 3 for every 3-connected planar graph G. To begin, I mention
one other characterization of planar graphs.

First, observe that if G is a planar graph, it remains planar when we remove an edge. Also
observe that if (u, v) is an edge, then the graph obtained by contracting (u, v) to one vertex is
also planar. Any graph H that can be obtained by removing and contracting edges from a graph
G is called a minor of G. It is easy to show that every minor of a planar graph is also planar.
Kuratowski’s Theorem tells us that a graph is planar if and only if it does not have K5 or K3,3

(the complete bipartite graph between two sets of 3 vertices) as a minor. We will just use the fact
that a planar graph does not have K3,3 as a minor.

26.6 cdv(G) ≤ 3

We will now prove that if G is a 3-connected planar graph, then cdv(G) ≤ 3. Assume, by way of
contradiction, that there is generalized Laplacian matrix M of G whose second eigenvalue λ2 has

CHAPTER 26. PLANAR GRAPHS 2, THE COLIN DE VERDIÈRE NUMBER 215

multiplicity greater than or equal to 4. We will do this by showing that if G is three-connected
and cdv(G) ≥ 4, then G contains a K3,3 minor. Without loss of generality, we can assume λ2 = 0
(by just adding a diagonal matrix).

Our proof will exploit a variant of Fiedler’s Nodal Domain Theorem, which we proved back in the
beginning of the semester. That theorem considered any eigenvector v of λ2 (of a Laplacian), and
proved that the set of vertices that are non-negative in v is connected. The variant we use is due
to van der Holst [van95], which instead applies to eigenvectors v of λ2 of minimal support. These
are the eigenvectors of v of λ2 for which there is no other eigenvector w of λ2 such that the zeros
of v are a subset of the zeros of w . That is, v has as many zero entries as possible. One can then
prove that the set of vertices that are positive in v is connected. And, one can of course do the
same for the vertices that are negative.

Now, let F be any face of G, and let a, b and c be three vertices in F . As λ2 has multiplicity at
least 4, it has some eigenvector that is zero at each of a, b and c. Let v be an eigenvector of λ2

with minimal support that is zero at each of a, b, and c. Let d be any vertex for which v(d) > 0.
As the graph is three-connected, it contains three vertex-disjoint paths from d to a, b, and c (this
follows from Menger’s Theorem, which I have not covered). As v(d) > 0 and v(a) = 0, there is
some vertex a′ on the path from d to a for which v(a′) = 0 but a′ has a neighbor a+ for which
v(a+) > 0. As λ2 = 0, a′ must also have a neighbor a− for which v(a−) < 0. Construct similar
vertices for b and c.

a

d

b

c

c−

b+

b’

a+

c′

c+

a′
a−

b−

Figure 26.1: Vertices a, b, c, d, and the paths.

Now, contract every edge on the path from a to a′, on the path from b to b′ and on the path from
c to c′. Also, contract all the vertices for which v is positive and contract all the vertices for
which v is negative (which we can do because these sets are connected). Finally, contract every
edge in the face F that does not involve one of a, b, or c. We obtain a graph with a triangular
face abc such that each of a, b, and c have an edge to the positive supervertex and the negative

CHAPTER 26. PLANAR GRAPHS 2, THE COLIN DE VERDIÈRE NUMBER 216

supervertex. We would like to say that this graph cannot be planar.

a

d

b

c

c−

b+

b’

a+

c′

c+

a′
a−

f
b−

Figure 26.2: The set of positive and negative vertices that will be contracted. Vertex f has been
inserted.

To do this, we add one additional vertex f inside the face and connected to each of a, b, and c.
This does not violate planarity because a, b, and c were contained in a face. In fact, we can add f
before we do the contractions. By throwing away all other edges, we have constructed a K3,3

minor, so the graph cannot be planar.

CHAPTER 26. PLANAR GRAPHS 2, THE COLIN DE VERDIÈRE NUMBER 217

a

b

c

b’

+

c′

a′

f −

Figure 26.3: The edges in the cycle have been contracted, as have all the positive and negative
vertices. After contracting the paths between a and a′, between b and b′ and between c and c′, we
obtain a K3,3 minor.

Part V

Expander Graphs

218

Chapter 27

Properties of Expander Graphs

This Chapter Needs Editing

27.1 Overview

We say that a d-regular graph is a good expander if all of its adjacency matrix eigenvalues are
small. To quantify this, we set a threshold ε > 0, and require that each adjacency matrix
eigenvalue, other than d, has absolute value at most εd. This is equivalent to requiring all
non-zero eigenvalues of the Laplacian to be within εd of d.

In this lecture, we will:

1. Show that this condition is equivalent to approximating the complete graph.

2. Prove that this condition implies that the number of edges between sets of vertices in the
graph is approximately the same as in a d-regular random graph.

3. Prove Tanner’s Theorem: that small sets of vertices have many neighbors.

4. Derive the Alon-Boppana bound, which says that ε cannot be asymptotically smaller than
2
√
d− 1/d. This will tell us that the asymptotically best expanders are the Ramanujan

graphs.

Random d-regular graphs are expander graphs. Explicitly constructed expander graphs have
proved useful in a large number of algorithms and theorems. We will see some applications of
them next week.

27.2 Expanders as Approximations of the Complete Graph

One way of measuring how well two matrices A and B approximate each other is to measure the
operator norm of their difference: A−B . Since I consider the operator norm by default, I will

219

CHAPTER 27. PROPERTIES OF EXPANDER GRAPHS 220

just refer to it as the norm. Recall that the norm of a matrix M is defined to be its largest
singular value:

‖M ‖ = max
x

‖Mx‖
‖x‖ ,

where the norms in the fraction are the standard Euclidean vector norms. The norm of a
symmetric matrix is just the largest absolute value of one of its eigenvalues. It can be very
different for a non symmetric matrix.

For this lecture, we define an ε-expander to be a d-regular graph whose adjacency matrix
eigenvalues satisfy |µi| ≤ εd for µi ≥ 2. As the Laplacian matrix eigenvalues are given by
λi = d− µi, this is equivalent to |d− λi| ≤ εd for i ≥ 2. It is also equivalent to

‖LG − (d/n)LKn‖ ≤ εd.

For this lecture, I define a graph G to be an ε-approximation of a graph H if

(1− ε)H 4 G 4 (1 + ε)H,

where I recall that I say H 4 G if for all x

xTLHx ≤ xTLGx .

I warn you that this definition is not symmetric. When I require a symmetric definition, I usually
use the condition (1 + ε)−1H 4 G instead of (1− ε)H 4 G.

If G is an ε-expander, then for all x ∈ IRV that are orthogonal to the constant vectors,

(1− ε)dxTx ≤ xTLGx ≤ (1 + ε)dxTx .

On the other hand, for the complete graph Kn, we know that all x orthogonal to the constant
vectors satisfy

xTLKnx = nxTx .

Let H be the graph

H =
d

n
Kn,

so
xTLHx = dxTx .

So, G is an ε-approximation of H.

This tells us that LG − LH is a matrix of small norm. Observe that

(1− ε)LH 4 LG 4 (1 + ε)LH implies − εLH 4 LG − LH 4 εLH .

As LG and LH are symmetric, and all eigenvalues of LH are 0 or d, we may infer

‖LG − LH‖ ≤ εd. (27.1)

CHAPTER 27. PROPERTIES OF EXPANDER GRAPHS 221

27.3 Quasi-Random Properties of Expanders

There are many ways in which expander graphs act like random graphs. Conversely, one can prove
that a random d-regular graph is an expander graph with reasonably high probability [Fri08].

We will see that all sets of vertices in an expander graph act like random sets of vertices. To make
this precise, imagine creating a random set S ⊂ V by including each vertex in S independently
with probability α. How many edges do we expect to find between vertices in S? Well, for every
edge (u, v), the probability that u ∈ S is α and the probability that v ∈ S is α, so the probability
that both endpoints are in S is α2. So, we expect an α2 fraction of the edges to go between
vertices in S. We will show that this is true for all sufficiently large sets S in an expander.

In fact, we will prove a stronger version of this statement for two sets S and T . Imagine including
each vertex in S independently with probability α and each vertex in T with probability β. We
allow vertices to belong to both S and T . For how many ordered pairs (u, v) ∈ E do we expect to
have u ∈ S and v ∈ T? Obviously, it should hold for an αβ fraction of the pairs.

For a graph G = (V,E), define

~E(S, T) = {(u, v) : u ∈ S, v ∈ T, (u, v) ∈ E} .

We have put the arrow above the E in the definition, because we are considering ordered pairs of
vertices. When S and T are disjoint ∣∣∣ ~E(S, T)

∣∣∣
is precisely the number of edges between S and T , while∣∣∣ ~E(S, S)

∣∣∣
counts every edge inside S twice.

The following bound is a slight extension by Beigel, Margulis and Spielman [BMS93] of a bound
originally proved by Alon and Chung [AC88].

Theorem 27.3.1. Let G = (V,E) be a d-regular graph that ε-approximates d
nKn. Then, for every

S ⊆ V and T ⊆ V , ∣∣∣∣∣∣ ~E(S, T)
∣∣∣− αβdn∣∣∣ ≤ εdn√(α− α2)(β − β2),

where |S| = αn and |T | = βn.

Observe that when α and β are greater than ε, the term on the right is less than αβdn.

In class, we will just prove this in the case that S and T are disjoint.

Proof. The first step towards the proof is to observe

χTSLGχT = d |S ∩ T | −
∣∣∣ ~E(S, T)

∣∣∣ .

CHAPTER 27. PROPERTIES OF EXPANDER GRAPHS 222

Let H = d
nKn. As G is a good approximation of H, let’s compute

χTSLHχT = χTS

(
dI − d

n
J

)
χT = d |S ∩ T | − d

n
|S| |T | = d |S ∩ T | − αβdn.

So, ∣∣∣∣∣∣ ~E(S, T)
∣∣∣− αβdn∣∣∣ =

∣∣χTSLGχT − χTSLHχT ∣∣ .
As

‖LG − LH‖ ≤ εd,

χTSLHχT − χTSLGχT = χTS (LH − LG)χT

≤ ‖χS‖ ‖(LH − LG)χT ‖
≤ ‖χS‖ ‖LH − LG‖ ‖χT ‖
≤ εd ‖χS‖ ‖χT ‖
= εdn

√
αβ.

This is almost as good as the bound we are trying to prove. To prove the claimed bound, recall
that LHx = LH(x + c1) for all c. So, let xS and xT be the result of orthogonalizing χS and χT
with respect to the constant vectors. By Claim 2.4.2 (from Lecture 2), ‖xS‖ = n(α− α2). So, we
obtain the improved bound

xTS (LH − LG)xT = χTS (LH − LG)χT ,

while
‖xS‖ ‖xT ‖ = n

√
(α− α2)(β − β2).

So, we may conclude ∣∣∣∣∣∣ ~E(S, T)
∣∣∣− αβdn∣∣∣ ≤ εdn√(α− α2)(β − β2).

We remark that when S and T are disjoint, the same proof goes through even if G is irregular and
weighted if we replace ~E(S, T) with

w(S, T) =
∑

(u,v)∈E,u∈S,v∈T

w(u, v).

We only need the fact that G ε-approximates d
nKn. See [BSS12] for details.

27.4 Vertex Expansion

The reason for the name expander graph is that small sets of vertices in expander graphs have
unusually large numbers of neighbors. For S ⊂ V , let N(S) denote the set of vertices that are
neighbors of vertices in S. The following theorem, called Tanner’s Theorem, provides a lower
bound on the size of N(S).

CHAPTER 27. PROPERTIES OF EXPANDER GRAPHS 223

Theorem 27.4.1 ([Tan84]). Let G = (V,E) be a d-regular graph on n vertices that
ε-approximates d

nKn. Then, for all S ⊆ V ,

|N(S)| ≥ |S|
ε2(1− α) + α

,

where |S| = αn.

Note that when α is much less than ε2, the term on the right is approximately |S| /ε2, which can
be much larger than |S|. We will derive Tanner’s theorem from Theorem 27.3.1.

Proof. Let R = N(S) and let T = V −R. Then, there are no edges between S and T . Let
|T | = βn and |R| = γn, so γ = 1− β. By Theorem 27.3.1, it must be the case that

αβdn ≤ εdn
√

(α− α2)(β − β2).

The lower bound on γ now follows by re-arranging terms. Dividing through by dn and squaring
both sides gives

α2β2 ≤ ε2(α− α2)(β − β2) ⇐⇒
αβ ≤ ε2(1− α)(1− β) ⇐⇒
β

1− β ≤
ε2(1− α)

α
⇐⇒

1− γ
γ
≤ ε2(1− α)

α
⇐⇒

1

γ
≤ ε2(1− α) + α

α
⇐⇒

γ ≥ α

ε2(1− α) + α
.

If instead of N(S) we consider N(S)− S, then T and S are disjoint, so the same proof goes
through for weighted, irregular graphs that ε-approximate d

nKn.

27.5 How well can a graph approximate the complete graph?

Consider applying Tanner’s Theorem with S = {v} for some vertex v. As v has exactly d
neighbors, we find

ε2(1− 1/n) + 1/n ≥ 1/d,

from which we see that ε must be at least 1/
√
d(n− 1)/n, which is essentially 1/

√
d. But, how

small can it be?

CHAPTER 27. PROPERTIES OF EXPANDER GRAPHS 224

The Ramanujan graphs, constructed by Margulis [Mar88] and Lubotzky, Phillips and
Sarnak [LPS88] achieve

ε ≤ 2
√
d− 1

d
.

We will see that if we keep d fixed while we let n grow, ε cannot exceed this bound in the limit.
We will prove an upper bound on ε by constructing a suitable test function.

As a first step, choose two vertices v and u in V whose neighborhoods to do not overlap. Consider
the vector x defined by

x (i) =



1 if i = u,

1/
√
d if i ∈ N(u),

−1 if i = v,

−1/
√
d if i ∈ N(v),

0 otherwise.

Now, compute the Rayleigh quotient with respect to x . The numerator is the sum over all edges
of the squares of differences across the edges. This gives (1− 1/

√
d)2 for the edges attached to u

and v, and 1/d for the edges attached to N(u) and N(v) but not to u or v, for a total of

2d(1− 1/
√
d)2 + 2d(d− 1)/d = 2

(
d− 2

√
d+ 1 + (d− 1)

)
= 2

(
2d− 2

√
d
)
.

On the other hand, the denominator is 4, so we find

xTLx

xTx
= d−

√
d.

If we use instead the vector

y(i) =



1 if i = u,

−1/
√
d if i ∈ N(u),

−1 if i = v,

1/
√
d if i ∈ N(v),

0 otherwise,

we find
yTLy

yTy
= d+

√
d.

This is not so impressive, as it merely tells us that ε ≥ 1/
√
d, which we already knew. But, we

can improve this argument by pushing it further. We do this by modifying it in two ways. First,
we extend x to neighborhoods of neighborhoods of u and v. Second, instead of basing the
construction at vertices u and v, we base it at two edges. This way, each vertex has d− 1 edges to
those that are farther away from the centers of the construction.

The following theorem is attributed to A. Nilli [Nil91], but we suspect it was written by N. Alon.

Theorem 27.5.1. Let G be a d-regular graph containing two edges (u0, u1) and (v0, v1) that are
at distance at least 2k + 2. Then

λ2 ≤ d− 2
√
d− 1 +

2
√
d− 1− 1

k + 1
.

CHAPTER 27. PROPERTIES OF EXPANDER GRAPHS 225

Figure 27.1: The construction of x .

Proof. Define the following neighborhoods.

U0 = {u0, u1}
Ui = N(Ui−1)− ∪j<iUj , for 0 < i ≤ k,
V0 = {v0, v1}
Vi = N(Vi−1)− ∪j<iVj , for 0 < i ≤ k.

That is, Ui consists of exactly those vertices at distance i from U0. Note that there are no edges
between any vertices in any Ui and any Vj .

Our test vector for λ2 will be given by

x (a) =


1

(d−1)i/2
for a ∈ Ui

− β
(d−1)i/2

for a ∈ Vi

0 otherwise.

We choose β so that x is orthogonal to 1.

We now find that the Rayleigh quotient of x with respect to L is at most

X0 + β2Y0

X1 + β2Y1
,

where

X0 =
k−1∑
i=0

|Ui| (d− 1)

(
1− 1/

√
d− 1

(d− 1)i/2

)2

+ |Uk| (d− 1)−k+1, and X1 =

k∑
i=0

|Ui| (d− 1)−i

CHAPTER 27. PROPERTIES OF EXPANDER GRAPHS 226

and

Y0 =
k−1∑
i=0

|Vi| (d− 1)

(
1− 1/

√
d− 1

(d− 1)i/2

)2

+ |Vk| (d− 1)−k+1, and Y1 =
k∑
i=0

|Vi| (d− 1)−i.

By my favorite inequality, it suffices to prove upper bounds on X0/X1 and Y0/Y1. So, consider∑k−1
i=0 |Ui| (d− 1)

(
1−1/

√
d−1

(d−1)i/2

)2
+ |Uk| (d− 1)−k+1∑k

i=0 |Ui| (d− 1)−i
.

For now, let’s focus on the numerator,

k−1∑
i=0

|Ui| (d− 1)

(
1− 1/

√
d− 1

(d− 1)i/2

)2

+ |Uk| (d− 1)(d− 1)−k

=
k−1∑
i=0

|Ui|
(d− 1)i

(d− 2
√
d− 1) +

|Uk|
(d− 1)k

(d− 1)

=

k−1∑
i=0

|Ui|
(d− 1)i

(d− 2
√
d− 1) +

|Uk|
(d− 1)k

(d− 2
√
d− 1) +

|Uk|
(d− 1)k

(2
√
d− 1− 1)

=
k∑
i=0

|Ui|
(d− 1)i

(d− 2
√
d− 1) +

|Uk|
(d− 1)k

(2
√
d− 1− 1).

To upper bound the Rayleigh quotient, we observe that the left-most of these terms contributes∑k
i=0

|Ui|
(d−1)i

(d− 2
√
d− 1)∑k

i=0 |Ui| (d− 1)−i
= d− 2

√
d− 1.

To bound the impact of the remaining term,

|Uk|
(d− 1)k

(2
√
d− 1− 1),

note that
|Uk| ≤ (d− 1)k−i |Ui| .

So, we have

|Uk|
(d− 1)k

≤ 1

k + 1

k∑
i=0

|Ui|
(d− 1)i

.

Thus, the last term contributes at most

2
√
d− 1− 1

k + 1

to the Rayleigh quotient.

CHAPTER 27. PROPERTIES OF EXPANDER GRAPHS 227

27.6 Open Problems

What can we say about λn? In a previous iteration of this course, I falsely asserted that the same
proof tells us that

λn ≥ d+ 2
√
d− 1− 2

√
d− 1− 1

k + 1
.

But, the proof did not work.

Another question is how well a graph of average degree d can approximate the complete graph.
That is, let G be a graph with dn/2 edges, but let G be irregular. While I doubt that irregularity
helps one approximate the complete graph, I do not know how to prove it.

We can generalize this question further. Let G = (V,E,w) be a weighted graph with dn/2 edges.
Can we prove that G cannot approximate a complete graph any better than the Ramanujan
graphs do? I conjecture that for every d and every β > 0 there is an n0 so that for every graph of
average degree d on n ≥ n0 vertices,

λ2

λn
≤ d− 2

√
d− 1

d+ 2
√
d− 1

+ β.

Chapter 28

A brief introduction to Coding
Theory

This chapter gives a short introduction to the combinatorial view of error-correcting codes. Our
motivation is twofold: good error-correcting codes provide choices for the generators of
generalized hypercubes that have high expansion, and in the next chapter we learn how to use
expander graphs to construct good error-correcting codes.

We begin and end the chapter with a warning: the combinatorial, worst-case view of coding
theory presented herein was very useful in the first few decades of the field. But, the problem of
error-correction is at its heart probabilistic and great advances have been made by avoiding the
worst-case formulation. For readers who would like to understand this perspective, we recommend
“Modern Coding Theory” by Richardson and Urbanke. For those who wish to learn more about
the worst-case approach, we recommend “The Theory of Error-Correcting Codes” by
MacWilliams and Sloane.

28.1 Coding

Error-correcting codes are used to compensate for noise and interference in communication. They
are used in practically all digital transmission and data storage schemes. We will only consider
the problem of storing or transmitting bits1, or maybe symbols from some small discrete alphabet.

The only type of interference we will consider is the flipping of bits. Thus, 0101 may become
1101, but not 010. More noise means more bits are flipped.

In our model problem, a transmitter wants to send m bits, which means that the transmitter’s
message is an element of Fm2 . But, if the transmitter wants the receiver to correctly receive the
message in the presence of noise, the transmitter should not send the plain message. Rather, the
transmitter will send n > m bits, encoded in such a way that the receiver can figure out what the
message was even if there is a little bit of noise.

1Everything is bits. You think that’s air you’re breathing?

228

CHAPTER 28. A BRIEF INTRODUCTION TO CODING THEORY 229

A naive way of doing this would be for the transmitter to send every bit 3 times. If only 1 bit
were flipped during transmission, then the receiver would be able to figure out which one it was.
But, this is a very inefficient coding scheme. Much better approaches exist.

28.2 Notation

When x is a vector, we let

|x | def
= |{a : x (a) 6= 0}|

denote the hamming weight of x . This is often called the 0-norm, and written ‖x‖0.

For a prime p, we denote the integers modulo p by Fp. The reason is that the integers modulo p
form the field with p elements: they may be summed and multiplied, have identities under
addition and multiplication (0 and 1), the have inverses under addition (−x), and all but zero
have inverses under multiplication. We say the field because it is unique up to the names of the
elements. In this chapter we mostly deal with the field of two elements F2, which we write F2.

28.3 Connection with Generalized Hypercubes

Recall that the Generalized Hypercubes we encountered in Section 7.4 have vertex set Fk2 and are
defined by d ≥ k generators, g1, . . . , gd ∈ Fk2. For each b ∈ Fk2, the graph defined by these
generators has an adjacency matrix eigenvalue given by

µb =
d∑
i=1

(−1)g
T
i b .

Let G be the d-by-k matrix whose ith row is gTi . As (−1)x = 1− 2x, for x ∈ {0, 1},

µb =

d∑
i=1

(−1)g
T
i b = d− 2 |Gb| .

The eigenvalue of d comes from b = 0. If Gb has small Hamming weight for every other vector b,
then all the other eigenvalues of the adjacency matrix will be small. We will see that this
condition is satisfied when G is the generator matrix of a good code.

28.4 Hamming Codes

The first idea in coding theory was the parity bit. It allows one to detect one error. Let’s say that
the transmitter wants to send b1, . . . , bm. If the transmitter constructs

bm+1 =
m∑
i=1

bi mod 2, (28.1)

CHAPTER 28. A BRIEF INTRODUCTION TO CODING THEORY 230

and sends
b1, . . . , bm+1,

then the receiver will be able to detect one error, as it would cause (28.1) to be violated. But, the
receiver won’t know where the error is, and so won’t be able to figure out the correct message
unless it request a retransmit. And, of course, the receiver wouldn’t be able to detect 2 errors.

Hamming codes combine parity bits in an interesting way to enable the receiver to correct one
error. Let’s consider the first interesting Hamming code, which transmits 4-bit messages by
sending 7 bits in such a way that any one error can be corrected. Note that this is much better
than repeating every bit 3 times, which would require 12 bits.

For reasons that will be clear soon, we will let b3, b5, b6, and b7 be the bits that the transmitter
would like to send. The parity bits will be chosen by the rules

b4 = b5 + b6 + b7

b2 = b3 + b6 + b7

b1 = b3 + b5 + b7.

All additions, of course, are modulo 2. The transmitter will send the codeword b1, . . . , b7.

If we write the bits as a vector, then we see that they satisfy the linear equations

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1




b1
b2
b3
b4
b5
b6
b7


=

0
0
0

 .

For example, to transmit the message 1010, we set

b3 = 1, b5 = 0, b6 = 1, b7 = 0,

and then compute
b1 = 1, b2 = 0, b4 = 1.

Let’s see what happens if some bit is flipped. Let the received transmission be c1, . . . , c7, and
assume that ci = bi for all i except that c6 = 0. This means that the parity check equations that
involved the 6th bit will now fail to be satisfied, or0 0 0 1 1 1 1

0 1 1 0 0 1 1
1 0 1 0 1 0 1

 c =

1
1
0

 .

Note that this is exactly the pattern of entries in the 6th column of the matrix. This will happen
in general. If just one bit is flipped, and we multiply the received transmission by the matrix, the
product will be the column of the matrix containing the flipped bit. As each column is different,
we can tell which bit it was. To make this even easier, the columns have been arranged to be the
binary representations of their index. For example, 110 is the binary representation of 6.

CHAPTER 28. A BRIEF INTRODUCTION TO CODING THEORY 231

28.5 Terminology and Linear Codes

We will view an error-correcting code as a mapping

C : Fm2 → Fn2 ,

for n larger than m. Every string in the image of C is called a codeword. We will also abuse
notation by identifying C with the set of codewords.

We define the rate of the code to be
r =

m

n
.

The rate of a code tells you how many bits of information you receive for each codeword bit. Of
course, codes of higher rate are more efficient.

The Hamming distance between two words c1 and c2 is the number of bits in which they differ.
It will be written

dist(c1, c2) =
∣∣c1 − c2

∣∣ .
The minimum distance of a code is

d = min
c1 6=c2∈C

dist(c1, c2)

(here we have used C to denote the set of codewords). It should be clear that if a code has large
minimum distance then it is possible to correct many errors. In particular, it is possible to correct
any number of errors less than d/2. To see why, let c be a codeword, and let r be the result of
flipping e < d/2 bits of c. As dist(c, r) < d/2, c will be the closest codeword to r . This is
because for every c1 6= c,

d ≤ dist(c1, c) ≤ dist(c1, r) + dist(r , c) < dist(c1, r) + d/2 implies d/2 < dist(c1, r).

So, large minimum distance is good.

The minimum relative distance of a code is

δ =
d

n
.

It turns out that it is possible to keep both the rate and minimum relative distance of a code
bounded below by constants, even as n grows. To formalize this notation, we will talk about a
sequence of codes instead of a particular code. A sequence of codes C1, C2, C3, . . . is presumed to
be a sequence of codes of increasing message lengths. Such a sequence is called asymptotically
good if there are absolute constants r and δ such that for all i,

r(Ci) ≥ r and δ(Ci) ≥ δ.

One of the early goals of coding theory was to construct asymptotically good sequences of codes.
Of course, one also needs to derive codes that have concise descriptions and that can be encoded
and decoded efficiently.

CHAPTER 28. A BRIEF INTRODUCTION TO CODING THEORY 232

A big step in this direction was the use of linear codes. In the same way that we defined
Hamming codes, we may define a linear code as the set of vectors c ∈ Fn2 such that Mc = 0, for
some (n−m)-by-n matrix M . In this chapter, we will instead define a code by its generator
matrix. Given an n-by-m matrix G, we define the code CG to be the of vectors of the form Gb,
where b ∈ Fm2 . One may view b as the message to be transmitted, and Gb as its encoding.

A linear code is called linear because the set of codewords is a vector space over Fm2 . Thus, the
sum and difference of every pair of codewords is another codeword. In fact, the sum and difference
are the same because we are working over F2. In particular, 0 is always a codeword and the
minimum distance of the code equals the minimum Hamming weight of a non-zero codeword, as

dist(c1, c2) =
∣∣c1 − c2

∣∣ =
∣∣c1 + c2

∣∣
over F2.

We now pause to make the connection back to generalized hypercubes: if CG has minimum
relative distance δ and maximum relative distance 1− δ, then the corresponding generalized
hypercube is a 1− 2δ expander.

28.6 Random Linear Codes

In the early years of coding theory, there were many papers published that contained special
constructions of codes such as the Hamming code. But, as the number of bits to be transmitted
became larger and larger, it became more and more difficult to find such exceptional codes. Thus,
an asymptotic approach became reasonable. In his paper introducing coding theory, Shannon
[Sha48] proved that random codes are asymptotically good. A few years later, Elias [Eli55]
suggested using random linear codes.

We will now see that random linear codes are asymptotically good with high probability. We
consider a code of the form CG , where G is an n-by-m matrix with independent uniformly chosen
F2 entries. Clearly, the rate of the code will be m/n.

So, the minimum distance of CG is

min
0 6=b∈Fm

2

dist(0,Gb) = min
0 6=b∈Fm

2

|Gb| ,

where by |c| we mean the number of 1s in c. This is sometimes called the weight of c.

Here’s what we can say about the minimum distance of a random linear code. The following
argument is a refinement of the Chernoff based argument that appears in Section 7.5.

Lemma 28.6.1. Let G be a random n-by-m matrix. For any d, the probability that CG has
minimum distance at least d is at least

1− 2m

2n

d∑
i=0

(
n

i

)
.

CHAPTER 28. A BRIEF INTRODUCTION TO CODING THEORY 233

Proof. It suffices to upper bound the probability that there is some non-zero b ∈ Fm2 for which

|Gb| ≤ d.

To this end, fix some non-zero vector b in Fm2 . Each entry of Gb is the inner product of a column
of G with b. As each column of G consists of random F2 entries, each entry of Gb is chosen
uniformly from F2. As the columns of G are chosen independently, we see that Gb is a uniform
random vector in Fn2 . Thus, the probability that |Gb| is at most d is precisely

1

2n

d∑
i=0

(
n

i

)
.

As the probability that one of a number of events holds is at most the sum of the probabilities
that each holds (the “union bound”),

PrG [∃b ∈ Fm2 , b 6= 0 : |Gb| ≤ d] ≤
∑

0 6=b∈Fm
2

PrG [|Gb| ≤ d]

≤ (2m − 1)
1

2n

d∑
i=0

(
n

i

)
.

≤ 2m

2n

d∑
i=0

(
n

i

)
.

To see how this behaves asymptotically, we use the following inequality on sums of binomial
coefficients. For 0 < p < 1,

pn∑
i=1

(
n

i

)
≤ 2nH(p),

where
H(p)

def
= −p log2 p− (1− p) log2(1− p)

is the binary entropy function. This upper bound is very tight: one can prove a corresponding
lower bound that only differs in low-order terms. You can derive this inequality from Stirling’s
formula, or you may find a proof along with the lower bound stated as Corollary 9 in Chapter 10
of [MS77].

If we set m = rn and d = δn, then Lemma 28.6.1 tells us that CG probably has rate r and
minimum relative distance δ if

2rn

2n
2nH(δ) < 1,

which happens when
H(δ) < 1− r.

For any constant r < 1, we can find a δ for which H(δ) < 1− r, so there exist asymptotically
good sequences of codes of every non-zero rate. This is called the Gilbert-Varshamov bound. It is

CHAPTER 28. A BRIEF INTRODUCTION TO CODING THEORY 234

still not known if binary codes exist whose relative minimum distance satisfies H(δ) > 1− r. This
is a big open question in coding theory.

Of course, this does not tell us how to choose such a code in practice, how to efficiently check if a
given code has large minimum distance, or how to efficiently decode such a code.

28.7 Reed-Solomon Codes

Reed-Solomon Codes are one of the workhorses of coding theory. The are simple to describe, and
easy to encode and decode.

However, Reed-Solomon Codes are not binary codes. Rather, they are codes whose symbols are
elements of a finite field. If you don’t know what a finite field is, don’t worry (yet). For now, we
will just consider prime fields, Fp. These are the numbers modulo a prime p. Recall that such
numbers may be added, multiplied, and divided.

A message in a Reed-Solomon code over a field Fp is identified with a polynomial of degree m− 1.
That is, the message f1, . . . , fm is viewed as providing the coefficients of the polynomial

Q(x) =
m−1∑
i=0

fi+1x
i.

A Reed-Solomon code is encoded by evaluating it over every element of the field. That is, the
codeword is

Q(0), Q(1), Q(2), . . . , Q(p− 1).

Sometimes, it is evaluated at a subset of the field elements.

We will now see that the minimum distance of such a Reed-Solomon code is p−m. We show this
using the following standard fact from algebra.

Lemma 28.7.1. Let Q be a polynomial of degree at most m− 1 over a field Fp. If there exists
distinct field elements x1, . . . , xm such that

Q(xi) = 0

then Q is identically zero.

Theorem 28.7.2. The minimum distance of the Reed-Solomon code is at least p−m.

Proof. Let Q1 and Q2 be two different polynomials of degree at most m− 1. For a polynomial Q,
let

E(Q) = (Q(0), Q(1), . . . , Q(p))

be its encoding. If
dist(E(Q1), E(Q2)) ≤ p− k,

then there exists field elements x1, . . . , xk such that

Q1(xj) = Q2(xj).

CHAPTER 28. A BRIEF INTRODUCTION TO CODING THEORY 235

Now, consider the polynomial
Q1(x)−Q2(x).

It also has degree at most m− 1, and it is zero at k field elements. Lemma 28.7.1 tells us that if
k ≥ m, then Q1 −Q2 is exactly zero, which means that Q1 = Q2. Thus, for distinct Q1 and Q2, it
must be the case that

dist(E(Q1), E(Q2)) > p−m.

However, Reed-Solomon codes do not provide an asymptotically good family. If one represents
each field element by log2 p bits in the obvious way, then the code has length p log2 p, but can
only correct at most p errors. That said, one can find an asymptotically good family by encoding
each field element with its own small error-correcting code.

Next lecture, we will see how to make asymptotically good codes out of expander graphs. In the
following lecture, we will use good error-correcting codes to construct graphs.

28.8 Caution

Explain defects of the worst-case view.

Chapter 29

Expander Codes

In this Chapter we will learn how to use expander graphs to construct and decode asymptotically
good error correcting codes.

29.1 Bipartite Expander Graphs

Our construction of error-correcting codes will exploit bipartite expander graphs (as these give a
much cleaner construction than the general case). Let’s begin by examining what a bipartite
expander graph should look like. It’s vertex set will have two parts, U and V , each having n
vertices. Every vertex will have degree d, and every edge will go from a vertex in U to a vertex in
V .

In the same way that we view ordinary expanders as approximations of complete graphs, we will
view bipartite expanders as approximations of complete bipartite graphs1. That is, if we let Kn,n

denote the complete bipartite graph, then we want a d-regular bipartite graph G such that

(1− ε)d
n
Kn,n 4 G 4 (1 + ε)

d

n
Kn,n.

As the eigenvalues of the Laplacian of d
nKn,n are 0 and 2d with multiplicity 1 each, and d

otherwise, this means that we want a d-regular graph G whose Laplacian spectrum satisfies

λ1 = 0, λ2n = 2d, and |λi − d| ≤ εd, for all 1 < i < 2n.

We can obtain such a graph by taking the double-cover of an ordinary expander graph.

Definition 29.1.1. Let G = (V,E) be a graph. The double-cover of G is the graph with vertex set
V × {0, 1} and edges

((a, 0), (b, 1)) , for (a, b) ∈ E.

It is easy to determine the eigenvalues of the double-cover of a graph.

1The complete bipartite graph contains all edges between U and V

236

CHAPTER 29. EXPANDER CODES 237

Figure 29.1: The cycle on 4 vertices, and its double-cover

Proposition 29.1.2. Let H be the double-cover of G. Then, for every eigenvalue λi of the
Laplacian of G, H has a pair of eigenvalues,

λi and 2d− λi.

The easiest way to prove this is to observe that if A is the adjacency matrix of G, then the
adjacency matrix of H looks like (

0 A
A 0

)
.

Our analysis of error-correcting codes will exploit the following theorem, which is analogous to
Theorem 10.2.1.

Theorem 29.1.3. Let G = (U ∪ V,E) be a d-regular bipartite graph that ε-approximates d
nKn,n.

Then, for all S ⊆ U and T ⊆ V ,∣∣∣∣|E(S, T)| − d

n
|S| |T |

∣∣∣∣ ≤ εd√|S| |T |.
Proof. Similar to the proof of Theorem 27.3.1.

Let G(S ∪ T) denote the graph induced on vertex set S ∪ T . We use the following simple corollary
of Theorem 29.1.3.

Corollary 29.1.4. For S ⊆ U with |S| = σn and and T ⊆ V with |T | = τn, the average degree of
vertices in G(S ∪ T) is at most

2dστ

σ + τ
+ εd.

Proof. The average degree of a graph is twice its number of edges, divided by the number of
vertices. In our case, this is at most

2d

n

|S| |T |
|S|+ |T | + 2εd

√
|S| |T |

|S|+ |T | .

CHAPTER 29. EXPANDER CODES 238

The left-hand term is
2dστ

σ + τ
,

and the right-hand term is at most
εd.

29.2 Building Codes

Our construction of error-correcting codes will require two ingredients: a d-regular bipartite
expander graph G on 2n vertices, and a linear error correcting code C0 of length d. We will
combine these to construct an error correcting code of length dn. We think of the code C0 as
being a small code that drives the construction. This is reasonable as we will keep d a small
constant while n grows.

In our construction of the code, we associate one bit with each edge of the graph. As the graph
has dn edges, this results in dn bits, which we label y1, . . . , ydn. We now describe the code by
listing the linear constraints its codewords must satisfy. Each vertex requires that the bits on its
attached edges resemble a codeword in the code C0. That is, each vertex should list its attached
edges in some order (which order doesn’t matter, but it should be fixed). As a vertex has d
attached edges, it is easy to require that the d bits on these edges are a codeword in the code C0.

Let r0 be the rate of code C0. This means that the space of codewords has dimension r0d. But,
since C0 is a linear code, it means that its codewords are exactly the the vectors that satisfy some
set of d(1− r0) linear equations. As there are 2n vertices in the graph, the constraints imposed by
each vertex impose 2nd(1− r0) linear constraints on the dn bits. Thus, the vector space of
codewords that satisfy all of these constraints has dimension at least

dn− 2dn(1− r0) = dn(2r0 − 1),

and the code we have constructed has rate at least

r = 2r0 − 1.

So, this rate will be a non-zero constant as long as r0 > 1/2.

For the rest of the lecture, we will let C denote the resulting expander code.

29.3 Encoding

We have described the set of codewords, but have not said how one should encode. As the code is
linear, it is relatively easy to find a way to encode it. In particular, one may turn the above
description of the code into a matrix M with dn columns and 2dn(1− r0) rows such that the
codewords are precisely those y such that

My = 0.

CHAPTER 29. EXPANDER CODES 239

So, the codewords form a vector space of dimension dn(2r0 − 1), and so there is a matrix G with
dn(2r0 − 1) columns and dn rows for which the codewords are precisely the vectors Gx , for

x ∈ {0, 1}dn(2r0−1). In fact, there are many such matrices G, and they are called generator
matrices for the code. Such a matrix G may be computed from M by elementary linear algebra.

