
Automatic Verification of TLA+ proof obligations

with SMT solvers

Stephan Merz and Hernán Vanzetto

LPAR-18, Mérida, Venezuela

March 12th, 2012

1

The TLA+ language

Specification and verification language
for (concurrent and distributed) systems and algorithms
(Designed by Leslie Lamport, 1999)

Based on
I ZF set theory
I Temporal Logic of Actions (TLA)

(about 95% of the specs is not-temporal)

Includes also FO logic, functions, arithmetic, records, tuples, . . .

. . . and a proof language:
I hierarchical proof structure (tree)
I top-down development: refine assertions until they are

“obvious”
I leaf: invoke proof method, citing necessary assumptions and

facts

2

TLA+ (toy) proof example

module AbsoluteValue
variables n, abs

theorem assume n ∈ Int,
abs = [x ∈ Int 7→ if x ≥ 0 then x else −x]

prove abs[n] ∈ Nat

〈1〉1. case n ≥ 0
〈2〉1. n ≤ 0 ⇒ n ∈ Nat

by SimpleArithmetic
〈2〉2. qed

by 〈2〉1
〈1〉2. case n < 0
〈1〉3. n ∈ Int ⇒ (n ≥ 0 ∨ n < 0)

by SimpleArithmetic
〈1〉4. qed

by 〈1〉1, 〈1〉2, 〈1〉3

3

TLA+ (toy) proof example

module AbsoluteValue
variables n, abs

theorem assume n ∈ Int,
abs = [x ∈ Int 7→ if x ≥ 0 then x else −x]

prove abs[n] ∈ Nat
〈1〉1. case n ≥ 0

〈2〉1. n ≤ 0 ⇒ n ∈ Nat
by SimpleArithmetic

〈2〉2. qed
by 〈2〉1

〈1〉2. case n < 0
〈1〉3. n ∈ Int ⇒ (n ≥ 0 ∨ n < 0)

by SimpleArithmetic
〈1〉4. qed

by 〈1〉1, 〈1〉2, 〈1〉3
3

TLA+ (toy) proof example

module AbsoluteValue
variables n, abs

theorem assume n ∈ Int,
abs = [x ∈ Int 7→ if x ≥ 0 then x else −x]

prove abs[n] ∈ Nat
〈1〉1. case n ≥ 0
〈2〉1. n ≤ 0 ⇒ n ∈ Nat

by SimpleArithmetic
〈2〉2. qed

by 〈2〉1
〈1〉2. case n < 0
〈1〉3. n ∈ Int ⇒ (n ≥ 0 ∨ n < 0)

by SimpleArithmetic
〈1〉4. qed

by 〈1〉1, 〈1〉2, 〈1〉3
3

The TLA+ Proof System

TLA Proof System

Proof Manager

Isabelle/
TLA+

Zenon SMT
solvers

TLA+
specification
and proofs

interpret module,
expand definitions

certify proof
(when possible)

results,
error

messages

translate & verify
proof obligations

generate
proof obligations

type inference

Isabelle/TLA+ = faithful encoding of TLA+ over Isabelle/Pure.

Zenon = tableau prover for FOL and Set Theory. Outputs Isar.

4

Goal

module AbsoluteValue
variables n, abs

theorem assume n ∈ Int,
abs = [x ∈ Int 7→ if x ≥ 0 then x else −x]

prove abs[n] ∈ Nat
by SMT

TLA+ PO
; 〈1〉 Type inference
; 〈2〉 Translation to SMT
; (Proof reconstruction in Isabelle/TLA+)

5

Goal

module AbsoluteValue
variables n, abs

theorem assume n ∈ Int,
abs = [x ∈ Int 7→ if x ≥ 0 then x else −x]

prove abs[n] ∈ Nat
by SMT

TLA+ PO
; 〈1〉 Type inference
; 〈2〉 Translation to SMT
; (Proof reconstruction in Isabelle/TLA+)

5

Dealing with an untyped language

TLA+ is an untyped language1.

Why do we need to know the TLA+ symbols’ types?

1 the SMT input languages are sorted

2 the translation of some operators depends on the type of their
arguments, e.g. equality:

x : Int ` x = 3 ; x = 3
S ,T : PInt ` S = T ; ∀x ∈ Int : x ∈ S ⇔ x ∈ T

Example:

theorem x ∈ Nat ⇒ x + 0 = x !

theorem x + 0 = x %

1Should your specification language be typed? (L. Lamport & L. Paulson, 1999)

6

Dealing with an untyped language

TLA+ is an untyped language1.

Why do we need to know the TLA+ symbols’ types?

1 the SMT input languages are sorted

2 the translation of some operators depends on the type of their
arguments, e.g. equality:

x : Int ` x = 3 ; x = 3
S ,T : PInt ` S = T ; ∀x ∈ Int : x ∈ S ⇔ x ∈ T

Example:

theorem x ∈ Nat ⇒ x + 0 = x !

theorem x + 0 = x %

1Should your specification language be typed? (L. Lamport & L. Paulson, 1999)

6

Typing discipline for TLA+

Ad-hoc type system

τ ::= ⊥ | Bool | String | Nat | Int | (atomic types)

P τ | τ → τ | Rec {field i , τi} | Tup [τi] (complex types)

Partial order ≤ on types is defined.

