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What I’m Skipping

Matrix-tree theorem.

Most of algebraic graph theory.

Special graphs (e.g. Cayley graphs).

Connections to codes and designs.

Lots of work by theorists.

Expanders.



The Adjacency Matrix
1 2 3 4

λ is eigenvalue and v is eigenvector if

Think of                   , or even better 

Symmetric -> n real eigenvalues and
real eigenvectors form orthonormal basis 



Example

1 2 3 4

-1 -0.618 0.618 1



Example

1 2 3 4

-1 -0.618 0.618 1

1-0.618
0.382



Example: invariant under re-labeling

1 2 3 4

-1 -0.618 0.618 1



Example: invariant under re-labeling

2 1 3 4

-1 -0.618 0.618 1



Operators and Quadratic Forms

View of A as an operator:

View of A as quadratic form:

if                          and                     then 



Laplacian: natural quadratic form on graphs

where D is diagonal matrix of degrees

1 2 3 4



Laplacian: fast facts

so, zero is an eigenvalue

If k connected components, 

Fiedler (‘73) called      
“algebraic connectivity of a graph”

The further from 0, the more connected.



Embedding graph in line (Hall ’70)

map

minimize

trivial solution: So, require

Solution

Atkins, Boman, Hendrickson ’97:
Gives correct embedding for graphs like



Courant-Fischer definition of eigvals/vecs

(here           ) 



Embedding graph in plane (Hall ’70)

minimize

map

trivial solution: 

Also require 

Solution up to rotation

So, require

degenerate solution:



A Graph



Drawing of the graph using v2, v3

Plot vertex i at 





Spectral drawing of Streets in Rome



Spectral drawing of Erdos graph:
edge between co-authors of papers



Dodecahedron

Best embedded by first three eigenvectors



Condition for eigenvector

Spectral graph drawing: Tutte justification

Gives for all i

λ small says x(i) near average of neighbors

Tutte ‘63: If fix outside face, and let every
other vertex be average of neighbors, get
planar embedding of planar graph.



Tutte ‘63 embedding of a graph.

Fix outside face.
Edges -> springs.

Vertex at center
of mass of nbrs.

3-connected -> get planar embedding



Fundamental modes: string with fixed ends



Fundamental modes: string with free ends



Eigenvectors of path graph

1:

2:

3:

4:

17:



Drawing of the graph using v3, v4

Plot vertex i at 
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Spectral graph coloring from high eigenvectors

Embedding of dodecahedron by 19th and 20th eigvecs.

Coloring 3-colorable random graphs [Alon-Kahale ’97]



Spectral graph drawing: FEM justification

If apply finite element method to solve 

Laplace’s equation in the plane

with a Delaunay triangulation

Would get graph Laplacian,

but with some weights on edges

Fundamental solutions are x and y coordinates

(see Strang’s Introduction to Applied Mathematics)



Isomorphism testing

1. different eigenvalues -> non-isomorphic

2. If each vertex distinct in spectral embedding, 
just need to line up embeddings.

Each eigvec determined up to sign.



Isomorphism testing

λ2 = λ3, eigvecs determined up to rotation 



Isomorphism testing

λ2 = λ3, eigvecs determined up to rotation 

Distinguish by
norm in embedding



Isomorphism testing: difficulties

2. If λi has a high dimensional space, eigvecs
only determined up to basis rotations

1.  Many vertices can map to same place in 
spectral embedding, if only use few eigenvectors.

3. Some pairs have an exponential number of 
isomorphisms.

Ex.: Strongly regular graphs with only 3 eigenvalues,
of multiplicities 1, (n-1)/2 and (n-1)/2



Isomorphism testing: success
[Babai-Grigoryev-Mount ‘82]

If each eigenvalue has multiplicity O(1), can test 
in polynomial time.

Ideas:
Partition vertices into classes by norms in embeddings.
Refine partitions using other partitions.
Use vertex classes to split eigenspaces.

Use computational group theory to fuse information,
and produce description of all isomorphisms.



Random Walks



Random walks and PageRank

Adjacency matrix of directed graph:

Walk transition matrix:

Walk distribution at time t:

PageRank vector p: 

Eigenvector of Eigenvalue 1



Random walks and PageRank

PageRank vector p: 

Linear algebra issues:
W is not symmetric, not similar to symmetric,
does not necessarily have n eigenvalues

If no nodes of out-degree 0,
Perron-Frobenius Theorem:

Guarantees a unique, positive eigevec p of
eigenvalue 1.

Is there a theoretically interesting spectral theory?



Kleinberg and the singular vectors

Consider eigenvectors of largest eigenvalue of

and

Are left and right singular values of A.

Always exist.

Usually, a more useful theory than eigenvectors,
when not symmetric.

(see Strang’s Intro. to Linear Algebra)



Random walks on Undirected Graphs

Trivial PageRank Vector:

Not symmetric, but similiar to 
symmetrized walk matrix

W and S have same eigvals, 



Random walk converges at rate 1/1-λn-1

For lazy random walk (stay put with prob ½):

Where π is the stable distribution

For symmetric S



Normalized Laplacian [Chung]

If consider 1-λn-1 should look at 

Relationship to cuts:



Cheeger’s Inequality (Jerrum-Sinclair ‘89)
(Alon-Milman ‘85, Diaconis-Stroock ‘91) 



Cheeger’s Inequality (Jerrum-Sinclair ‘89)
(Alon-Milman ‘85, Diaconis-Stroock ‘91) 

Can find the cut by looking at 

for some t



Can find the cut by looking at 

for some t

Only need approximate eigenvector
(Mihail ’89) 

Guarantee

Lanczos era.