29.4 Minimum Distance

We will now see that if C0 is a good code, then C has large minimum distance. Let δ0d be the
minimum distance of the code C0. You should think of δ0 as being a constant.

Theorem 29.4.1. If ε ≤ δ0/2, then the minimum relative distance δ of C satisfies

δ ≥ δ2
0/2.

Proof. As C is a linear code, it suffices to prove that C has no nonzero codewords of small
Hamming weight. To this end, we identify a codeword with the set of edges on which its bits are
1. Let F be such a set of edges, and let |F | = φdn. As the minimum distance of C0 is δ0d, every
vertex v that is attached to an edge of F must be attached to at least δ0d edges of F . Let S be
the subset of vertices of U adjacent to edges in F , and let T be the corresponding subset of V .
We have just argued that every vertex in G(S ∪ T) must have degree at least δ0d, and so in
particular the average degree of G(S ∪ T) is at least δ0d.

We may also use this fact to see that

|S| , |T | ≤ |F |
δ0d

.

Setting σ = |S| /n and τ = |T | /n, the previous inequality becomes

σ, τ ≤ φ

δ0
.

Corollary 29.1.4 tells us that the average degree of G(S ∪ T) is at most

2dστ

σ + τ
+ εd.

As

2στ ≤ σ2 + τ2 ≤ φ

δ0
(σ + τ),

the average degree of G(S ∪ T) is at most

d
φ

δ0
+ εd.

Combining the upper and lower bounds on the average degree of G(S ∪ T), we obtain

δ0d ≤ d
φ

δ0
+ εd,

CHAPTER 29. EXPANDER CODES 240

which implies
δ0(δ0 − ε) ≤ φ.

The assumption ε ≤ δ0/2 then yields
φ ≥ δ2

0/2.

As we assumed that F was the set of edges corresponding to a codeword and that |F | = φdn, we
have shown that the minimum relative distance of C is at least δ2

0/2.

29.5 Decoding

We will convert an algorithm that corrects errors in C0 into an algorithm for correcting errors in
C. The construction is fairly simple. We first apply the decoding algorithm at every vertex in U .
We then do it at every vertex in V . We alternate in this fashion until we produce a codeword.

To make this more concrete, assume that we have an algorithm A that corrects up to δ0d/2 errors
in the code C0. That is, on input any word r ∈ {0, 1}d, A outputs another word in {0, 1}d with
the guarantee that if there is a c ∈ C0 such that dist(c, r) ≤ δ0d/2, then A outputs c. We apply
the transformation A independently to the edges attached to each vertex of U . We then do the
same for V , and then alternate sides for a logarithmic number of iterations. We refer to these
alternating operations as U− and V -decoding steps

We will prove that if ε ≤ δ0/3 then this algorithm will correct up to δ2
0dn/18 errors in at most

log4/3 n iterations. The idea is to keep track of which vertices are attached to edges that contain
errors, rather than keeping track of the errors themselves. We will exploit the fact that any vertex
that is attached to few edges in error will correct those errors. Let S be the set of vertices
attached to edges in error after a U -decoding step. We will show that the set T of vertices
attached to edges in error after the next V -decoding step will be much smaller.

Lemma 29.5.1. Assume that ε ≤ δ0/3. Let F ⊂ E be a set of edges, let S be the subset of
vertices in U attached to edges in F and let T be the subset of vertices in V attached to at least
δ0d/2 edges in F . If

|S| ≤ δ0n/9,

then

|T | ≤ 3

4
|S| .

Proof. Let |S| = σn and |T | = τn. We have |F | ≥ (δ0d/2) |T |. As the average degree of G(S ∪ T)
is twice the number of edges in the subgraph divided by the number of vertices, it is at least

δ0d |T |
|S|+ |T | =

δ0dτ

σ + τ
.

Applying Corollary 29.1.4, we find

δ0dτ

σ + τ
≤ 2dστ

σ + τ
+ εd.

CHAPTER 29. EXPANDER CODES 241

This implies
δ0τ ≤ 2στ + ε(σ + τ),

which becomes
τ ≤ εσ

δ0 − 2σ − ε .

Recalling that σ ≤ δ0/9 and ε ≤ δ0/3, we obtain

τ ≤ σ δ0/3

δ0(4/9)
≤ 3

4
σ.

Lemma 29.5.2. Assume that ε ≤ δ0/3. Let F be the set of edges in error after a U -decoding
step, and let S be the set of vertices in U attached to F . Now, perform a V -decoding step and let
T be the set of vertices in V attached to edges in error afterwards. If

|S| ≤ δ0n/9,

then

|T | ≤ 3

4
|S| .

Proof. Every vertex in V that outputs an error after the V -decoding step must be attached to at
least δ0d/2 edges of F . Moreover, each of these edges is attached to a vertex of S. Thus, the
lemma follows immediately from Lemma 29.5.1.

Theorem 29.5.3. If ε ≤ δ0/3, then the proposed decoding algorithm will correct every set of at
most

δ2
0

18
dn

errors.

Proof. Let F denote the set of edges that are initially in error. Let S denote the set of vertices
that output errors after the first U -decoding step. Every vertex in S must be adjacent to at least
δd/2 edges in F , so

|F | ≤ δ2
0

18
dn =⇒ |S| ≤ |F |

δ0d/2
≤ δ0n/9.

After this point, we may apply Lemma 29.5.2 to show that the decoding process converges in at
most log4/3 n iterations.

29.6 Historical Notes

Gallager [Gal63] first used graphs to construct error-correcting codes. His graphs were also
bipartite, with one set of vertices representing bits and the other set of vertices representing
constraints. Tanner [Tan81] was the first to put the vertices on the edges. The use of expansion in

CHAPTER 29. EXPANDER CODES 242

analyzing these codes we pioneered by Sipser and Spielman [SS96]. The construction we present
here is due to Zemor [Zem01], although he presents a tighter analysis. Improved constructions
and analyses may be found in [BZ02, BZ05, BZ06, AS06].

Surprisingly, encoding these codes is slower than decoding them. As the matrix G will be dense,
leading to an encoding algorithm that takes time Θ((dn)2). Of course, one would prefer to encode
them in time O(dn). Using Ramanujan expanders and the Fast Fourier Transform over the
appropriate groups, Lafferty and Rockmore [LR97] reduced the time for encoding to O(d2n4/3).
Spielman [Spi96a] modifies the code construction to obtain codes with similar performance that
may be encoded in linear time.

Related ideas have been used to design codes that approach channel capacity. See
[LMSS01, RSU01, RU08].

Chapter 30

A simple construction of expander
graphs

30.1 Overview

Our goal is to prove that for every ε > 0 there is a d for which we can efficiently construct an
infinite family of d-regular ε-expanders. I recall that these are graphs whose adjacency matrix
eigenvalues satisfy |µi| ≤ εd and whose Laplacian matrix eigenvalues satisfy |d− λi| ≤ εd, for
i > 1. Viewed as a function of ε, the d that we obtain in this construction is rather large. But, it
is a constant. The challenge here is to construct infinite families with fixed d and ε.

Before we begin, I remind you that in Lecture 5 we showed that random generalized hybercubes
were ε expanders of degree f(ε) log n, for some function f . The reason they do not solve today’s
problem is that their degrees depend on the number of vertices. However, today’s construction
will require some small expander graph, and these graphs or graphs like them can serve in that
role. So that we can obtain a construction for every number of vertices n, we will exploit random
generalized ring graphs. Their analysis is similar to that of random generalized hypercubes.

Claim 30.1.1. There exists a function f(ε) so that for every ε > 0 and every sufficiently large n
the Cayley graph with group Z/n and a random set of at least f(ε) log n generators is an
ε-expander with high probability.

I am going to present the simplest construction of expanders that I have been able to find. By
“simplest”, I mean optimizing the tradeoff of simplicity of construction with simplicity of
analysis. It is inspired by the Zig-Zag product and replacement product constructions presented
by Reingold, Vadhan and Wigderson [RVW02].

For those who want the quick description, here it is. Begin with an expander. Take its line graph.
Observe that the line graph is a union of cliques. So, replace each clique by a small expander. We
need to improve the expansion slightly, so square the graph. Square one more time. Repeat.

The analysis will be simple because all of the important parts are equalities, which I find easier to
understand than inequalities.

243

CHAPTER 30. A SIMPLE CONSTRUCTION OF EXPANDER GRAPHS 244

While this construction requires the choice of two expanders of constant size, it is explicit in the
sense that we can obtain a simple implicit representation of the graph: if the name of a vertex in
the graph is written using b bits, then we can compute its neighbors in time polynomial in b.

30.2 Squaring Graphs

We will first show that we can obtain a family of ε expanders from a family of β-expanders for
any β < 1. The reason is that squaring a graph makes it a better expander, although at the cost
of increasing its degree.

Given a graph G, we define the graph G2 to be the graph in which vertices u and v are connected
if they are at distance 2 in G. Formally, G2 should be a weighted graph in which the weight of an
edge is the number of such paths. When first thinking about this, I suggest that you ignore the
issue. When you want to think about it, I suggest treating such weighted edges as multiedges.

We may form the adjacency matrix of G2 from the adjacency matrix of G. Let M be the
adjacency matrix of G. Then M 2(u, v) is the number of paths of length 2 between u and v in G,
and M 2(v, v) is always d. We will eliminate those self-loops. So,

MG2 = M 2
G − dIn.

If G has no cycles of length up to 4, then all of the edges in its square will have weight 1. The
following claim is immediate from this definition.

Claim 30.2.1. The adjacency matrix eigenvalues of G2 are precisely

µ2
i − d,

where µ1, . . . , µn are the adjacency matrix eigenvalues of G.

Lemma 30.2.2. If {Gi}i is an infinite family of d-regular β-expanders for β ≥ 1/
√
d− 1, then{

G2
i

}
i

is an infinite family of d(d− 1)-regular β2 expanders.

We remark that the case of β > 1/
√
d− 1, or even larger, is the case of interest. We are not

expecting to work with graphs that beat the Ramanujan bound, 2
√
d− 1/d.

Proof. For µ an adjacency matrix eigenvalue of Gi other than d, we have

µ2 − d
d(d− 1)

=
µ2 − d
d2 − d ≤

µ2

d2
≤ β2.

On the other hand, every adjacency eigenvalue of G2
i is at least −d, which is at least

−β2d(d− 1).

So, by squaring enough times, we can convert a family of β expanders for any β < 1 into a family
of ε expanders.

CHAPTER 30. A SIMPLE CONSTRUCTION OF EXPANDER GRAPHS 245

30.3 The Relative Spectral Gap

To measure the qualities of the graphs that appear in our construction, we define a quantity that
we will call the relative spectral gap of a d-regular graph:

r(G)
def
= min

(
λ2(G)

d
,
2d− λn

d

)
.

The graphs with larger relative spectral gaps are better expanders. An ε-expander has relative
spectral gap at least 1− ε, and vice versa. Because we can square graphs, we know that it suffices
to find an infinite family of graphs with relative spectral gap strictly greater than 0.

We now state exactly how squaring impacts the relative spectral gap of a graph.

Corollary 30.3.1. If G has relative spectral gap β, then G2 has relative spectral gap at least

2β − β2.

Note that when β is small, this gap is approximately 2β.

30.4 Line Graphs

Our construction will leverage small expanders to make bigger expanders. To begin, we need a
way to make a graph bigger and still say something about its spectrum.

We use the line graph of a graph. Let G = (V,E) be a graph. The line graph of G is the graph
whose vertices are the edges of G in which two are connected if they share an endpoint in G.
That is,

(
(u, v), (w, z)

)
is an edge of the line graph if one of {u, v} is the same as one of {w, z}.

The line graph is often written L(G), but we won’t do that in this class so that we can avoid
confusion with the Laplacian.

(a) A graph (b) Its line graph.

Let G be a d-regular graph with n vertices, and let H be its line graph1.As G has dn/2 edges, H
has dn/2 vertices. Each vertex of H, say (a, b), has degree 2(d− 1): d− 1 neighbors for the other

1If G is weighted, the weights produced that this construction will be integers. We interpret weighted edges as
multiedges, and add one vertex to the line graph for each. These will be connected by edges of weight two—one for
each vertex that they share. All of the following statements then work out.

CHAPTER 30. A SIMPLE CONSTRUCTION OF EXPANDER GRAPHS 246

edges attached to a and d− 1 for b. For each vertex a in V , all vertices in H of form (a, b) of G
will be connected. So, H contains a d-clique for every vertex in V . Each vertex of H is contained
in exactly two of these cliques.

Here is the great fact about the spectrum of the line graph.

Lemma 30.4.1. Let G be a d-regular graph with n vertices, and let H be its line graph. Then the
spectrum of the Laplacian of H is the same as the spectrum of the Laplacian of G, except that it
has dn/2− n extra eigenvalues of 2d.

Before we prove this lemma, we need to recall the factorization of a Laplacian as the product of
the signed edge-vertex adjacency matrix times its transpose. We reserved the letter U for this
matrix, and defined it by

U ((a, b), c) =


1 if a = c

−1 if b = c

0 otherwise.

For an unweighted graph, we have
LG = U TU .

Recall that each edge indexes one column, and that we made an arbitrary choice when we ordered
the edge (a, b) rather than (b, a). But, this arbitrary choice factors out when we multiply by U T .

30.5 The Spectrum of the Line Graph

Define the matrix |U | to be the matrix obtained by replacing every entry of U by its absolute
value. Now, consider |U |T |U |. It looks just like the Laplacian, except that all of its off-diagonal
entries are 1 instead of −1. So,

|U |T |U | = DG + MG = dI + MG,

as G is d-regular. We will also consider the matrix |U | |U |T . This is a matrix with nd/2 rows
and nd/2 columns, indexed by edges of G. The entry at the intersection of row (u, v) and column
(w, z) is

(δu + δv)
T (δw + δz).

So, it is 2 if these are the same edge, 1 if they share a vertex, and 0 otherwise. That is

|U | |U |T = 2Ind/2 + MH .

Moreover, |U | |U |T and |U |T |U | have the same eigenvalues, except that the later matrix has
nd/2− n extra eigenvalues of 0.

CHAPTER 30. A SIMPLE CONSTRUCTION OF EXPANDER GRAPHS 247

Proof of Lemma 30.4.1. First, let λi be an eigenvalue of LG. We see that

λi is an eigenvalue of DG −MG =⇒
d− λi is an eigenvalue of MG =⇒
2d− λi is an eigenvalue of DG + MG =⇒
2d− λi is an eigenvalue of 2Ind/2 + MH =⇒
2(d− 1)− λi is an eigenvalue of MH =⇒
λi is an eigenvalue of DH −MH .

Of course, this last matrix is the Laplacian matrix of H. We can similarly show that the extra
dn/2− n zero eigenvalues of 2Ind/2 + MH become 2d in LH .

While the line graph operation preserves λ2, it causes the degree of the graph to grow. So, we are
going to need to do more than just take line graphs to construct expanders.

Proposition 30.5.1. Let G be a d-regular graph with d ≥ 7 and let H be its line graph. Then,

r(H) =
λ2(G)

2(d− 1)
≥ r(G)/2.

Proof. For G a d-regular graph other than Kd+1, λ2(G) ≤ d+ 1. By the Perron-Frobenius
theorem (Lemma 6.A.1) λmax(G) ≤ 2d (with equality if and only G is bipartite). So,
λmax(H) = 2d and λ2(H) = λ2(G) ≤ d. So, the term in the definition of the relative spectral gap
corresponding to the largest eigenvalue of H satisfies

2(2d− 2)− λmax(H)

2d− 2
=

2(2d− 2)− 2d

2d− 2
= 1− 2

d
≥ 5/7,

as d ≥ 7. On the other hand,
λ2(H)

2d− 2
≤ d

2d− 2
≤ 2/3.

As 2/3 < 5/7,

min

(
λ2(H)

2d− 2
,
2(2d− 2)− λmax(H)

2d− 2

)
=
λ2(H)

2d− 2
=
λ2(G)

2d− 2
≥ r(G/2).

While the line graph of G has more vertices, its degree is higher and its relative spectral gap is
approximately half that of G. We can improve the relative spectral gap by squaring. In the next
section, we show how to lower the degree.

CHAPTER 30. A SIMPLE CONSTRUCTION OF EXPANDER GRAPHS 248

30.6 Approximations of Line Graphs

Our next step will be to construct approximations of line graphs. We already know how to
approximate complete graphs: we use expanders. As line graphs are sums of complete graphs, we
will approximate them by sums of expanders. That is, we replace each clique in the line graph by
an expander on d vertices. Since d will be a constant in our construction, we will be able to get
these small expanders from known constructions, like the random generalized ring graphs.

Let G be a d-regular graph and let Z be a graph on d vertices of degree k (we will use a
low-degree expander). We define the graph

G L©Z

to be the graph obtained by forming the edge graph of G, H, and then replacing every d-clique in
H by a copy of Z. Actually, this does not uniquely define G L©Z, as there are many ways to
replace a d-clique by a copy of Z. But, any choice will work. Note that every vertex of G L©Z has
degree 2k.

Lemma 30.6.1. Let G be a d-regular graph, let H be the line graph of G, and let Z be a
k-regular α-expander. Then,

(1− α)
k

d
H 4 G L©Z 4 (1 + α)

k

d
H

Proof. As H is a sum of d-cliques, let H1, . . . ,Hn be those d-cliques. So,

LH =

n∑
i=1

LHi .

Let Zi be the graph obtained by replacing Hi with a copy of Z, on the same set of vertices. To
prove the lower bound, we compute

LG L©Z =

n∑
i=1

LZi < (1− α)
k

d

n∑
i=1

LHi = (1− α)
k

d
LH .

The upper bound is proved similarly.

Corollary 30.6.2. Under the conditions of Lemma 30.6.1,

r(G L©Z) ≥ 1− α
2

r(G).

Proof. The proof is similar to the proof of Proposition 30.5.1. We have

λ2(G L©Z) ≥ (1− α)
kλ2(G)

d
,

and
λmax(G L©Z) ≤ (1 + α)2k.

CHAPTER 30. A SIMPLE CONSTRUCTION OF EXPANDER GRAPHS 249

So,

min (λ2(G L©Z), 2(2k)− λmax(G L©Z)) ≥ min

(
(1− α)

kλ2(G)

d
, (1− α)2k

)
= (1− α)

kλ2(G)

d
,

as λ2(G) ≤ d. So,

r(G L©Z) ≥ 1

2k
(1− α)kr(G) =

1− α
2

r(G).

So, the relative spectral gap of G L©Z is a little less than half that of G. But, the degree of G L©Z
is 2k, which we will arrange to be much less than the degree of G, d.

We will choose k and d so that squaring this graph improves its relative spectral gap, but still
leaves its degree less than d. If G has relative spectral gap β, then G2 has relative spectral gap at
least

2β − β2.

It is easy to see that when β is small, this gap is approximately 2β. This is not quite enough to
compensate for the loss of (1− ε)/2 in the corollary above, so we will have to square the graph
once more.

30.7 The whole construction

To begin, we need a “small” k-regular expander graph Z on

d
def
= (2k(2k − 1))2 − 2k(2k − 1)

vertices. It should be an ε-expander for some small ε. I believe that ε = 1/6 would suffice. The
other graph we will need to begin our construction will be a small d-regular expander graph G0.
We use Claim 30.1.1 to establish the existence of both of these. Let β be the relative spectral gap
of G0. We will assume that β is small, but greater than 0. I believe that β = 1/5 will work. Of
course, it does not hurt to start with a graph of larger relative spectral gap.

We then construct G0 L©Z. The degree of this graph is 2k, and its relative spectral gap is a little
less than β/2. So, we square the resulting graph, to obtain

(G0 L©Z)2.

It has degree approximately 4k2, and relative spectral gap slightly less than β. But, for induction,
we need it to be more than β. So, we square one more time, to get a relative spectral gap a little
less than 2β. We now set

G1 =
(

(G0 L©Z)2
)2
.

The graph G1 is at least as good an approximation of a complete graph as G0, and it has degree
approximately 16k4. In general, we set

Gi+1 =
(

(Gi L©Z)2
)2
.

CHAPTER 30. A SIMPLE CONSTRUCTION OF EXPANDER GRAPHS 250

To make the inductive construction work, we need for Z to be a graph of degree k whose number
of vertices equals the degree of G. This is approximately 16k4, and is exactly

(2k(2k − 1))2 − 2k(2k − 1).

I’ll now carry out the computation of relative spectral gaps with more care. Let’s assume that G0

has a relative spectral gap of β ≥ 4/5, and assume, by way of induction, that ρ(Gi) ≥ 4/5. Also
assume that Z is a 1/6-expander. We then find

r(Gi L©Z) ≥ (1− ε)(4/5)/2 = 1/3.

So, Gi L©Z is a 2/3-expander. Our analysis of graph squares then tells us that Gi+1 is a
(2/3)4-expander. So,

r(Gi+1) ≥ 1− (2/3)4 = 65/81 > 4/5.

By induction, we conclude that every Gi has relative spectral gap at least 4/5.

To improve their relative spectral gaps of the graphs we produce, we can just square them a few
times.

30.8 Better Constructions

There is a better construction technique, called the Zig-Zag product [RVW02]. The Zig-Zag
construction is a little trickier to understand, but it achieves better expansion. I chose to present
the line-graph based construction because its analysis is very closely related to an analysis of the
Zig-Zag product.

Chapter 31

PSRGs via Random Walks on Graphs

31.1 Overview

There are three major approaches to designing pseudo-random generators (PSRGs). The most
common is to use quick procedures that seem good enough. This is how the PSRGs that are
standard in most languages arise. Cryptographers and Complexity Theorists try to design PSRGs
that work for every polynomial-time algorithm. For example, one can construct PSRGs from
cryptographic functions with the guarantee that if the output of a polynomial-time algorithm
differs from random when using the PSRG, then one can use it to break the cryptographic
function (see [HILL99, Gol07]). In this chapter we consider the construction of PSRGs that can
be proved to work for specific algorithms or algorithms of specific forms. In particular, we will see
w Impagliazzo and Zuckerman’s [IZ89] approach of using of random walks on expanders to run
the same algorithm many times. We are going to perform a very crude analysis that is easy to
present. Rest assured that much tighter analyses are possible and much better PSRGs have been
constructed since.

31.2 Why Study PSRGs?

Pseudo-random number generators take a seed which is presumably random (or which has a lot of
randomness in it), and then generate a long string of random bits that are supposed to act
random. We should first discuss why we would actually want such a thing. I can think of two
reasons.

1. Random bits are scarce. This might be surprising. After all, if you look at the last few bits
of the time that I last hit a key, it is pretty random. Similarly, the low-order bits of the
temperature of the processor in my computer seem pretty random. While these bits are
pretty random, there are not too many of them.

Many randomized algorithms need a lot of random bits. Sources such as these just do not
produce random bits with a frequency sufficient for many applications.

251

CHAPTER 31. PSRGS VIA RANDOM WALKS ON GRAPHS 252

2. If you want to re-run an algorithm, say to de-bug it, it is very convenient to be able to use
the same set of random bits by re-running the PSRG with the same seed. If you use truly
random bits, you can’t do this.

You may also wonder how good the standard pseudo-random number generators are. The first
answer is that the default ones, such as rand in C, are usually terrible. There are many
applications, such as those in my thesis, for which these generators produce behavior that is very
different from what one would expect from truly random bits (yes, this is personal). On the other
hand, one can use cryptographic functions to create bits that will act random for most purposes,
unless one can break the underlying cryptography [HILL99]. But, the resulting generators are
usually much slower than the fastest pseudo-random generators. Fundamentally, it comes down to
a time-versus-quality tradeoff. The longer you are willing to wait, the better the pseudo-random
bits you can get.

31.3 Expander Graphs

In today’s lecture we will require an infinite family of d-regular 1/10-expander graphs. We require
that d be a constant, that the graphs have 2r vertices for all sufficiently large r, and that we can
construct the neighbors of a vertex in time polynomial in r. That is, we need the graphs to have a
simple explicit description. One can construct expanders families of this form using the
techniques from last lecture. For today’s purposes, the best expanders are the Ramanujan graphs
produced by Margulis [Mar88] and Lubotzky, Phillips and Sarnak [LPS88]. Ramanujan graphs of
degree d = 400 are 1/10-expanders. See also the work of Alon, Bruck, Naor, Naor and
Roth [ABN+92] for even more explicit constructions.

While the explicit Ramanujan graphs only exist in certain sizes, none of which do have exactly 2r

vertices, some of them have just a little more that 2r vertices. It is possible to trim these to make
them work, say by ignoring all steps in which the vertex does not correspond to r bits.

31.4 Today’s Application : repeating an experiment

Imagine you are given a black box that takes r bits as input and then outputs either 0 or 1.
Moreover, let’s assume that the black box is very consistent: we know that it returns the same
answer at least 99% of the time. If it almost always returns 0, we will call it a 0-box and if it
almost always returns 1, we will call it a 1-box. Our job is to determine whether a given box is a
0 or 1 box. We assume that r is big, so we don’t have time to test the box on all 2r settings of r
bits. Instead, we could pick r bits at random, and check what the box returns. If it says“1”, then
it is probably a 1-box. But, what if we want more than 99% confidence? We could check the box
on many choices of r random bits, and report the majority value returned by the box.1. But, this
seems to require a new set of random bits for each run. In this lecture, we will prove that 9 new
bits per run suffice. Note that the result would be interesting for any constant other than 9.

1Check for yourself that running it twice doesn’t help

CHAPTER 31. PSRGS VIA RANDOM WALKS ON GRAPHS 253

Since we will not make any assumptions about the black box, we will use truly random bits the
first time we test it. But, we will show that we only need 9 new random bits for each successive
test. In particular, we will show that if we use our PSRG to generate bits for t+ 1 test, then the
probability that majority answer is wrong decreases exponentially in t.

You are probably wondering why we would want to do such a thing. The reason is to increase the
accuracy of randomized algorithms. There are many randomized algorithms that provide weak
guarantees, such as being correct 99% or 51% of the time. To obtain accurate answers from such
algorithms, we run them many times with fresh random bits. You can view such an algorithm has
having two inputs: the problem to be solved and its random bits. The black box is the behavior
of the algorithm when the problem to be solved is fixed, so it is just working on the random bits.

31.5 The Random Walk Generator

Let r be the number of bits that our black box takes as input. So, the space of random bits is
{0, 1}r. Let X ⊂ {0, 1}r be the settings of the random bits on which the box gives the minority
answer, and let Y be the settings on which it gives the majority answer.

Our pseudo-random generator will use a random walk on a 1/10-expander graph whose vertex set
is {0, 1}r. Recall that we can use d = 400. For the first input we feed to the black box, we will
require r truly random bits. We treat these bits as a vertex of our graph. For each successive test,
we choose a random neighbor of the present vertex, and feed the corresponding bits to the box.
That is, we choose a random i between 1 and 400, and move to the ith neighbor of the present
vertex. Note that we only need log2 400 ≈ 9 random bits to choose the next vertex. So, we will
only need 9 new bits to generate each input we feed to the box after the first.

31.6 Formalizing the problem

Assume that we are going to test the box t+ 1 times. Our pseudo-random generator will begin at
a truly random vertex v, and then take t random steps. Recall that we defined X to be the set of
vertices on which the box outputs the minority answer, and we assume that |X| ≤ 2r/100. If we
report the majority of the outcomes of the t+ 1 outputs of the box, we will return the correct
answer as long as the random walk is inside X less than half the time. To analyze this, let v0 be
the initial random vertex, and let v1, . . . , vt be the vertices produced by the t steps of the random
walk. Let T = {0, . . . , t} be the time steps, and let S = {i : vi ∈ X}. We will prove

Pr [|S| > t/2] ≤
(

2√
5

)t+1

.

To begin our analysis, recall that the initial distribution of our random walk is p0 = 1/n. Let χX
and χY be the characteristic vectors of X and Y , respectively, and let DX = diag(χX) and
DY = diag(χY). Let

W =
1

d
M (31.1)

CHAPTER 31. PSRGS VIA RANDOM WALKS ON GRAPHS 254

be the transition matrix of the ordinary random walk on G. We are not using the lazy random
walk: it would be silly to use the lazy random walk for this problem, as there is no benefit to
re-running the experiment with the same random bits as before. Let ω1, . . . , ωn be the eigenvalues
of W . As the graph is a 1/10-expander, |ωi| ≤ 1/10 for all i ≥ 2.

Let’s see how we can use these matrices to understand the probabilities under consideration. For
a probability vector p on vertices, the probability that a vertex chosen according to p is in X
may be expressed

χTXp = 1TDXp.

The second form will be more useful, as
DXp

is the vector obtained by zeroing out the events in which the vertices are not in X. If we then
want to take a step in the graph G, we multiply by W . That is, the probability that the walk
starts at vertex in X, and then goes to a vertex i is q(i) where

q = WDXp0.

Continuing this way, we see that the probability that the walk is in X at precisely the times i ∈ R
is

1TDZtWDZt−1W · · ·DZ1WDZ0p0,

where

Zi =

{
X if i ∈ R
Y otherwise.

We will prove that this probability is at most (1/5)|R|. It will then follow that

Pr [|S| > t/2] ≤
∑
|R|>t/2

Pr [the walk is in X at precisely the times in R]

≤
∑
|R|>t/2

(
1

5

)|R|

≤ 2t+1

(
1

5

)(t+1)/2

=

(
2√
5

)t+1

.

31.7 Matrix Norms

Recall that the operator norm of a matrix M (also called the 2-norm) is defined by

‖M ‖ = max
v

‖Mv‖
‖v‖ .

CHAPTER 31. PSRGS VIA RANDOM WALKS ON GRAPHS 255

The matrix norm measures how much a vector can increase in size when it is multiplied by M .
When M is symmetric, the 2-norm is just the largest absolute value of an eigenvalue of M (prove
this for yourself). It is also immediate that

‖M 1M 2‖ ≤ ‖M 1‖ ‖M 2‖ .

You should also verify this yourself. As DX , DY and W are symmetric, they each have norm 1.

Warning 31.7.1. While the largest eigenvalue of a walk matrix is 1, the norm of an asymmetric
walk matrix can be larger than 1. For instance, consider the walk matrix of the path on 3 vertices.
Verify that it has norm

√
2.

Our analysis rests upon the following bound on the norm of DXW .

Lemma 31.7.2.
‖DXW ‖ ≤ 1/5.

Let’s see why this implies the theorem. For any set R, let Zi be as defined above. As p0 = Wp0,
we have

1TDZtWDZt−1W · · ·DZ1WDZ0p0 = 1T (DZtW)
(
DZt−1W

)
· · · (DZ0W)p0.

Now, ∥∥DZt−1W
∥∥ ≤ {1/5 for i ∈ R, and

1 for i 6∈ R.
So, ∥∥(DZtW)

(
DZt−1W

)
· · · (DZ0W)

∥∥ ≤ (1/5)|R|.

As ‖p0‖ = 1/
√
n and ‖1‖ =

√
n, we may conclude

1T (DZtW)
(
DZt−1W

)
· · · (DZ0W)p0 ≤

∥∥1T∥∥∥∥(DZtW)
(
DZt−1W

)
· · · (DZ0W)p0

∥∥
≤
∥∥1T∥∥ (1/5)|R| ‖p0‖

= (1/5)|R|.

31.8 The norm of DXW

Proof of Lemma 31.7.2. Let x be any non-zero vector, and write

x = c1 + y ,

where 1Ty = 0. We will show that ‖DXWx‖ ≤ ‖x‖ /5.

We know that the constant vectors are eigenvectors of W . So, W 1 = 1 and

DXW 1 = χX .

CHAPTER 31. PSRGS VIA RANDOM WALKS ON GRAPHS 256

This implies
‖DXW c1‖ = c ‖χX‖ = c

√
|X| ≤ c√n/10.

We will now show that ‖Wy‖ ≤ ‖y‖ /10. The easiest way to see this is to consider the matrix

W − J/n,

where we recall that J is the all-1 matrix. This matrix is symmetric and all of its eigenvalues
have absolute value at most 1/10. So, it has norm at most 1/10. Moreover, (W − J/n)y = Wy ,
which implies ‖Wy‖ ≤ ‖y‖ /10. Another way to prove this is to expand y in the eigenbasis of
W , as in the proof of Lemma 2.1.3.

Finally, as 1 is orthogonal to y ,

‖x‖ =

√
c2n+ ‖y‖2.

So,

‖DXWx‖ ≤ ‖DXW c1‖+ ‖DXWy‖ ≤ c√n/10 + ‖y‖ /10 ≤ ‖x‖ /10 + ‖x‖ /10 ≤ ‖x‖ /5.

31.9 Conclusion

Observe that this is a very strange proof. When considering probabilities, it seems that it would
be much more natural to sum them. But, here we consider 2-norms of probability vectors.

31.10 Notes

For the best results on the number of bits one needs for each run of an algorithm, see [?].

For tighter results on the concentration on variables drawn from random walks on expanders, see
Gillman [Gil98]. For matrices, see [GLSS18].

Part VI

Algorithms

257

Chapter 32

Sparsification by Random Sampling

32.1 Overview

In this chapter and the next, we will learn that every graph can be approximated by a sparse
graph, just as an expander graph approximates a complete graph. This chapter shows how to do
this by careful random sampling: for any graph on n vertices we will how to construct an
ε-approximation with only O(ε−2n log n) edges.

This theorem was originally proved in [SS11] using a concentration bound of Rudelson [Rud99].
In this chapter, we prove it using a matrix Chernoff bound due to Tropp [Tro12].

In the next chapter, we will see that the log n term is unnecessary. In fact, almost every graph
can be approximated by a sparse graph almost as well as the Ramanujan graphs approximate
complete graphs.

32.2 Sparsification

For this lecture, I define a graph H to be an ε-approximation of a graph G if

(1− ε)LG 4 LH 4 (1 + ε)LG.

We will show that every graph G has a good approximation by a sparse graph. This is a very
strong statement, as graphs that approximate each other have a lot in common. For example,

1. the effective resistance between all pairs of vertices are similar in the two graphs,

2. the eigenvalues of the graphs are similar,

3. the boundaries of all sets are similar, as these are given by χTSLGχS , and

4. the solutions of linear equations in the two matrices are similar.

258

CHAPTER 32. SPARSIFICATION BY RANDOM SAMPLING 259

We will prove this by using a very simple random construction. We first carefully1 choose a
probability pa,b for each edge (a, b). We then include each edge (a, b) with probabilty pa,b,
independently. If we do include edge (a, b), we give it weight wa,b/pa,b. We will show that our
choice of probabilities ensures that the resulting graph H has at most 4n lnn/ε2 edges and is an ε
approximation of G with high probability.

The reason we employ this sort of sampling–blowing up the weight of an edge by dividing by the
probability that we choose it—is that it preserves the matrix in expectation. Let La,b denote the
elementary Laplacian on edge (a, b) with weight 1, so that

LG =
∑

(a,b)∈E

wa,bLa,b.

We then have that
ELH =

∑
(a,b)∈E

pa,b(wa,b/pa,b)La,b = LG.

32.3 Matrix Chernoff Bounds

The main tool that we will use in our analysis is a theorem about the concentration of random
matrices. These may be viewed as matrix analogs of the Chernoff bound that we saw in Lecture
5. These are a surprisingly recent development, with the first ones appearing in the work of
Rudelson and Vershynin [Rud99, RV07] and Ahlswede and Winter [AW02]. The best present
source for these bounds is Tropp [Tro12], in which the following result appears as Corollary 5.2.

Theorem 32.3.1. Let X 1, . . . ,Xm be independent random n-dimensional symmetric positive
semidefinite matrices so that ‖X i‖ ≤ R almost surely. Let X =

∑
iX i and let µmin and µmax be

the minimum and maximum eigenvalues of

E [X] =
∑
i

E [X i] .

Then,

Pr

[
λmin(

∑
i

X i) ≤ (1− ε)µmin
]
≤ n

(
e−ε

(1− ε)1−ε

)µmin/R

, for 0 < ε < 1, and

Pr

[
λmax(

∑
i

X i) ≥ (1 + ε)µmax

]
≤ n

(
eε

(1 + ε)1+ε

)µmax/R

, for 0 < ε.

It is important to note that the matrices X 1, . . . ,Xm can have different distributions. Also note
that as the norms of these matrices get bigger, the bounds above become weaker. As the

1For those who can’t stand the suspense, we reveal that we will choose the probabilities to be proportional to
leverage scores of the edges.

CHAPTER 32. SPARSIFICATION BY RANDOM SAMPLING 260

expressions above are not particularly easy to work with, we often use the following
approximations. (

e−ε

(1− ε)1−ε

)
≤ e−ε2/2, for 0 < ε < 1, and(

eε

(1 + ε)1+ε

)
≤ e−ε2/3, for 0 < ε < 1.

Chernoff (and Hoeffding and Bernstein) bounds rarely come in exactly the form you want.
Sometimes you can massage them into the needed form. Sometimes you need to prove your own.
For this reason, you may some day want to spend a lot of time reading how these are proved.

32.4 The key transformation

Before applying the matrix Chernoff bound, we make a transformation that will enable us to
reduce to the case that µmin = µmax = 1.

For positive definite matrices A and B , we have

A 4 (1 + ε)B ⇐⇒ B−1/2AB−1/2 4 (1 + ε)I .

The same things holds for singular semidefinte matrices that have the same nullspace:

LH 4 (1 + ε)LG ⇐⇒ L
+/2
G LHL

+/2
G 4 (1 + ε)L

+/2
G LGL

+/2
G ,

where L
+/2
G is the square root of the pseudo-inverse of LG. Let

Π = L
+/2
G LGL

+/2
G ,

which is the projection onto the range of LG. We now know that LG is an ε-approximation of LH
if and only if L

+/2
G LHL

+/2
G is an ε-approximation of Π.

As multiplication by a fixed matrix is a linear operation and expectation commutes with linear
operations,

EL+/2
G LHL

+/2
G = L

+/2
G (ELH)L

+/2
G = EL+/2

G LGL
+/2
G = Π.

So, we really just need to show that this random matrix is probably close to its expectation, Π. It
would probably help to pretend that Π is in fact the identity, as it will make it easier to
understand the analysis. In fact, you don’t have to pretend: you could project all the vectors and
matrices onto the span of Π and carry out the analysis there.

32.5 The probabilities

Let

X a,b =

{
(wa,b/pa,b)L

+/2
G L(a,b)L

+/2
G with probability pa,b

0 otherwise,

CHAPTER 32. SPARSIFICATION BY RANDOM SAMPLING 261

so that
L

+/2
G LHL

+/2
G =

∑
(a,b)∈E

X a,b.