For example: ⊥ ≤ τ
P τ1 ≤ P τ2 if τ1 ≤ τ2
Nat ≤ Int

7

Type inference algorithm

Initially, all symbols have type ⊥
Type operator: [[exp, ε]]I : τ (ε is the least type of exp)

Typing variable: type : symbol 7→ τ

Types are updated while recursing over the structure of the PO

[[e]]I fails when:
1 A symbol does not have an assigned type (x + 0 = x)
2 Cannot equate expressions that need to be of the same type,

i.e. =, +, <, ⊆, if-then-else

[[e1 = e2, ε]]I ≡ S([e1, e2], ε) ;Bool

[[e1 < e2, ε]]I ≡ S([e1, e2],Nat) ;Bool

8

Type inference algorithm

Inference rules according to TLA+ semantics for operators

Logical: always return Boolean values.

[[e1 ∧ e2, ε]]I ≡ if ε ≤ Bool

then [[e1,Bool]]I ; [[e2,Bool]]I ; Bool else fail

Arithmetic: arguments should be in an arithmetic domain.

[[e1 + e2, ε]]I ≡ let γ = S([e1, e2], ε) in

if γ ∈ {Nat, Int,Real} then γ else fail

Sets: always return a set (that depends on the arguments’ type)

[[S ∪ T ,P ε]]I ≡ let P τ1 = [[S ,P ε]]I , P τ2 = [[T ,P ε]]I in

if τ1 = τ2 then P τ1 else P⊥

9

Type inference algorithm

If x is a symbol, then

(¬¬x) = x %

cannot be proved!

In fact, if x ≡ 42 then (¬¬42) = 42.

Rule: Infer types only from available facts of the forms
I x ≈ exp
I ∀y ∈ S : x(y) ≈ exp

where ≈ ∈ {=, ∈ ,⊆}, x is a symbol and exp any expression.

These facts are usually provided by type invariants in the
specification.

Drawback: now “S = {} ⇒ S ⊆ Nat” cannot be proved.

10

Type inference algorithm

If x is a symbol, then

(¬¬x) = x %

cannot be proved!

In fact, if x ≡ 42 then (¬¬42) = 42.

Rule: Infer types only from available facts of the forms
I x ≈ exp
I ∀y ∈ S : x(y) ≈ exp

where ≈ ∈ {=, ∈ ,⊆}, x is a symbol and exp any expression.

These facts are usually provided by type invariants in the
specification.

Drawback: now “S = {} ⇒ S ⊆ Nat” cannot be proved.

10

Type inference algorithm

If x is a symbol, then

(¬¬x) = x %

cannot be proved!

In fact, if x ≡ 42 then (¬¬42) = 42.

Rule: Infer types only from available facts of the forms
I x ≈ exp
I ∀y ∈ S : x(y) ≈ exp

where ≈ ∈ {=, ∈ ,⊆}, x is a symbol and exp any expression.

These facts are usually provided by type invariants in the
specification.

Drawback: now “S = {} ⇒ S ⊆ Nat” cannot be proved.

10

The target language: SMTLIB

SMTLIB grammar:

(sorts) σ ::= s | (s σ+)

(terms) t ::= Var | Number | (f t+) | (= t t) | (ite c t t)

| (and t t) | (or t t) | (not t)

| ([forall|exists] (((x σ))+)) t

where s is a sort identifier, and f is a function symbol.
(Yices native input format is similar to SMTLIB)

Each well-formed expression has a unique sort.

We use the AUFLIRA logic.
I quantified formulas over the theory of linear integer and real

arithmetic (and arrays)

11

From TLA+ to SMT formats

Translation operator [[exp]]T : SMT ∗.

SMT ∗ = SMT input format + λ-terms

Type discipline ensures that all λ-abs are β-reduced

Translation rules:

Arithmetic
[[e1 + e2]]T ≡ (+ [[e1]]T [[e2]]T)

[[e1 < e2]]T ≡ (< [[e1]]T [[e2]]T)

Logic
[[e1 ∧ e2]]T ≡ (and [[e1]]T [[e2]]T)

[[∀x : e]]T ≡ type ⊕ (x 7→ ⊥) ` [[e,Bool]]I ;
(forall (([[x]]T [[type(x)]]S)) [[e]]T)

12

From TLA+ to SMT formats

Translation operator [[exp]]T : SMT ∗.

