Automatic Verification of TLA⁺ proof obligations with SMT solvers

Stephan Merz and Hernán Vanzetto

LPAR-18, Mérida, Venezuela March 12th, 2012

The TLA⁺ language

- Specification and verification language for (concurrent and distributed) systems and algorithms (Designed by Leslie Lamport, 1999)
- Based on
 - ZF set theory
 - Temporal Logic of Actions (TLA) (about 95% of the specs is not-temporal)
- Includes also FO logic, functions, arithmetic, records, tuples, ...
- ... and a proof language:
 - hierarchical proof structure (tree)
 - top-down development: refine assertions until they are "obvious"
 - leaf: invoke proof method, citing necessary assumptions and facts

TLA⁺ (toy) proof example

THEOREM	ASSUME	$n \in Int,$		
		$abs = [x \in Int \mapsto \text{if } x \ge 0 \text{ then } x \text{ else } -x]$		
	PROVE	$abs[n] \in Nat$		

TLA⁺ (toy) proof example

MODULE Absolute/alue					
VARIABLES	n, abs				
THEOREM	ASSUME	$n \in Int$, $abs = [x \in Int \mapsto if x \ge 0 \text{ Then } x \text{ Else } -x]$			
$\langle 1 \rangle 1$ case n	PROVE $0 > 0$	$abs[n] \in Nat$			

$$\begin{array}{l} \langle 1 \rangle 2. \ {\rm CASE} \ n < 0 \\ \langle 1 \rangle 3. \ n \in {\rm Int} \Rightarrow (n \geq 0 \lor n < 0) \\ {\rm BY} \ {\rm SimpleArithmetic} \\ \langle 1 \rangle 4. \ {\rm QED} \\ {\rm BY} \ \langle 1 \rangle 1, \ \langle 1 \rangle 2, \ \langle 1 \rangle 3 \end{array}$$

TLA^+ (toy) proof example

MODULE *AbsoluteValue*

VARIABLES n, abs

 $n \in Int$, ASSUME THEOREM $abs = [x \in Int \mapsto IF x > 0 \text{ THEN } x \text{ ELSE } -x]$ $abs[n] \in Nat$ PROVE $\langle 1 \rangle 1$. CASE n ≥ 0 $\langle 2 \rangle 1$. n $\leq 0 \Rightarrow$ n $\in Nat$ BY SimpleArithmetic $\langle 2 \rangle 2$. QED BY $\langle 2 \rangle 1$ $\langle 1 \rangle 2$. CASE n < 0 $\langle 1 \rangle 3. n \in Int \Rightarrow (n \ge 0 \lor n < 0)$ BY SimpleArithmetic $\langle 1 \rangle 4$. QED BY $\langle 1 \rangle 1$, $\langle 1 \rangle 2$, $\langle 1 \rangle 3$

The TLA⁺ Proof System

• Isabelle/TLA⁺ = faithful encoding of TLA⁺ over Isabelle/Pure.

• Zenon = tableau prover for FOL and Set Theory. Outputs Isar.

MODULE AbsoluteValue					
VARIABLES	n, abs				
THEOREM	ASSUME	$n \in Int,$ $abs = [x \in Int \mapsto \text{if } x > 0 \text{ then } x \text{ else } -x]$			
BY SMT	PROVE	$abs[n] \in Nat$			

MODULE AbsoluteValue					
VARIABLES	n, abs				
THEOREM	ASSUME	$n \in Int$, $abs = [x \in Int \mapsto if x > 0 \text{ Then } x \text{ else } -x]$			
BY SMT	PROVE	$abs[n] \in Nat$			

 $\begin{array}{l} \mathsf{TLA^{\!\!+}\ PO} \\ \rightsquigarrow \langle 1 \rangle \ \mathsf{Type \ inference} \\ \rightsquigarrow \langle 2 \rangle \ \mathsf{Translation \ to} \ \mathsf{SMT} \\ \rightsquigarrow (\mathsf{Proof \ reconstruction \ in \ lsabelle/\mathsf{TLA^{\!\!+}})} \end{array}$

Dealing with an untyped language

 TLA^+ is an **untyped** language¹.

Why do we need to know the TLA⁺ symbols' types?