We will choose the probabilities to be

pa,b
def
=

1

R
wa,b

∥∥∥L+/2
G L(a,b)L

+/2
G

∥∥∥ ,
for an R < 1 to be chosen later. Thus, when edge (a, b) is chosen, ‖Xa,b‖ = R. Making this value
uniform for every edge optimizes one part of Theorem 32.3.1.

You may wonder what we should do if one of these probabilities pa,b exceeds one. There are many
ways of addressing this issue. For now, pretend that it does not happen. We will then explain
how to deal with this at the end of lecture.

Recall that the leverage score of edge (a, b) written `a,b was defined in Lecture 14 to be the weight
of an edge times the effective resistance between its endpoints:

`a,b = wa,b(δa − δb)TL+
G(δa − δb) = wa,bReff(a, b).

To see the relation between the leverage score and pa,b, compute

∥∥∥L+/2
G L(a,b)L

+/2
G

∥∥∥ =
∥∥∥L+/2

G (δa − δb)(δa − δb)TL+/2
G

∥∥∥
=
∥∥∥(δa − δb)TL+/2

G L
+/2
G (δa − δb)

∥∥∥
= (δa − δb)TL+

G(δa − δb)
= Reff(a, b).

As we can quickly approximate the effective resistance of every edge, we can quickly compute
sufficient probabilities.

Recall that the leverage score of an edge equals the probability that the edge appears in a random
spanning tree. As every spanning tree has n− 1 edges, this means that the sum of the leverage
scores is n− 1, and thus ∑

(a,b)∈E

pa,b =
n− 1

R
≤ n

R
.

This is a very clean bound on the expected number of edges in H. One can use a Chernoff bound
(on real variables rather than matrices) to prove that it is exponentially unlikely that the number
of edges in H is more than any small multiple of this.

CHAPTER 32. SPARSIFICATION BY RANDOM SAMPLING 262

For your convenience, I recall another proof that the sum of the leverage scores is n− 1:∑
(a,b)∈E

`a,b =
∑

(a,b)∈E

wa,bReff(a, b)

=
∑

(a,b)∈E

wa,b(δa − δb)TL+
G(δa − δb)

=
∑

(a,b)∈E

wa,bTr
(
L+
G(δa − δb)(δa − δb)T

)

= Tr

 ∑
(a,b)∈E

L+
Gwa,b(δa − δb)(δa − δb)T


= Tr

L+
G

∑
(a,b)∈E

wa,bLa,b


= Tr

(
L+
GLG

)
= Tr (Π)

= n− 1.

32.6 The analysis

We will choose

R =
ε2

3.5 lnn
.

Thus, the number of edges in H will be at most 4(lnn)ε−2 with high probability.

We have ∑
(a,b)∈E

EX a,b = Π.

It remains to show that it is unlikely to deviate from this by too much.

We first consider the case in which p(a,b) ≤ 1 for all edges (a, b). If this is the case, then Theorem
32.3.1 tells us that

Pr

∑
a,b

X a,b < (1 + ε)Π

 ≤ n exp
(
−ε2/3R

)
= n exp (−(3.5/3) lnn) = n−1/6.

For the lower bound, we need to remember that we can just work orthogonal to the all-1s vector,
and so treat the smallest eigenvalue of Π as 1. We then find that

Pr

∑
a,b

X a,b 4 (1− ε)Π

 ≤ n exp
(
−ε2/2R

)
= n exp (−(3.5/2) lnn) = n−3/2,

CHAPTER 32. SPARSIFICATION BY RANDOM SAMPLING 263

We finally return to deal with the fact that there might be some edges for which pa,b ≥ 1 and so
definitely appear in H. There are two natural ways to deal with these—one that is easiest
algorithmically and one that simplifies the proof. The algorithmically natural way to handle these
is to simply include these edges in H, and remove them from the analysis above. This requires a
small adjustment to the application of the Matrix Chernoff bound, but it does go through.

From the perspective of the proof, the simplest way to deal with these is to split each such X a,b

into many independent random edges: k = b`a,b/Rc that appear with probability exactly 1, and
one more that appears with probability `a,b/R− k. This does not change the expectation of their
sum, or the expected number of edges once we remember to add together the weights of edges
that appear multiple times. The rest of the proof remains unchanged.

32.7 Open Problem

If I have time in class, I will sketch a way to quickly approximate the effective resistances of every
edge in the graph. The basic idea, which can be found in [SS11] and which is carried out better in
[KLP12], is that we can compute the effective resistance of an edge (a, b) from the solution to a
logarithmic number of systems of random linear equations in LG. That is, after solving a
logarithmic number of systems of linear equations in LG, we have information from which we can
estimates all of the effective resistances.

In order to sparsify graphs, we do not actually need estimates of effective resistances that are
always accurate. We just need a way to identify many edges of low effective resistance, without
listing any that have high effective resistance. I believe that better algorithms for doing this
remain to be found. Current fast algorithms that make progress in this direction and that exploit
such estimates may be found in [KLP12, Kou14, CLM+15, LPS15]. These, however, rely on fast
Laplacian equation solvers. It would be nice to be able to estimate effective resistances without
these. A step in this direction was recently taken in the works [CGP+18, LSY18], which quickly
decompose graphs into the union of short cycles plus a few edges.

Chapter 33

Linear Sized Sparsifiers

33.1 Overview

In this lecture, we will prove a slight simplification of the main result of [BSS12, BSS14]. This will
tell us that every graph with n vertices has an ε-approximation with approximately 4ε−2n edges.
To translate this into a relation between approximation quality and average degree, note that
such a graph has average degree dave = 8ε−2. So,

ε ≈ 2
√

2√
d
,

which is about twice what you would get from a Ramanujan graph. Interestingly, this result even
works for average degree just a little bit more than 1.

33.2 Turning edges into vectors

In the last lecture, we considered the Laplacian matrix of a graph G times the square root of the
pseudoinverse on either side. That is,

L
+/2
G

 ∑
(a,b)∈E

wa,bL(a,b)

L
+/2
G .

Today, it will be convenient to view this as a sum of outer products of vectors. Set

v (a,b) =
√
wa,bL

+/2
G (δa − δb).

Then,

L
+/2
G

 ∑
(a,b)∈E

wa,bL(a,b)

L
+/2
G =

∑
(a,b)∈E

v (a,b)v
T
(a,b) = Π,

264

CHAPTER 33. LINEAR SIZED SPARSIFIERS 265

where we recall that Π = 1
nLKn is the projection orthogonal to the constant vectors.

The problem of sparsification is then the problem of finding a small subset of these vectors,
S ⊆ E, along with scaling factors, c : S → IR, so that

(1− ε)Π 4
∑

(a,b)∈S

ca,bv (a,b)v
T
(a,b) 4 (1 + ε)Π

If we project onto the span of the Laplacian, then the sum of the outer products of vectors v (a,b)

becomes the identity, and our goal is to find a set S and scaling factors ca,b so that

(1− ε)I n−1 4
∑

(a,b)∈S

ca,bv (a,b)v
T
(a,b) 4 (1 + ε)I n−1.

That is, so that all the eigenvalues of the matrix in the middle lie between (1− ε) and (1 + ε).

33.3 The main theorem

Theorem 33.3.1. Let v1, . . . , vm be vectors in IRn so that∑
i

v iv
T
i = I .

Then, for every ε > 0 there exists a set S along with scaling factors ci so that

(1− ε)2I 4
∑
i∈S

civ iv
T
i 4 (1 + ε)2I ,

and
|S| ≤

⌈
n/ε2

⌉
.

The condition that the sum of the outer products of the vectors sums to the identity has a name,
isotropic position. I now mention one important property of vectors in isotropic position

Lemma 33.3.2. Let v1, . . . , vm be vectors in isotropic position. Then, for every matrix M ,∑
i

vTi Mv i = Tr (M) .

Proof. We have
vTMv = Tr

(
vvTM

)
,

so ∑
i

vTi Mv i =
∑
i

Tr
(
v iv

T
i M

)
= Tr

((∑
i

v iv
T
i

)
M

)
= Tr (IM) = Tr (M) .

CHAPTER 33. LINEAR SIZED SPARSIFIERS 266

Today, we will prove that we can find a set of 6n vectors for which all eigenvalues lie between 1n
and 13n. If you divide all scaling factors by

√
13n, this puts the eigenvalues between 1/

√
13 and√

13. You can tighten the argument to prove Theorem 33.3.1.

We will prove this theorem by an iterative argument in which we choose one vector at a time to
add to the set S. We will set the scaling factor of a vector when we add it to S. It is possible that
we will add a vector to S more than once, in which case we will increase its scaling factor each
time. Throughout the argument we will maintain the invariant that the eigenvalues of the scaled
sum of outer produces is in the interval [l, u], where l and u are quantities that will change with
each addition to S. At the start of the algorithm, when S is empty, we will have

l0 = −n and u0 = n.

Every time we add a vector to S, we increase l by δL and u by δU , where

δL = 1/3 and δU = 2.

After we have done this 6n times, we will have l = n and u = 13n.

33.4 Rank-1 updates

We will need to understand what happens to a matrix when we add the outer product of a vector.

Theorem 33.4.1 (Sherman-Morrison). Let A be a nonsingular symmetric matrix and let v be a
vector and let c be a real number. Then,

(A− cvvT)−1 = A−1 + c
A−1vvTA−1

1− cvTA−1v
.

Proof. The easiest way to prove this is to multiply it out, gathering vTA−1v terms into scalars:

(A− cvvT)

(
A−1 + c

A−1vvTA−1

1− cvTA−1v

)
= I − cvvTA−1 + c

vvTA−1

1− cvTA−1v
− c2vv

TA−1vvTA−1

1− cvTA−1v

= I − cvvTA−1

(
1− 1

1− cvTA−1v
+

cvTAv

1− cvTA−1v

)
= I .

33.5 Barrier Function Arguments

To prove the main theorem we need a good way to measure progress. We would like to keep all
the eigenvalues of the matrix we have constructed at any point to lie in a nice range. But, more
than that, we need them to be nicely distributed within this range. To enforce this, we need to
measure how close the eigenvalues are to the limits.

CHAPTER 33. LINEAR SIZED SPARSIFIERS 267

Let A be a symmetric matrix with eigenvalues λ1 ≤ . . . ≤ λn. If u is larger than all of the
eigenvalues of A, then we call u an upper bound on A. To make this notion quantitive, we define
the upper barrier function

Φu(A) =
∑
i

1

u− λi
.

This is positive for all upper bounds u, goes to infinity as u approaches the largest eigenvalue,
decreases as u grows, and is convex for u > λn. In particular, we will use

Φu+δ(A) < Φu(A), for δ > 0. (33.1)

Also, observe that
λn ≤ u− 1/Φu(A). (33.2)

We will exploit the following formula for the upper barrier function:

Φu(A) = Tr
(
(uI −A)−1

)
.

For a lower bound on the eigenvalues l, we will define an analogous lower barrier function

Φl(A) =
∑
i

1

λi − l
= Tr

(
(A− lI)−1

)
.

This is positive whenever l is smaller than all the eigenvalues, goes to infinity as l approaches the
smallest eigenvalue, and decreases as l becomes smaller. In particular,

l + 1/Φl(A) ≤ λ1. (33.3)

The analog of (33.1) is the following.

Claim 33.5.1. Let l be a lower bound on A and let δ < 1/Φl(A). Then,

Φl+δ(A) ≤ 1

1/Φl(A)− δ .

Note that this inequality is an equality when A is one-dimensional. In that case,

1

λ1 − l − δ
=

1

1/(1/λ1 − l)− δ
.

Proof. After rearranging terms, we see that the inequality is equivalent to

Φl+δ(A)− Φl(A) ≤ δΦl+δ(A)Φl(A).

We then prove this by expanding in the eigenvalues, keeping in mind that all the terms λi − l − δ
are positive:

Φl+δ(A)− Φl(A) =
∑
i

1

λi − l − δ
−
∑
i

1

λi − l

=
∑
i

δ

(λi − l − δ)(λi − l)

≤ δ
(∑

i

1

(λi − l − δ)

)(∑
i

1

(λi − l)

)
.

CHAPTER 33. LINEAR SIZED SPARSIFIERS 268

Initially, we will have

Φl0(0) = Φ−n(0) = 1 and Φu0(0) = Φn(0) = 1.

33.6 Barrier Function Updates

The most important thing to understand about the barrier functions is how they change when we
add a vector to S. The Sherman-Morrison theorem tells us that happens when we change A to
A + cvvT :

Φu(A + cvvT) = Tr
(
(uI −A− cvvT)−1

)
= Tr

(
(uI −A)−1

)
+ c

Tr
(
(uI −A)−1vvT (uI −A)−1

)
1− cvT (uI −A)−1v

= Φu(A) + c
Tr
(
vT (uI −A)−1(uI −A)−1v

)
1− cvT (uI −A)−1v

= Φu(A) + c
vT (uI −A)−2v

1− cvT (uI −A)−1v
.

This increases the upper barrier function, and we would like to counteract this increase by
increasing u at the same time. If we advance u to û = u+ δU , then we find

Φu+δU (A + cvvT) = Φu+δU (A) + c
vT (ûI −A)−2v

1− cvT (ûI −A)−1v

= Φu(A)−
(

Φu(A)− Φu+δU (A)
)

+
vT (ûI −A)−2v

1/c− vT (ûI −A)−1v
.

We would like for this to be less than Φu(A). If we commit to how much we are going to increase
u, then this gives an upper bound on how large c can be. We want(

Φu(A)− Φu+δU (A)
)
≥ vT (ûI −A)−2v

1/c− vT (ûI −A)−1v
,

which is equivalent to

1

c
≥ vT (ûI −A)−2v

(Φu(A)− Φu+δU (A))
+ vT (ûI −A)−1v .

Define

UA =
((u+ δu)I −A)−2

(Φu(A)− Φu+δU (A))
+ ((u+ δu)I −A)−1.

We have established a clean condition for when we can add cvvT to S and increase u by δU
without increasing the upper barrier function.

CHAPTER 33. LINEAR SIZED SPARSIFIERS 269

Lemma 33.6.1. If
1

c
≥ vTUAv ,

then
Φu+δU (A + cvvT) ≤ Φu(A).

The miracle in the above formula is that the condition in the lemma just involves the vector v as
the argument of a quadratic form.

We also require the following analog for the lower barrier function. The difference is that
increasing l by setting l̂ = l + δL increases the barrier function, and adding a vector decreases it.

Lemma 33.6.2. Define

LA =
(A− l̂I)−2

(Φl+δL(A)− Φl(A))
− (A− l̂I)−1.

If
1

c
≤ vTLAv ,

then
Φl+δL(A + cvvT) ≤ Φl(A).

If we fix the vector v and an increment δL, then this gives a lower bound on the scaling factor by
which we need to multiply it for the lower barrier function not to increase.

33.7 The inductive argument

It remains to show that there exits a vector v and a scaling factor c so that

Φu+δU (A + cvvT) ≤ Φu(A) and Φl+δL(A + cvvT) ≤ Φl(A).

That is, we need to show that there is a vector v i so that

vTi UAv i ≤ vTi LAv i.

Once we know this, we can set c so that

vTi UAv i ≤
1

c
≤ vTi LAv i.

Lemma 33.7.1. ∑
i

vTi UAv i ≤
1

δU
+ Φu(A).

CHAPTER 33. LINEAR SIZED SPARSIFIERS 270

Proof. By Lemma 33.3.2, we know ∑
i

vTi UAv i = Tr (UA) .

To bound this, we break it into two parts

Tr
(
(ûI −A)−2

)
(Φu(A)− Φu+δU (A))

and
Tr
(
(ûI −A)−1

)
.

The second term is easiest

Tr
(
(ûI −A)−1

)
= Φu+δ(A) ≤ Φu(A).

To bound the first term, consider the derivative of the barrier function with respect to u:

∂

∂u
Φu(A) =

∂

∂u

∑
i

1

u− λi
= −

∑
i

(
1

u− λi

)2

= −Tr (uI −A)−2 .

As Φu(A) is convex in u, we may conclude that

Φu(A)− Φu+δU (A) ≥ −δU
∂

∂u
Φu+δu(A) = δUTr (ûI −A)−2 .

The analysis for the lower barrier is similar, but the second term is slightly more complicated.

Lemma 33.7.2. ∑
i

vTi LAv i ≥
1

δL
− 1

1/Φl(A)− δL
.

Proof. As before, we bound

Tr
(

(A− (l + δLI))−2
)

Φl+δL(A)− Φl(A)

by recalling that
∂

∂l
Φl(A) = Tr (A− lI)−2 .

As Φl(A) is convex in l, we have

Φl+δL(A)− Φl(A) ≤ δL
∂

∂l
Φl+δL(A) = δLTr (A− (l + δL)I)−2 .

To bound the other term, we use Claim 33.5.1 to prove

Tr
(
(A− (l + δLI)−1

)
≤ 1

1/Φl(A)− δL
.

CHAPTER 33. LINEAR SIZED SPARSIFIERS 271

So, for there to exist a v i that we can add to S with scale factor c so that neither barrier function
increases, we just need that

1

δU
+ Φu(A) ≤ 1

δL
− 1

1/Φl(A)− δ .

If this holds, then there is a v i so that

v iUAv i ≤ v iLAv i.

We then set c so that

v iUAv i ≤
1

c
≤ v iLAv i.

We now finish the proof by checking that the numbers I gave earlier satisfy the necessary
conditions. At the start both barrier functions are less than 1, and we need to show that this
holds throughout the algorithm. At every step, we will have by induction

1

δU
+ Φu(A) ≤ 1

2
+ 1 =

3

2
,

and
1

δL
− 1

1/Φl(A)− δL
≥ 3− 1

1− 1/3
=

3

2
.

So, there is always a v i that we can add to S and a scaling factor c so that both barrier function
remain upper bounded by 1.

If we now do this for 6n steps, we will have

l = −n+ 6n/3 = n and u = n+ 2 · 6n = 13n.

The bound stated at the beginning of the lecture comes from tightening the analysis. In
particular, it is possible to improve Lemma 33.7.2 so that it says∑

i

vTi LAv i ≥
1

δL
− 1

1/Φl(A)
.

I recommend the paper for details.

33.8 Progress and Open Problems

• It is possible to generalize this result to sums of positive semidefinite matrices, instead of
outer products of vectors [dCSHS11].

• It is now possible to compute sparsifiers that are almost this good in something close to
linear time. [AZLO15, LS15].

• Given last lecture, it seems natural to conjecture that the scaling factors of edges should be
proportional to their weights times effective resistances. Similarly, one might conjecture
that if all vectors v i have the same norm, then the scaling factors are unnecessary. This is
true, but not obvious. In fact, it is essentially equivalent to the Kadison-Singer problem
[MSS14, MSS15c].

Chapter 34

Iterative solvers for linear equations

We introduce basic iterative solvers for systems of linear equations: Richardson iteration and
Chebyshev’s method. We discuss Conjugate Gradient in the next Chapter, and iterative
refinement and preconditioning in Chapter 36.

34.1 Why iterative methods?

One is first taught to solve linear systems like

Ax = b

by direct methods such as Gaussian elimination, computing the inverse of A, or the LU
factorization. However, elimination algorithms can be very slow. This is especially true when A is
sparse. Just writing down the inverse takes O(n2) space, and computing the inverse takes O(n3)
time if we do it naively. This might be OK if A is dense. But, it is very wasteful if A only has
O(n) non-zero entries.

In general, we prefer algorithms whose running time is proportional to the number of non-zero
entries in the matrix A, and which do not require much more space than that used to store A.

Iterative algorithms solve linear equations while only performing multiplications by A, and
performing a few vector operations. Unlike the direct methods which are based on elimination, the
iterative algorithms do not find exact solutions. Rather, they get closer and closer to the solution
the longer they work. The advantage of these methods is that they need to store very little, and
are often much faster than the direct methods. When A is symmetric, the running times of these
methods are determined by the eigenvalues of A.

Throughout this lecture we will assume that A is positive definite or positive semidefinite.

272

CHAPTER 34. ITERATIVE SOLVERS FOR LINEAR EQUATIONS 273

34.2 First-Order Richardson Iteration

To get started, we will examine a simple, but sub-optimal, iterative method, Richardson’s
iteration. The idea of the method is to find an iterative process that has the solution to Ax = b
as a fixed point, and which converges. We observe that if Ax = b, then for any α,

αAx = αb, =⇒
x + (αA− I)x = αb, =⇒

x = (I − αA)x + αb.

This leads us to the following iterative process:

x t = (I − αA)x t−1 + αb, (34.1)

where we will take x 0 = 0. We will show that this converges if

I − αA

has norm less than 1, and that the convergence rate depends on how much the norm is less than
1. This is analogous to our analysis of random walks on graphs from Chapter 10.

As we are assuming A is symmetric, I − αA is symmetric as well, and so its norm is the
maximum absolute value of its eigenvalues. Let 0 < λ1 ≤ λ2 . . . ≤ λn be the eigenvalues of A.
Then, the eigenvalues of I − αA are

1− αλi,
and the norm of I − αA is

max
i
|1− αλi| = |max (1− αλ1, 1− αλn)| .

This is minimized by taking

α =
2

λn + λ1
,

in which case the smallest and largest eigenvalues of I − αA become

±λn − λ1

λn + λ1
,

and the norm of I − αA becomes

1− 2λ1

λn + λ1
.

While we might not know λn + λ1, a good guess is often sufficient. If we choose an
α < 2/(λn + λ1), then the norm of I − αA is at most

1− αλ1.

To show that x t converges to the solution, x , consider the difference x − x t. We have

x − x t = ((I − αA)x + αb)−
(
(I − αA)x t−1 + αb

)
= (I − αA)(x − x t−1).

CHAPTER 34. ITERATIVE SOLVERS FOR LINEAR EQUATIONS 274

So,
x − x t = (I − αA)t(x − x 0) = (I − αA)tx .

and ∥∥x − x t
∥∥ =

∥∥(I − αA)tx
∥∥ ≤ ∥∥(I − αA)t

∥∥ ‖x‖
= ‖(I − αA)‖t ‖x‖

≤
(

1− 2λ1

λn + λ1

)t
‖x‖ .

≤ e−2λ1t/(λn+λ1) ‖x‖ .

So, if we want to get a solution x t with ∥∥x − x t
∥∥

‖x‖ ≤ ε,

it suffices to run for
λn + λ1

2λ1
ln(1/ε) =

(
λn
2λ1

+
1

2

)
ln(1/ε).

iterations. The term
λn
λ1

is called the condition number1 of the matrix A, when A is symmetric. It is often written κ(A),
and the running time of iterative algorithms is often stated in terms of this quantity. We see that
if the condition number is small, then this algorithm quickly provides an approximate solution.

34.3 Expanders

Let’s pause a moment to consider the problem of solving systems in the Laplacians of expander
graphs. These are singular, but we know that their nullspace is spanned by the constant vectors.
So, if we work orthogonal to the constant vectors their effective smallest eigenvalue is λ2. If the
graph is an ε-expander, then its condition number, λn/λ2, will be approximately 1 + 2ε. Thus, we
can solve systems of linear equations in this Laplacian very quickly.

This should make intuitive sense: the Laplacian of an expander is an approximation of the
Laplacian of a complete graph. And, the Laplacians of complete graphs act as multiples of the
identity on the space orthogonal to constant vectors.

In contrast, Gaussian elimination on expanders is slow: it takes time Ω(n3) and requires space
Ω(n2) [LRT79].

1For general matrices, the condition number is defined to be the ratio of the largest to smallest singular value.

CHAPTER 34. ITERATIVE SOLVERS FOR LINEAR EQUATIONS 275

34.4 The norm of the residual

Thinking about ‖x − x t‖ is a little awkward because we do not know x . For this reason, people
often measure the quality of approximation of a solution to a system of linear equations by
‖b −Ax t‖. For this quantity, the same sort of convergence results hold. First observe that

b −Ax t = Ax −Ax t = A(I − αA)tx = (I − αA)tAx = (I − αA)tb.

So, the right choice of α guarantees that

‖b −Ax t‖
‖b‖ ≤ e−2λ1t/(λn+λ1).

In Chapter 35 we will encounter a more useful measure of convergence—convergence in the
A-norm.

34.5 A polynomial approximation of the inverse

I am now going to give another interpretation of Richardson’s iteration. It provides us with a
polynomial in A that approximates A−1. In particular, the tth iterate, x t can be expressed in the
form

pt(A)b,

where pt is a polynomial of degree t.

We will view pt(A) as a good approximation of A−1 if

‖Apt(A)− I‖

is small. From the formula defining Richardson’s iteration (34.1), we find

x 0 = 0,

x 1 = αb,

x 2 = (I − αA)αb + αb,

x 3 = (I − αA)2αb + (I − αA)αb + αb, and

x t =

t∑
i=0

(I − αA)iαb.

To get some idea of why this should be an approximation of A−1, consider the limit as t goes to
infinity. Assuming that the infinite sum converges, we obtain

α
∞∑
i=0

(I − αA)i = α (I − (I − αA))−1 = α(αA)−1 = A−1.

So, the Richardson iteration can be viewed as a truncation of this infinite summation.

CHAPTER 34. ITERATIVE SOLVERS FOR LINEAR EQUATIONS 276

In general, a polynomial pt will enable us to compute a solution to precision ε if

‖pt(A)b − x‖ ≤ ε ‖x‖ .
As b = Ax , this is equivalent to

‖pt(A)Ax − x‖ ≤ ε ‖x‖ ,
which is equivalent to

‖Apt(A)− I ‖ ≤ ε

34.6 Better Polynomials

This leads us to the question of whether we can find better polynomial approximations to A−1.
The reason I ask is that the answer is yes! As A, pt(A) and I all commute, the matrix

Apt(A)− I

is symmetric and its norm is the maximum absolute value of its eigenvalues. So, it suffices to find
a polynomial pt such that

|λipt(λi)− 1| ≤ ε,
for all eigenvalues λi of A.

To reformulate this, define
qt(x) = 1− xp(x).

Then, it suffices to find a polynomial qt of degree t+ 1 for which

qt(0) = 1, and

|qt(x)| ≤ ε, for λ1 ≤ x ≤ λn.

We will see that there are polynomials of degree

ln(2/ε)
(√

λn/λ1 + 1
)
/2

that satisfy these conditions and thus allow us to compute solutions of accuracy ε. In terms of the
condition number of A, this is a quadratic improvement over Richardson’s first-order method.

Theorem 34.6.1. For every t ≥ 1, and 0 < λmin ≤ λmax, there exists a polynomial qt(x) such
that

1. |qt(x)| ≤ ε , for λmin ≤ x ≤ λmin, and

2. qt(0) = 1,

for
ε ≤ 2(1 + 2/

√
κ)−t ≤ 2e−2t/

√
κ,

where

κ =
λmax
λmin

.

CHAPTER 34. ITERATIVE SOLVERS FOR LINEAR EQUATIONS 277

34.7 Chebyshev Polynomials

I’d now like to explain how we find these better polynomials. The key is to transform one of the
most fundamental polynomials: the Chebyshev polynomials. These polynomials are as small as
possible on [−1, 1], and grow quickly outside this interval. We will translate the interval [−1, 1] to
obtain the polynomials we need.

The tth Chebyshev polynomial, Tt(x) has degree t, and may be defined by setting

T0(x) = 1, T1(x) = x,

and for t ≥ 2
Tt(x) = 2xTt−1(x)− Tt−2(x).

These polynomials are best understood by realizing that they are the polynomials for which

cos(tθ) = Tt(cos(θ)) and cosh(tθ) = Tt(cosh(θ)).

It might not be obvious that one can express cos(tθ) as a polynomial in cos(θ). To see this, and
the correctness of the above formulas, recall that

cos(θ) =
1

2

(
eiθ + e−iθ

)
, and cosh(θ) =

1

2

(
eθ + e−θ

)
.

To verify that these satisfy the stated recurrences with x = cos(θ), compute

2Tt−1(x)− Tt−2(x) =
1

2

(
eθ + e−θ

)(
e(t−1)θ + e−(t−1)θ

)
− 1

2

(
e(t−2)θ + e−(t−2)θ

)
=

1

2

(
e(tθ + e−tθ

)
+

1

2

(
e(t−2)θ + e−(t−2)θ

)
− 1

2

(
e(t−2)θ + e−(t−2)θ

)
=

1

2

(
e(tθ + e−tθ

)
.

Thus,

Tt(x) =

{
cos(t acos(x)) for |x| ≤ 1, and

cosh(t acosh(x)) for x ≥ 1.

Claim 34.7.1. For x ∈ [−1, 1], |Tt(x)| ≤ 1.

Proof. For x ∈ [−1, 1], there is a θ so that cos(θ) = x. We then have Tt(x) = cos(tθ), which must
also be between −1 and 1.

To compute the values of the Chebyshev polynomials outside [−1, 1], we use the hyperbolic cosine
function. Hyperbolic cosine maps the real line to [1,∞] and is symmetric about the origin. So,
the inverse of hyperbolic cosine may be viewed as a map from [1,∞] to [0,∞], and satisfies

acosh(x) = ln
(
x+

√
x2 − 1

)
, for x ≥ 1.

CHAPTER 34. ITERATIVE SOLVERS FOR LINEAR EQUATIONS 278

Claim 34.7.2. For γ > 0,
Tt(1 + γ) ≥ (1 +

√
2γ)t/2.

Proof. Setting x = 1 + γ, we compute

Tt(x) =
1

2

(
et acosh(x) + e−t acosh(x)

)
≥ 1

2

(
et acosh(x)

)
=

1

2
(x+

√
x2 − 1)t

=
1

2
(1 + γ +

√
(1 + γ)2 − 1)t

=
1

2
(1 + γ +

√
2γ + γ2)t

≥ 1

2
(1 +

√
2γ)t.

34.8 Proof of Theorem 34.6.1

We will exploit the following properties of the Chebyshev polynomials:

1. Tt has degree t.

2. Tt(x) ∈ [−1, 1], for x ∈ [−1, 1].

3. Tt(x) is monotonically increasing for x ≥ 1.

4. Tt(1 + γ) ≥ (1 +
√

2γ)t/2, for γ > 0.

To express qt(x) in terms of a Chebyshev polynomial, we should map the range on which we want
qt to be small, [λmin, λmax] to [−1, 1]. We will accomplish this with the linear map:

l(x)
def
=

λmax + λmin − 2x

λmax − λmin
.

Note that

l(x) =


−1 if x = λmax

1 if x = λmin
λmax+λmin
λmax−λmin

if x = 0.

To guarantee that the constant coefficient in qt(x) is one (qt(0) = 1), we should set

qt(x)
def
=

Tt(l(x))

Tt(l(0))
.

CHAPTER 34. ITERATIVE SOLVERS FOR LINEAR EQUATIONS 279

We know that |Tt(l(x))| ≤ 1 for x ∈ [λmin, λmax]. To find q(x) for x in this range, we must
compute Tt(l(0)). We have

l(0) ≥ 1 + 2/κ(A),

and so by properties 3 and 4 of Chebyshev polynomials,

Tt(l(0)) ≥ (1 + 2/
√
κ)t/2.

Thus,
q(x) ≤ 2(1 + 2/

√
κ)−t,

for x ∈ [λmin, λmax], and so all eigenvalues of q(A) will have absolute value at most 2(1 + 2/
√
κ)−t.

34.9 Laplacian Systems

One might at first think that these techniques do not apply to Laplacian systems, as these are
always singular. However, we can apply these techniques without change if b is in the span of L.
That is, if b is orthogonal to the all-1s vector and the graph is connected. In this case the
eigenvalue λ1 = 0 has no role in the analysis, and it is replaced by λ2. One way of understanding
this is to just view L as an operator acting on the space orthogonal to the all-1s vector.

By considering the example of the Laplacian of the path graph, one can show that it is impossible
to do much better than the

√
κ iteration bound that I claimed at the end of the last section. To

see this, first observe that when one multiplies a vector x by L, the entry (Lx)(i) just depends on
x (i− 1),x (i), and x (i+ 1). So, if we apply a polynomial of degree at most t, x t(i) will only
depend on b(j) with i− t ≤ j ≤ i+ t. This tells us that we will need a polynomial of degree on
the order of n to solve such a system.

On the other hand,
√
λn/λ2 is on the order of n as well. So, we should not be able to solve the

system with a polynomial whose degree is significantly less than
√
λn/λ2.

34.10 Warning

The polynomial-based approach that I have described here only works in infinite precision
arithmetic. In finite precision arithmetic one has to be more careful about how one implements
these algorithms. This is why the descriptions of methods such as the Chebyshev method found
in Numerical Linear Algebra textbooks are more complicated than that presented here. The
algorithms that are actually used are mathematically identical in infinite precision, but they
actually work. The problem with the naive implementations are the typical experience: in
double-precision arithmetic the polynomial approach to Chebyshev will fail to solve linear systems
in random positive definite matrices in 60 dimensions!

Chapter 35

The Conjugate Gradient and
Diameter

We introduce the matrix norm as the measure of convergence of iterative methods, and show how
the Conjugate Gradient method efficiently minimizes it. We finish by relating the rate of
convergence of any iterative method on a Laplacian matrix to the diameter of the underlying
graph.

My description of the Conjugate Gradient method is inspired by Vishnoi’s [Vis12]. It is the
simplest explanation of the Conjugate Gradient that I have seen.

35.1 The Matrix Norm

Recall from Chapter 14 that for a positive semidefinite matrix A, the matrix norm in A is defined
by

‖x‖A =
√
xTAx =

∥∥∥A1/2x
∥∥∥ .

For many applications, the right way to measure the quality of approximation of a system of
linear equations Ax = b is by ‖x − x t‖A. Many algorithms naturally produce bounds on the
error in the matrix norm. And, for many applications that use linear equation solvers as
subroutines, this is the measure of accuracy in the subroutine that most naturally translates to
accuracy of the outside algorithm.

We should observe that both the Richardon and Chebyshev methods achieve ε error in the
A-norm. Let p be a polynomial such that

‖p(A)A− I ‖ ≤ ε.

Then,

‖p(A)b − x‖A =
∥∥∥A1/2p(A)Ax −A1/2x

∥∥∥ =
∥∥∥(p(A)A− I)A1/2x

∥∥∥ ≤ ε∥∥∥A1/2x
∥∥∥ = ε ‖x‖A .

280

CHAPTER 35. THE CONJUGATE GRADIENT AND DIAMETER 281

The analysis above works because these methods produce x t by applying a linear operator, p(A),
to b that commutes with A. While most of the algorithms we use to solve systems of equations in
A will be linear operators, they will typically not commute with A. But, they will produce small
error in the A-norm.

The following theorem shows that a linear operator Z is an ε approximation of A−1 if and only if
it produces at most ε error in the A-norm when used to solve systems of linear equations in A.

Theorem 35.1.1. Let A and Z be positive definite matrices. Then

‖ZAx − x‖A ≤ ε ‖x‖A (35.1)

for all x if and only if
(1− ε)A−1 4 Z 4 (1 + ε)A−1.

Proof. The assertion that (35.1) holds for all x is equivalent to the assertion that for all x ,∥∥∥A1/2(ZA− I)x
∥∥∥ ≤ ε∥∥∥A1/2x

∥∥∥ .
Setting y = A1/2x , this becomes equivalent to saying that for all y ,∥∥∥(A1/2ZA1/2 − I)y

∥∥∥ ≤ ε ‖y‖ ,
which we usually write ∥∥∥A1/2ZA1/2 − I

∥∥∥ ≤ ε.
This is in turn equivalent to

−εI 4 A1/2ZA1/2 − I 4 εI ⇐⇒
(1− ε)I 4 A1/2ZA1/2 4 (1 + ε)I ⇐⇒

(1− ε)A−1 4 Z 4 (1 + ε)A−1,

where the last statement follows from multiplying on the left and right by A−1/2.

35.2 Application: Approximating Fiedler Vectors

Approximately computing eigenvectors of the smallest eigenvalues of matrices, such as Fiedler
vectors, is one application in which approximation in the A-norm is the right thing to do. In
problem [?], we saw that the largest eigenvalue of a matrix can be approximated using the power
method. If we want the smallest eigenvalue, it is natural to use the power method on the inverse
of the matrix.

As we are only going to compute an approximation of the eigenvalue and its corresponding
eigenvector, we might as well use an approximation of the matrix inverse. If Z is an operator that
ε-approximates A−1, then the largest eigenvalue of Z is within 1± ε of the largest eigenvalue of
A−1, and the corresponding eigenvector has large Rayleigh quotient with respect to A−1. As we
learned in problem [?], if there is a gap between this and the next eigenvalue, then this vector
makes a small angle with the eigenvector. See [ST14, Section 7] for a more detailed discussion.

CHAPTER 35. THE CONJUGATE GRADIENT AND DIAMETER 282

35.3 Optimality in the A-norm

The iterative methods that we consider begin with the vector b, and then perform multiplications
by A and take linear combinations with vectors that have already been produced. So, after t
iterations they produce a vector that is in the span of{

b,Ab,A2b, . . . ,Atb
}
.

This subspace is called the t+ 1st Krylov subspace generated by A and b.

The Conjugate Gradient will find the vector x t in this subspace that minimizes the error in the
A-norm. It will do so by computing a very useful basis of this subspace. But, before we describe
this basis, let’s examine the error in the A norm.

We have
‖x t − x‖2A = xTt Ax t − 2xTAx t + xTAx = xTt Ax t − 2bTx t + bTx .

While we do not know bTx , we do know that ‖x t − x‖2A is minimized when we minimize

1

2
xTt Ax t − bTx t. (35.2)

So, we will work to minimize (35.2).

Let p0, . . . ,pt be a basis of the t+ 1st Krylov subspace, and let

x t =
t∑
i=0

cipi.

We would like to find the coefficients ci that minimize (35.2). Expanding x gives

1

2
xTt Ax t − bTx t =

1

2

(
t∑
i=0

cipi

)T
A

(
t∑
i=0

cipi

)
− bT

(
t∑
i=0

cipi

)

=
1

2

t∑
i=0

c2
ip

T
i Api −

t∑
i=0

cib
Tpi +

1

2

∑
i 6=j

cicjp
T
i Apj .

To simplify the selection of the optimal constants ci, the Conjugate Gradient will compute a basis
p0, . . . ,pt that makes the rightmost term 0. That is, it will compute a basis such that pTi Apj = 0
for all i 6= j. Such a basis is called an A-orthogonal basis.

When the last term is zero, the objective function becomes

t∑
i=0

(
1

2
c2
ip

T
i Api − cibTpi

)
.