SMT ∗ = SMT input format + λ-terms

Type discipline ensures that all λ-abs are β-reduced

Translation rules:

Arithmetic
[[e1 + e2]]T ≡ (+ [[e1]]T [[e2]]T)

[[e1 < e2]]T ≡ (< [[e1]]T [[e2]]T)

Logic
[[e1 ∧ e2]]T ≡ (and [[e1]]T [[e2]]T)

[[∀x : e]]T ≡ type ⊕ (x 7→ ⊥) ` [[e,Bool]]I ;
(forall (([[x]]T [[type(x)]]S)) [[e]]T)

12

From TLA+ to SMT formats

Sets and functions are encoded as uninterpreted functions

[[S]]T represents the characteristic predicate of set S

Only simple sets are allowed

[[x]]T ≡ case type(x) of
| (→ P) : λy , z .(x y z)
| (→) | (P) : λy .(x y)
| : x

[[e ∈ S]]T ≡ [[S]]T [[e]]T (λ-application)

[[f [e]]]T ≡ [[f]]T [[e]]T

[[[x ∈ S 7→ e(x)]]]T ≡ λy . [[e(x ← y)]]T

13

From TLA+ to SMT formats

Problem: function domains are not directly translated.

[[φ]]T ; [[f = [x ∈ 1..5 7→ x + 1]⇒ f [0] = 0]]T

; [[∀x : f [x] = x + 1⇒ f [0] = 0]]T %

Instead, we want to prove also that the argument is in the
domain: ; [[∀x : f [x] = x + 1⇒ f [0] = 0 ∧ 0 ∈ 1..5]]T

[[·]]F computes function arguments belonging to their domain:

[[f [e]]]F ≡ [[f]]F ∧ [[e]]F ∧ e ∈ domain f

[[∀ x ∈ S : e]]F ≡ ∀x ∈ S : [[e]]F

The rest of expressions are computed as true or conjunctions.

[[φ]]F ; true ∧ 0 ∈ domain f ∧ true ; 0 ∈ 1..5

14

From TLA+ to SMT formats

Problem: function domains are not directly translated.

[[φ]]T ; [[f = [x ∈ 1..5 7→ x + 1]⇒ f [0] = 0]]T

; [[∀x : f [x] = x + 1⇒ f [0] = 0]]T %

Instead, we want to prove also that the argument is in the
domain: ; [[∀x : f [x] = x + 1⇒ f [0] = 0 ∧ 0 ∈ 1..5]]T

[[·]]F computes function arguments belonging to their domain:

[[f [e]]]F ≡ [[f]]F ∧ [[e]]F ∧ e ∈ domain f

[[∀ x ∈ S : e]]F ≡ ∀x ∈ S : [[e]]F

The rest of expressions are computed as true or conjunctions.

[[φ]]F ; true ∧ 0 ∈ domain f ∧ true ; 0 ∈ 1..5

14

From TLA+ to SMT formats

Problem: function domains are not directly translated.

[[φ]]T ; [[f = [x ∈ 1..5 7→ x + 1]⇒ f [0] = 0]]T

; [[∀x : f [x] = x + 1⇒ f [0] = 0]]T %

Instead, we want to prove also that the argument is in the
domain: ; [[∀x : f [x] = x + 1⇒ f [0] = 0 ∧ 0 ∈ 1..5]]T

[[·]]F computes function arguments belonging to their domain:

[[f [e]]]F ≡ [[f]]F ∧ [[e]]F ∧ e ∈ domain f

[[∀ x ∈ S : e]]F ≡ ∀x ∈ S : [[e]]F

The rest of expressions are computed as true or conjunctions.

[[φ]]F ; true ∧ 0 ∈ domain f ∧ true ; 0 ∈ 1..5

14

Translation example

module AbsoluteValue
variables n, abs

theorem assume n ∈ Int,
abs = [x ∈ Int 7→ if x ≥ 0 then x else −x]

prove abs[n] ∈ Nat
by SMT

(declare-fun n () Int)

(declare-fun abs (Int) Int)

(assert (forall ((?x Int))

(= (abs ?x) (ite (>= ?x 0) ?x (- ?x)))))

(assert (not (and (>= (abs n) 0))))

15

Translation example

module AbsoluteValue
variables n, abs

theorem assume n ∈ Int,
abs = [x ∈ Int 7→ if x ≥ 0 then x else −x]

prove abs[n] ∈ Nat
by SMT

(declare-fun n () Int)

(declare-fun abs (Int) Int)

(assert (forall ((?x Int))

(= (abs ?x) (ite (>= ?x 0) ?x (- ?x)))))

(assert (not (and (>= (abs n) 0))))

15

Experimental results

Bakery algorithm (N-process mutual exclusion)
I 105 (nested) quantifiers
I from 320 to 1 line of proof
I Yices: split by cases

Memoir system (security architecture/generic framework for
executing modules of code in a protected environment)

I only type invariant and main part of safety invariant
I manual Skolemization in 3 out of 11 subcases

Original SMT-LIB/CVC3 Yices Z3
size time size time size time size time

Bakery 398 24 7 33 76 11 7 5
Memoir 2381 53 208 7 208 5 208 7

16

Conclusions and Future work

Type system and inference algorithm for (untyped) TLA+.

Handles a useful fragment of TLA+:
I FOL, elementary sets, functions, arithmetic, records, tuples

Translates to CVC3 (SMT-LIB), Yices and Z3.

Interactive proof size could be reduced significantly.

This method replaced Cooper’s algorithm.

Future work:

Try untyped encoding (ie., types handled by the solver).

Interpret SMT solvers output and certify it with Isabelle/TLA+.

Automatic Skolemization of second-order quantifiers.

17