Normalized Cut

Alternative definition of conductance [Lovasz ’96 (?)]

This way,       is a relaxation [see Hagen-Kahng ’92].

Equivalent to Normalized Cut [Shi-Malik ’00]



Spectral Image Segmentation (Shi-Malik ‘00)
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Spectral Image Segmentation (Shi-Malik ‘00)
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Spectral Image Segmentation (Shi-Malik ‘00)
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Spectral Image Segmentation (Shi-Malik ‘00)
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Spectral Image Segmentation (Shi-Malik ‘00)
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The second eigenvector
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Second Eigenvector’s sparsest cut
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Third Eigenvector
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Fourth Eigenvector
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Perspective on Spectral Image Segmentation

Ignoring a lot we know about images.

On non-image data, gives good intuition.

Can we fuse with what we know about images?

Generally, can we fuse with other knowledge?

What about better cut algorithms?



Improvement by Miller and Tolliver ’06
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Improvement by Miller and Tolliver ’06

Idea: re-weight (i,j) by

Actually, re-weight by 

Prove: as iterate λ2 −> 0, get 2 components



One approach to fusing: 
Dirichlet Eigenvalues

Fixing boundary values to zero [Chung-Langlands ’96]

Fixing boundary values to non-zero. [Grady ’06] 
Dominant mode by solving linear equation:

computing electrical flow in resistor network



Analysis of Spectral Partitioning

Finite Element Meshes (eigvals right)  [S-Teng ’07]

Planted partitions (eigvecs right) [McSherry ‘01]

p q

q p

}
}}}

A

BA

B

Prob
A-A edge = p
B-B edge = p
A-B edge = q

q < p



Other planted problems

Finding cn1/2 clique in random graph
[Alon-Krivelevich-Sudakov ’98]

Color random sparse k-colorable graph
[Alon-Kahale ’97]

Asymmetric block structure (LSI and HITS)
[Azar-Fiat-Karlin-McSherry-Saia ’01]

Partitioning with widely varying degrees
[Dasgupta-Hopcroft-McSherry ’04]



Planted problem analysis

Small perturbations don’t change eigenvalues too much.

Eigenvectors stable too, if well-separated from others.

Understand eigenvalues of random matrices
[Furedi-Komlos ’81, Alon-Krivelevich-Vu ’01, Vu ‘05]

p q

q p

Sampled A as perturbation of



Distribution of eigenvalues of Random Graphs
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Eigenvalues of walk matrix of 50-by-50 grid graph

Number greater than 1-ε proportional to ε



0 500 1000 1500 2000 2500
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Eigenvalue distributions

Number greater than 1-ε proportional to ε

All these go to zero
when take powers

Eigenvalues of walk matrix of 50-by-50 grid graph



Compression of powers of graphs
[Coifman, Lafon, Lee, Maggioni, Nadler, Warner, Zucker ’05]  

If most eigenvalues of A and W bounded from 1.
Most eigenvalues of At very small.
Can approximate At by low-rank matrix.

Build wavelets bases on graphs.
Solve linear equations and compute eigenvectors.

Make rigorous by taking graph from
discretization of manifold



Discretizing Manifold

edge weight



Eigenvalue distributions

Eigenvalues of path graph on 10k nodes
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Proof: can choose         vertices to collapse so that
conductance becomes at least  
(like adding an expander on those nodes).

New graph has all eigvals at most 1-ε in abs value.
Is rank        change, so by Courant-Fischer

Theorem:
If bounded degree, 
number eigenvalues greater than 1-ε is 

Theorem: Eigenvalue distributions



Eigenvalue distributions of planar graphs?

For planar graphs, 
Colan de Verdiere’s results imply

How big must the gap be?
Must other gaps exist?



Computation

Not rational, so only approximate

If λ exactly an eigenvalue,
eigvecs = Null(A – λI)

If λ close to just one eigenvalue λi

If λi close to λi+1 is like λi = λi+1
vi and vi+1 can rotate with each other



General Symmetric Matrices

Locate any eigval in time

1.Orthogonal similarity transform to tri-diagonal
in time            by elimination algorithm.

2. Given tri-diagonal matrix, 
count number eigenvalues in any interval
in time 

3. Do binary search to locate eigenvalue

Locate eigenvector:          steps on tri-diagonal,
time to map back to A 



Largest eigenvectors by power method

Apply A to random vector r:

In                    iters, expect x such that

Using Lanczos, expect                           iters
(better polynomial)



Smallest eigenvectors by inverse power method

Apply L-1 to random vector r orthogonal to 

In                    iters, expect x such that

Compute in time [STeng04]
if planar, in time [Koutis-Miller 06] 



Sparsification

Key to fast computation.

Replace A by sparse B for which

Generalized eigenvalues provide notion of
approximation in graphs.



Questions

Cheeger’s inequality for other physical problems?

How to incorporate other data into spectral methods?

Make multilevel coarsening rigorous.

What can we do with boundary conditions?

What about generalized eigenvalue problems?