So, the terms corresponding to different is do not interact, and we can minimize the sum by
minimizing each term individually. The term

1

2
c2
ip

T
i Api − cibTpi

CHAPTER 35. THE CONJUGATE GRADIENT AND DIAMETER 283

is minimized by setting its derivative in ci equal to zero, which gives

ci =
bTpi
pTi Api

.

It remains to describe how we compute this A-orthogonal basis. The algorithm begins by setting

p0 = b.

The next vector should be Ap0, but A-orthogonalized with respect to p0. That is,

p1 = Ap0 − p0

(Ap0)TAp0

pT0 Ap0

.

It is immediate that
pT0 Ap1 = 0.

In general, we set

pt+1 = Apt −
t∑
i=0

pi
(Apt)

TApi
pTi Api

. (35.3)

Let’s verify that pt+1 is A-orthogonal to pi for i ≤ t, assuming that p0, . . . ,pt are A-orthogonal.
We have

pTj Apt+1 = pTj AApt −
t∑
i=0

pTj Api
(Apt)

TApi
pTi Api

= pTj A
2pt − pTj Apj

(Apt)
TApi

pTj Apj

= 0.

The computation of pt+1 is greatly simplified by the observation that all but two of the terms in
the sum (35.3) are zero: for i < t− 1,

(Apt)
TApi = 0.

To see this, note that
(Apt)

TApi = pTt A(Api),

and that Api is in the span of
{
p0, . . . ,pi+1

}
. So, this term will be zero if i+ 1 < t.

That means that

pt+1 = Apt − pt
(Apt)

TApt
pTt Apt

− pt−1

(Apt)
TApt−1

pTt−1Apt−1

.

So, one can compute pt+1 from pt and pt−1 while using only a constant number of
multiplications by A and a constant number of vector operations. This means that one can
compute the entire basis p0, . . . ,pt while performing only O(t) multiplications of vectors by A
and O(t) vector operations.

CHAPTER 35. THE CONJUGATE GRADIENT AND DIAMETER 284

The computation of x t by

x t =

t∑
i=0

pi
bTpi
pTi Api

.

Only requires an additional O(t) more such operations.

In fact, only t multiplications by A are required to compute p0, . . . ,pt and x 1, . . . ,x t: every term
in the expressions for these vectors can be derived from the products Api. Thus, the Conjugate
Gradient algorithm can find the x t in the t+ 1st Krylov subspace that minimizes the error in the
A-norm in time O(tn) plus the time required to perform t multiplications by A.

Caution: the algorithm that I have presented here differs from the implemented Conjugate
gradient in that the implemented Conjugate Gradient re-arranges this computation to keep the
norms of the vectors involved reasonably small. Without this adjustment, the algorithm that I’ve
described will fail in practice as the vectors pi will become too large.

35.4 How Good is CG?

The Conjugate Gradient is at least as good as the Chebyshev iteration, in that it finds a vector of
smaller error in the A-norm in any given number of iterations. The optimality property of the
Conjugate Gradient causes it to perform remarkably well.

For example, one can see that it should never require more than n iterations. The vector x is
always in nth Krylov subspace. Here’s an easy way to see this. Let the distinct eigenvalues of A
be λ1, . . . , λk. Now, consider the polynomial

q(x)
def
=

∏k
i=1(λi − x)∏k

i=1 λi
.

You can verify that q is a degree k polynomial such that

q(0) = 1, and

q(λi) = 0, for all i.

So, CG should be able to find the exact answer to a system in A in k − 1 iterations. I say
“should” because, while this statement is true with infinite precision arithmetic, it doesn’t work
out quite this well in practice.

Ignoring for now issues of finite arithmetic, let’s consider the importance of this for sparse
matrices A. By a sparse matrix, I mean one with at most cn non-zero entries, for some constant
c. That’s not a rigorous definition, but it will help guide our discussion. Multiplication by a
sparse matrix can be done in time O(n). So, CG can solve a system of equations in a sparse
matrix in time O(n2). Note that this is proportional to how long it would take to just write the
inverse of A, and will probably be faster than any algorithm for computing the inverse. On the
other hand, it only provides the solution to one system in A.

For another interesting example, consider the hypercube graph on n vertices. It only has log2 n
distinct eigenvalues. So, CG will only need log2 n iterations to solve linear systems in the

CHAPTER 35. THE CONJUGATE GRADIENT AND DIAMETER 285

Laplacian of the hypercube. While there are other fast algorithms the exploit the special structure
of the hypercube, CG works well when one has a graph that is merely very close to the hypercube.

In general, CG works especially quickly on matrices in which the eigenvalues appear in just a few
clusters, and on matrices in which there are just a few extreme eigenvalues. We will learn more
about this in the next lecture.

35.5 Laplacian Systems, again

This would be a good time to re-examine what we want when our matrix is a Laplacian. The
Laplacian does not have an inverse. Rather, we want a polynomial in the Laplacian that
approximates its pseudo-inverse (which we defined back in Lecture 8). If we were exactly solving
the system of linear equations, we would have found a polynomial p such that

p(L)b = x ,

where b = Lx , so this gives
p(L)Lx = x .

Of course, this is only reasonable if x is in the span of L. If the underlying graph is connected,
this only happens if x is orthogonal to the all-1s vector. Of course, L sends constant vectors to
zero. So, we want

p(L)L = Π,

where Π is the projection matrix that sends the constant vectors to zero, and acts as an identity
on the vectors that are orthogonal to the constant vectors. Recall that Π = 1

nLKn .

Similarly, p gives an ε-approximation of the pseudo-inverse if

‖p(L)L−Π‖ ≤ ε.

35.6 Bounds on the Diameter

Our intuition tells us that if we can quickly solve linear equations in the Laplacian matrix of a
graph by an iterative method, then the graph should have small diameter. We now make that
intuition precise.

If s and t are vertices that are at distance greater than d from each other, then

χTs L
dχt = 0.

On the other hand, if L only has k distinct eigenvalues other than 0, then we can form a
polynomial p of degree k − 1 such that

Lp(L) = Π.

This allows us to prove the following theorem.

CHAPTER 35. THE CONJUGATE GRADIENT AND DIAMETER 286

Theorem 35.6.1. Let G be a connected graph whose Laplacian has at most k distinct eigenvalues
other than 0. Then, the diameter of G is at most k.

Proof. Let d be the diameter of the graph and let s and t be two vertices at distance d from each
other. We have

eTs Πe t = −1/n.

On the other hand, we have just described a polynomial in L with zero constant term, given by
Lp(L), that has degree k and such that

Lp(L) = Π.

If the degree of this polynomial were less than d, we would have

eTs Lp(L)e t = 0.

As this is not the case, we have d ≤ k.

We can similarly obtain bounds on the diameter from approximate pseudo-inverses. If p is a
polynomial such that

‖p(L)L−Π‖ ≤ ε,
then

eTs (p(L)L−Π)e t ≤ ‖es‖ ‖p(L)L−Π‖ ‖e t‖ ≤ ε.
If s and t are at distance d from each other in the graph, and if the degree of p(L)L has degree
less than d, then

eTs (p(L)L−Π)e t = eTs (−Π)e t = 1/n.

This is a contradiction if ε < 1/n. So, the polynomials we constructed from Chebyshev
polynomials imply the following theorem of Chung, Faber and Manteuffel [CFM94]

Theorem 35.6.2. Let G = (V,E) be a connected graph, and let λ2 ≤ · · · ≤ λn be its Laplacian
eigenvalues. Then, the diameter of G is at most(

1

2

√
λn
λ2

+ 1

)
ln 2n.

Chapter 36

Preconditioning Laplacians

A preconditioner for a positive semidefinite matrix A is a positive semidefinite matrix B such
that it is easy to solve systems of linear equations in B and the condition number of B−1A is
small. A good preconditioner allows one to quickly solve systems of equations in A.

In this lecture, we will measure the quality of preconditioners in terms of the ratio

κ(A,B)
def
= β/α,

where α is the largest number and β is the smallest such that

αB 4 A 4 βB .

Lemma 36.0.1. Let α and β be as defined above. Then, α and β are the smallest and largest
eigenvalues of B−1A, excluding possible zero eigenvalues corresponding to a common nullspace of
A and B .

We need to exclude the common nullspace when A and B are the Laplacian matrices of
connected graphs. If these matrices have different nullspaces α = 0 or β =∞ and the condition
number β/α is infinite.

Proof of Lemma 36.0.1. We just prove the statement for β, in the case where neither matrix is
singular. We have

λmax(B−1A) = λmax(B−1/2AB−1/2)

= max
x

xTB−1/2AB−1/2x

xTx

= max
y

yTAy

yTBy
, settting y = B−1/2x ,

which equals β.

Recall that the eigenvalues of B−1A are the same as those of B−1/2AB−1/2 and A1/2B−1A1/2.

287

CHAPTER 36. PRECONDITIONING LAPLACIANS 288

36.1 Approximate Solutions

Recall the A-norm:
‖x‖A =

√
xTAx =

∥∥∥A1/2x
∥∥∥ .

We say that x̃ is an ε-approximate solution to the problem Ax = b if

‖x̃ − x‖A ≤ ε ‖x‖A .

36.2 Iterative Refinement

We will now see how to use a very good preconditioner to solve a system of equations. Let’s
consider a preconditioner B that satisfies

(1− ε)B 4 A 4 (1 + ε)B .

So, all of the eigenvalues of
A1/2B−1A1/2 − I

have absolute value at most ε.

The vector B−1b is a good approximation of x in the A-norm. We have∥∥B−1b − x
∥∥
A

=
∥∥∥A1/2B−1b −A1/2x

∥∥∥
=
∥∥∥A1/2B−1Ax −A1/2x

∥∥∥
=
∥∥∥A1/2B−1A1/2(A1/2x)−A1/2x

∥∥∥
≤
∥∥∥A1/2B−1A1/2 − I

∥∥∥∥∥∥A1/2x
∥∥∥

≤ ε
∥∥∥A1/2x

∥∥∥
= ε ‖x‖A .

Remark: This result crucially depends upon the use of the A-norm. It fails under the Euclidean
norm.

If we want a better solution, we can just compute the residual and solve the problem in the
residual. That is, we set

x 1 = B−1b,

and compute
r1 = b −Ax 1 = A(x − x 1).

We then use one solve in B to compute a vector x 2 such that

‖(x − x 1)− x 2‖A ≤ ε ‖x − x 1‖A ≤ ε2 ‖x‖A .

CHAPTER 36. PRECONDITIONING LAPLACIANS 289

So, x 1 + x 2, our new estimate of x , differs from x by at most an ε2 factor. Continuing in this
way, we can find an εk approximation of x after solving k linear systems in B . This procedure is
called iterative refinement.

36.3 Iterative Methods in the Matrix Norm

The iterative methods we studied last class can also be shown to produce good approximate
solutions in the matrix norm. Given a matrix A, these produce ε-approximation solutions after t
iterations if there is a polynomial q of degree t for which q(0) = 1 and |q(λi)| ≤ ε for all
eigenvalues of A. To see this, recall that we can define p(x) so that q(x) = 1− xp(x), and set

x̃ = p(A)b,

to get
‖x̃ − x‖A = ‖p(A)b − x‖A = ‖p(A)Ax − x‖A .

As I , A, p(A) and A1/2 all commute, this equals∥∥∥A1/2p(A)Ax −A1/2x
∥∥∥ =

∥∥∥p(A)AA1/2x −A1/2x
∥∥∥

≤ ‖p(A)A− I ‖
∥∥∥A1/2x

∥∥∥
≤ ε ‖x‖A .

36.4 Preconditioned Iterative Methods

Preconditioned iterative methods can be viewed as the extension of Iterative Refinement by
algorithms like Chebyshev iteration and the Preconditioned Conjugate Gradient. These usually
work with condition numbers much larger than 2.

In each iteration of a preconditioned method we will solve a system of equations in B , multiply a
vector by A, and perform a constant number of other vector operations. For this to be
worthwhile, the cost of solving equations in B has to be low.

We begin by seeing how the analysis with polynomials translates. Let λi be the ith eigenvalue of
B−1A. If qt(x) = 1− xpt(x) is a polynomial such that |qt(λi)| ≤ ε for all i, then

x t
def
= pt(B

−1A)B−1b

CHAPTER 36. PRECONDITIONING LAPLACIANS 290

will be an ε-approximate solution to Ax = b:

‖x − x t‖A =
∥∥∥A1/2x −A1/2x t

∥∥∥
=
∥∥∥A1/2x −A1/2pt(B

−1A)B−1b
∥∥∥

=
∥∥∥A1/2x −A1/2pt(B

−1A)B−1Ax
∥∥∥

=
∥∥∥A1/2x −A1/2pt(B

−1A)B−1A1/2(A1/2x)
∥∥∥

≤
∥∥∥I −A1/2pt(B

−1A)B−1A1/2
∥∥∥∥∥∥(A1/2x)

∥∥∥ .
We now prod this matrix into a more useful form:

I −A1/2pt(B
−1A)B−1A1/2 = I − pt(A1/2B−1A1/2)A1/2B−1A1/2 = qt(A

1/2B−1A1/2).

So, we find

‖x − x t‖A ≤
∥∥∥qt(A1/2B−1A1/2)

∥∥∥∥∥∥(A1/2x)
∥∥∥ ≤ ε ‖x‖A .

The Preconditioned Conjugate Gradient (PCG) is a magical algorithm that after t steps (each of
which involves solving a system in B , multiplying a vector by A, and performing a constant
number of vector operations) produces the vector x t that minimizes

‖x t − x‖A

over all vectors x t that can be written in the form pt(b) for a polynomial of degree at most t.
That is, the algorithm finds the best possible solution among all iterative methods of the form we
have described. We first bound the quality of PCG by saying that it is at least as good as
Preconditioned Chebyshev, but it has the advantage of not needing to know α and β. We will
then find an improved analysis.

36.5 Preconditioning by Trees

Vaidya [Vai90] had the remarkable idea of preconditioning the Laplacian matrix of a graph by the
Laplacian matrix of a subgraph. If H is a subgraph of G, then

LH 4 LG,

so all eigenvalues of L−1
H LG are at least 1. Thus, we only need to find a subgraph H such that LH

is easy to invert and such that the largest eigenvalue of L−1
H LG is not too big.

It is relatively easy to show that linear equations in the Laplacian matrices of trees can be solved
exactly in linear time. One can either do this by finding an LU -factorization with a linear number
of non-zeros, or by viewing the process of solving the linear equation as a dynamic program that
passes up once from the leaves of the tree to a root, and then back down.

CHAPTER 36. PRECONDITIONING LAPLACIANS 291

We will now show that a special type of tree, called a low-stretch spanning tree provides a very
good preconditioner. To begin, let T be a spanning tree of G. Write

LG =
∑

(u,v)∈E

wu,vLu,v =
∑

(u,v)∈E

wu,v(χu − χv)(χu − χv)T .

We will actually consider the trace of L−1
T LG. As the trace is linear, we have

Tr
(
L−1
T LG

)
=

∑
(u,v)∈E

wu,vTr
(
L−1
T Lu,v

)
=

∑
(u,v)∈E

wu,vTr
(
L−1
T (χu − χv)(χu − χv)T

)
=

∑
(u,v)∈E

wu,vTr
(
(χu − χv)TL−1

T (χu − χv)
)

=
∑

(u,v)∈E

wu,v(χu − χv)TL−1
T (χu − χv).

To evaluate this last term, we need to know the value of (χu − χv)TL−1
T (χu − χv). You already

know something about it: it is the effective resistance in T between u and v. In a tree, this equals
the distance in T between u and v, when we view the length of an edge as the reciprocal of its
weight. This is because it is the resistance of a path of resistors in series. Let T (u, v) denote the
path in T from u to v, and let w1, . . . , wk denote the weights of the edges on this path. As we
view the weight of an edge as the reciprocal of its length,

(χu − χv)TL−1
T (χu − χv) =

k∑
i=1

1

wi
. (36.1)

Even better, the term (36.1) is something that has been well-studied. It was defined by Alon,
Karp, Peleg and West [AKPW95] to be the stretch of the unweighted edge (u, v) with respect to
the tree T . Moreover, the stretch of the edge (u, v) with weight wu,v with respect to the tree T is
defined to be exactly

wu,v

k∑
i=1

1

wi
,

where again w1, . . . , wk are the weights on the edges of the unique path in T from u to v. A
sequence of works, begining with [AKPW95], has shown that every graph G has a spanning tree
in which the sum of the stretches of the edges is low. The best result so far is due to [AN12], who
prove the following theorem.

Theorem 36.5.1. Every weighted graph G has a spanning tree subgraph T such that the sum of
the stretches of all edges of G with respect to T is at most

O(m log n log log n),

where m is the number of edges G. Moreover, one can compute this tree in time
O(m log n log logn).

CHAPTER 36. PRECONDITIONING LAPLACIANS 292

Thus, if we choose a low-stretch spanning tree T , we will ensure that

Tr
(
L−1
T LG

)
=

∑
(u,v)∈E

wu,v(χu − χv)TL−1
T (χu − χv) ≤ O(m log n log log n).

In particular, this tells us that λmax(L−1
T LG) is at most O(m log n log log n), and so the

Preconditioned Conjugate Gradient will require at most O(m1/2 log n) iterations, each of which
requires one multiplication by LG and one linear solve in LT . This gives an algorithm that runs in
time O(m3/2 log n log 1/ε), which is much lower than the O(n3) of Gaussian elimination when m,
the number of edges in G, is small.

This result is due to Boman and Hendrickson [BH01].

36.6 Improving the Bound on the Running Time

We can show that the Preconditioned Conjugate Gradient will actually run in closer to O(m1/3)
iterations. Since the trace is the sum of the eigenvalues, we know that for every β > 0, L−1

T LG has
at most

Tr
(
L−1
T LG

)
/β

eigenvalues that are larger than β.

To exploit this fact, we use the following lemma. It basically says that we can ignore the largest
eigenvalues of B−1A if we are willing to spend one iteration for each.

Lemma 36.6.1. Let λ1, . . . , λn be positive numbers such that all of them are at least α and at
most k of them are more than β. Then, for every t ≥ k, there exists a polynomial p(X) of degree t
such that p(0) = 1 and

|p(λi)| ≤ 2

(
1 +

2√
β/α

)−(t−k)

,

for all λi.

Proof. Let r(X) be the polynomial we constructed using Chebyshev polynomials of degree t− k
for which

|r(X)| ≤ 2

(
1 +

2√
β/α

)−(t−k)

,

for all X between α and β. Now, set

p(X) = r(X)
∏

i:λi>β

(1−X/λi).

This new polynomial is zero at every λi greater than β, and for X between α and β

|p(X)| = |r(X)|
∏

i:λi>β

|(1−X/λi)| ≤ |r(X)| ,

as we always have X < λi in the product.

CHAPTER 36. PRECONDITIONING LAPLACIANS 293

Applying this lemma to the analysis of the Preconditioned Conjugate Gradient, with

β = Tr
(
L−1
T LG

)2/3
and k = Tr

(
L−1
T LG

)1/3
, we find that the algorithm produces ε-approximate

solutions within
O(Tr

(
L−1
T LG

)1/3
ln(1/ε)) = O(m1/3 log n ln 1/ε)

iterations.

This result is due to Spielman and Woo [SW09].

36.7 Further Improvements

We now have three families of algorithms for solving systems of equations in Laplaican matrices
in nearly-linear time.

• By subgraph preconditioners. These basically work by adding back edges to the low-stretch
trees. The resulting systems can no longer be solved directly in linear time. Instead, we use
Gaussian elimination to eliminate the degree 1 and 2 vertices to reduce to a smaller system,
and then solve that system recursively. The first nearly linear time algorithm of this form
ran in time O(m logc n log 1/ε), for some constant c [ST14]. An approach of this form was
first made practical (and much simpler) by Koutis, Miller, and Peng [KMP11]. The
asymptotically fastest method also works this way. It runs in time
O(m log1/2m logc log n log 1/ε), [CKM+14] (Cohen, Kyng, Miller, Pachocki, Peng, Rao, Xu).

• By sparsification (see my notes from Lecture 19 from 2015). These algorithms work rather
differently, and do not exploit low-stretch spanning trees. They appear in the papers
[PS14, KLP+16].

• Accelerating Gaussian elimination by random sampling, by Kyng and Sachdeva [KS16].
This is the most elegant of the algorithms. While the running time of the algorithms,
O(m log2 n log 1/ε) is not the asymptotically best, the algorithm is so simple that it is the
best in practice. An optimized implementation appears in the package Laplacian.jl.

There are other algorithms that are often fast in practice, but for which we have no theoretical
analysis. I suggest the Algebraic Multigrid of Livne and Brandt, and the Combinatorial Multigrid
of Yiannis Koutis.

36.8 Questions

I conjecture that it is possible to construct spanning trees of even lower stretch. Does every graph
have a spanning tree of average stretch 2 log2 n? I do not see any reason this should not be true. I
also believe that this should be achievable by a practical algorithm. The best code that I know for
computing low-stretch spanning trees, and which I implemented in Laplacians.jl, is a heuristic
based on the algorithm of Alon, Karp, Peleg and West. However, I do not know an analysis of
their algorithm that gives stretch better than O(m2

√
logn). The theoretically better low-stretch

CHAPTER 36. PRECONDITIONING LAPLACIANS 294

trees of Abraham and Neiman are obtained by improving constructions of [EEST08, ABN08].
However, they seem too complicated to be practical.

The eigenvalues of L−1
H LG are called generalized eigenvalues. The relation between generalized

eigenvalues and stretch is the first result of which I am aware that establishes a combinatorial
interpretation of generalized eigenvalues. Can you find any others?

Chapter 37

Augmented Spanning Tree
Preconditioners

This Chapter Needs Editing

The first algorithms that solved Laplacian systems in nearly linear time used augmented spanning
tree preconditioners. These are formed by adding edges of G back to a spanning tree of G. Vaidya
[Vai90] first suggested doing this with maximum spanning trees. The first nearly linear time
solvers were developed by Spielman and Teng [ST14] by augmenting low stretch spanning trees.
The elegant algorithm described in this chapter is from two papers by Koutis, Miller, and Peng
[KMP10, KMP11]. It solves systems to ε accuracy in time Õ(m log n log ε−1).

Using the Iterative Refinement algorithm from the previous chapter, we know that it suffices to
show this with any constant ε < 1. You should assume throughout this chapter that ε is some
absolute constant like 1/20.

I recall that Õ is like O-notation, but it hides low order logarithmic terms. That is, when we
write f(n) ≤ Õ(g(n)), we mean that there is a constant c such that f(n) ≤ O(g(n) logc g(n)). For
example, in this notation we can say that every graph G has a spanning tree T of average stretch
Õ(log n). In this Chapter we will want to specify that many statements are true given some
choice of constants c. For this purpose, we will often let c be a constant, but not the same
constant, where it appears throughout the chapter. We do this instead of using O-notation, as it
simplifies making the constants explicit later.

37.1 Recursion

Let H be obtained by adding a few edges back to a spanning tree T of G. As a large fraction of
the vertices of T will have degree 1 or 2, the same is true of H. We can eliminate these degree 1

295

CHAPTER 37. AUGMENTED SPANNING TREE PRECONDITIONERS 296

and 2 vertices to obtain a Schur complement H̃ and an upper triangular matrix1 U such that

U T

(
I 0
0 L

H̃

)
U = LH .

This means that we can solve a system of equations in LH by solving systems in U T , L
H̃

, and U .
As elimination of a degree 1 vertex only decreases the degree of its neighbor and the elimination
of a degree 2 vertex does not change the degrees of its neighbors, the matrix U has at most 2n
nonzero entries. As U is upper triangular, systems in U and U T can be solved in time
proportional to their number of nonzero entries, O(n). This inspires a recursive algorithm for
solving equations in LG: we construct a good preconditioner H with many degree 1 and 2
vertices, and then solve systems in LH by approximately solving in L

H̃
.

We now explore this idea in a little more detail. First observe that because we are applying a
recursive algorithm, we will not solve systems in L

H̃
exactly. Rather, we will be applying an

algorithm to approximately solve these systems. The one guarantee we make about this algorithm
is that it acts as a linear operator. That is, the action of this algorithm corresponds to
multiplication by some matrix Z that we never construct. But, we know that for some ε

(1− ε)Z+ 4 L
H̃

4 (1 + ε)Z+.

This immediately implies that

(1− ε)U T

(
I 0
0 Z+

)
U 4 U T

(
I 0
0 L

H̃

)
U 4 (1 + ε)U T

(
I 0
0 Z+

)
U .

Thus, we can obtain ε-approximate solutions to systems in LH by solving a system in U ,
applying Z , and solving a system in U T .

Define

M = U T

(
I 0
0 Z+

)
U .

This will imply that κ(LG,M) is at most ((1 + ε)/(1− ε))κ(LG,LH), which will be just a little
more than κ(LG,LH) and thus fine for our purposes.

Lemma 37.1.1. Let T be a tree on n vertices. Then, more than half the vertices of T have degree
1 or 2.

Proof. The number of edges in T is n− 1, so the average degree of vertices in T is less than 2.
Thus T must contain at least one degree 1 vertex for every vertex of degree at least 3. The other
vertices have degree 2.

We learned last lecture that if we keep eliminating degree 1 vertices from trees, then we will
eventually eliminate all the vertices. An analogous fast is true for a graph that equals a tree plus
k edges.

1Whether this matrix is actually upper triangular depends on the ordering of the vertices. We assume, without
loss of generality, that the vertices are ordered so that the matrix is upper triangular.

CHAPTER 37. AUGMENTED SPANNING TREE PRECONDITIONERS 297

Lemma 37.1.2. Let H be a tree on n vertices plus k edges. If we eliminate degree 1 and 2
vertices of the tree that do not touch the extra k edges until none remain, we will be left with at
most 4k vertices and 5k edges.

Proof. If we eliminate a degree 1 or 2 vertex of the tree that does not touch one of the extra k
edges, we will obtain a graph that looks like a tree on one fewer vertex, plus k edges. As a tree on
4k vertices must have at least 2k + 1 vertices of degree 1 or 2, at least one of these does not touch
one of the extra k edges, and so can be eliminated.

37.2 Heavy Trees

Koutis, Miller, and Peng observe that we do not necessarily have to produce a subgraph H of G
that looks like a tree plus a few edges. All we really need is for H to have many fewer edges than
G. This still leaves the question of how we will find such an H that is a good approximation of G.
The trick is to use a variant of the random-sampling based approach of Chapter 32. But, we
avoid the cost of computing effective resistances of edges by estimating them by their stretches, at
the cost of a worse approximation.

We begin by formally stating the result of that chapter for graphs.

Theorem 37.2.1. Let G = (V,E,w) be a graph, let ε > 0, and for every edge (a, b) and let
pa,b ∈ (0, 1] satisfy

pa,b ≥ min

(
1,

4 lnn

ε2
wa,bReffG(a, b)

)
.

Form the random graph H = (V, F, u) by setting for every edge independently

ua,b =

{
wa,b/pa,b with probability pa,b

0 with probability 1− pa,b.

Then there exists a constant c so that with probability at least 1− n−c, H is an ε approximation of
G and the number of edges in H is at most 2

∑
a,b pa,b.

Lemma 37.2.2. For every weighted graph G = (V,E,w), spanning tree T = (V, F,w) of G, and
a, b ∈ V , ReffG(a, b) ≤ StretchT (a, b).

Proof. Rayleigh’s Monotonicity Theorem tells us that ReffG(a, b) ≤ ReffT (a, b), and this latter
term equals StretchT (a, b).

The problem with sampling edges with probability proportional to their effective resistance, or
stretches, is that this will produce too many edges. Koutis, Miller, and Peng solve this problem
by multiplicatively increasing the weights of the edges in a low-stretch spanning tree of G. Define

G̃ = G+ (s− 1)T.

That is, G̃ is the same as G, but every edge in the tree T has its weight multiplied by s.

CHAPTER 37. AUGMENTED SPANNING TREE PRECONDITIONERS 298

Thus, for (a, b) not in the tree,

Reff
G̃

(a, b) ≤ ReffsT (a, b) ≤ (1/s)StretchT (a, b).

For every edge (a, b)inT we set pa,b = 1 and for every edge (a, b) 6∈ T , we set

pa,b ≥ min

(
1,

4 lnn

sε2
wa,bStretchT (a, b)

)
.

Define σ to be the average stretch of edges of G with respect to T :

σ = (1/m)StretchT (G) = (1/m)
∑

(a,b)∈E

wa,bStretchT (a, b),

and recall that σ ≤ Õ(log n). If we now form H by including edge (a, b) with probability pa,b,

then Theorem 37.2.1 tells us that with high probability H is an ε approximation of G̃ and that
the number of edges of H that are not in T is at most∑

(a,b)6∈T

pa,b ≤
4mσ lnn

sε2
.

So, by making s a little more than some constant times σ lnn, we can make sure that the number
of edges of H not in T is less than the number of edges of G not in T .

But, we need to solve systems in G, not G̃ . To this end, we use the following multiplicative
property of condition numbers.

Claim 37.2.3.
κ(LG,LH) ≤ κ(LG,LG̃

)κ(L
G̃
,LH).

As G̃ differs from G by having the weights of some edges multiplied by s, κ(LG,LG̃
) ≤ s. Thus,

we will have κ(LG,LH) ≤ s(1 + ε)/(1− ε), and to get ε accurate solutions to systems in LG we
will need to solve some constant times κ(LG,LH)1/2 systems in LH . As we are going to keep ε
constant, this will be around s1/2.

To make an efficient algorithm for solving systems in G out of an algorithm for solving systems in
H, it would be easiest if the cost of the solves in H is less than the cost of a multiply by G. As we
will solve the system in H around s1/2 times, it seems natural to ensure that the number of edges
of H that are not in T is at most the number of edges in G divide by s1/2. That is, we want

s1/2 4mσ lnn

sε2
≤ m,

which requires
s ≥ c(σ lnn)2,

for some constant c. We will now show that such a choice of c yields an algorithm for solving
linear equations in LG to constant accuracy in time Õ(m log2 n).

CHAPTER 37. AUGMENTED SPANNING TREE PRECONDITIONERS 299

We now describe the recursion. Let G0 = G, the input graph. We will eventually solve systems in
Gi by recursively solving systems in Gi+1. Each system Gi+1 will have fewer edges than Gi, and
thus we can use a brute force solve when the system becomes small enough. We will bound the
running time of solvers for systems in Gi in terms of the number of edges that are not in their
spanning trees. We denote this by oi = mi − (ni − 1). There is some issue with o0, so let’s assume
without much loss of generality that G0 does not have any degree 1 or 2 vertices, and thus the
o0 ≥ n0.

Form G̃i by multiplying a low-stretch spanning tree of G by s, and use random sampling to
produce Hi. We know that the number of off-tree edges in Hi is at most a 1/(cσ lnn) fraction of
the number of off-tree edges in Gi. If the number of off-tree edges in Hi is less than ni/4, then we
know that after eliminating degree 1 and 2 vertices we will be left with a graph having at most
4ni vertices and 5ni edges. We let Gi+1 be this graph. If this number off of-tree edges in Hi is
more than ni/4, then we just set Gi+1 = Hi.

In this way, we ensure that oi+1 ≤ oi/(cσ lnn). We can now prove by backwards induction on i
that the time required to solve systems of equations in LGi is at most O(oiσ lnn). A solve in Gi
to constant accuracy requires performing O(s1/2) solves in Gi+1 and as many multiplies by LGi .
By induction we know that this takes time at most

O(s1/2 (oi + oi−1σ lnn)) ≤ O(s1/2 (2oi)) ≤ O(oiσ lnn).

37.3 Saving a log

Chapter 38

Fast Laplacian Solvers by
Sparsification

This Chapter Needs Editing

38.1 Overview

We will see how sparsification allows us to solve systems of linear equations in Laplacian matrices
and their sub-matrices in nearly linear time. By “nearly-linear”, I mean time
O(m logc(nκ−1) log ε−1) for systems with m nonzero entries, n dimensions, condition number κ.
and accuracy ε.

This algorithm comes from [PS14].

38.2 Today’s notion of approximation

In today’s lecture, I will find it convenient to define matrix approximations slightly differently
from previous lectures. Today, I define A ≈ε B to mean

e−εA 4 B 4 eεA.

Note that this relation is symmetric in A and B , and that for ε small eε ≈ 1 + ε.

The advantage of this definition is that

A ≈α B and B ≈β C implies A ≈α+β C .

300

CHAPTER 38. FAST LAPLACIAN SOLVERS BY SPARSIFICATION 301

38.3 The Idea

I begin by describing the idea behind the algorithm. This idea won’t quite work. But, we will see
how to turn it into one that does.

We will work with matrices that look like M = L + X where L is a Laplacian and X is a
non-zero, non-negative diagonal matrix. Such matrices are called M-matrices. A symmetric
M-matrix is a matrix M with nonpositive off-diagonal entries such that M1 is nonnegative and
nonzero. We have encountered M-matrices before without naming them. If G = (V,E) is a graph,
S ⊂ V , and G(S) is connected, then the submatrix of LG indexed by rows and columns in S is an
M-matrix. Algorithmically, the problems of solving systems of equations in Laplacians and
symmetric M-matrices are equivalent.

The sparsification results that we learned for Laplacians translate over to M-matrices. Every
M-matrix M can be written in the form X + L where L is a Laplacian and X is a nonnegative
diagonal matrix. If L̂ ≈ε L, then it is easy to show (too easy for homework) that

X + L̂ ≈ε X + L.

In Lecture 7, Lemma 7.3.1, we proved that if X has at least one nonzero entry and if L is
connected, then X + L is nonsingular. We write such a matrix in the form M = D −A where D
is positive diagonal and A is nonnegative, and note that its being nonsingular and positive
semidefinite implies

D −A � 0 ⇐⇒ D � A. (38.1)

Using the Perron-Frobenius theorem, one can also show that

D � −A. (38.2)

Multiplying M by D−1/2 on either side, we obtain

I −D−1/2AD−1/2.

Define
B = D−1/2AD−1/2,

and note that inequalities (38.1) and (38.2) imply that all eigenvalues of B have absolute value
strictly less than 1.

It suffices to figure out how to solve systems of equations in I −B . One way to do this is to
exploit the power series expansion:

(I −B)−1 = I + B + B2 + B3 + · · ·

However, this series might need many terms to converge. We can figure out how many. If the
largest eigenvalue of B is (1− κ) < 1, then we need at least 1/κ terms.

We can write a series with fewer terms if we express it as a product instead of as a sum:∑
i≥0

B i =
∏
j≥1

(I + B2j).

CHAPTER 38. FAST LAPLACIAN SOLVERS BY SPARSIFICATION 302

To see why this works, look at the first few terms

(I +B)(I +B2)(I +B4) = (I +B+B2+B3)(I +B4) = (I +B+B2+B3)+B4(I +B+B2+B3).

We only need O(log κ−1) terms of this product to obtain a good approximation of (I −B)−1.

The obstacle to quickly applying a series like this is that the matrices I +B2j are probably dense.
We know how to solve this problem: we can sparsify them! I’m not saying that flippantly. We
actually do know how to sparsify matrices of this form.

But, simply sparsifying the matrices I + B2j does not solve our problem because approximation
is not preserved by products. That is, even if A ≈ε Â and B ≈ε B̂ , ÂB̂ could be a very poor
approximation of AB . In fact, since the product ÂB̂ is not necessarily symmetric, we haven’t
even defined what it would mean for it to approximate AB .

38.4 A symmetric expansion

We will now derive a way of expanding (I −B)−1 that is amenable to approximation. We begin
with an alternate derivation of the series we saw before. Note that

(I −B)(I + B) = (I −B2),

and so
(I −B) = (I −B2)(I + B)−1.

Taking the inverse of both sides gives

(I −B)−1 = (I + B)(I −B2)−1.

We can then apply the same expansion to (I −B2)−1 to obtain

(I −B)−1 = (I + B)(I + B2)(I −B4)−1.

What we need is a symmetric expansion. We use

(I −B)−1 =
1

2
I +

1

2
(I + B)(I −B2)−1(I + B). (38.3)

We will verify this by multiplying the right hand side by (I −B):

(I + B)(I −B2)−1(I + B)(I −B) = (I + B)(I −B2)−1(I −B2) = I + B ;

so
1

2

[
I + (I + B)(I −B2)−1(I + B)

]
(I −B) =

1

2
[(I −B) + (I + B)] = I .

This expression for (I −B)−1 plays nicely with matrix approximations. If

M 1 ≈ε (I −B2),

then you can show

(I −B)−1 ≈ε
1

2

[
I + (I + B)M−1

1 (I + B)
]
.

If we can apply M−1
1 quickly and if B is sparse, then we can quickly approximate (I −B)−1. You

may now be wondering how we will construct such an M 1. The answer, in short, is “recursively”.

CHAPTER 38. FAST LAPLACIAN SOLVERS BY SPARSIFICATION 303

38.5 D and A

Unfortunately, we are going to need to stop writing matrices in terms of I and B , and return to
writing them in terms of D and A. The reason this is unfortunate is that it makes for longer
expressions.

The analog of (38.3) is

(D −A)−1 =
1

2

[
D−1 + (I + D−1A)(D −AD−1A)−1(I + AD−1)

]
. (38.4)

In order to be able to work with this expression inductively, we need to check that the middle
matrix is an M-matrix.

Lemma 38.5.1. If D is a diagonal matrix and A is a nonnegative matrix so that M = D −A is
an M-matrix, then

M 1 = D −AD−1A

is also an M-matrix.

Proof. As the off-diagonal entries of this matrix are symmetric and nonpositive, it suffices to
prove that M1 ≥ 0 and M1 6= 0. To compute the row sums set

d = D1 and aaa = A1,

and note that d − aaa ≥ 0 and d − aaa 6= 0. For M 1, we have

(D −AD−1A)1 = d −AD−1aaa ≥ d −A1 = d − aaa,

which is nonnegative and not exactly zero.

We will apply transformation like this many times during our algorithm. To keep track of
progress, I say that (D ,A) is an (α, β)-pair if

a. D is positive diagonal,

b. A is nonnegative (and can have diagonal entries), and

c. αD < A and βD < −A.

For our initial matrix M = D −A, we know that there is some number κ > 0 for which (D ,A) is
a (1− κ, 1− κ)-pair.

At the end of our recursion we will seek a (1/4, 1/4)-pair. When we have such a pair, we can just
approximate D −A by D .

Lemma 38.5.2. If M = D −A and (D ,A) is a (1/4, 1/4)-pair, then

M ≈1/3 D .

CHAPTER 38. FAST LAPLACIAN SOLVERS BY SPARSIFICATION 304

Proof. We have
M = D −A 4 (1 + 1/4)D ≤ e1/4D ,

and
M = D −A < D − (1/4)D = (3/4)D < e−1/3D .

Lemma 38.5.3. If (D ,A) is an (α, α)-pair, then (D ,AD−1A) is an (α2, 0)-pair.

Proof. From Lecture 14, Lemma 3.1, we know that the condition of the lemma is equivalent to
the assertion that all eigenvalues of D−1A have absolute value at most α, and that the conclusion
is equivalent to the assertion that all eigenvalues of D−1AD−1A lie between 0 and α2, which is
immediate as they are the squares of the eigenvalues of D−1A.

So, if we start with matrices D and A that are a (1− κ, 1− κ)-pair, then after applying this
transformation approximately log κ−1 + 2 times we obtain a (1/4, 0)-pair. But, the matrices in
this pair could be dense. To keep them sparse, we need to figure out how approximating D −A
degrades its quality.

Lemma 38.5.4. If ε ≤ 1/3,

a. (D ,A) is a (1− κ, 0) pair,

b. D −A ≈ε D̂ − Â, and

c. D ≈ε D̂,

then D̂ − Â is an (1− κe−2ε, 3ε)-pair.

Proof. First observe that
(1− κ)D < A ⇐⇒ D −A < κD .

Then, compute

D̂ − Â < e−ε(D −A) < e−εκD < e−2εκD̂ .

For the other side, compute

e2εD̂ < eεD < eε(D −A) < (D̂ − Â).

For ε ≤ 1/3, 3ε ≥ e2ε − 1, so
3εD̂ < (e2ε − 1)D̂ < −Â.

CHAPTER 38. FAST LAPLACIAN SOLVERS BY SPARSIFICATION 305

It remains to confirm that sparsification satisfies the requirements of this lemma. The reason this
might not be obvious is that we allow A to have nonnegative diagonal elements. While this does
not interfere with condition b, you might be concerned that it would interfere with condition c. It
need not.

Let C be the diagonal of A, and let L be the Laplacian of the graph with adjacency matrix
A−C , and set X so that X + L = D −A. Let L̃ be a sparse ε-approximation of L. By
computing the quadratic form in elementary unit vectors, you can check that the diagonals of L
and L̃ approximate each other. If we now write L̃ = D̃ − Ã, where Ã has zero diagonal, and set

D̂ = D̃ + C and Â = Ã + C

You can now check that D̂ and Â satisfy the requirements of Lemma 38.5.4.

You might wonder why we bother to keep diagonal elements in a matrix like A. It seems simpler
to get rid of them. However, we want (D ,A) to be an (α, β) pair, and removing subtracting C
from both of them would make β worse. This might not matter too much as we have good control
over β. But, I don’t yet see a nice way to carry out a proof that exploits this.

38.6 Sketch of the construction

We begin with an M-matrix M 0 = D0 −A0. Since this matrix is nonsingular, there is a κ0 > 0 so
that (D0,A0) is a (1− κ0, 1− κ0) pair.

We now know that the matrix
D0 −A0D

−1
0 A0

is an M-matrix and that (D0,A0D
−1
0 A0) is a ((1− κ0)2, 0)-pair. Define κ1 so that

1− κ1 = (1− κ)2
0, and note that κ1 is approximately 2κ0. Lemma 38.5.4 and the discussion

following it tells us that there is a (1− κ1e
−2ε, 3ε)-pair (D1,A1) so that

D1 −A1 ≈ε D0 −A0D
−1
0 A0

and so that A1 has O(n/ε2) nonzero entries.

Continuing inductively for some number k steps, we find (1− κi, 3ε) pairs (D i,Ai) so that

M i = D i −Ai

has O(n/ε2) nonzero entries, and

M i ≈ε D i −Ai−1D
−1
i−1Ai−1.

For the i such that κi is small, κi+1 is approximately twice κi. So, for k = 2 + log2 1/κ and ε close
to zero, we can guarantee that (Dk,Ak) is a (1/4, 1/4) pair.

We now see how this construction allows us to approximately solve systems of equations in
D0 −A0, and how we must set ε for it to work. For every 0 ≤ i < k, we have

(D i−Ai)
−1 1

2
D−1
i +

1

2
(I+D−1

i Ai)(D i−AiD
−1
i Ai)

−1(I+AiD
−1
i) ≈ε

1

2
D−1
i +

1

2
(I+D−1

i Ai)(D i+1−Ai+1)−1(I+AiD
−1
i),

CHAPTER 38. FAST LAPLACIAN SOLVERS BY SPARSIFICATION 306

and
(Dk −Ak)

−1 ≈1/3 D−1
k .

By substituting through each of these approximations, we obtain solutions to systems of
equations in D0 −A0 with accuracy 1/3 + kε. So, we should set kε = 1/3, and thus

ε = 1/(2 + log2 κ
−1).

The dominant cost of the resulting algorithm will be the multiplication of vectors by 2k matrices
of O(n/ε2) entries, with a total cost of

O(n(log2(1/κ))3).

38.7 Making the construction efficient

In the above construction, I just assumed that appropriate sparsifiers exist, rather than
constructing them efficiently. To construct them efficiently, we need two ideas. The first is that
we need to be able to quickly approximate effective resistances so that we can use the sampling
algorithm from Lecture 17.

The second is to observe that we do not actually want to form the matrix AD−1A before
sparsifying it, as that could take too long. Instead, we express it as a product of cliques that have
succinct descriptions, and we form the sum of approximations of each of those.

38.8 Improvements

The fastest known algorithms for solving systems of equations run in time O(m
√

log n log ε−1)
[CKM+14]. The algorithm I have presented here can be substantially improved by combining it
with Cholesky factorization. This both gives an efficient parallel algorithm, and proves the
existence of an approximate inverse for every M-matrix that has a linear number of nonzeros
[LPS15].

Chapter 39

Testing Isomorphism of Graphs with
Distinct Eigenvalues

This Chapter Needs Editing

39.1 Introduction

I will present an algorithm of Leighton and Miller [LM82] for testing isomorphism of graphs in
which all eigenvalues have multiplicity 1. This algorithm was never published, as the results were
technically subsumed by those in a paper of Babai, Grigoriev and Mount [BGM82], which gave a
polynomial time algorithm for testing isomorphism of graphs in which all eigenvalues have
multiplicity bounded by a constant.

I present the weaker result in the interest of simplicity.

Testing isomorphism of graphs is a notorious problem. Until very recently, the fastest-known

algorithm for it took time time 2
√
O(n logn) (See [Bab81, BL83, ZKT85]). Babai [Bab16] recently

announced a breakthrough that reduces the complexity to 2(logn)O(1)
.

However, testing graph isomorphism seems easy in almost all practical instances. Today’s lecture
and one next week will give you some idea as to why.

39.2 Graph Isomorphism

Recall that two graphs G = (V,E) and H = (V, F) are isomorphic if there exists a permutation π
of V such that

(a, b) ∈ E ⇐⇒ (π(a), π(b)) ∈ F.
Of course, we can express this relation in terms of matrices associated with the graphs. It doesn’t
matter much which matrices we use. So for this lecture we will use the adjacency matrices.

307

CHAPTER 39. TESTING ISOMORPHISM OF GRAPHS WITH DISTINCT EIGENVALUES308

Every permutation may be realized by a permutation matrix. For the permutation π, this is the
matrix Π with entries given by

Π(a, b) =

{
1 if π(a) = b

0 otherwise.

For a vector ψ, we see1 that
(Πψ) (a) = ψ(π(a)).

Let A be the adjacency matrix of G and let B be the adjacency matrix of H. We see that G and
H are isomorphic if and only if there exists a permutation matrix Π such that

ΠAΠT = B.

39.3 Using Eigenvalues and Eigenvectors

If G and H are isomorphic, then A and B must have the same eigenvalues. However, there are
many pairs of graphs that are non-isomorphic but which have the same eigenvalues. We will see
some tricky ones next lecture. But, for now, we note that if A and B have different eigenvalues,
then we know that the corresponding graphs are non-isomorphic, and we don’t have to worry
about them.

For the rest of this lecture, we will assume that A and B have the same eigenvalues, and that
each of these eigenvalues has multiplicity 1. We will begin our study of this situation by
considering some cases in which testing isomorphism is easy.

Recall that we can write
A = ΨΛΨT ,

where Λ is the diagonal matrix of eigenvalues of A and Ψ is an orthonormal matrix holding its
eigenvectors. If B has the same eigenvalues, we can write

B = ΦΛΦT .

If Π is the matrix of an isomorphism from G to H, then

ΠΨΛΨTΠT = ΦΛΦT .

As each entry of Λ is distinct, this looks like it would imply ΠΨ = Φ. But, the eigenvectors
(columns of Φ and Ψ) are only determined up to sign. So, it just implies

ΠΨ = ΦS,

where S is a diagonal matrix with ±1 entries on its diagonal.

1I hope I got that right. It’s very easy to confuse the permutation and its inverse.

CHAPTER 39. TESTING ISOMORPHISM OF GRAPHS WITH DISTINCT EIGENVALUES309

Lemma 39.3.1. Let A = ΨΛΨT and B = ΦΛΦT where Λ is a diagonal matrix with distinct
entries and Ψ and Φ are orthogonal matrices. A permutation matrix Π satisfies ΠAΠT = B if
and only if there exists a diagonal ±1 matrix S for which

ΠΨ = ΦS .

Proof. Let ψ1, . . . ,ψn be the columns of Ψ and let φ1, . . . ,φn be the columns of Φ. Assuming
there is a Π for which ΠAΠT = B ,

ΦΛΦT =
n∑
i=1

φiλiφ
T
i =

n∑
i=1

(Πψi)λi(ψ
T
i ΠT),

which implies that for all i
φiφ

T
i = (Πψi)(Πψi)

T .

This in turn implies that
φi = ±Πψi.

To go the other direction, assume ΠΨ = ΦS . Then,

ΠAΠT = ΠΨΛΨTΠT = ΦSΛSΦT = ΦΛSSΦT = ΦΛΦT = B ,

as S and Λ are diagonal and thus commute, and S2 = I .

Our algorithm for testing isomorphism will determine all such matrices S . Let S be the set of all
diagonal ±1 matrices. We will find diagonal matrices S ∈ S such that the set of rows of ΦS is
the same as the set of rows of Ψ. As the rows of Ψ are indexed by vertices a ∈ V , we will write
the row indexed by a as the row-vector

va
def
= (ψ1(a), . . . ,ψn(a)).

Similarly denote the rows of Φ by vectors ua. In this notation, we are searching for matrices
S ∈ S for which the set of vectors {va}a∈V is identical to the set of vectors {uaS}a∈V We have
thus transformed the graph isomorphism problem into a problem about vectors:

39.4 An easy case

I will say that an eigenvector ψi is helpful if for all a 6= b ∈ V , |ψi(a)| 6= |ψi(b)|. In this case, it is
very easy to test if G and H are isomorphic, because this helpful vector gives us a canonical name
for every vertex. If Π is an isomorphism from G to H, then Πψi must be an eigenvector of B. In
fact, is must be ±φi. If the sets of absolute values of entries of ψi and φi are the same, then we
may find the permutation that maps A to B by mapping every vertex a to the vertex b for which
|ψi(a)| = |φi(b)|.
The reason that I put absolute values in the definition of helpful, rather than just taking values, is
that eigenvectors are only determined up to sign. On the other hand, a single eigenvector

CHAPTER 39. TESTING ISOMORPHISM OF GRAPHS WITH DISTINCT EIGENVALUES310

determines the isomorphism if ψi(a) 6= ψi(b) for all a 6= b and there is a canonical way to choose a
sign for the vector ψi. For example, if the sum of the entries in ψi is not zero, we can choose its
sign to make the sum positive. In fact, unless ψi and −ψi have exactly the same set of values,
there is a canonical choice of the sign for this vector.

Even if there is no canonical choice of sign for this vector, it leaves at most two choices for the
isomorphism.

39.5 All the Automorphisms

The graph isomorphism problem is complicated by the fact that there can be many isomorphisms
from one graph to another. So, any algorithm for finding isomorphisms must be able to find many
of them.

Recall that an automorphism of a graph is an isomorphism from the graph to itself. These form a
group which we denote aut(G): if Π and Γ are automorphisms of A then so is ΠΓ. Let A ⊆ S
denote the corresponding set of diagonal ±1 matrices. The set A is in fact a group and is
isomorphic to aut(G).

Here is a way to make this isomorphism very concrete: Lemma 39.3.1 implies that the
Π ∈ aut(G) and the S ∈ A are related by

Π = ΨSΨT and S = ΨTΠΨ.

As diagonal matrices commute, we have that for every Π1 and Π2 in aut(G) and for
S1 = ΨTΠ1Ψ and S2 = ΨTΠ2Ψ,

Π1Π2 = ΨS1Ψ
TΨS2Ψ

T = ΨS1S2Ψ
T = ΨS2S1Ψ

T = ΨS2Ψ
TΨS1Ψ

T = Π2Π1.

Thus, the automorphism group of a graph with distinct eigenvalues is commutative, and it is
isomorphic to a subgroup of S.

It might be easier to think about these subgroups by realizing that they are isomorphic to
subspaces of (Z/2Z)n. Let f : S → (Z/2Z)n be the function that maps the group of diagonal
matrices with ±1 entries to vectors t modulo 2 by setting t(i) so that S(i, i) = (−1)t(i). You
should check that this is a group homomorphism: f(S1S2) = f(S1) + f(S2). You should also
confirm that f is invertible.

For today’s lecture, we will focus on the problem of finding the group of automorphisms of a
graph with distinct eigenvalues. We will probably save the slight extension to finding
isomorphisms for homework. Note that we will not try to list all the isomorphisms, as there could
be many. Rather, we will give a basis of the corresponding subspace of (Z/2Z)n.

39.6 Equivalence Classes of Vertices

Recall that the orbit of an element under the action of a group is the set of elements to which it is
mapped by the elements of the group. Concretely, the orbit of a vertex a in the graph is the set of

CHAPTER 39. TESTING ISOMORPHISM OF GRAPHS WITH DISTINCT EIGENVALUES311

vertices to which it can be mapped by automorphisms. We will discover the orbits by realizing
that the orbit of a vertex a is the set of b for which vaS = v b for some S ∈ A.

The set of orbits of vertices forms a partition of the vertices. We say that a partition of the
vertices is valid if every orbit is contained entirely within one set in the partition. That is, each
class of the partition is a union of orbits. Our algorithm will proceed by constructing a valid
partition of the vertices and then splitting classes in the partition until each is exactly an orbit.

Recall that a set is stabilized by a group if the set is unchanged when the group acts on all of its
members. We will say that a group G ⊆ S stabilizes a set of vertices C if it stabilizes the set of
vectors {va}a∈C . Thus, A is the group that stabilizes V .

An orbit is stabilized by A, and so are unions of orbits and thus classes of valid partitions. We
would like to construct the subgroup of S that stabilizes each orbit Cj . However, I do not yet see
how to do that directly. Instead, we will construct a particular valid partition of the vertices, and
find for each class in the partition Cj the subgroup of Aj ⊆ S that stabilizes Cj , where here we
are considering the actions of matrices S ∈ S on vectors va. In fact, Aj will act transitively2 on
the class Cj . As A stabilizes every orbit, and thus every union of orbits, it is a subgroup of Aj . In
fact, A is exactly the intersection of all the groups Aj .
We now observe that we can use linear algebra to efficiently construct A from the groups Aj by
exploiting the isomorphism between S and (Z/2)n. Each subgroup Aj is isomorphic to a
subgroup of (Z/2)n. Each subgroup of (Z/2)n is precisely a vector space modulo 2, and thus may
be described by a basis. It will eventually become clear that by “compute Aj” we mean to
compute such a basis. From the basis, we may compute a basis of the nullspace. The subgroup of
(Z/2)n corresponding to A is then the nullspace of the span of the nullspaces of the subspaces
corresponding to the Aj . We can compute all these using Gaussian elimination.

39.7 The first partition

We may begin by dividing vertices according to the absolute values of their entries in
eigenvectors. That is, if |ψi(a)| 6= |ψi(b)| for some i, then we may place vertices a and b in
different classes, as there can be no S ∈ S for which vaS = v b. The partition that we obtain this
way is thus valid, and is the starting point of our algorithm.

39.8 Unbalanced vectors

We say that an eigenvector ψi is unbalanced if there is some value x for which

|{a : ψi(a) = x}| 6= |{a : ψi(a) = −x}| .

Such vectors cannot change sign in an automorphism. That is, S(i, i) must equal 1. The reason is
that an automorphism with S(i, i) = −1 must induce a bijection between the two sets above, but
this is impossible if their sizes are different.

2That is, for every a and b in Cj , there is an S ∈ Aj for which vaS = bb.

CHAPTER 39. TESTING ISOMORPHISM OF GRAPHS WITH DISTINCT EIGENVALUES312

Thus, an unbalanced vector tells us that all vertices for which ψi(a) = x are in different orbits
from those for which ψi(a) = −x. This lets us refine classes.

We now extend this idea in two ways. First, we say that ψi is unbalanced on a class C if there is
some value x for which

|{a ∈ C : ψi(a) = x}| 6= |{a ∈ C : ψi(a) = −x}| .

By the same reasoning, we can infer that the sign of S(i, i) must be fixed to 1. Assuming, as will
be the case, that C is a class in a valid partition and thus a union of orbits, we are now able to
split C into two smaller classes

C0 = {a ∈ C : ψi(a) = x} and C1 = {a ∈ C : ψi(a) = −x} .

The partition we obtain by splitting C into C1 and C2 is thus also valid. Of course, it is only
useful if both sets are non-empty.

Finally, we consider vectors formed from products of eigenvectors. For R ⊆ {1, . . . , n}, define ψR
to be the component-wise product of the ψi for i ∈ R:

ψR(a) =
∏
i∈R

ψi(a).

We say that the vector ψR is unbalanced on class C if there is some value x for which

|{a ∈ C : ψR(a) = x}| 6= |{a ∈ C : ψR(a) = −x}| .

An unbalanced vector of this form again tells us that the vertices in the two sets belong to
different orbits. So, if both sets are nonempty we can use such a vector to split the class C in two
to obtain a more refined valid partition. It also provides some relations between the entries of S ,
but we will not exploit those.

We say that a vector is balanced if it is not unbalanced.

We say that a subset of the vertices C ⊆ V is balanced if every non-constant product of
eigenvectors is balanced on C. Thus, orbits are balanced. Our algorithm will partition the
vertices into balanced classes.

My confusion over this lecture stemmed from thinking that all balanced classes must be orbits.
But, I don’t know if this is true.

Question: Is every balanced class an orbit of A?

39.9 The structure of the balanced classes

Let Cj be a balanced class. By definition, the product of every subset of eigenvectors is either
constant or balanced on Cj . We say that a subset of eigenvectors Q is independent on Cj if all
products of subsets of eigenvectors in Q are balanced on Cj (except for the empty product). In
particular, none of these eigenvectors is zero or constant on Cj . Construct a matrix MCj ,Q whose

CHAPTER 39. TESTING ISOMORPHISM OF GRAPHS WITH DISTINCT EIGENVALUES313

rows are indexed by vertices in a ∈ Cj , whose columns are indexed by subsets R ⊆ Q, and whose
entries are given by

MCj ,Q(a,R) = sgn(ψR(a)),where I recall sgn(x) =


1 if x > 0

−1 if x < 0, and

0 if x = 0.

Lemma 39.9.1. If Q is independent on C then the columns of MC,Q are orthogonal.

Proof. Let R1 and R2 index two columns of MC,Q. That is, R1 and R2 are two different subsets of
Q. Let R0 be their symmetric difference. We have

MC,Q(a,R1)MC,Q(a,R2) = sgn(ψR1
(a))sgn(ψR2

(a)) =∏
i∈R1

sgn(ψi(a))
∏
i∈R2

sgn(ψi(a)) =
∏
i∈R0

sgn(ψi(a)) = sgn(ψR0
(a)) = MC,Q(a,R0).

As all the nonempty products of subsets of eigenvectors in Q are balanced on C, MC,Q(a,R0) is
positive for half the a ∈ C and negative for the other half. So,

MC,Q(:, R1)TMC,Q(:, R2) =
∑
a∈C

MC,Q(a,R1)MC,Q(a,R2) =
∑
a∈C

MC,Q(a,R0) = 0.

Lemma 39.9.2. If C is a balanced class of vertices and Q is a maximal set of eigenvectors that
are independent on C, then for every a and b in C there is an i ∈ Q for which ψi(a) 6= ψi(b).

Proof. Assume by way of contradiction that this does not hold. There must be some eigenvector i
for which ψi(a) 6= ψi(b). We will show that if we added i to Q, the product of every subset would
still be balanced. As we already know this for subsets of Q, we just have to prove it for subsets of
the form R ∪ {i}, where R ⊆ Q. As ψh(a) = ψh(b) for every h ∈ Q, ψR(a) = ψR(b). This implies
ψR∪{i}(a) 6= ψR∪{i}(b). Thus, ψR∪{i} is not uniform on C, and so it must be balanced on C.

Lemma 39.9.3. If C is a balanced class of vertices and Q is a maximal set of eigenvectors that
are independent on C, then the rows of MC,Q are orthogonal.

Proof. Let a and b be in C. From Lemma 39.9.2 we know that there is an i ∈ Q for which
ψi(a) = −ψi(b). To prove that the rows MC,Q(a, :) and MC,Q(b, :) are orthogonal, we compute

CHAPTER 39. TESTING ISOMORPHISM OF GRAPHS WITH DISTINCT EIGENVALUES314

their inner product:∑
R⊆Q

sgn(ψR(a)ψR(b)) =
∑

R⊆Q−{i}

sgn(ψR(a)ψR(b)) + sgn(ψR∪{i}(a)ψR∪{i}(b))

=
∑

R⊆Q−{i}

sgn(ψR(a)ψR(b)) + sgn(ψR(a)ψi(a)ψR(b)ψi(b))

=
∑

R⊆Q−{i}

sgn(ψR(a)ψR(b)) + sgn(ψR(a)ψR(b))sgn(ψi(a)ψi(b))

=
∑

R⊆Q−{i}

sgn(ψR(a)ψR(b))− sgn(ψR(a)ψR(b))

= 0.

Corollary 39.9.4. Let C be a balanced subset of vertices. Then the size of C is a power of 2. If
Q is an independent set of eigenvectors on C, then |Q| ≤ log2 |C|.

Proof. Let C be an orbit and let Q be a maximal set of eigenvectors that are independent on C.
As the rows and columns of MC,Q are both orthogonal, MC,Q must be square. This implies that
|C| = 2|Q|. If we drop the assumption that Q is maximal, we still know that all the columns of
MC,Q are orthogonal. This matrix has 2|Q| columns. As they are vectors in |C| dimensions, there
can be at most |C| of them.

We can now describe the structure of a balanced subset of vertices C. We call a maximal set of
eigenvectors that are independent on C a base for C. Every other eigenvector j is either constant
on C or becomes constant when multiplied by the product of some subset R of eigenvectors in Q.
In either case, we can write

ψj(a) = γ
∏
i∈R

ψi(a) for all a ∈ C, (39.1)

for some constant γ.

Let va(Q) denote the vector (va(i))i∈Q—the restriction of the vector va to the coordinates in Q.
I claim that every one of the 2|Q| ± sign patterns of length |Q| must appear in exactly one of the
vectors v q(Q). The reason is that there are |C| = 2|Q| of these vectors, and we established in
Lemma 39.9.2 that va(Q) 6= v b(Q) for all a 6= b in Q. Thus, for every diagonal ± matrix SQ of
dimension |Q|, we have

{va(Q)SQ : a ∈ C} = {va(Q) : a ∈ C} .
That is, this set of vectors is stabilized by ±1 diagonal matrices.

As equation (39.1) gives a formula for the value taken on C by every eigenvector not in Q in
terms of the eigenvectors in Q, we have described the structure of the subgroup of S that
stabilizes C: the diagonals corresponding to Q are unconstrained, and every other diagonal is
some product of these. This structure is something that you are used to seeing in subspaces.

CHAPTER 39. TESTING ISOMORPHISM OF GRAPHS WITH DISTINCT EIGENVALUES315

Apply f to map this subgroup of S to (Z/2)n, and let B be a n-by-log2(|C|) matrix containing a
basis of the subspace in its columns. Any independent subset of log2(|C|) rows of B will form a
basis of the row-space, and is isomorphic to a base for C of the eigenvectors.

39.10 Algorithms

Let Cj be a balanced class. We just saw how to compute Aj , assuming that we know Cj and a
base Q for it. Of course, by “compute” we mean computing a basis of f(Aj). We now show how
to find a base for a balanced class Cj . We do this by building up a set Q of eigenvectors that are
independent on Cj . To do this, we go through the eigenvectors in order. For each eigenvector ψi,
we must determine whether or not its values on Cj can be expressed as a product of eigenvectors
already present in Q. If it can be, then we record this product as part of the structure of Aj . If
not, we add i to Q.

The eigenvector ψi is a product of eigenvectors in Q on Cj if and only if there is a constant γ and
yh ∈ {0, 1} for h ∈ Q such that

ψi(a) = γ
∏
h∈Q

(ψh(a))yh ,

for all vertices a ∈ Cj . This happens if and only if

sgn(ψi(a)) =
∏
h∈Q

sgn(ψh(a))yh .

We can tell whether or not these equations have a solution using linear algebra modulo 2. Let B
be the matrix over Z/2 such that

ψi(a) = (−1)B(i,a).

Then, the above equations become

B(i, a) =
∑
h∈Q

yhB(h, a) for all a ∈ Cj .

Thus, we can solve for the coefficients yh in polynomial time, if they exist. If they do not, we add
i to Q.

Once we have determined a base Q and how to express on Cj the values of every other
eigenvector as a product of eigenvectors in Q, we have determine Aj .

It remains to explain how we partition the vertices into balanced classes. Consider applying the
above procedure to a class Cj that is not balanced. We will discover that Cj is not balanced by
finding a product of eigenvectors that is neither constant nor balanced on Cj . Every time we add
an eigenvector ψi to Q, we will examine every product of vectors in Q to check if any are
unbalanced on Cj . We can do this efficiently, because there are at most 2|Q| ≤ |Cj | such products
to consider. As we have added ψi to Q, none of the products of vectors in Q can be constant on
Cj . If we find a product that it not balanced on Cj , then it must also be non-constant, and thus
provide a way of splitting class Cj into two.

CHAPTER 39. TESTING ISOMORPHISM OF GRAPHS WITH DISTINCT EIGENVALUES316

We can now summarize the entire algorithm. We first compute the partition by absolute values of
entries described in section 39.7. We then go through the classes of the partition one-by-one. For
each, we use the above procedure until we have either split it in two or we have determined that it
is balanced and we have computed its automorphism group. If we do split the class in two, we
refine the partition and start over. As the total number of times we split classes is at most n, this
algorithm runs in polynomial time.

After we have computed a partition into balanced classes and have computed their
automorphisms groups, we combine them to find the automorphisms group of the entire graph as
described at the end of section 39.6.

Chapter 40

Testing Isomorphism of Strongly
Regular Graphs

This Chapter Needs Editing

40.1 Introduction

In the last lecture we saw how to test isomorphism of graphs in which every eigenvalue is distinct.
So, in this lecture we will consider the opposite case: graphs that only have 3 distinct eigenvalues.
These are the strongly regular graphs.

Our algorithm for testing isomorphism of these will not run in polynomial time. Rather, it takes
time nO(n1/2 logn). This is at least much faster than the naive algorithm of checking all n! possible
permutations. In fact, this was the best known running time for general algorithms for graph
isomorphism until three years ago.

40.2 Definitions

A graph G is strongly regular if

1. it is d-regular, for some integer d;

2. there exists an integer α such that for every pair of vertices x and y that are neighbors in G,
there are exactly α vertices z that are neighbors of both x and y;

3. there exists an integer β such that for every pair of vertices x and y that are not neighbors
in G, there are exactly β vertices z that are neighbors of both x and y.

These conditions are very strong, and it might not be obvious that there are any non-trivial
graphs that satisfy these conditions. Of course, the complete graph and disjoint unions of

317

CHAPTER 40. TESTING ISOMORPHISM OF STRONGLY REGULAR GRAPHS 318

complete graphs satisfy these conditions. Before proceeding, I warn you that there is a standard
notation in the literature about strongly regular graphs, and I am trying not to use it. In this
literature, d becomes k, α becomes λ and β becomes µ. Many other letters are bound as well.

For the rest of this lecture, we will only consider strongly regular graphs that are connected and
that are not the complete graph. I will now give you some examples.

40.3 Paley Graphs and The Pentagon

The Paley graphs we encountered are strongly regular. The simplest of these is the pentagon. It
has parameters

n = 5, d = 2, α = 0, β = 1.

40.4 Lattice Graphs

For a positive integer n, the lattice graph Ln is the graph with vertex set {1, . . . n}2 in which
vertex (a, b) is connected to vertex (c, d) if a = c or b = d. Thus, the vertices may be arranged at
the points in an n-by-n grid, with vertices being connected if they lie in the same row or column.
Alternatively, you can understand this graph as the product of two complete graphs on n vertices.

The parameters of this graph are:

d = 2(n− 1), α = n− 2, β = 2.

40.5 Latin Square Graphs

A Latin square is an n-by-n grid, each entry of which is a number between 1 and n, such that no
number appears twice in any row or column. For example,

1 2 3 4
4 1 2 3
3 4 1 2
2 3 4 1

 ,


1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

 , and


1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1


are Latin squares. Let me remark that the number of different Latin squares of size n grows very
quickly—at least as fast as n!(n− 1)!(n− 2)! . . . 2!. Two Latin squares are said to be isomorphic if
there is a renumbering of their rows, columns, and entries, or a permutation of these, that makes
them the same. As this provides 6(n!)3 isomorphisms, and this is much less than the number of
Latin squares, there must be many non-isomorphic Latin squares of the same size. The two of the
Latin squares above are isomorphic, but one is not.

From such a Latin square, we construct a Latin square graph. It will have n2 nodes, one for each
cell in the square. Two nodes are joined by an edge if

CHAPTER 40. TESTING ISOMORPHISM OF STRONGLY REGULAR GRAPHS 319

1. they are in the same row,

2. they are in the same column, or

3. they hold the same number.

So, such a graph has degree d = 3(n− 1). Any two nodes in the same row will both be neighbors
with every other pair of nodes in their row. They will have two more common neighors: the nodes
in their columns holding the other’s number. So, they have n common neighbors. The same
obviously holds for columns, and is easy to see for nodes that have the same number. So, every
pair of nodes that are neighbors have exactly α = n common neighbors.

On the other hand, consider two vertices that are not neighbors, say (1, 1) and (2, 2). They lie in
different rows, lie in different columns, and we are assuming that they hold different numbers.
The vertex (1, 1) has two common neighbors of (2, 2) in its row: the vertex (1, 2) and the vertex
holding the same number as (2, 2). Similarly, it has two common neighbors of (2, 2) in its column.
Finally, we can find two more common neighbors of (2, 2) that are in different rows and columns
by looking at the nodes that hold the same number as (1, 1), but which are in the same row or
column as (2, 2). So, β = 6.

40.6 The Eigenvalues of Strongly Regular Graphs

We will consider the adjacency matrices of strongly regular graphs. Let A be the adjacency
matrix of a strongly regular graph with parameters (d, α, β). We already know that A has an
eigenvalue of d with multiplicity 1. We will now show that A has just two other eigenvalues.

To prove this, first observe that the (a, b) entry of A2 is the number of common neighbors of
vertices a and b. For a = b, this is just the degree of vertex a. We will use this fact to write A2 as
a linear combination of A, I and J , the all 1s matrix. To this end, observe that the adjacency
matrix of the complement of A (the graph with non-edges where A has edges) is J − I −A. So,

A2 = αA+ β(J − I −A) + dI = (α− β)A+ βJ + (d− β)I.

For every vector v orthogonal to 1,

A2v = (α− β)Av + (d− β)v .

So, every eigenvalue λ of A other than d satisfies

λ2 = (α− β)λ+ d− β.

Thus, these are given by

λ =
α− β ±

√
(α− β)2 + 4(d− β)

2
.

These eigenvalues are traditionally denoted r and s, with r > s. By convention, the multiplicty of
the eigenvalue r is always denoted f , and the multiplicty of s is always denoted g.

CHAPTER 40. TESTING ISOMORPHISM OF STRONGLY REGULAR GRAPHS 320

For example, for the pentagon we have

r =

√
5− 1

2
, s = −

√
5 + 1

2
.

For the lattice graph Ln, we have
r = n− 2, s = −2.

For the Latin square graphs of order n, we have

r = n− 3, s = −3.

One can prove that every connected regular graph whose adjacency (or Laplacian) matrix has just
three distinct eigenvalues is a strongly regular graph.

40.7 Testing Isomorphism by Individualization and Refinement

The problem of testing isomorphism of graphs is often reduced to the problem of giving each
vertex in a graph a unique name. If we have a way of doing this that does not depend upon the
initial ordering of the vertices, then we can use it to test graph isomorphism: find the unique
names of vertices in both graphs, and then see if it provides an isomorphism. For example,
consider the graph below.

We could begin by labeling every vertex by its degree.

1

2 3

2

1

3

The degrees distinguish between many nodes, but not all of them. We may refine this labeling by
appending the labels of every neighbor of a node.

3, {2, 2, 3}

1, {3}

2, {1,3}

3, {1, 2, 3}

1, {2}
2, {3, 3}

CHAPTER 40. TESTING ISOMORPHISM OF STRONGLY REGULAR GRAPHS 321

Now, every vertex has its own unique label. If we were given another copy of this graph, we could
use these labels to determine the isomorphism between them. This procedure is called refinement,
and it can be carried out until it stops producing new labels. However, it is clear that this
procedure will fail to produce unique labels if the graph has automorphisms, or if it is a regular
graph. In these cases, we need a way to break symmetry.

The procedure called individualization breaks symmetry arbitrarily. It chooses some nodes in the
graph, arbitrarily, to give their own unique names. Ideally, we pick one vertex to give a unique
name, and then refine the resulting labeling. We could then pick another troubling vertex, and
continue. We call a set of vertices S ⊂ V a distinguishing set if individualizing this set of nodes
results in a unique name for every vertex, after refinement. How would we use a distinguishing set
to test isomorphism? Assume that S is a distinguishing set for G = (V,E). To test if H = (W,F)
is isomorphic to G, we could enumerate over every possible set of |S| vertices of W , and check if
they are a distinguishing set for H. If G and H are isomorphic, then H will also have an
isomorphic distinguishing set that we can use to find an isomorphism between G and H. We
would have to check

(
n
|S|
)

sets, and try |S|! labelings for each, so we had better hope that S is
small.

40.8 Distinguishing Sets for Strongly Regular Graphs

We will now prove a result of Babai [Bab80] which says that every strongly regular graph has a
distinguishing set of size O(

√
n log n). Babai’s result won’t require any refinement beyond naming

every vertex by the set of individualized nodes that are its neighbors. So, we will prove that a set
of nodes S is a distinguishing set by proving that for every pair of distinct vertices a and b, either
there is an s ∈ S that is a neighbor of a but not of b, or the other way around. This will suffice to
distinguish a and b. As our algorithm will work in a brute-force fashion, enumerating over all sets
of a given size, we merely need to show that such a set S exists. We will do so by proving that a
random set of vertices probably works.

I first observe that it suffices to consider strongly-regular graphs with d < n/2, as the complement
of a strongly regular graph is also a strongly regular graph (that would have been too easy to
assign as a homework problem). We should also observe that every strongly-regular graph has
diameter 2, and so d ≥

√
n− 1.

Lemma 40.8.1. Let G = (V,E) be a connected strongly regular graph with n vertices and degree
d < n/2. Then for every pair of vertices a and b, there are at least d/3 vertices that are neighbors
of a but not b.

Before I prove this, let me show how we may use it to prove the theorem. This lemma tells us
that there are at least

√
n− 1/3 nodes that are neighbors of a but not of b. Let T be the set of

nodes that are neighbors of a but not neighbors of b. So, if we choose a vertex at random, the
probability that it is in T is at least

|T |
n
≥
√
n− 1

3n
≥ 1

3
√
n+ 2

.

CHAPTER 40. TESTING ISOMORPHISM OF STRONGLY REGULAR GRAPHS 322

If we choose a set S of 3
√
n+ 2 lnn2 vertices at random, the probability that none of them is in T

is (
1− 1

3
√
n+ 2

)3
√
n+2 lnn2

≤ 1

n2
.

So, the probability that a random set of this many nodes fails to distinguish all
(
n
2

)
pairs is at

most 1/2.

Proof of Lemma 40.8.1. Write a ∼ b if a is a neighbor of b, and a 6∼ b otherwise. If a ∼ b, then the
number of nodes that are neighbors of a but not of b is d− 1− α, and if a 6∼ b the number if
d− β. So, we need to prove that neither α nor β is too close to d.

We will do this by establishing some elementary relations between these parameters. First,
consider the case in which a ∼ b. Let z be any vertex such that a 6∼ z and b 6∼ z. We will use z to
prove an upper bound on the number of vertices w that are neighbors of a but not of b (I know
this looks like the wrong direction, but be patient). Let

Z0 = {w : w ∼ a,w 6∼ z} , and Z1 = {w : w 6∼ b, w ∼ z} .

Clearly, every w that is a neighbor of a but not of b lies in either Z0 or Z1. As z is neither a
neighbor of a nor of b,

|Z0| = |Z1| = d− β.
So,

d− α− 1 ≤ 2(d− β) =⇒ 2β ≤ d+ α+ 1. (40.1)

So, if β is close to d, α must also be close to d.

We will obtain an inequality in the other direction when a 6∼ b by exploiting a z such that z ∼ a
and z ∼ b. Now, for any w ∼ a but w 6∼ b, we have either

(w ∼ a and w 6∼ z) or (w ∼ z and w 6∼ b).

CHAPTER 40. TESTING ISOMORPHISM OF STRONGLY REGULAR GRAPHS 323

So,
d− β ≤ 2(d− α− 1) =⇒ 2(α+ 1) ≤ d+ β. (40.2)

This tells us that if α is close to d, then β is also.

We require one more relation between α and β. We obtain this relation by picking any vertex a,
and counting the pairs b, z such that b ∼ z, a ∼ b and a 6∼ z.

Every node b that is a neighbor of a has α neighbors in common with a, and so has d− α− 1
neighbors that are not neighbors of a. This gives

|{(b, z) : b ∼ z, a ∼ b, a 6∼ z}| = d(d− α− 1).

On the other hand, there are n− d− 1 nodes z that are not neighbors of a, and each of them has
β neighbors in common with a, giving

|{(b, z) : b ∼ z, a ∼ b, a 6∼ z}| = (n− d− 1)β.

Combining, we find
(n− d− 1)β = d(d− α− 1). (40.3)

As d < n/2, this equation tells us

d(d− α− 1) ≥ dβ =⇒ d− α− 1 ≥ β. (40.4)

Adding inequality 40.1 to (40.4) gives

2d ≥ 3β =⇒ β ≤ 2

3
d,

while adding inequality 40.2 to (40.4) gives

α+ 1 ≤ 2

3
d.

Thus, for every a 6= b the number of vertices that are neighbors of a but not of b is at least
min(d− α− 1, d− β) ≥ d/3.

CHAPTER 40. TESTING ISOMORPHISM OF STRONGLY REGULAR GRAPHS 324

40.9 Notes

You should wonder if we can make this faster by analyzing refinement steps. In, [Spi96b], I

improved the running time bound to 2O(n1/3 logn) by analyzing two refinement phases. The
algorithm required us to handle certain special families of strongly regular graphs separately:
Latin square graphs and Steiner graphs. Algorithms for testing isomorphism of strongly regular
graphs were recently improved by Babai, Chen, Sun, Teng, and Wilmes [BCS+13, BW13, SW15].
The running times of all these algorithms are subsumed by that in Babai’s breakthrough
algorithm for testing graph isomorphism [Bab16].

Part VII

Interlacing Families

325

Chapter 41

Expected Characteristic Polynomials

This Chapter Needs Editing

41.1 Overview

Over the next few lectures, we will see two different proofs that infinite families of bipartite
Ramanujan graphs exist. Both proofs will use the theory of interlacing polynomials, and will
consider the expected characteristic polynomials of random matrices. In today’s lecture, we will
see a proof that some of these polynomials are real rooted.

At present, we do not know how to use these techniques to prove the existence of infinite families
of non-bipartite Ramanujan graphs.

The material in today’s lecture comes from [MSS15d], but the proof is inspired by the treatment
of that work in [HPS15].

41.2 Random sums of graphs

We will build Ramanujan graphs on n vertices of degree d, for every d and even n. We begin by
considering a random graph on n vertices of degree d. When n is even, the most natural way to
generate such a graph is to choose d perfect matchings uniformly at random, and to then take
their sum. I should mention one caveat: some edge could appear in many of the matchings. In
this case, we add the weights of the corresponding edges together. So, the weight of an edge is the
number of matchings in which it appears.

Let M be the adjacency matrix of some perfect matching on n vertices. We can generate the
adjacency matrix of a random perfect matching by choosing a permutation matrix Π uniformly at
random, and then forming ΠMΠT . The sum of d independent uniform random perfect machings

326

CHAPTER 41. EXPECTED CHARACTERISTIC POLYNOMIALS 327

is then
d∑
i=1

ΠiMΠT
i .

In today’s lecture, we will consider the expected characteristic polynomial of such a graph. For a
matrix M , we let

χx(M)
def
= det(xI −M)

denote the characteristic polynomial of M in the variable x.

For simplicity, we will consider the expected polynomial of the sum of just two graphs. For
generality, we will let them be any graphs, or any symmetric matrices.

Our goal for today is to prove that these expected polynomials are real rooted.

Theorem 41.2.1. Let A and B be symmetric n-by-n matrices and let Π be a uniform random
permutation. Then,

EΠ

[
χx(A + ΠBΠT)

]
has only real roots.

So that you will be surprised by this, I remind you that the sum of real rooted polynomials might
have no real roots. For example, both (x− 2)2 and (x+ 2)2 have only real roots, but their sum,
2x2 + 8, has no real roots.

Theorem 41.2.1 also holds for sums of many matrices. But, for simplicity, we restrict ourselves to
considering the sum of two.

41.3 Interlacing

Our first tool for establishing real rootedness of polynomials is interlacing.

If p(x) is a real rooted polynomial of degree n and q(x) is a real rooted polynomial of degree
n− 1, then we say that p and q interlace if p has roots λ1 ≥ λ2 ≥ · · · ≥ λn and q has roots
µ1 ≥ µ2 ≥ · · · ≥ µn−1 that satisfy

λ1 ≥ µ1 ≥ λ2 ≥ µ2 · · · ≥ λn−1 ≥ µn−1 ≥ λn.

We have seen two important examples of interlacing in this class so far. A real rooted polynomial
and its derivative interlace. Similarly, the characteristic polynomial of a symmetric matrix and
the characteristic polynomial of a principal submatrix interlace.

When p and q have the same degree, we also say that they interlace if their roots alternate. But,
now there are two ways in which their roots can do so, depending on which polynomial has the
largest root. If

p(x) =

n∏
i=1

(x− λi) and q(x) =

n∏
i=1

(x− µi),

CHAPTER 41. EXPECTED CHARACTERISTIC POLYNOMIALS 328

we write q → p if p and q interlace and for every i the ith root of p is at least as large as the ith
root of q. That is, if

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λn ≥ µn.
Lemma 41.3.1. Let p and q be polynomials of degree n and n− 1 that interlace and have positive
leading coefficients. For every t > 0, define pt(x) = p(x)− tq(x). Then, pt(x) is real rooted and

p(x)→ pt(x).

Proof Sketch. For simplicity, I consider the case in which all of the roots of p and q are distinct.
One can prove the general case by dividing out the common repeated roots.

To see that the largest root of pt is larger than λ1, note that q(x) is positive for all x > µ1, and
λ1 > µ1. So, pt(λ1) = p(λ1)− tq(λ1) < 0. As pt is monic, it is eventually positive and it must have
a root larger than λ1.

We will now show that for every i ≥ 1, pt has a root between λi+1 and λi. As this gives us d− 1
more roots, it accounts for all d roots of pt. For i odd, we know that q(λi) > 0 and q(λi+1) < 0.
As p is zero at both of these points, pt(λi) > 0 and pt(λi+1) < 0, which means that pt has a root
between λi and λi+1. The case of even i is similar.

The converse of this theorem is also true.

Lemma 41.3.2. Let p and q be polynomials of degree n and n− 1, and let pt(x) = p(x)− tq(x).
If pt is real rooted for all t ∈ IR, then p and q interlace.

Proof Sketch. Recall that the roots of a polynomial are continuous functions of its coefficients, and
thus the roots of pt are continuous functions of t. We will use this fact to obtain a contradiction.

For simplicity,1 I again just consider the case in which all of the roots of p and q are distinct.

If p and q do not interlace, then p must have two roots that do not have a root of q between
them. Let these roots of p be λi+1 and λi. Assume, without loss of generality, that both p and q
are positive between these roots. We now consider the behavior of pt for positive t.

As we have assumed that the roots of p and q are distinct, q is positive at these roots, and so pt is
negative at λi+1 and λi. If t is very small, then pt will be close to p in value, and so there must be
some small t0 for which pt0(x) > 0 for some λi+1 < x < λi. This means that pt0 must have two
roots between λi+1 and λi.

As q is positive on the entire closed interval [λi+1, λi], when t is large pt will be negative on this
entire interval, and thus have no roots inside. As we vary t between t0 and infinity, the two roots
at t0 must vary continuously and cannot cross λi+1 or λi. This means that they must become
complex, contradicting our assumption that pt is always real rooted.

Together, Lemmas 44.7.2 and 44.7.1 are known as Obreschkoff’s Theorem [Obr63].

The following example will be critical.

1I thank Sushant Sachdeva for helping me work out this particularly simple proof.

CHAPTER 41. EXPECTED CHARACTERISTIC POLYNOMIALS 329

Lemma 41.3.3. Let A be an n-dimensional symmetric matrix and let v be a vector. Let

pt(x) = χx(A + tvvT).

Then there is a degree n− 1 polynomial q(x) so that

pt(x) = χx(A)− tq(x).

Proof. Consider the case in which v = δ1. It suffices to consider this case as determinants, and
thus characteristic polynomials, are unchanged by multiplication by rotation matrices.

Then, we know that
χx(A + tδ1δ

T
1) = det(xI −A− tδ1δ

T
1).

Now, the matrix tδ1δ
T
1 is zeros everywhere except for the element t in the upper left entry. So,

det(xI −A− tδ1δ
T
1) = det(xI −A)− t det(xI (1) −A(1)) = χx(A)− tχx(A(1)),

where A(1) is the submatrix of A obtained by removing its first row and column.

We know that χx(A + tvvT) is real rooted for all t, and we can easily show using the Courant
Fischer Theorem that for t > 0 it interlaces χx(A) from above. Lemmas 44.7.2 and 44.7.1 tell us
that these facts imply each other.

We need one other fact about interlacing polynomials.

Lemma 41.3.4. Let p0(x) and p1(x) be two degree n monic polynomials for which there is a third
polynomial r(x) that has the same degree as p0 and p1 and so that

p0(x)→ r(x) and p1(x)→ r(x).

Then for all 0 ≤ s ≤ 1,

ps(x)
def
= sp1(x) + (1− s)p0(x)

is a real rooted polynomial.

Sketch. Assume for simplicity that all the roots of r are distinct. Let µ1 > µ2 > · · · > µn be the
roots of r. Our assumptions imply that both p0 and p1 are positive at µi for odd i and negative
for even i. So, the same is true of their sum ps. This tells us that ps must have at least n− 1 real
roots.

We can also show that ps has a root that is less than µn. One way to do it is to recall that the
complex roots of a polynomial with real coefficients come in conjugate pairs. So, ps can not have
only one complex root.

CHAPTER 41. EXPECTED CHARACTERISTIC POLYNOMIALS 330

41.4 Sums of polynomials

Our goal is to show that ∑
Π∈Sn

χx(A + ΠBΠT)

is a real rooted polynomial for all symmetric matrices A and B , where Sn is the set of n-by-n
permuation matrices. We will do this by proving it for smaller sets of permutation matrices. To
begin, we know it for S = {I }. We will build up larger sets by swapping coordinates.

This will actually result in a distribution on permuations, so we consider σ : Sn → IR≥0 and
consider sums of the form ∑

Π

σ(Π)χx(A + ΠBΠT).

For coordinates i and j, let Γi,j be the permutation matrix that just swaps i and j. We call such a
permutation a swap. We need the following important fact about the action of swaps on matrices.

Lemma 41.4.1. Let A be a symmetric matrix. Then, for all i and j, there are vectors u and v
so that

Γi,jAΓi,j = A− uuT + vvT .

Proof. Without loss of generality, let i = 1 and j = 2. We prove that A− Γi,jAΓi,j has rank 2
and trace 0.

We can write this difference in the form
a11 − a22 a12 − a21 a13 − a23 a14 − a24 . . .
a21 − a12 a22 − a11 a23 − a13 a24 − a14 . . .
a31 − a32 a32 − a31 0 . . .
a41 − a42 a42 − a41 0 . . .

. . .

 =

 α β yT

−β −α −yT
y −y 0n−2



for some numbers α, β and some column vector y of length n− 2. If α 6= β then the sum of the
first two rows is equal to (c,−c, 0, . . . , 0) for some c 6= 0, and every other row is a scalar multiple
of this. On the other hand, if α = β then the first two rows are linearly dependent, and all of the
other rows are multiples of (1,−1, 0, . . . , 0).

Lemma 41.4.2. Let σ be such that for all symmetric matrices A and B ,

px(A,B)
def
=
∑
Π∈S

σ(Π)χx(A + ΠBΠT)

is real rooted. Then, for every 0 < s < 1 and pair of vectors u and v , for every symmetric A and
B the polynomial

(1− s)px(A,B) + spx(A− uuT + vvT ,B)

is real rooted.

CHAPTER 41. EXPECTED CHARACTERISTIC POLYNOMIALS 331

Proof. Define
rt(x) = px(A + tvvT ,B).

By assumption, rt(x) is real rooted for every t ∈ IR. By Lemma 44.5.1, we can write

rt(x) = r0(x)− tq(x),

where q(x) has degree n− 1 and both r0 and q have positive leading coefficients. So, by Lemma
44.7.1 q(x) interlaces r0(x) = px(A,B). Lemma 44.7.2 then tells us that

px(A,B)→ px(A + vvT ,B).

The same argument tells us that

px(A− uuT + vvT ,B)→ px(A + vvT ,B).

This tells us that px(A,B) and px(A− uuT + vvT ,B) both interlace r1(x) from below. We
finish by applying Lemma 44.7.3 to conclude that every convex combination of these polynomials
is real rooted.

Corollary 41.4.3. Let σ be such that for all symmetric matrices A and B ,

px(A,B)
def
=
∑
Π∈S

σ(Π)χx(A + ΠBΠT)

is real rooted. Then, for every 0 < s < 1 and for every symmetric A and B the polynomial∑
Π∈S

sσ(Π)χx(A + ΠBΠT) + (1− s)σ(Π)χx(A + Γi,jΠBΠTΓTi,j)

is real rooted.

Proof. Recall that

χx(A + Γi,jΠBΠTΓTi,j) = χx(ΓTi,jAΓi,j + ΠBΠT) = χx(Γi,jAΓTi,j + ΠBΠT).

The corollary now follows from the previous lemma.

41.5 Random Swaps

We will build a random permutation out of random swaps. A random swap is specified by
coordinates i and j and a swap probability s. It is a random matrix is that is equal to the identity
with probability 1− s and Γi,j with probability s. Let S be a random swap.

In the language of random swaps, we can express Corollary 41.5.1 as follows.

CHAPTER 41. EXPECTED CHARACTERISTIC POLYNOMIALS 332

Corollary 41.5.1. Let Π be a random permutation matrix drawn from a distribution so that for
all symmetric matrices A and B ,

E
[
χx(A + ΠBΠT)

]
is real rooted. Let S be a random swap. Then,

E
[
χx(A + SΠBΠTST)

]
is real rooted for every symmetric A and B .

All that remains is to show that a uniform random permutation can be assembled out of random
swaps. The trick to doing this is to choose the random swaps with swap probabilities other than
1/2. If you didn’t do this, it would be impossible as there are n! permutations, which is not a
power of 2.

Lemma 41.5.2. For every n, there exists a finite sequence of random swaps S1, . . . ,Sk so that

S1S2 . . .Sk

is a uniform random permutation.

Proof. We prove this by induction. We can generate a random permutation on 1, . . . , n by first
choosing which item maps to n, and then generating a random permutation on those that remain.
To this end, we first form a sequence that gives a random permtuation on the first n− 1 elements.
We then compose this with a random swap that exchanges elements 1 and n with probability
1− 1/n. At this point, the element that maps to n will be uniformly random. We then compose
with yet another sequence that gives a random permutation on the first n− 1 elements.

Chapter 42

Quadrature for the Finite Free
Convolution

This Chapter Needs Editing

42.1 Overview

The material in today’s lecture comes from [MSS15d] and [MSS15a]. My goal today is to prove
simple analogs of the main quadrature results, and then give some indication of how the other
quadrature statements are proved. I will also try to explain what led us to believe that these
results should be true.

Recall that last lecture we considered the expected characteristic polynomial of a random matrix
of the form A + ΠBΠT , where A and B are symmetric. We do not know a nice expression for
this expected polynomial for general A and B . However, we will see that there is a very nice
expression when A and B are Laplacian matrices or the adjacency matrices of regular graphs.

42.2 The Finite Free Convolution

In Free Probability [Voi97], one studies operations on matrices in a large dimensional limit. These
matrices are determined by the moments of their spectrum, and thus the operations are
independent of the eigenvectors of the matrices. We consider a finite dimensional analog.

For n-dimensional symmetric matrices A and B , we consider the expected characteristic
polynomial

EQ∈O(n)

[
χx(A + QBQT)

]
,

where O(n) is the group of n-by-n orthonormal matrices, and Q is a random orthonormal matrix
chosen according to the Haar measure. In case you are not familiar with “Haar measure”, I’ll
quickly explain the idea. It captures our most natural idea of a random orthnormal matrix. For

333

CHAPTER 42. QUADRATURE FOR THE FINITE FREE CONVOLUTION 334

example, if A is a Gaussian random symmetric matrix, and V is its matrix of eigenvectors, then
V is a random orthonormal matrix chosen according to Haar measure. Formally, it is the
measure that is invariant under group operations, which in this case are multiplication by
orthnormal matrices. That is, the Haar measure is the measure under which for every S ⊆ O(n)
and P ∈ O(n), S has the same measure as {QP : Q ∈ S}.
This expected characteristic polynomial does not depend on the eigenvectors of A and B , and
thus can be written as a function of the characteristic polynomials of these matrices. To see this,
write A = VDV T and B = UCU T where U and V are the orthnormal eigenvectors matrices
and C and D are the diagonal matrices of eigenvalues. We have

χx(VDV T +QUCU TQT) = χx(D +V TQUCU TQTV) = χx(D + (V TQU)C (V TQU)T).

If Q is distributed according to the Haar measure on O(n), then so is V TQU .

If p(x) and q(x) are the characteristic polynomials of A and B , then we define their finite free
convolution to be the polynomial

p(x) n q(x)
def
= EQ∈O(n)

[
χx(A + QBQT)

]
.

In today’s lecture, we will establish the following formula for the finite free convolution.

Theorem 42.2.1. Let

p(x) =
n∑
i=0

xn−i(−1)iai and q(x) =
n∑
i=0

xn−i(−1)ibi.

Then,

p(x) n q(x) =
n∑
k=0

xn−k(−1)k
∑
i+j=k

(n− i)!(n− j)!
n!(n− i− j)! aibj . (42.1)

This convolution was studied by Walsh [Wal22], who proved that when p and q are real rooted, so
is p n q.

Our interest in the finite free convolution comes from the following theorem, whose proof we will
also sketch today.

Theorem 42.2.2. Let A and B be symmetric matrices with constant row sums. If A1 = a1 and
B1 = b1, we may write their characteristic polynomials as

χx(A) = (x− a)p(x) and χx(B) = (x− b)q(x).

We then have

EΠ∈Sn

[
χx(A + ΠBΠT)

]
= (x− (a+ b))(p(x) n−1 q(x)).

We know that 1 is an eigenvector of eigenvalue a+ b of A + ΠBΠT for every permutation matrix
Π. Once we work orthogonal to this vector, we discover the finite free convolution.

CHAPTER 42. QUADRATURE FOR THE FINITE FREE CONVOLUTION 335

We describe this theorem as a quadrature result, because it obtains an integral over a continuous
space as a sum over a finite number of points.

Before going in to the proof of the theorem, I would like to explain why one might think
something like this could be true. The first answer is that it was a lucky guess. We hoped that
this expectation would have a nice formula. The nicest possible formula would be a bi-linear map:
a function that is linear in p when q is held fixed, and vice versa. So, we computed some examples
by holding B and q fixed and varying A. We then observed that the coefficients of the resulting
expected polynomial are in fact a linear functions of the coefficients of p. Once we knew this, it
didn’t take too much work to guess the formula.

I now describe the main quadrature result we will prove today. Let B(n) be the nth
hyperoctahedral group. This is the group of symmetries of the generalized octahedron in n
dimensions. It may be described as the set of matrices that can be written in the form DΠ, where
D is a diagonal matrix of ±1 entries and Π is a permutation. It looks like the family of
permutation matrices, except that both 1 and −1 are allowed as nonzero entries. B(n) is a
subgroup of O(n).

Theorem 42.2.3. For all symmetric matrices A and B ,

EQ∈O(n)

[
χx(A + QBQT)

]
= EP∈B(n)

[
χx(A + PBPT)

]
.

We will use this result to prove Theorem 42.2.1. The proof of Theorem 42.2.2 is similar to the
proof of Theorem 42.2.3. So, we will prove Theorem 42.2.3 and then explain the major differences.

42.3 Quadrature

In general, quadrature formulas allow one to evaluate integrals of a family of functions over a
fixed continuous domain by summing the values of those functions at a fixed number of points.
There is an intimate connection between families of orthogonal polynomials and quadrature
formulae that we unfortunately do not have time to discuss.

The best known quadrature formula allows us to evalue the integral of a polynomial around the
unit circle in the complex plane. For a polynomial p(x) of degree less than n,∫ 2π

θ=0
p(eiθ)dθ =

1

n

n−1∑
k=0

p(ωk),

where ω = e2πi/n is a primitive nth root of unity.

We may prove this result by establishing it separately for each monomial. For p(x) = xk with
k 6= 0, ∫ 2π

θ=0
p(eiθ)dθ =

∫ 2π

θ=0
eiθkdθ = 0.

CHAPTER 42. QUADRATURE FOR THE FINITE FREE CONVOLUTION 336

And, for |k| < n, the corresponding sum is the sum of nth roots of unity distributed
symmetrically about the unit circle. So,

n−1∑
j=0

ωjk = 0.

We used this fact in the start of the semester when we computed the eigenvectors of the ring
graph and observed that all but the dominant are orthogonal to the all-1s vector.

On the other hand, for p(x) = 1 both the integral and sum are 1.

We will use an alternative approach to quadrature on groups, encapsulted by the following lemma.

Lemma 42.3.1. For every n and function p(x) =
∑
|k|<n ckx

k, and every θ ∈ [0, 2π],

n∑
j=0

p(ei(2πj/n+θ)) =

n∑
j=0

p(ei(2πj/n)).

This identity implies the quadrature formula above, and has the advantage that it can be
experimentally confirmed by evaluating both sums for a random θ.

Proof. We again evaluate the sums monomial-by-monomial. For p(x) = xk, with |k| < n, we have

n∑
j=0

(ei(2πj/n+θ))k = eiθk
n∑
j=0

(ei(2πj/n))k.

For k 6= 0, the latter sum is zero. For k = 0, eiθk = 1.

42.4 Quadrature by Invariance

For symmetric matrices A and B , define the function

fA,B (Q) = det(A + QBQT).

We will derive Theorem 42.2.3 from the following theorem.

Theorem 42.4.1. For all Q ∈ O(n),

EP∈B(n) [f(P)] = EP∈B(n) [f(QP)] .

Proof of Theorem 42.2.3. First, observe that it suffices to consider determinants. For every
P ∈ B(n), we have∫

Q∈O(n)
det(A + QBQT) =

∫
Q∈O(n)

f(Q) =

∫
Q∈O(n)

f(QP).

CHAPTER 42. QUADRATURE FOR THE FINITE FREE CONVOLUTION 337

So,

EP∈B(n)

[∫
Q∈O(n)

f(QP)

]
=

∫
Q∈O(n)

f(Q).

On the other hand, as B(n) is discrete we can reverse the order of integration to obtain∫
Q∈O(n)

f(Q) =

∫
Q∈O(n)

EP∈B(n) [f(QP)] =

∫
Q∈O(n)

EP∈B(n) [f(P)] = EP∈B(n) [f(P)] ,

where the second equality follows from Theorem 42.4.1.

42.5 Structure of the Orthogonal Group

To prove Theorem 42.4.1, we need to know a little more about the orthogonal group. We divide
the orthonormal matrices into two types, those of determinant 1 and those of determinant −1.
The orthonormal matrices of determinant 1 form the special orthogonal group, SO(n), and every
matrix in O(n) may be written in the form DQ where Q ∈ SO(n) and D is a diagonal matrix in
which the first entry is ±1 and all others are 1. Every matrix in SO(n) may be expressed as a
product of 2-by-2 rotation matrices. That is, for every Q ∈ SO(n) there are matrices Q i,j for
1 ≤ i < j ≤ n so that Q i,j is a rotation in the span of δi and δj and so that

Q = Q1,2Q1,3 · · ·Q1,nQ2,3 · · ·Q2,n · · ·Qn−1,n.

If you learned the QR-factorization of a matrix, then you learned an algorithm for computing this
decomposition.

These facts about the structure of O(n) tell us that it suffices to prove Theorem 42.4.1 for the
special cases in which Q = diag(−1, 1, 1, . . . , 1) and when Q is rotation of the plane spanned by δi
and δj . As the diagonal matrix is contained in B(n), the result is immediate in that case.

For simplicity, consider the case i = 1 and j = 2, and let Rθ denote the rotation by angle θ in the
first two coordinates:

Rθ
def
=

 cos θ sin θ 0
− sin θ cos θ 0

0 0 I n−2

 .
The hyperoctahedral group B(n) contains the matrices Rθ for θ ∈ {0, π/2, π, 3π/2}. As B(n) is a
group, for these θ we know

EP∈B(n) [f(P)] = EP∈B(n) [f(RθP)] ,

as the set of matrices in the expectations are identical. This identity implies

1

4

3∑
j=0

EP∈B(n)

[
fA,B (R2πj/4P)

]
= EP∈B(n) [f(P)] .

We will prove the following lemma, and then show it implies Theorem 42.4.1.

CHAPTER 42. QUADRATURE FOR THE FINITE FREE CONVOLUTION 338

Lemma 42.5.1. For every symmetric A and B , and every θ

1

4

3∑
j=0

fA,B (Rθ+2πj/4) =
1

4

3∑
j=0

fA,B (R2πj/4).

This lemma implies that for every Q1,2,

EP∈B(n) [f(P)] = EP∈B(n)

[
f(Q1,2P)

]
.

This, in turn, implies Theorem 42.4.1 and thus Theorem 42.2.3.

We can use Lemma 42.3.1 to derive Lemma 42.5.1 follows from the following.

Lemma 42.5.2. For every symmetric A and B , there exist c−2, c−1, c0, c1, c2 so that

fA,B (Rθ) =
2∑

k=−2

ck(e
iθ)k.

Proof. We need to express f(Rθ) as a function of eiθ. To this end, recall that

cos θ =
1

2
(eiθ + e−iθ) and sin θ =

−i
2

(eiθ − e−iθ).

From these identities, we see that all two-by-two rotation matrices can be simultaneously
diagonalized by writing (

cos θ sin θ
− sin θ cos θ

)
= U

(
eiθ 0
0 e−iθ

)
U ∗,

where

U =

(
1 1
i −i

)
,

and we recall that U ∗ is the conjugate transpose:

U ∗ =

(
1 −i
1 i

)
.

Let Dθ be the digaonal matrix having its first two entries eiθ and e−iθ, and the rest 1, and let U n

be the matrix with U in its upper 2-by-2 block and 1s on the diagonal beneath. So,

Rθ = U nDθU
∗
n.

Now, examine

fA,B (Rθ) = det(A + RθBR∗θ)

= det(A + U nDθU
∗
nBU nD

∗
θU
∗
n)

= det(U ∗nAU n + DθU
∗
nBU nD

∗
θ)

= det(U ∗nAU nDθ + DθU
∗
nBU n).

CHAPTER 42. QUADRATURE FOR THE FINITE FREE CONVOLUTION 339

The term eiθ only appears in the first row and column of this matrix, and the term e−iθ only
appears in the second row and column. As a determinant can be expressed as a sum of products
of matrix entries with one in each row and column, it is immediate that this determinant can be
expressed in terms of ekiθ for |k| ≤ 4. As each such product can have at most 2 terms of the form
eiθ and at most two of the form e−iθ, we have |k| ≤ 2.

The difference between Theorem 42.2.3 and Theorem 42.2.2 is that the first involves a sum over
the isometries of hyperoctahedron, while the second involves a sum over the symmetries of the
regular n-simplex in n− 1 dimensions. The proof of the appropriate quadrature theorem for the
symmetries of the regular simplex is very similar to the proof we just saw, except that rotations of
the plane through δi and δj are replaced by rotations of the plane parallel to the affine subspace
spanned by triples of vertices of the simplex.

42.6 The Formula

To establish the formula in Theorem 42.2.1, we observe that it suffices to compute the formula for
diagonal matrices, and that Theorem 42.2.3 makes this simple. Every matrix in B(n) can be
written as a product ΠD where D is a ±1 diagonal matrix. If B is the diagonal matrix with
entries µ1, . . . , µn, then ΠDBDΠT = ΠBΠT , which is the diagonal matrix with entries
µπ(1), . . . , µπ(n), where π is the permutation corresponding to Π.

Let A be diagonal with entries λ1, . . . , λn. For a subset S of {1, . . . , n}, define

λS =
∏
i∈S

λi.

We then have
ai =

∑
|S|=i

λS .

Let

p n q =

n∑
k=0

xn−k(−1)kck.

We first compute the expected determinant, cn.

cn =
1

n!

∑
π

∏
h

(λh + µπ(h)) =
1

n!

∑
π

∑
|S|=i

λS
∏

h:π(h)6∈S

µh.

As opposed to expanding this out, let’s just figure out how often the product λSµT appears. We
must have |T | = n− |S|, and then this term appears for each permutation such that π(T)∩ S = ∅.
This happens 1/

(
n
i

)
fraction of the time, giving the formula

cn =
n∑
i=0

1(
n
i

) ∑
|S|=i

λS
∑
|T |=n−i

µT =
n∑
i=0

1(
n
i

)aibn−i =
n∑
i=0

i!(n− i)!
n!

aibn−i.

CHAPTER 42. QUADRATURE FOR THE FINITE FREE CONVOLUTION 340

For general ck and i+ j = k, we see that λS and µT appear whenever µ(T) is disjoint from S.
The probability of this happening is(

n−i
j

)(
n
j

) =
(n− i)!(n− j)!j!
n!(n− i− j)!j! =

(n− i)!(n− j)!
n!(n− i− j)! ,

and so

ck =
∑
i+j=k

aibj
(n− i)!(n− j)!
n!(n− i− j)! .

42.7 Question

For which discrete subgroups of O(n) does a result like Theorem 42.2.3 hold? Can it hold for a
substantially smaller subgroup than the symmetries of the simplex (which has size (n+ 1)! in n
dimensions).

Chapter 43

Ramanujan Graphs of Every Size

This Chapter Needs Editing

43.1 Overview

We will mostly prove that there are Ramanujan graphs of every number of vertices and degree.
The material in today’s lecture comes from [MSS15d] and [MSS15a]. In those papers, we prove
that for every even n and degree d < n there is a bipartite Ramanujan graph of degree d on n
vertices. A bipartite Ramanujan graph of degree d is an approximation of a complete bipartite
graph. It’s adjacency matrix thus has eigenvalues d and −d, and all other eigenvalues bounded in
absolute value by 2

√
d− 1.

The difference between this result and that which we prove today is that we will show that for
every d < n there is a d-regular (multi) graph in whose second adjacency matrix eigenvalue is at
most 2

√
d− 1. This bound is sufficient for many applications of expanders, but not all. We will

not control the magnitude of the negative eigenvalues. The reason will simply be for simplicity:
the proofs to bound the negative eigenvalues would take more lectures.

Next week we will see a different technique that won’t produce a multigraph and that will
produce a bipartite Ramanujan graph.

43.2 The Approach

We will consider the sum of d random perfect matchings on n vertices. This produces a d-regular
graph that might be a multigraph. Friedman [Fri08] proves that such a graph is probably very
close to being Ramanujan if n is big enough relative to d. In particular, he proves that for all d
and ε > 0 there is an n0 so that for all n > n0, such a graph will probably have all eigenvalues
other than µ1 bounded in absolute value by 2

√
d− 1 + ε. We remove the asymptotics and the ε,

but merely prove the existence of one such graph. We do not estimate the probability with which

341

CHAPTER 43. RAMANUJAN GRAPHS OF EVERY SIZE 342

such a graph is Ramanujan. But, it is predicted to be a constant [?].

The fundamental difference between our technique and that of Friedman is that Friedman bounds
the moments of the distribution of the eigenvalues of such a random graph. I suspect that there is
no true bound on these moments that would allow one to conclude that a random graph is
probably Ramanujan. We consider the expected characteristic polynomial.

Let M be the adjacency matrix of a perfect matching, and let Π1, . . . ,Πd be independent uniform
random permutation matrices. We will consider the expected characteristic polynomial

EΠ1,...,Πd

[
χx(Π1MΠT

1 + · · ·+ ΠdMΠT
d)
]
.

In Lecture 22, we learned that this polynomial is real rooted. In Lecture 23, we learned a
technique that allows us to compute this polynomial. Today we will prove that the second largest
root of this polynomial is at most 2

√
d− 1. First, we show why this matters: it implies that there

is some choice of the matrices Π1, . . . ,Πd so that resulting polynomial has second largest root at
most 2

√
d− 1. These matrices provide the desired graph.

43.3 Interlacing Families of Polynomials

The general problem we face is the following. We have a large family of polynomials, say
p1(x), . . . , pm(x), for which we know each pi is real-rooted and such that their sum is real rooted.
We would like to show that there is some polynomial pi whose largest root is at most the largest
root of the sum, or rather we want to do this for the second-largest root. This is not true in
general. But, it is true in our case. We will show that it is true whenever the polynomials form
what we call an interlacing family.

Recall from Lecture 22 that we say that for monic degree n polynomials p(x) and r(x),
p(x)→ r(x) if the roots of p and r interlace, with the roots of r being larger. We proved that if
p1(x)→ r(x) and p2(x)→ r(x), then every convex combination of p1 and p2 is real rooted. If we
go through the proof, we will also see that for all 0 ≤ s ≤ 1,

sp2(x) + (1− s)p1(x)→ r(x).

Proceeding by induction, we can show that if pi(x)→ r(x) for each i, then every convex
combination of these polynomials interlaces r(x), and is thus real rooted. That is, for every
s1, . . . , sm so that si ≥ 0 (but not all are zero),∑

i

sipi(x)→ r(x).

Polynomials that satisfy this condition are said to have a common interlacing. By a technique
analogous to the one we used to prove Lemma 22.3.2, one can prove that the polynomials
p1, . . . , pm have a common interlacing if and only if every convex combination of these
polynomials is real rooted.

CHAPTER 43. RAMANUJAN GRAPHS OF EVERY SIZE 343

Lemma 43.3.1. Let p1, . . . , pm be polynomials so that pi(x)→ r(x), and let s1, . . . , sm ≥ 0 be not
identically zero. Define

p∅(x) =
m∑
i=1

sipi(x).

Then, there is an i so that the largest root of pi(x) is at most the largest root of p∅(x). In general,
for every j there is an i so that the jth largest root of pi(x) is at most the jth largest root of p∅(x).

Proof. We prove this for the largest root. The proof for the others is similar. Let λ1 and λ2 be
the largest and second-largest roots of r(x). Each polynomial pi(x) has exactly one root between
λ1 and λ2, and is positive at all x > λ1. Now, let µ be the largest root of p∅(x). We can see that
µ must lie between λ1 and λ2. We also know that∑

i

pi(µ) = 0.

If pi(µ) = 0 for some i, then we are done. If not, there is an i for which pi(µ) > 0. As pi only has
one root larger than λ2, and it is eventually positive, the largest root of pi must be less than µ.

Our polynomials do not all have a common interlacing. However, they satisfy a property that is
just as useful: they form an interlacing family. We say that a set of polynomials p1, . . . , pm forms
an interlacing family if there is a rooted tree T in which

a. every leaf is labeled by some polynomial pi,

b. every internal vertex is labeled by a nonzero, nonnegative combination of its children, and

c. all siblings have a common interlacing.

The last condition guarantees that every internal vertex is labeled by a real rooted polynomial.
Note that the same label is allowed to appear at many leaves.

Lemma 43.3.2. Let p1, . . . , pm be an interlacing family, let T be the tree witnessing this, and let
p∅ be the polynomial labeling the root of the tree. Then, for every j there exists an i for which the
jth largest root of pi is at most the jth largest root of p∅.

Proof. By Lemma 44.5.2, there is a child of the root whose label has a jth largest root that is
smaller than the jth largest root of p∅. If that child is not a leaf, then we can proceed down the
tree until we reach a leaf, at each step finding a node labeled by a polynomial whose jth largest
root is at most the jth largest root of the previous polynomial.

Our construction of permutations by sequences of random swaps provides the required interlacing
family.

Theorem 43.3.3. For permutation matrices Π1, . . . ,Πd, let

pΠ1,...,Πd
(x) = χx(Π1MΠT

1 + · · ·+ ΠdMΠT
d).

These polynomials form an interlacing family.

CHAPTER 43. RAMANUJAN GRAPHS OF EVERY SIZE 344

We will finish this lecture by proving that the second-largest root of

E [pΠ1,...,Πd
(x)]

is at most 2
√
d− 1. This implies that there is a d-regular multigraph on n vertices in our family

with second-largest adjacency eigenvalue at most 2
√
d− 1.

43.4 Root Bounds for Finite Free Convolutions

Recall from the last lecture that for n-dimensional symmetric matrices A and B with uniform
row sums a and b and characteristic polynomials (x− a)p(x) and (x− b)q(x),

EΠ

[
χx(A + ΠBΠT)

]
= (x− (a+ b))p(x) n−1 q(x).

This formula extends to sums of many such matrices. It is easy to show that

χx(M) = (x− 1)n/2(x+ 1)n/2 = (x− 1)p(x), where p(x)
def
= (x− 1)n/2−1(x+ 1)n/2.

So,

p∅(x)
def
= E [pΠ1,...,Πd

(x)] = (x− d) (p(x) n−1 p(x) n−1 p(x) n−1 · · · n−1 p(x)) ,

where p(x) appears d times above.

We would like to prove a bound on the largest root of this polynomial in terms of the largest
roots of p(x). This effort turns out not to be productive. To see why, consider matrices A = aI
and B = bI . It is clear that A + ΠBΠT = (a+ b)I for every Π. This tells us that

(x− a)n (x− b)n = (x− (a+ b))n.

So, the largest roots can add. This means that if we are going to obtain useful bounds on the
roots of the sum, we are going to need to exploit facts about the distribution of the roots of p(x).
As in Lecture ??, we will use the barrier functions, just scaled a little differently.

For,

p(x) =
n∏
i=1

(x− λi),

define the Cauchy transform of p at x to be

Gp (x) =
1

d

d∑
i=1

1

x− λi
=

1

d

p′(x)

p(x)
.

For those who are used to Cauchy transforms, I remark that this is the Cauchy transform of the
uniform distribution on the roots of p(x). As we will be interested in upper bounds on the
Cauchy transform, we will want a number u so that for all x > u, Gp (x) is less than some
specified value. That is, we want the inverse Cauchy transform, which we define to be

Kp (w) = max {x : Gp (x) = w} .

CHAPTER 43. RAMANUJAN GRAPHS OF EVERY SIZE 345

For a real rooted polynomial p, and thus for real λ1, . . . , λd, it is the value of x that is larger than
all the λi for which Gp (x) = w. For w =∞, it is the largest root of p. But, it is larger for finite w.

We will prove the following bound on the Cauchy transforms.

Theorem 43.4.1. For degree n polynomials p and q and for w > 0,

Kp nq (w) ≤ Kp (w) +Kq (w)− 1/w.

For w =∞, this says that the largest root of p n q is at most the sum of the largest roots of p
and q. But, this is obvious.

To explain the 1/w term in the above expression, consider q(x) = xn. As this is the characteristic
polynomial of the all-zero matrix, p n q = p(x). We have

Gq (x) =
1

n

nxn−1

xn
=

1

x
.

So,
Kq (w) = max {x : 1/x = w} = 1/w.

Thus,
Kq (w)− 1/w = 0.

I will defer the proof of this theorme to next lecture (or maybe the paper [MSS15a]), and now just
show how we use it.

43.5 The Calculation

For p(x) = (x− 1)n/2−1(x+ 1)n/2,

Gp (x) =
1

n− 1

(
n/2− 1

x− 1
+

n/2

x+ 1

)
≤ 1

n

(
n/2

x− 1
+

n/2

x+ 1

)
,

for x ≥ 1. This latter expression is simple to evaluate. It is

x

x2 − 1
= Gχ(M) (x) .

We also see that
Kp (w) ≤ Kχ(M) (w) ,

for all w ≥ 0.

Theorem 43.4.1 tells us that

Kp n−1··· p (w) ≤ dKp (w)− d− 1

w
.

Using the above inequality, we see that this is at most

dKχ(M) (w)− d− 1

w
.

CHAPTER 43. RAMANUJAN GRAPHS OF EVERY SIZE 346

As this is an upper bound on the largest root of p n−1 · · · n−1 p, we wish to set w to minimize
this expression. As,

Gχ(M) (x) =
x

x2 − 1
,

we have
Kχ(M) (w) = x if and only if w =

x

x2 − 1
.

So,

dKχ(M) (w)− d− 1

w
. ≤ dx− d− 1

x2 − 1

x
.

The choice of x that minimizes this is
√
d− 1, at which point it becomes

d
√
d− 1− (d− 1)(d− 2)√

d− 1
= d
√
d− 1− (d− 2)

√
d− 1 = 2

√
d− 1.

43.6 Some explanation of Theorem 43.4.1

I will now have time to go through the proof of Theorem 43.4.1. So, I’ll just tell you a little about
it. We begin by transforming statements about the inverse Cauchy transform into statements
about the roots of polynomials.

As Gp (x) = 1
d
p′(x)
p(x) ,

Gp (x) = w ⇐⇒ p(x)− 1

wd
p′(x) = 0.

This tells us that

Kp (w) = maxroot
(
p(x)− p′(x)/wd

)
= maxroot ((1− (1/wd)∂x)p) .

As this sort of operator appears a lot in the proof, we give it a name:

Uα = 1− α∂x.

In this notation, Theorem 43.4.1 becomes

maxroot (Uα(p n q)) ≤ maxroot (Uαp) + maxroot (Uαp)− nα. (43.1)

We, of course, also need to exploit an expression for the finite free convolution. Last lecture, we
proved that if

p(x) =

n∑
i=0

xn−i(−1)iai and q(x) =

n∑
i=0

xn−i(−1)ibi.

Then,

p(x) n q(x) =
n∑
k=0

xn−k(−1)k
∑
i+j=k

(n− i)!(n− j)!
n!(n− i− j)! aibj . (43.2)

CHAPTER 43. RAMANUJAN GRAPHS OF EVERY SIZE 347

From this, one can derive a formula that plays better with derivatives:

p(x) n q(x) =
1

n!

n∑
i=0

(n− i)!bip(i)(x).

This equation allows us to understand what happens when p and q have different degrees.

Lemma 43.6.1. If p(x) has degree n and q(x) = xn−1, then

p(x) n q(x) = ∂xp(x).

For the special case of q(x) = xn−1, we have

Uαq(x) = xn−1 − α(n− 1)xn−2,

so
maxroot (Uαq(x)) = α(n− 1).

So, in this case (43.1) says

maxroot (Uα∂xp) ≤ maxroot (Uαp) + maxroot (Uαq)− nα = maxroot (Uαp)− α.

The proof of Theorem 43.4.1 has two major ingredients. We begin by proving the above
inequality. We then show that the extreme case for the inequality is when q(x) = (x− b)n for
some b. To do this, we consider an arbitrary real rooted polynomial q, and then modify it to make
two of its roots the same. This leads to an induction on degree, which is essentially handled by
the following result.

Lemma 43.6.2. If p(x) has degree n and the degree of q(x) is less than n, then

p n q =
1

n
(∂xp) n−1 q.

The whose proof is fairly straightforward, and only requires 2 pages.

43.7 Some thoughts

I would like to reflect on the fundamental difference between considering expected characteristic
polynomials and the distributions of the roots of random polynomials. Let A be a symmetric
matrix of dimension 3k with k eigenvalues that are 1, 0, and −1. If you consider A + ΠAΠT for a
random Π, the resulting matrix will almost definitely have a root at 2 and a root at −2. In fact,
the chance that it does not is exponentially small in k. However, all the roots of the expected
characteristic polynomial of this matrix are strictly bounded away from 2. You could verify this
by computing the Cauchy transform of this polynomial.

CHAPTER 43. RAMANUJAN GRAPHS OF EVERY SIZE 348

In our case, we considered a matrix A with k eigenvalues of 1 and k eigenvalues of −1. If we
consider A + ΠAΠT , it will almost definitely have roots at 2 and −2, and in fact the expected
characteristic polynomial has roots that are very close to this. But, if we consider

A + Π1AΠT
1 + Π2AΠT

2 ,

even though it almost definitely has roots at 3 and −3, the largest root of the expected
characteristic polynomial is at most 2

√
2 < 3.

I should finish by saying that Theorem 43.4.1 is inspired by a theorem of Voiculescu that holds in
the infinite dimensional case. In this limit, the inequality becomes an equality.

Chapter 44

Bipartite Ramanujan Graphs

44.1 Overview

Margulis [Mar88] and Lubotzky, Phillips and Sarnak [LPS88] presented the first explicit
constructions of infinite families of Ramanujan graphs. These had degrees p+ 1, for primes p.
There have been a few other explicit constructions, [Piz90, Chi92, JL97, Mor94], all of which
produce graphs of degree q + 1 for some prime power q. Over this lecture and the next we will
prove the existence of infinite families of bipartite Ramanujan of every degree. While today’s
proof of existence does not lend itself to an explicit construction, it is easier to understand than
the presently known explicit constructions.

We think that much stronger results should be true. There is good reason to think that random
d-regular graphs should be Ramanujan [MNS08]. And, Friedman [Fri08] showed that a random
d-regular graph is almost Ramanujan: for sufficiently large n such a graph is a 2

√
d− 1 + ε

approximation of the complete graph with high probability, for every ε > 0.

In today’s lecture, we will use the method of interlacing families of polynomials to prove (half) a
conjecture of Bilu and Linial [BL06] that every bipartite Ramanujan graph has a 2-lift that is also
Ramanujan. This theorem comes from [MSS15b], but today’s proof is informed by the techniques
of [HPS15]. We will use theorems about the matching polynomials of graphs that we will prove
next lecture.

In the same way that a Ramanujan graph approximates the complete graph, a bipartite
Ramanujan graph approximates a complete bipartite graph. We say that a d-regular graph is a
bipartite Ramanujan graph if all of its adjacency matrix eigenvalues, other than d and −d, have
absolute value at most 2

√
d− 1. The eigenvalue of d is a consequence of being d-regular and the

eigenvalue of −d is a consequence of being bipartite. In particular, recall that the adjacency
matrix eigenvalues of a bipartite graph are symmetric about the origin. This is a special case of
the following claim, which you can prove when you have a sparse moment.

349

CHAPTER 44. BIPARTITE RAMANUJAN GRAPHS 350

Claim 44.1.1. The eigenvalues of a symmetric matrix of the form(
0 A

AT 0

)
are symmetric about the origin.

We remark that one can derive bipartite Ramanujan graphs from ordinary Ramanujan
graphs—just take the double cover. However, we do not know any way to derive ordinary
Ramanujan graphs from the bipartite ones.

As opposed to reasoning directly about eigenvalues, we will work with characteristic polynomials.
For a matrix M , we write its characteristic polynomial in the variable x as

χx(M)
def
= det(xI −M).

44.2 2-Lifts

We saw 2-lifts of graphs in Problem 3 from Problem Set 2:

We define a signed adjacency matrix of G to be a symmetric matrix S with the same
nonzero pattern as the adjacency matrix A, but such that each nonzero entry is either
1 or −1.

We will use it to define a graph GS . Like the double-cover, the graph GS will have
two vertices for every vertex of G and two edges for every edge of G. For each edge
(u, v) ∈ E, if S(u, v) = −1 then GS has the two edges

(u1, v2) and (v1, u2),

just like the double-cover. If S(u, v) = 1, then GS has the two edges

(u1, v1) and (v2, u2).

You should check that G−A is the double-cover of G and that GA consists of two
disjoint copies of G.

Prove that the eigenvalues of the adjacency matrix of GS are the union of the
eigenvalues of A and the eigenvalues of S .

The graphs GS that we form this way are called 2-lifts of G.

Bilu and Linial [BL06] conjectured that every d-regular graph G has a signed adjacency matrix S
so that ‖S‖ ≤ 2

√
d− 1. This would give a simple procedure for constructing infinite families of

Ramanujan graphs. We would begin with any small d-regular Ramanujan graph, such as the
complete graph on d+ 1 vertices. Then, given any d-regular Ramanujan graph we could construct
a new Ramanujan graph on twice as many vertices by using GS where ‖S‖ ≤ 2

√
d− 1.

We will prove something close to their conjecture.

CHAPTER 44. BIPARTITE RAMANUJAN GRAPHS 351

Theorem 44.2.1. Every d-regular graph G has a signed adjacency matrix S for which the
minimum eigenvalue of S is at least −2

√
d− 1.

We can use this theorem to build infinite families of bipartite Ramanujan graphs, because their
eigenvalues are symmetric about the origin. Thus, if µn ≥ −2

√
d− 1, then we know that

|µi| ≤ 2
√
d− 1 for all 1 < i < n. Note that every 2-lift of a bipartite graph is also a bipartite

graph.

44.3 Random 2-Lifts

We will prove Theorem 44.2.1 by considering a random 2-lift. In particular, we consider the
expected characteristic polynomial of a random signed adjacency matrix S :

ES [χx(S)] . (44.1)

Godsil and Gutman [GG81] proved that this is equal to the matching polynomial of G! We will
learn more about the matching polynomial next lecture.

For now, we just need the following bound on its zeros which was proved by Heilmann and Lieb
[HL72].

Theorem 44.3.1. The eigenvalues of the matching polynomial of a graph of maximum degree at
most d are real and have absolute value at most 2

√
d− 1.

Now that we know that the smallest zero of (44.1) is at least −2
√
d− 1, all we need to do is to

show that there is some signed adjacency matrix whose smallest eigenvalue is at least this bound.
This is not necessarily as easy as it sounds, because the smallest zero of the average of two
polynomials is not necessarily related to the smallest zeros of those polynomials. We will show
that, in this case, it is.

44.4 Laplacianized Polynomials

Instead of directly reasoning about the characteristic polynomials of signed adjacency matrices S ,
we will work with characteristic polynomials of dI − S . It suffices for us to prove that there exists
an S for which the largest eigenvalue of dI − S is at most d+ 2

√
d− 1.

Fix an ordering on the m edges of the graph, associate each S with a vector σ ∈ {±1}m, and
define

pσ(x) = χx(dI − S).

The expected polynomial is the average of all these polynomials.

We define two vectors for each edge in the graph. If the ith edge is (a, b), then we define

v i,σi = δa − σiδb.

CHAPTER 44. BIPARTITE RAMANUJAN GRAPHS 352

For every σ ∈ {±1}m, we have
m∑
i=1

v i,σiv
T
i,σi = dI − S ,

where S is the signed adjacency matrix corresponding to σ. So, for every σ ∈ {±1}m,

pσ(x) = χx

(
m∑
i=1

v i,σiv
T
i,σi

)
.

44.5 Interlacing Families of Polynomials

Here is the problem we face. We have a large family of polynomials, say p1(x), . . . , pm(x), for
which we know each pi is real-rooted and that their sum is real rooted. We would like to show
that there is some polynomial pi whose largest zero is at most the largest zero of the sum. This is
not true in general. But, it is true in our case because the polynomials form an interlacing family.

For a polynomial p(x) =
∏n
i=1(x− λi) of degree n and a polynomial q(x) =

∏n−1
i=1 (x− µi) of

degree n− 1, we say that q(x) interlaces p(x) if

λn ≤ µn−1 ≤ λn−1 ≤ · · · ≤ λ2 ≤ µ1 ≤ λ1.

If r(x) =
∏n
i=1(x− µi) has degree n, we write r(x)→ p(x) if

µn ≤ λn ≤ µn−1 ≤ · · · ≤ λ2 ≤ µ1 ≤ λ1.

That is, if the zeros of p and r interlace, with the zeros of p being larger. We also make these
statements if they hold of positive multiples of p, r and q.

The following lemma gives the examples of interlacing polynomials that motivate us.

Lemma 44.5.1. Let A be a symmetric matrix and let v be a vector. For a real number t let

pt(x) = χx(A + tvvT).

Then, for t > 0, p0(x)→ pt(x) and there is a monic1 degree n− 1 polynomial q(x) so that for all t

pt(x) = χx(A)− tq(x).

Proof. The fact that p0(x)→ pt(x) for t > 0 follows from the Courant-Fischer Theorem.

We first establish the existence of q(x) in the case that v = δ1. As the matrix tδ1δ
T
1 is zeros

everywhere except for the element t in the upper left entry and the determinant is linear in each
entry of the matrix,

χx(A + tδ1δ
T
1) = det(xI −A− tδ1δ

T
1) = det(xI −A)− t det(xI (1) −A(1)) = χx(A)− tχx(A(1)),

1A monic polynomial is one whose leading coefficient is 1.

CHAPTER 44. BIPARTITE RAMANUJAN GRAPHS 353

where A(1) is the submatrix of A obtained by removing its first row and column. The polynomial
q(x) = χx(A(1)) has degree n− 1.

For arbitrary, v , let Q be a rotation matrix for which Qv = δ1. As determinants, and thus
characteristic polynomials, are unchanged by multiplication by rotation matrices,

χx(A + tvvT) = χx(Q(A + tvvT)QT)

= χx(QAQT + tδ1δ
T
1)) = χx(QAQT)− tq(x) = χx(A)− tq(x),

for some q(x) of degree n− 1.

For a polynomial p, let λmax(p) denote its largest zero. When polynomials interlace, we can relate
the largest zero of their sum to the largest zero of at least one of them.

Lemma 44.5.2. Let p1(x), p2(x) and r(x) be polynomials so that r(x)→ pi(x). Then,
r(x)→ p1(x) + p2(x) and there is an i ∈ {1, 2} for which

λmax(pi) ≤ λmax(p1 + p2).

Proof. Let µ1 be the largest zero of r(x). As each polynomial pi(x) has a positive leading
coefficient, each is eventually positive and so is their sum. As each has exactly one zero that is at
least µ1 each is nonpositive at µ1, and the same is also true of their sum. Let λ be the largest zero
of p1 + p2. We have established that λ ≥ µ1.

If pi(λ) = 0 for some i, then we are done. If not, there is an i for which pi(λ) > 0. As pi only has
one zero larger than µ1, and it is eventually positive, the largest zero of pi must be less than λ.

If p1, . . . , pm are polynomials such that there exists an r(x) for which r(x)→ pi(x) for all i, then
these polynomials are said to have a common interlacing. Such polynomials satisfy the natural
generalization of Lemma 44.5.2.

The polynomials pσ(x) do not all have a common interlacing. However, they satisfy a property
that is just as useful: they form an interlacing family. Rather than defining these in general, we
will just explain the special case we need for today’s theorem.

We define polynomials that correspond to fixing the signs of the first k edges and then choosing
the rest at random. We indicate these by shorter sequences σ ∈ {±1}k. For k < m and σ ∈ {±1}k
we define

pσ(x)
def
= Eρ∈{±1}n−k [pσ,ρ(x)] .

So,
p∅(x) = Eσ∈{±1}m [pσ(x)] .

We view the strings σ, and thus the polynomials pσ, as vertices in a complete binary tree. The
nodes with σ of length m are the leaves, and ∅ corresponds to the root. For σ of length less than
n, the children of σ are (σ, 1) and (σ,−1). We call such a pair of nodes siblings. We will
eventually prove in Lemma 44.6.1 that all the polynomials pσ(x) are real rooted and in Corollary
44.6.2 that every pair of siblings has a common interlacing.

CHAPTER 44. BIPARTITE RAMANUJAN GRAPHS 354

But first, we show that this implies that there is a leaf indexed by σ ∈ {±1}m for which

λmax(pσ) ≤ λmax(p∅).

This implies Theorem 44.2.1, as we know from Theorem 44.3.1 that λmax(p∅) ≤ d+ 2
√
d− 1.

Lemma 44.5.3. There is a σ ∈ {±1}m for which

λmax(pσ) ≤ λmax(p∅).

Proof. Corollary 44.6.2 and Lemma 44.5.2 imply that every non-leaf node in the tree has a child
whose largest zero is at most the largest zero of that node. Starting at the root of the tree, we
find a node whose largest zero is at most the largest zero of p∅. We then proceed down the tree
until we reach a leaf, at each step finding a node labeled by a polynomial whose largest zero is at
most the largest zero of the previous polynomial. The leaf we reach, σ, satisfies the desired
inequality.

44.6 Common Interlacings

We can now use Lemmas 44.5.1 and 44.5.2 to show that every σ ∈ {±1}m−1 has a child (σ, s) for
which λmax(pσ,s) ≤ λmax(pσ). Let

A =

m−1∑
i=1

v i,σiv
T
i,σi .

The children of σ, (σ, 1) and (σ,−1) have polynomials p(σ,1) and p(σ,−1) that equal

χx(A + vm,1v
T
m,1) and χx(A + vm,−1v

T
m,−1).

By Lemma 44.5.1, χx(A)→ χx(A+ vm,sv
T
m,s) for s ∈ {±1}, and Lemma 44.5.2 implies that there

is an s for which the largest zero of p(σ,s) is at most the largest zero of their average, which is pσ.

To extend this argument to nodes higher up in the tree, we will prove the following statement.

Lemma 44.6.1. Let A be a symmetric matrix and let w i,s be vectors for 1 ≤ i ≤ k and
s ∈ {0, 1}. Then the polynomial

∑
ρ∈{0,1}k

χx

(
A +

k∑
i=1

w i,ρiw
T
i,ρi

)

is real rooted, and for each s ∈ {0, 1},

∑
ρ∈{0,1}k

χx

(
A +

k−1∑
i=1

w i,ρiw
T
i,ρi

)
→

∑
ρ∈{0,1}k

χx

(
A +

k−1∑
i=1

w i,ρiw
T
i,ρi + wk,sw

T
k,s

)
.

Corollary 44.6.2. For every k < n and σ ∈ {±1}k, the polynomials pσ,s(x) for s ∈ {±1} are real
rooted and have a common interlacing.

CHAPTER 44. BIPARTITE RAMANUJAN GRAPHS 355

44.7 Real Rootedness

To prove Lemma 44.6.1, we use the following two lemmas which are known collectively as
Obreschkoff’s Theorem [Obr63].

Lemma 44.7.1. Let p and q be polynomials of degree n and n− 1, and let pt(x) = p(x)− tq(x).
If pt is real rooted for all t ∈ IR, then q interlaces p.

Proof Sketch. Recall that the roots of a polynomial are continuous functions of its coefficients, and
thus the roots of pt are continuous functions of t. We will use this fact to obtain a contradiction.

For simplicity,2 I just consider the case in which all of the roots of p and q are distinct. If they are
not, one can prove this by dividing out their common divisors.

If p and q do not interlace, then p must have two roots that do not have a root of q between
them. Let these roots of p be λi+1 and λi. Assume, without loss of generality, that both p and q
are positive between these roots. We now consider the behavior of pt for positive t.

As we have assumed that the roots of p and q are distinct, q is positive at these roots, and so pt is
negative at λi+1 and λi. If t is very small, then pt will be close to p in value, and so there must be
some small t0 for which pt0(x) > 0 for some λi+1 < x < λi. This means that pt0 must have two
roots between λi+1 and λi.

As q is positive on the entire closed interval [λi+1, λi], when t is large pt will be negative on this
entire interval, and thus have no roots inside. As we vary t between t0 and infinity, the two roots
at t0 must vary continuously and cannot cross λi+1 or λi. This means that they must become
complex, contradicting our assumption that pt is always real rooted.

Lemma 44.7.2. Let p and q be polynomials of degree n and n− 1 that interlace and have positive
leading coefficients. For every t > 0, define pt(x) = p(x)− tq(x). Then, pt(x) is real rooted and

p(x)→ pt(x).

Proof Sketch. For simplicity, I consider the case in which all of the roots of p and q are distinct.
One can prove the general case by dividing out the common repeated roots.

To see that the largest root of pt is larger than λ1, note that q(x) is positive for all x > µ1, and
λ1 > µ1. So, pt(λ1) = p(λ1)− tq(λ1) < 0. As pt is monic, it is eventually positive and it must have
a root larger than λ1.

We will now show that for every i ≥ 1, pt has a root between λi+1 and λi. As this gives us d− 1
more roots, it accounts for all d roots of pt. For i odd, we know that q(λi) > 0 and q(λi+1) < 0.
As p is zero at both of these points, pt(λi) > 0 and pt(λi+1) < 0, which means that pt has a root
between λi and λi+1. The case of even i is similar.

Lemma 44.7.3. Let p0(x) and p1(x) be degree n monic polynomials for which there is a third
polynomial r(x) Such that

r(x)→ p0(x) and r(x)→ p1(x).

2I thank Sushant Sachdeva for helping me work out this particularly simple proof.

CHAPTER 44. BIPARTITE RAMANUJAN GRAPHS 356

Then
r(x)→ (1/2)p0(x) + (1/2)p1(x),

and the latter is a real rooted polynomial.

Sketch. Assume for simplicity that all the roots of r are distinct and different from the roots of p0

and p1. Let µn < µn−1 < · · · < µ1 be the roots of r. Our assumptions imply that both p0 and p1

are negative at µi for odd i and positive for even i. So, the same is true of their average. This
tells us that their average must have at least n− 1 real roots between µn and µ1. As their average
is monic, it must be eventually positive and so must have a root larger than µ1. That accounts for
all n of its roots.

Proof of Lemma 44.6.1. We prove this by induction on k. Assuming that we have proved it for
k − 1, we now prove it for k. Let u be any vector and let t ∈ IR. Define

pt(x) =
∑

ρ∈{0,1}k
χx

(
A +

k−1∑
i=1

w i,ρiw
T
i,ρi + tuuT

)
.

By Lemma 44.5.1, we can express this polynomial in the form

pt(x) = p0(x)− tq(x),

where q has positive leading coefficient and degree n− 1. By absorbing tuuT into A we may use
induction on k to show that pt(x) is real rooted for all t. Thus, Lemma 44.7.1 implies that q(x)
interlaces p0(x), and Lemma 44.7.2 tells us that for t > 0

p0(x)→ pt(x).

So, we may conclude that for every s ∈ {±1},∑
ρ∈{0,1}k−1

χx

(
A +

k−1∑
i=1

w i,ρiw
T
i,ρi

)
→

∑
ρ∈{0,1}k

χx

(
A +

k−1∑
i=1

w i,ρiw
T
i,ρi + wk,sw

T
k,s

)
.

So, Lemma 44.7.3 implies that∑
ρ∈{0,1}k−1

χx

(
A +

k−1∑
i=1

w i,ρiw
T
i,ρi

)
→

∑
ρ∈{0,1}k

χx

(
A +

k∑
i=1

w i,ρiw
T
i,ρi

)

and that the latter polynomial is real rooted.

44.8 Conclusion

The major open problem left by this work is establishing the existence of regular (non-bipartite)
Ramanujan graphs. The reason we can not prove this using the techniques in this lecture is that
the interlacing techniques only allow us to reason about the largest or smallest eigenvalue of a
matrix, but not both.

To see related papers establishing the existence of Ramanujan graphs, see [MSS15d, HPS15]. For
a survey on this and related material, see [MSS14].

Chapter 45

The Matching Polynomial

45.1 Overview

The coefficients of the matching polynomial of a graph count the numbers of matchings of various
sizes in that graph. It was first defined by Heilmann and Lieb [HL72], who proved that it has
some amazing properties, including that it is real rooted. They also proved that all root of the
matching polynomial of a graph of maximum degree d are at most 2

√
d− 1. In the next lecture,

we will use this fact to derive the existence of Ramanujan graphs.

Our proofs today come from a different approach to the matching polynomial that appears in the
work of Godsil [God93, God81]. My hope is that someone can exploit Godsil’s approach to
connect the 2

√
d− 1 bound from today’s lecture with that from last lecture. In today’s lecture,

2
√
d− 1 appears as an upper bound on the spectral radius of a d-ary tree. Infinite d-ary trees

appear as the graphs of free groups in free probability. I feel like there must be a formal relation
between these that I am missing.

45.2 The Matching Polynomial

A matching in a graph G = (V,E) is a subgraph of G in which every vertex has degree 1. We say
that a matching has size k if it has k edges. We let

mk(G)

denote the number of matchings in G of size k. Throughout this lecture, we let |V | = n. Observe
that m1(G) is the number of edges in G, and that mn/2(G) is the number of perfect matchings in
G. By convention we set m0(G) = 1, as the empty set is matching with no edges. Computing the
number of perfect matchings is a #P -hard problem. This means that it is much harder than
solving NP -hard problems, so you shouldn’t expect to do it quickly on large graphs.

357

CHAPTER 45. THE MATCHING POLYNOMIAL 358

The matching polynomial of G, written µx [G], is

µx [G]
def
=

n/2∑
k=0

xn−2k(−1)kmk(G).

Our convention that m0(G) = 1 ensures that this is a polynomial of degree n.

This is a fundamental example of a polynomial that is defined so that its coefficients count
something. When the “something” is interesting, the polynomial usually is as well.

45.3 Properties of the Matching Polynomial

We begin by establishing some fundamental properties of the matching polynomial. For graphs G
and H on different vertex sets, we write G ∪H for their disjoint union.

Lemma 45.3.1. Let G and H be graphs on different vertex sets. Then,

µx [G ∪H] = µx [G]µx [H] .

Proof. Every matching in G ∪H is the union of a matchings in G and a matching in H. Thus,

mk(G ∪H) =

k∑
j=0

µj(G)µk−j(H).

The lemma follows.

For a a vertex of G = (V,E), we write G− a for the graph G(V − {a}). This notation will prove
very useful when reasoning about matching polynmomials. Fix a vertex a of G, and divide the
matchings in G into two classes: those that involve vertex a and those that do not. The number
of matchings of size k that do not involve a is mk(G− a). On the other hand, those that do
involve a connect a to one of its neighbors. To count these, we enumerate the neighbors b of a. A
matching of size k that includes edge (a, b) can be written as the union of (a, b) and a matching of
size k − 1 in G− a− b. So, the number of matchings that involve a is∑

b∼a
mk−1(G− a− b).

So,

mk(G) = mk(G− a) +
∑
b∼a

mk−1(G− a− b).

To turn this into a recurrence for µx [G], write

xn−2k(−1)kmk(G) = x · xn−1−2k(−1)kmk(G− a)− xn−2−2(k−1)(−1)k−1mk−1(G− a− b).

This establishes the following formula.

CHAPTER 45. THE MATCHING POLYNOMIAL 359

Lemma 45.3.2.
µx [G] = xµx [G− a]−

∑
b∼a

µx [G− a− b] .

The matching polynomials of trees are very special—they are exactly the same as the
characteristic polynomial of the adjacency matrix.

Theorem 45.3.3. Let G be a tree. Then

µx [G] = χx(AG).

Proof. Expand
χx(AG) = det(xI −AG)

by summing over permutations. We obtain∑
π∈Sn

(−1)sgn(π)x|{a:π(a)=a}|
∏

a:π(a) 6=a

(−AG(a, π(a))).

We will prove that the only permutations that contribute to this sum are those for which
π(π(a)) = a for every a. And, these correspond to matchings.

If π is a permutation for which there is an a so that π(π(a)) 6= a, then there are a = a1, . . . , ak
with k > 2 so that π(ai) = ai+1 for 1 ≤ i < k, and π(ak) = a1. For this term to contribute, it
must be the case that AG(ai, ai+1) = 1 for all i, and that AG(ak, a1) = 1. For k > 2, this would
be a cycle of length k in G. However, G is a tree and so cannot have a cycle.

So, the only permutations that contribute are the involutions: the permutations π that are their
own inverse. An involution has only fixed points and cycles of length 2. Each cycle of length 2
that contributes a nonzero term corresponds to an edge in the graph. Thus, the number of
permutations with k cycles of length 2 is equal to the number of matchings with k edges. As the
sign of an involution with k cycles of length 2 is (−1)k, the coefficient of xn−2k is (−1)kmk(G).

45.4 The Path Tree

Godsil proves that the matching polynomial of a graph is real rooted by proving that it divides
the matching polynomial of a tree. As the matching polynomial of a tree is the same as the
characteristic polynomial of its adjacency matrix, it is real rooted. Thus, the matching
polynomial of the graph is as well. The tree that Godsil uses is the path tree of G starting at a
vertex of G. For a a vertex of G, the path tree of G starting at a, written Ta(G) is a tree whose
vertices correspond to paths in G that start at a and do not contain any vertex twice. One path is
connected to another if one extends the other by one vertex. For example, here is a graph and its
path tree starting at a.

CHAPTER 45. THE MATCHING POLYNOMIAL 360

When G is a tree, Ta(G) is isomorphic to G.

Godsil’s proof begins by deriving a somewhat strange equality. Since I haven’t yet found a better
proof, I’ll take this route too.

Theorem 45.4.1. For every graph G and vertex a of G,

µx [G− a]

µx [G]
=
µx [Ta(G)− a]

µx [Ta(G)]
.

The term on the upper-right hand side is a little odd. It is a forrest obtained by removing the
root of the tree Ta(G). We may write it as a disjoint union of trees as

Ta(G)− a =
⋃
b∼a

Tb(G− a).

Proof. If G is a tree, then the left and right sides are identical, and so the inequality holds. As
the only graphs on less than 3 vertices are trees, the theorem holds for all graphs on at most 2
vertices. We will now prove it by induction on the number of vertices.

We may use Lemma 45.3.2 to expand the reciprocal of the left-hand side:

µx [G]

µx [G− a]
=
xµx [G− a]−∑b∼a µx [G− a− b]

µx [G− a]
= x−

∑
b∼a

µx [G− a− b]
µx [G− a]

.

By applying the inductive hypothesis to G− a, we see that this equals

x−
∑
b∼a

µx [Tb(G− a)− b]
µx [Tb(G− a)]

. (45.1)

To simplify this expression, we examine these graphs carefully. By the observtion we made before
the proof,

Tb(G− a)− b =
⋃

c∼b,c 6=a
Tc(G− a− b).

Similarly,

Ta(G)− a =
⋃
c∼a

Tc(G− a),

which implies

µx [Ta(G)− a] =
∏
c∼a

µx [Tc(G− a)] .

CHAPTER 45. THE MATCHING POLYNOMIAL 361

Let ab be the vertex in Ta(G) corresponding to the path from a to b. We also have

Ta(G)− a− ab =

 ⋃
c∼a,c6=b

Tc(G− a)

 ∪
 ⋃
c∼b,c6=a

Tc(G− a− b)


=

 ⋃
c∼a,c6=b

Tc(G− a)

 ∪ (Tb(G− a)− b) .

which implies

µx [Ta(G)− a− ab] =

 ∏
c∼a,c6=b

µx [Tc(G− a)]

µx [Tb(G− a)− b] .

Thus,

µx [Ta(G)− a− ab]
µx [Ta(G)− a]

=

(∏
c∼a,c6=b µx [Tc(G− a)]

)
µx [Tb(G− a)− b]∏

c∼a µx [Tc(G− a)]

=
µx [Tb(G− a)− b]
µx [Tb(G− a)]

.

Plugging this in to (45.1), we obtain

µx [G]

µx [G− a]
= x−

∑
b∼a

µx [Ta(G)− a− ab]
µx [Ta(G)− a]

=
xµx [Ta(G)− a]−∑b∼a µx [Ta(G)− a− ab]

µx [Ta(G)− a]

=
µx [Ta(G)]

µx [Ta(G)− a]
.

Be obtain the equality claimed in the theorem by taking the reciprocals of both sides.

Theorem 45.4.2. For every vertex a of G, the polynomial µx [G] divides the polynomial
µx [Ta(G)].

Proof. We again prove this by induction on the number of vertices in G, using as our base case
graphs with at most 2 vertices. We then know, by induction, that for b ∼ a,

µx [G− a] divides µx [Tb(G− a)] .

As
Ta(G)− a = ∪b∼aTb(G− a),

µx [Tb(G− a)] divides µx [Ta(G)− a] .

Thus,
µx [G− a] divides µx [Ta(G)− a] ,

CHAPTER 45. THE MATCHING POLYNOMIAL 362

and so
µx [Ta(G)− a]

µx [G− a]

is a polynomial in x. To finish the proof, we apply Theorem 45.4.1, which implies

µx [Ta(G)] = µx [Ta(G)− a]
µx [G]

µx [G− a]
= µx [G]

µx [Ta(G)− a]

µx [G− a]
.

45.5 Root bounds

If every vertex of G has degree at most d, then the same is true of Ta(G). We showed in
Theorem 4.2.4 that every eigenvalue of a tree of maximum degree d is at most 2

√
d− 1. When

combined with Theorem 45.4.2, this tells us that that matching polynomial of a graph with
maximum degree at most d has all of its roots bounded in absolute value by 2

√
d− 1.

Bibliography

[ABN+92] Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ron M. Roth.
Construction of asymptotically good low-rate error-correcting codes through
pseudo-random graphs. IEEE Transactions on Information Theory, 38(2):509–516,
March 1992. 68, 252

[ABN08] I. Abraham, Y. Bartal, and O. Neiman. Nearly tight low stretch spanning trees. In
Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer
Science, pages 781–790, Oct. 2008. 294

[AC88] Noga Alon and Fan Chung. Explicit construction of linear sized tolerant networks.
Discrete Mathematics, 72:15–19, 1988. 221

[AH77a] Kenneth Appel and Wolfgang Haken. Every planar map is four colorable part i.
discharging. Illinois Journal of Mathematics, 21:429–490, 1977. 164

[AH77b] Kenneth Appel and Wolfgang Haken. Every planar map is four colorable part ii.
reducibility. Illinois Journal of Mathematics, 21:491–567, 1977. 164

[AKPW95] Noga Alon, Richard M. Karp, David Peleg, and Douglas West. A graph-theoretic
game and its application to the k-server problem. SIAM Journal on Computing,
24(1):78–100, February 1995. 291

[AKV02] Noga Alon, Michael Krivelevich, and Van H. Vu. On the concentration of eigenvalues
of random symmetric matrices. Israel Journal of Mathematics, 131(1):259–267, 2002.
192

[Alo86] N. Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986. 176

[AM85] Noga Alon and V. D. Milman. λ1, isoperimetric inequalities for graphs, and
superconcentrators. J. Comb. Theory, Ser. B, 38(1):73–88, 1985. 176

[AN12] Ittai Abraham and Ofer Neiman. Using petal-decompositions to build a low stretch
spanning tree. In Proceedings of the 44th Annual ACM Symposium on the Theory of
Computing (STOC ’12), pages 395–406, 2012. 291

[AR94] Noga Alon and Yuval Roichman. Random cayley graphs and expanders. Random
Structures & Algorithms, 5(2):271–284, 1994. 66

363

BIBLIOGRAPHY 364

[AS06] A. Ashikhmin and V. Skachek. Decoding of expander codes at rates close to capacity.
IEEE Transactions on Information Theory, 52(12):5475–5485, Dec. 2006. 242

[AW02] R. Ahlswede and A. Winter. Strong converse for identification via quantum channels.
Information Theory, IEEE Transactions on, 48(3):569–579, 2002. 259

[AZLO15] Zeyuan Allen-Zhu, Zhenyu Liao, and Lorenzo Orecchia. Spectral sparsification and
regret minimization beyond matrix multiplicative updates. In Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of Computing, pages 237–245.
ACM, 2015. 271

[Bab79] László Babai. Spectra of cayley graphs. Journal of Combinatorial Theory, Series B,
pages 180–189, 1979. 68

[Bab80] László Babai. On the complexity of canonical labeling of strongly regular graphs.
SIAM Journal on Computing, 9(1):212–216, 1980. 321

[Bab81] László Babai. Moderately exponential bound for graph isomorphism. In
Fundamentals of Computation Theory, number 117 in Lecture Notes in Math, pages
34–50. Springer-Verlag, Berlin-Heidelberg-New York, 1981. 307

[Bab16] László Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the
forty-eighth annual ACM symposium on Theory of Computing, pages 684–697. ACM,
2016. 307, 324

[Bar82] Earl R. Barnes. An algorithm for partitioning the nodes of a graph. SIAM Journal
on Algebraic and Discrete Methods, 3(4):541–550, 1982. 204

[BCS+13] László Babai, Xi Chen, Xiaorui Sun, Shang-Hua Teng, and John Wilmes. Faster
canonical forms for strongly regular graphs. In 2013 IEEE 54th Annual Symposium
on Foundations of Computer Science, pages 157–166. IEEE, 2013. 324

[BGM82] László Babai, D Yu Grigoryev, and David M Mount. Isomorphism of graphs with
bounded eigenvalue multiplicity. In Proceedings of the fourteenth annual ACM
symposium on Theory of computing, pages 310–324. ACM, 1982. 13, 307

[BH01] Erik Boman and B. Hendrickson. On spanning tree preconditioners. Manuscript,
Sandia National Lab., 2001. 292

[BL83] László Babai and Eugene M Luks. Canonical labeling of graphs. In Proceedings of the
fifteenth annual ACM symposium on Theory of computing, pages 171–183. ACM,
1983. 307

[BL06] Yonatan Bilu and Nathan Linial. Lifts, discrepancy and nearly optimal spectral gap*.
Combinatorica, 26(5):495–519, 2006. 349, 350

[BLM15] Charles Bordenave, Marc Lelarge, and Laurent Massoulié. Non-backtracking
spectrum of random graphs: community detection and non-regular ramanujan
graphs. arXiv preprint arXiv:1501.06087, 2015. 189

BIBLIOGRAPHY 365

[BLR10] P. Biswal, J. Lee, and S. Rao. Eigenvalue bounds, spectral partitioning, and metrical
deformations via flows. Journal of the ACM, 2010. to appear. 210

[BMS93] Richard Beigel, Grigorii Margulis, and Daniel A. Spielman. Fault diagnosis in a small
constant number of parallel testing rounds. In SPAA ’93: Proceedings of the fifth
annual ACM symposium on Parallel algorithms and architectures, pages 21–29, New
York, NY, USA, 1993. ACM. 221

[Bol86] Béla Bollobás. Combinatorics: set systems, hypergraphs, families of vectors, and
combinatorial probability. Cambridge University Press, 1986. 48

[BR97] R. B. Bapat and T. E. S. Raghavan. Nonnegative Matrices and Applications.
Number 64 in Encyclopedia of Mathematics and its Applications. Cambridge
University Press, 1997. 42

[BSS12] Joshua Batson, Daniel A Spielman, and Nikhil Srivastava. Twice-Ramanujan
sparsifiers. SIAM Journal on Computing, 41(6):1704–1721, 2012. 222, 264

[BSS14] Joshua Batson, Daniel A Spielman, and Nikhil Srivastava. Twice-ramanujan
sparsifiers. SIAM Review, 56(2):315–334, 2014. 264

[BW13] László Babai and John Wilmes. Quasipolynomial-time canonical form for steiner
designs. In Proceedings of the forty-fifth annual ACM symposium on Theory of
computing, pages 261–270. ACM, 2013. 324

[BZ02] A. Barg and G. Zemor. Error exponents of expander codes. IEEE Transactions on
Information Theory, 48(6):1725–1729, Jun 2002. 242

[BZ05] A. Barg and G. Zemor. Concatenated codes: serial and parallel. IEEE Transactions
on Information Theory, 51(5):1625–1634, May 2005. 242

[BZ06] A. Barg and G. Zemor. Distance properties of expander codes. IEEE Transactions on
Information Theory, 52(1):78–90, Jan. 2006. 242

[BZ13] Nick Bridle and Xiaojin Zhu. p-voltages: Laplacian regularization for semi-supervised
learning on high-dimensional data. In Eleventh Workshop on Mining and Learning
with Graphs (MLG2013), 2013. 157

[CCL+15] Dehua Cheng, Yu Cheng, Yan Liu, Richard Peng, and Shang-Hua Teng. Efficient
sampling for gaussian graphical models via spectral sparsification. In Peter Grünwald,
Elad Hazan, and Satyen Kale, editors, Proceedings of The 28th Conference on
Learning Theory, volume 40 of Proceedings of Machine Learning Research, pages
364–390, Paris, France, 03–06 Jul 2015. PMLR. 131

[CFM94] F. R. K. Chung, V. Faber, and T. A. Manteuffel. On the diameter of a graph from
eigenvalues associated with its Laplacian. SIAM Journal on Discrete Mathematics,
7:443–457, 1994. 286

BIBLIOGRAPHY 366

[CGP+18] Timothy Chu, Yu Gao, Richard Peng, Sushant Sachdeva, Saurabh Sawlani, and
Junxing Wang. Graph sparsification, spectral sketches, and faster resistance
computation, via short cycle decompositions. arXiv preprint arXiv:1805.12051, 2018.
263

[CGW89] F. R. K. Chung, R. L. Graham, and R. M. Wilson. Quasi-random graphs.
Combinatorica, 9(4):345–362, 1989. 64

[CH91] Joel E Cohen and Paul Horowitz. Paradoxical behaviour of mechanical and electrical
networks. 1991. 150

[Che70] J. Cheeger. A lower bound for smallest eigenvalue of the Laplacian. In Problems in
Analysis, pages 195–199, Princeton University Press, 1970. 176

[Chi92] Patrick Chiu. Cubic Ramanujan graphs. Combinatorica, 12(3):275–285, 1992. 349

[Chu97] F. R. K. Chung. Spectral Graph Theory. American Mathematical Society, 1997. 174

[CKM+14] Michael B. Cohen, Rasmus Kyng, Gary L. Miller, Jakub W. Pachocki, Richard Peng,
Anup B. Rao, and Shen Chen Xu. Solving sdd linear systems in nearly mlog1/2n
time. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing,
STOC ’14, pages 343–352, New York, NY, USA, 2014. ACM. 293, 306

[CLM+15] Michael B Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng,
and Aaron Sidford. Uniform sampling for matrix approximation. In Proceedings of
the 2015 Conference on Innovations in Theoretical Computer Science, pages 181–190.
ACM, 2015. 263

[CZ19] Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and
resilient functions. Annals of Mathematics, 189(3):653 – 705, 2019. 167

[dCSHS11] Marcel K. de Carli Silva, Nicholas J. A. Harvey, and Cristiane M. Sato. Sparse sums
of positive semidefinite matrices. CoRR, abs/1107.0088, 2011. 271

[DH72] W. E. Donath and A. J. Hoffman. Algorithms for partitioning graphs and computer
logic based on eigenvectors of connection matrices. IBM Technical Disclosure
Bulletin, 15(3):938–944, 1972. 204

[DH73] W. E. Donath and A. J. Hoffman. Lower bounds for the partitioning of graphs. IBM
Journal of Research and Development, 17(5):420–425, September 1973. 204

[DK70] Chandler Davis and William Morton Kahan. The rotation of eigenvectors by a
perturbation. iii. SIAM Journal on Numerical Analysis, 7(1):1–46, 1970. 192

[DKMZ11] Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová.
Asymptotic analysis of the stochastic block model for modular networks and its
algorithmic applications. Physical Review E, 84(6):066106, 2011. 189

[Dod84] Jozef Dodziuk. Difference equations, isoperimetric inequality and transience of
certain random walks. Transactions of the American Mathematical Society,
284(2):787–794, 1984. 176

BIBLIOGRAPHY 367

[DS91] Persi Diaconis and Daniel Stroock. Geometric bounds for eigenvalues of Markov
chains. The Annals of Applied Probability, 1(1):36–61, 1991. 53

[Duf47] R. J. Duffin. Nonlinear networks. IIa. Bull. Amer. Math. Soc, 53:963–971, 1947. 155

[dV90] Colin de Verdière. Sur un nouvel invariant des graphes et un critère de planarité. J.
Combin. Theory Ser. B, 50:11–21, 1990. 212

[EEST08] Michael Elkin, Yuval Emek, Daniel A. Spielman, and Shang-Hua Teng. Lower-stretch
spanning trees. SIAM Journal on Computing, 32(2):608–628, 2008. 294

[Eli55] Peter Elias. Coding for noisy channels. IRE Conv. Rec., 3:37–46, 1955. 232

[Erd47] Paul Erdös. Some remarks on the theory of graphs. Bulletin of the American
Mathematical Society, 53(4):292–294, 1947. 167

[Fan49] Ky Fan. On a theorem of weyl concerning eigenvalues of linear transformations i.
Proceedings of the National Academy of Sciences of the United States of America,
35(11):652, 1949. 32

[Fie73] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal,
23(98):298–305, 1973. 16

[Fie75a] M. Fiedler. Eigenvectors of acyclic matices. Czechoslovak Mathematical Journal,
25(100):607–618, 1975. 199

[Fie75b] M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its
applications to graph theory. Czechoslovak Mathematical Journal, 25(100):618–633,
1975. 202

[FK81] Z. Füredi and J. Komlós. The eigenvalues of random symmetric matrices.
Combinatorica, 1(3):233–241, 1981. 73, 80

[FK98] Uriel Feige and Joe Kilian. Zero knowledge and the chromatic number. Journal of
Computer and System Sciences, 57(2):187–199, 1998. 165

[Fri08] Joel Friedman. A Proof of Alon’s Second Eigenvalue Conjecture and Related
Problems. Number 910 in Memoirs of the American Mathematical Society. American
Mathematical Society, 2008. 221, 341, 349

[Fro12] Georg Frobenius. Über matrizen aus nicht negativen elementen. 1912. 39

[Gal63] R. G. Gallager. Low Density Parity-Check Codes. MIT Press, Cambridge, MA, 1963.
241

[Gee12] Jim Geelen. On how to draw a graph.
https://www.math.uwaterloo.ca/∼jfgeelen/Publications/tutte.pdf, 2012. 134, 141

[GG81] C. D. Godsil and I. Gutman. On the matching polynomial of a graph. In L. Lovász
and Vera T. Sós, editors, Algebraic Methods in graph theory, volume I of Colloquia
Mathematica Societatis János Bolyai, 25, pages 241–249. János Bolyai Mathematical
Society, 1981. 351

BIBLIOGRAPHY 368

[GGT06] Steven J Gortler, Craig Gotsman, and Dylan Thurston. Discrete one-forms on meshes
and applications to 3d mesh parameterization. Computer Aided Geometric Design,
23(2):83–112, 2006. 141

[Gil98] David Gillman. A chernoff bound for random walks on expander graphs. SIAM
Journal on Computing, 27(4):1203–1220, 1998. 256

[GLM99] S. Guattery, T. Leighton, and G. L. Miller. The path resistance method for bounding
the smallest nontrivial eigenvalue of a Laplacian. Combinatorics, Probability and
Computing, 8:441–460, 1999. 53

[GLSS18] Ankit Garg, Yin Tat Lee, Zhao Song, and Nikhil Srivastava. A matrix expander
chernoff bound. In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, pages 1102–1114. ACM, 2018. 256

[GN08] C.D. Godsil and M.W. Newman. Eigenvalue bounds for independent sets. Journal of
Combinatorial Theory, Series B, 98(4):721 – 734, 2008. 165

[God81] C. D. Godsil. Matchings and walks in graphs. Journal of Graph Theory,
5(3):285–297, 1981. 357

[God93] Chris Godsil. Algebraic Combinatorics. Chapman & Hall, 1993. 52, 357

[Gol07] Oded Goldreich. Foundations of cryptography: volume 1, basic tools. Cambridge
university press, 2007. 251

[Hal70] K. M. Hall. An r-dimensional quadratic placement algorithm. Management Science,
17:219–229, 1970. 31

[Har76] Sergiu Hart. A note on the edges of the n-cube. Discrete Mathematics, 14(2):157–163,
1976. 48

[H̊as99] Johan H̊astad. Clique is hard to approximate within n1−ε. Acta Mathematica,
182(1):105 – 142, 1999. 165

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A
pseudorandom generator from any one-way function. SIAM Journal on Computing,
28(4):1364–1396, 1999. 251, 252

[HL72] Ole J Heilmann and Elliott H Lieb. Theory of monomer-dimer systems.
Communications in Mathematical Physics, 25(3):190–232, 1972. 351, 357

[HL09] Mark Herbster and Guy Lever. Predicting the labelling of a graph via minimum
p-seminorm interpolation. In Proceedings of the 2009 Conference on Learning Theory
(COLT), 2009. 157

[Hof70] A. J. Hoffman. On eigenvalues and colorings of graphs. In Graph Theory and its
Applications, pages 79–92. Academic Press, New York, 1970. 165, 167

[HPS15] Chris Hall, Doron Puder, and William F Sawin. Ramanujan coverings of graphs.
arXiv preprint arXiv:1506.02335, 2015. 326, 349, 356

BIBLIOGRAPHY 369

[IZ89] R. Impagliazzo and D. Zuckerman. How to recycle random bits. In 30th annual IEEE
Symposium on Foundations of Computer Science, pages 248–253, 1989. 251

[JL84] William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a
hilbert space. Contemporary mathematics, 26(189-206):1, 1984. 130

[JL97] Bruce W Jordan and Ron Livné. Ramanujan local systems on graphs. Topology,
36(5):1007–1024, 1997. 349

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of
Computer Computations: Proceedings of a symposium on the Complexity of
Computer Computations, held March 20–22, 1972, at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York, pages 85–103, Boston, MA, 1972.
Springer US. 164

[Kel06] Jonathan A. Kelner. Spectral partitioning, eigenvalue bounds, and circle packings for
graphs of bounded genus. SIAM J. Comput., 35(4):882–902, 2006. 210

[KLL16] Tsz Chiu Kwok, Lap Chi Lau, and Yin Tat Lee. Improved Cheeger’s inequality and
analysis of local graph partitioning using vertex expansion and expansion profile. In
Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete
algorithms, pages 1848–1861. Society for Industrial and Applied Mathematics, 2016.
181

[KLP12] Ioannis Koutis, Alex Levin, and Richard Peng. Improved spectral sparsification and
numerical algorithms for sdd matrices. In STACS’12 (29th Symposium on Theoretical
Aspects of Computer Science), volume 14, pages 266–277. LIPIcs, 2012. 263

[KLP+16] Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Daniel A
Spielman. Sparsified cholesky and multigrid solvers for connection laplacians. In
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing,
pages 842–850. ACM, 2016. 293

[KLPT09] Jonathan A. Kelner, James Lee, Gregory Price, and Shang-Hua Teng. Higher
eigenvalues of graphs. In Proceedings of the 50th IEEE Symposium on Foundations of
Computer Science, 2009. 210

[KMP10] I. Koutis, G.L. Miller, and R. Peng. Approaching optimality for solving sdd linear
systems. In Foundations of Computer Science (FOCS), 2010 51st Annual IEEE
Symposium on, pages 235 –244, 2010. 295

[KMP11] I. Koutis, G.L. Miller, and R. Peng. A nearly-mlogn time solver for sdd linear
systems. In Foundations of Computer Science (FOCS), 2011 52nd Annual IEEE
Symposium on, pages 590–598, 2011. 293, 295

[Kou14] Ioannis Koutis. Simple parallel and distributed algorithms for spectral graph
sparsification. In Proceedings of the 26th ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’14, pages 61–66, New York, NY, USA, 2014.
ACM. 263

BIBLIOGRAPHY 370

[KS16] Rasmus Kyng and Sushant Sachdeva. Approximate gaussian elimination for
laplacians-fast, sparse, and simple. In Foundations of Computer Science (FOCS),
2016 IEEE 57th Annual Symposium on, pages 573–582. IEEE, 2016. 293

[Kur30] Casimir Kuratowski. Sur le probleme des courbes gauches en topologie. Fundamenta
mathematicae, 15(1):271–283, 1930. 136

[LM82] F. Tom Leighton and Gary Miller. Certificates for graphs with distinct eigenvalues.
Manuscript, 1982. 307

[LM00] Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional
by model selection. Annals of Statistics, pages 1302–1338, 2000. 132

[LMSS01] Michael G Luby, Michael Mitzenmacher, Mohammad Amin Shokrollahi, and Daniel A
Spielman. Efficient erasure correcting codes. IEEE Transactions on Information
Theory, 47(2):569–584, 2001. 242

[Lov01] Làszlò Lovàsz. Steinitz representations of polyhedra and the Colin de Verdière
number. Journal of Combinatorial Theory, Series B, 82(2):223 – 236, 2001. 15, 213

[LPS88] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica,
8(3):261–277, 1988. 18, 67, 224, 252, 349

[LPS15] Yin Tat Lee, Richard Peng, and Daniel A. Spielman. Sparsified cholesky solvers for
SDD linear systems. CoRR, abs/1506.08204, 2015. 263, 306

[LR97] John D. Lafferty and Daniel N. Rockmore. Spectral techniques for expander codes. In
STOC ’97: Proceedings of the twenty-ninth annual ACM symposium on Theory of
computing, pages 160–167, New York, NY, USA, 1997. ACM. 242

[LRT79] Richard J Lipton, Donald J Rose, and Robert Endre Tarjan. Generalized nested
dissection. SIAM journal on numerical analysis, 16(2):346–358, 1979. 274

[LS88] Gregory F. Lawler and Alan D. Sokal. Bounds on the l2 spectrum for Markov chains
and Markov processes: A generalization of Cheeger’s inequality. Transactions of the
American Mathematical Society, 309(2):557–580, 1988. 176

[LS90] L. Lovàsz and M. Simonovits. The mixing rate of Markov chains, an isoperimetric
inequality, and computing the volume. In IEEE, editor, Proceedings: 31st Annual
Symposium on Foundations of Computer Science: October 22–24, 1990, St. Louis,
Missouri, volume 1, pages 346–354, 1109 Spring Street, Suite 300, Silver Spring, MD
20910, USA, 1990. IEEE Computer Society Press. 142

[LS98] Làszlò Lovàsz and Alexander Schrijver. A borsuk theorem for antipodal links and a
spectral characterization of linklessly embeddable graphs. Proceedings of the
American Mathematical Society, 126(5):1275–1285, 1998. 212

[LS15] Yin Tat Lee and He Sun. Constructing linear-sized spectral sparsification in
almost-linear time. arXiv preprint arXiv:1508.03261, 2015. 271

BIBLIOGRAPHY 371

[LSY18] Yang P Liu, Sushant Sachdeva, and Zejun Yu. Short cycles via low-diameter
decompositions. arXiv preprint arXiv:1810.05143, 2018. 263

[LV99] László Lovász and Katalin Vesztergombi. Geometric representations of graphs. Paul
Erdos and his Mathematics, 1999. 141

[Mar88] G. A. Margulis. Explicit group theoretical constructions of combinatorial schemes
and their application to the design of expanders and concentrators. Problems of
Information Transmission, 24(1):39–46, July 1988. 18, 67, 224, 252, 349

[Mas14] Laurent Massoulié. Community detection thresholds and the weak ramanujan
property. In Proceedings of the 46th Annual ACM Symposium on Theory of
Computing, pages 694–703. ACM, 2014. 189

[McS01] F. McSherry. Spectral partitioning of random graphs. In FOCS ’01: Proceedings of
the 42nd IEEE symposium on Foundations of Computer Science, page 529, 2001. 189

[Mil51] William Millar. Cxvi. some general theorems for non-linear systems possessing
resistance. Philosophical Magazine, 42(333):1150–1160, 1951. 158

[MNS08] Steven J. Miller, Tim Novikoff, and Anthony Sabelli. The distribution of the largest
nontrivial eigenvalues in families of random regular graphs. Experiment. Math.,
17(2):231–244, 2008. 349

[MNS14] Elchanan Mossel, Joe Neeman, and Allan Sly. Belief propagation, robust
reconstruction and optimal recovery of block models. In Proceedings of The 27th
Conference on Learning Theory, pages 356–370, 2014. 189

[Mor94] M. Morgenstern. Existance and explicit constructions of q + 1 regular Ramanujan
graphs for every prime power q. Journal of Combinatorial Theory, Series B,
62:44–62, 1994. 349

[MS77] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of
error-correcting codes, volume 16. Elsevier, 1977. 233

[MSS14] Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava. Ramanujan graphs
and the solution of the Kadison-Singer problem. In Proceedings of the International
Congress of Mathematicians, 2014. 271, 356

[MSS15a] A. W. Marcus, D. A. Spielman, and N. Srivastava. Finite free convolutions of
polynomials. arXiv preprint arXiv:1504.00350, April 2015. 333, 341, 345

[MSS15b] Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava. Interlacing families I:
Bipartite Ramanujan graphs of all degrees. Ann. of Math., 182-1:307–325, 2015. 349

[MSS15c] Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava. Interlacing families II:
Mixed characteristic polynomials and the Kadison-Singer problem. Ann. of Math.,
182-1:327–350, 2015. 271

BIBLIOGRAPHY 372

[MSS15d] Adam W Marcus, Nikhil Srivastava, and Daniel A Spielman. Interlacing families IV:
Bipartite Ramanujan graphs of all sizes. arXiv preprint arXiv:1505.08010, 2015.
appeared in Proceedings of the 56th IEEE Symposium on Foundations of Computer
Science. 326, 333, 341, 356

[Nil91] A. Nilli. On the second eigenvalue of a graph. Discrete Math, 91:207–210, 1991. 224

[Obr63] Nikola Obrechkoff. Verteilung und berechnung der Nullstellen reeller Polynome. VEB
Deutscher Verlag der Wissenschaften, Berlin, 1963. 328, 355

[Per07] Oskar Perron. Zur theorie der matrices. Mathematische Annalen, 64(2):248–263,
1907. 39

[Piz90] Arnold K Pizer. Ramanujan graphs and Hecke operators. Bulletin of the AMS, 23(1),
1990. 349

[PP03] Claude M Penchina and Leora J Penchina. The braess paradox in mechanical, traffic,
and other networks. American Journal of Physics, 71:479, 2003. 150

[PS14] Richard Peng and Daniel A. Spielman. An efficient parallel solver for SDD linear
systems. In Symposium on Theory of Computing, STOC 2014, New York, NY, USA,
May 31 - June 03, 2014, pages 333–342, 2014. 293, 300

[PSL90] A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning sparse matrices with
eigenvectors of graphs. SIAM J. Matrix Anal. Appl., 11:430–452, 1990. 204

[RSU01] Thomas J Richardson, Mohammad Amin Shokrollahi, and Rüdiger L Urbanke.
Design of capacity-approaching irregular low-density parity-check codes. IEEE
transactions on information theory, 47(2):619–637, 2001. 242

[RU08] Tom Richardson and Rüdiger Urbanke. Modern coding theory. Cambridge university
press, 2008. 242

[Rud99] M. Rudelson. Random vectors in the isotropic position,. Journal of Functional
Analysis, 164(1):60 – 72, 1999. 258, 259

[RV07] Mark Rudelson and Roman Vershynin. Sampling from large matrices: An approach
through geometric functional analysis. J. ACM, 54(4):21, 2007. 259

[RVW02] Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph
product, and new constant-degree expanders. Annals of Mathematics,
155(1):157–187, 2002. 243, 250

[Sen06] Eugene Seneta. Non-negative matrices and Markov chains. Springer Science &
Business Media, 2006. 42

[Sha48] Claude Elwood Shannon. A mathematical theory of communication. Bell system
technical journal, 27(3):379–423, 1948. 232

[Sim91] Horst D. Simon. Partitioning of unstructured problems for parallel processing.
Computing Systems in Engineering, 2:135–148, 1991. 204

BIBLIOGRAPHY 373

[SJ89] Alistair Sinclair and Mark Jerrum. Approximate counting, uniform generation and
rapidly mixing Markov chains. Information and Computation, 82(1):93–133, July
1989. 53, 176

[Spi96a] D.A. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE
Transactions on Information Theory, 42(6):1723–1731, Nov 1996. 242

[Spi96b] Daniel A. Spielman. Faster isomorphism testing of strongly regular graphs. In STOC
’96: Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, pages 576–584, New York, NY, USA, 1996. ACM. 324

[SS96] M. Sipser and D.A. Spielman. Expander codes. IEEE Transactions on Information
Theory, 42(6):1710–1722, Nov 1996. 242

[SS11] D.A. Spielman and N. Srivastava. Graph sparsification by effective resistances. SIAM
Journal on Computing, 40(6):1913–1926, 2011. 258, 263

[ST04] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph
partitioning, graph sparsification, and solving linear systems. In Proceedings of the
thirty-sixth annual ACM Symposium on Theory of Computing, pages 81–90, 2004.
Full version available at http://arxiv.org/abs/cs.DS/0310051. 181

[ST07] Daniel A. Spielman and Shang-Hua Teng. Spectral partitioning works: Planar graphs
and finite element meshes. Linear Algebra and its Applications, 421:284–305, 2007.
204, 210

[ST13] Daniel A Spielman and Shang-Hua Teng. A local clustering algorithm for massive
graphs and its application to nearly linear time graph partitioning. SIAM Journal on
Computing, 42(1):1–26, 2013. 181

[ST14] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for
preconditioning and solving symmetric, diagonally dominant linear systems. SIAM.
J. Matrix Anal. & Appl., 35:835–885, 2014. 281, 293, 295

[SW09] Daniel A. Spielman and Jaeoh Woo. A note on preconditioning by low-stretch
spanning trees. CoRR, abs/0903.2816, 2009. Available at
http://arxiv.org/abs/0903.2816. 293

[SW15] Xiaorui Sun and John Wilmes. Faster canonical forms for primitive coherent
configurations. In Proceedings of the forty-seventh annual ACM symposium on
Theory of computing, pages 693–702. ACM, 2015. 324

[Tan81] R. Michael Tanner. A recursive approach to low complexity codes. IEEE
Transactions on Information Theory, 27(5):533–547, September 1981. 241

[Tan84] R. Michael Tanner. Explicit concentrators from generalized n-gons. SIAM Journal
Alg. Disc. Meth., 5(3):287–293, September 1984. 223

[Tre09] Luca Trevisan. Max cut and the smallest eigenvalue. In STOC ’09: Proceedings of
the 41st annual ACM symposium on Theory of computing, pages 263–272, 2009. 17

BIBLIOGRAPHY 374

[Tre11] Luca Trevisan. Lecture 4 from cs359g: Graph partitioning and expanders, stanford
university, January 2011. available at
http://theory.stanford.edu/ trevisan/cs359g/lecture04.pdf. 176

[Tro12] Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of
Computational Mathematics, 12(4):389–434, 2012. 195, 258, 259

[Tut63] W. T. Tutte. How to draw a graph. Proc. London Mathematical Society, 13:743–768,
1963. 17, 134

[Vai90] Pravin M. Vaidya. Solving linear equations with symmetric diagonally dominant
matrices by constructing good preconditioners. Unpublished manuscript UIUC 1990.
A talk based on the manuscript was presented at the IMA Workshop on Graph
Theory and Sparse Matrix Computation, October 1991, Minneapolis., 1990. 290, 295

[van95] Hein van der Holst. A short proof of the planarity characterization of Colin de
Verdière. Journal of Combinatorial Theory, Series B, 65(2):269 – 272, 1995. 215

[Var85] N. Th. Varopoulos. Isoperimetric inequalities and Markov chains. Journal of
Functional Analysis, 63(2):215 – 239, 1985. 176

[Ver10] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices.
arXiv preprint arXiv:1011.3027, 2010. 195

[Vis12] Nisheeth K. Vishnoi. Lx = b, 2012. available at
http://research.microsoft.com/en-us/um/people/nvishno/Site/Lxb-Web.pdf.
280

[Voi97] Dan V Voiculescu. Free probability theory. American Mathematical Society, 1997. 333

[Vu07] Van Vu. Spectral norm of random matrices. Combinatorica, 27(6):721–736, 2007. 73,
77, 80, 192

[Vu14] Van Vu. A simple svd algorithm for finding hidden partitions. arXiv preprint
arXiv:1404.3918, 2014. 189

[Wal22] JL Walsh. On the location of the roots of certain types of polynomials. Transactions
of the American Mathematical Society, 24(3):163–180, 1922. 334

[Wig58] Eugene P Wigner. On the distribution of the roots of certain symmetric matrices.
Ann. Math, 67(2):325–327, 1958. 69

[Wil67] Herbert S. Wilf. The eigenvalues of a graph and its chromatic number. J. London
math. Soc., 42:330–332, 1967. 34, 38

[Zem01] G. Zemor. On expander codes. IEEE Transactions on Information Theory,
47(2):835–837, Feb 2001. 242

[ZKT85] V. M. Zemlyachenko, N. M. Kornienko, and R. I. Tyshkevich. Graph isomorphism
problem. Journal of Soviet Mathematics, 29:1426–1481, 1985. 307

Index

α, 164
χ, 164
δ, 4
µ1, 35
dave, 35
dmax, 35

AA, 93
approximation of graphs, 55

bdry, 44
bdry2, 171
boundary, 44, 102, 171

Cauchy’s Interlacing Theorem, 37
Cayley graph, 61
cdotG, 54
centered vector, 176
Characteristic Polynomial, 20
chiG, 38
chromatic number, 38, 164
coloring, 38
combinatorial degree, 4
Conductance, 173
Courant-Fischer Theorem, 21

dd, 4
ddelta, 4
DDG, 4
ddhalf, 97
degree, 4
delta, 29
diffusion matrix, 4
dilation, 42

E, 2
effective conductance, 113

Fiedler value, 16

floor, 38

GofS, 37
graphpgeq, 54

hamming weight, 229
harmonic, 102
hypercube, 3

independence number, 164
internal, 115
isoperimetric ratio, 44, 171

Laplacian, 5
lazy random walk, 4, 93
lazy walk matrix, 93
linear codes, 232
LLG, 5
Loewner partial order, 53

matrix norm, 129, 280
MMG, 3
MofS, 37
mu, 35

n, 3
NN, 174
normalized adjacency matrix, 93
normalized Laplacian, 97, 174
normInf, 36
nui, 174

ooneS, 38
orthogonal matrix, 19, 22

Paley graph, 62
path, 3
path graph, 6
permutation matrix, 19

375

INDEX 376

Perron vector, 34
pgeq, 53
positive definite, 6
positive semidefinite, 6
potential flow, 109
pseudo-inverse, 109

Rayleigh quotient, 21
regular, 4
ring, 3

Schur complement, 111, 118
sim, 34
similar, 19
singular values, 27, 41
singular vectors, 27, 41
Spectral decomposition, 19
square root of a matrix, 112
star graph, 45
symmetric projection, 110

theta, 44
theta2, 171
trace, 20

V, 2
vertex-induced subgraph, 37

walk matrix, 4, 93
weighted degree, 4
WWG, 4
WWtil, 4

	Preface
	Contents
	Notation
	I Introduction and Background
	Introduction
	Graphs
	Matrices for Graphs
	A spreadsheet
	An operator
	A quadratic form

	Spectral Theory
	Some examples
	Paths

	Highlights
	Spectral Graph Drawing
	Graph Isomorphism
	Platonic Solids
	The Fiedler Value
	Bounding Eigenvalues
	Planar Graphs
	Random Walks on Graphs
	Expanders
	Approximations of Graphs
	Solving equations in and computing eigenvalues of Laplacians
	Advice on reading this book

	Exercises

	Eigenvalues and Optimization: The Courant-Fischer Theorem
	The First Proof
	Proof of the Spectral Theorem by Optimization
	Singular Values for Asymmetric Matrices
	Exercise

	The Laplacian and Graph Drawing
	The Laplacian Matrix
	Drawing with Laplacian Eigenvalues

	Adjacency matrices, Eigenvalue Interlacing, and the Perron-Frobenius Theorem
	The Adjacency Matrix
	The Largest Eigenvalue, mu1
	Eigenvalue Interlacing
	Wilf's Theorem
	Perron-Frobenius Theory for symmetric matrices
	Singular Values and Directed Graphs
	Exercises

	II The Zoo of Graphs
	Fundamental Graphs
	The complete graph
	The star graphs
	Products of graphs
	The Hypercube

	Bounds on lambda2 by test vectors
	The Ring Graph
	The Path Graph

	Comparing Graphs
	Overview
	The Loewner order
	Approximations of Graphs
	The Path Inequality
	Lower bounding lambda2 of a Path Graph

	The Complete Binary Tree
	The weighted path
	A better lower bound on lambda2

	Cayley Graphs
	Cayley Graphs
	Paley Graphs
	Eigenvalues of the Paley Graphs
	Generalizing Hypercubes
	A random set of generators
	Conclusion
	Non-Abelian Groups
	Eigenvectors of Cayley Graphs of Abelian Groups

	Eigenvalues of Random Graphs
	Transformation
	The extreme eigenvalues
	Vectors near v1

	The Trace Method
	Expectation of the trace of a power
	The number of walks
	Notes
	Exercise

	Strongly Regular Graphs
	Introduction
	Definitions
	The Pentagon
	Lattice Graphs
	Latin Square Graphs
	The Eigenvalues of Strongly Regular Graphs
	Regular graphs with three eigenvalues
	Integrality of the eigenvalues
	The Eigenspaces of Strongly Regular Graphs
	Triangular Graphs
	Two-distance point sets

	III Physical Metaphors
	Random Walks on Graphs
	Random Walks
	Spectra of Walk Matrices
	The stable distribution
	The Rate of Convergence
	Relation to the Normalized Laplacian
	Examples
	The Path
	The Complete Binary Tree
	The Dumbbell
	The Bolas Graph

	Diffusion
	Final Notes

	Walks, Springs, and Resistor Networks
	Overview
	Harmonic Functions
	Random Walks with absorbing nodes
	Spring Networks
	Laplacian linear equations
	Energy
	Resistor Networks
	Solving for currents
	Exercise

	Effective Resistance and Schur Complements
	Electrical Flows and Effective Resistance
	Effective Resistance through Energy Minimization
	Reciprocity and Monotonicity
	Examples: Series and Parallel
	Equivalent Networks, Elimination, and Schur Complements
	In matrix form by energy

	Eliminating Many Vertices
	The Schur Complement
	An interpretation of Gaussian elimination
	Effective Resistance is a Distance

	Random Spanning Trees
	Introduction
	Determinants
	Characteristic Polynomials
	The Matrix Tree Theorem
	Leverage Scores and Marginal Probabilities

	Approximating Effective Resistances
	Representing Effective Resistances
	Computing Effective Resistances
	Properties of Gaussian random variables
	Proof of Johnson-Lindenstrauss

	Tutte's Theorem: How to draw a graph
	3-Connected, Planar Graphs
	Strictly Convex Polygons
	Consequences of Harmonicity
	All faces are convex
	Notes

	The Lovàsz - Simonovits Approach to Random Walks
	Introduction
	Definitions and Elementary Observations
	Warm up
	The proof
	Andersen's proof of Cheeger's inequality

	Monotonicity and its Failures
	Overview
	Effective Spring Constants
	Monotonicity
	Effective Resistance
	Examples
	Breakdown of Monotonicity
	Traffic Networks
	Braes's Paradox
	The Price of Anarchy
	Nash optimum
	Social optimum

	Dynamic and Nonlinear Networks
	Overview
	Non-Linear Networks
	Energy
	Uses in Semi-Supervised Learning
	Dual Energy
	Thermistor Networks
	Low Temperatures

	IV Spectra and Graph Structure
	Independent Sets and Coloring
	Introduction
	Graph Coloring and Independent Sets
	Hoffman's Bound
	Application to Paley graphs
	Lower Bound on the chromatic number
	Proofs for Hoffman's lower bound on chromatic number

	Graph Partitioning
	Isoperimetry and lambda2
	Conductance
	The Normalized Laplacian
	Notes

	Cheeger's Inequality
	Cheeger's Inequality

	Local Graph Clustering
	The Algorithm
	Good choices for a
	Bounding the D-norm
	Bounding the Generalized Rayleigh Quotient
	Rounding
	Notes

	Spectral Partitioning in a Stochastic Block Model
	The Perturbation Approach
	Perturbation Theory for Eigenvectors
	Partitioning
	Proof of the Davis-Kahan Theorem
	Further Reading

	Nodal Domains
	Overview
	Sylvester's Law of Inertia
	Weighted Trees
	The Perron-Frobenius Theorem for Laplacians
	Fiedler's Nodal Domain Theorem

	The Second Eigenvalue of Planar Graphs
	Overview
	Geometric Embeddings
	The center of gravity
	Further progress

	Planar Graphs 2, the Colin de Verdière Number
	Introduction
	Colin de Verdière invariant
	Polytopes and Planar Graphs
	The Colin de Verdière Matrix
	Minors of Planar Graphs
	cdvG

	V Expander Graphs
	Properties of Expander Graphs
	Overview
	Expanders as Approximations of the Complete Graph
	Quasi-Random Properties of Expanders
	Vertex Expansion
	How well can a graph approximate the complete graph?
	Open Problems

	A brief introduction to Coding Theory
	Coding
	Notation
	Connection with Generalized Hypercubes
	Hamming Codes
	Terminology and Linear Codes
	Random Linear Codes
	Reed-Solomon Codes
	Caution

	Expander Codes
	Bipartite Expander Graphs
	Building Codes
	Encoding
	Minimum Distance
	Decoding
	Historical Notes

	A simple construction of expander graphs
	Overview
	Squaring Graphs
	The Relative Spectral Gap
	Line Graphs
	The Spectrum of the Line Graph
	Approximations of Line Graphs
	The whole construction
	Better Constructions

	PSRGs via Random Walks on Graphs
	Overview
	Why Study PSRGs?
	Expander Graphs
	Today's Application : repeating an experiment
	The Random Walk Generator
	Formalizing the problem
	Matrix Norms
	The norm of DXW
	Conclusion
	Notes

	VI Algorithms
	Sparsification by Random Sampling
	Overview
	Sparsification
	Matrix Chernoff Bounds
	The key transformation
	The probabilities
	The analysis
	Open Problem

	Linear Sized Sparsifiers
	Overview
	Turning edges into vectors
	The main theorem
	Rank-1 updates
	Barrier Function Arguments
	Barrier Function Updates
	The inductive argument
	Progress and Open Problems

	Iterative solvers for linear equations
	Why iterative methods?
	First-Order Richardson Iteration
	Expanders
	The norm of the residual
	A polynomial approximation of the inverse
	Better Polynomials
	Chebyshev Polynomials
	Proof of Theorem 34.6.1
	Laplacian Systems
	Warning

	The Conjugate Gradient and Diameter
	The Matrix Norm
	Application: Approximating Fiedler Vectors
	Optimality in the A-norm
	How Good is CG?
	Laplacian Systems, again
	Bounds on the Diameter

	Preconditioning Laplacians
	Approximate Solutions
	Iterative Refinement
	Iterative Methods in the Matrix Norm
	Preconditioned Iterative Methods
	Preconditioning by Trees
	Improving the Bound on the Running Time
	Further Improvements
	Questions

	Augmented Spanning Tree Preconditioners
	Recursion
	Heavy Trees
	Saving a log

	Fast Laplacian Solvers by Sparsification
	Overview
	Today's notion of approximation
	The Idea
	A symmetric expansion
	D and A
	Sketch of the construction
	Making the construction efficient
	Improvements

	Testing Isomorphism of Graphs with Distinct Eigenvalues
	Introduction
	Graph Isomorphism
	Using Eigenvalues and Eigenvectors
	An easy case
	All the Automorphisms
	Equivalence Classes of Vertices
	The first partition
	Unbalanced vectors
	The structure of the balanced classes
	Algorithms

	Testing Isomorphism of Strongly Regular Graphs
	Introduction
	Definitions
	Paley Graphs and The Pentagon
	Lattice Graphs
	Latin Square Graphs
	The Eigenvalues of Strongly Regular Graphs
	Testing Isomorphism by Individualization and Refinement
	Distinguishing Sets for Strongly Regular Graphs
	Notes

	VII Interlacing Families
	Expected Characteristic Polynomials
	Overview
	Random sums of graphs
	Interlacing
	Sums of polynomials
	Random Swaps

	Quadrature for the Finite Free Convolution
	Overview
	The Finite Free Convolution
	Quadrature
	Quadrature by Invariance
	Structure of the Orthogonal Group
	The Formula
	Question

	Ramanujan Graphs of Every Size
	Overview
	The Approach
	Interlacing Families of Polynomials
	Root Bounds for Finite Free Convolutions
	The Calculation
	Some explanation of Theorem 43.4.1
	Some thoughts

	Bipartite Ramanujan Graphs
	Overview
	2-Lifts
	Random 2-Lifts
	Laplacianized Polynomials
	Interlacing Families of Polynomials
	Common Interlacings
	Real Rootedness
	Conclusion

	The Matching Polynomial
	Overview
	The Matching Polynomial
	Properties of the Matching Polynomial
	The Path Tree
	Root bounds

	Bibliography