- the SMT input languages are sorted
- the translation of some operators depends on the type of their arguments, e.g. equality:

¹Should your specification language be typed? (L. Lamport & L. Paulson, 1999)

Dealing with an untyped language

 TLA^+ is an **untyped** language¹.

Why do we need to know the TLA⁺ symbols' types?

- the SMT input languages are sorted
- 2 the translation of some operators depends on the type of their arguments, e.g. equality:

X

Example:

- THEOREM $x \in Nat \Rightarrow x + 0 = x$ \checkmark
- THEOREM x + 0 = x

¹Should your specification language be typed? (L. Lamport & L. Paulson, 1999)

Typing discipline for TLA⁺

Ad-hoc type system

$$\tau ::= \bot \mid Bool \mid String \mid Nat \mid Int \mid$$
(atomic types)
P $\tau \mid \tau \rightarrow \tau \mid Rec \{ field_i, \tau_i \} \mid Tup [\tau_i]$ (complex types)

• Partial order \leq on types is defined.

$$\begin{array}{ll} \text{For example:} & \perp \leq \tau \\ & \mathsf{P} \ \tau_1 \leq \mathsf{P} \ \tau_2 & \quad \text{if} \ \tau_1 \leq \tau_2 \\ & \textit{Nat} \leq \textit{Int} \end{array}$$

- $\bullet\,$ Initially, all symbols have type $\perp\,$
- Type operator: [[exp, ε]]_I : τ (ε is the least type of exp)
 Typing variable: type : symbol → τ
- Types are updated while recursing over the structure of the PO
- [[e]], fails when:
 - A symbol does not have an assigned type (x + 0 = x)
 - ② Cannot equate expressions that need to be of the same type, i.e. =, +, <, ⊆, IF-THEN-ELSE</p>

$$\begin{split} \llbracket e_1 &= e_2, \varepsilon \rrbracket_{I} &\equiv \mathcal{S}([e_1, e_2], \varepsilon) \text{ ; Bool} \\ \llbracket e_1 &< e_2, \varepsilon \rrbracket_{I} &\equiv \mathcal{S}([e_1, e_2], \text{Nat}) \text{ ; Bool} \end{split}$$

Inference rules according to $\mathsf{TLA}^{\!+}$ semantics for operators

• Logical: always return Boolean values.

$$\begin{split} \llbracket e_1 \wedge e_2, \varepsilon \rrbracket_I &\equiv \text{if } \varepsilon \leq \textit{Bool} \\ & \text{then } \llbracket e_1, \textit{Bool} \rrbracket_I; \llbracket e_2, \textit{Bool} \rrbracket_I; \textit{Bool else fail} \end{split}$$

• Arithmetic: arguments should be in an arithmetic domain.

$$\llbracket e_1 + e_2, \varepsilon \rrbracket_I \equiv \text{let } \gamma = \mathcal{S}([e_1, e_2], \varepsilon) \text{ in}$$

if $\gamma \in \{Nat, Int, Real\}$ then γ else fail

• Sets: always return a set (that depends on the arguments' type)

$$\llbracket S \cup T, \mathsf{P} \varepsilon \rrbracket_{I} \equiv \operatorname{let} \mathsf{P} \tau_{1} = \llbracket S, \mathsf{P} \varepsilon \rrbracket_{I}, \quad \mathsf{P} \tau_{2} = \llbracket T, \mathsf{P} \varepsilon \rrbracket_{I} \text{ in}$$

if $\tau_{1} = \tau_{2}$ then $\mathsf{P} \tau_{1}$ else $\mathsf{P} \bot$

• If x is a symbol, then

$$(\neg \neg x) = x$$
 X

cannot be proved!

In fact, if $x \equiv 42$ then $(\neg \neg 42) = 42$.

• If x is a symbol, then

$$(\neg \neg x) = x$$
 ×

cannot be proved!

In fact, if $x \equiv 42$ then $(\neg \neg 42) = 42$.

• Rule: Infer types only from available facts of the forms

$$\blacktriangleright x \approx exp$$

•
$$\forall y \in S : x(y) \approx exp$$

where $\approx \in \{=, \in, \subseteq\}$, x is a symbol and *exp* any expression.

• If x is a symbol, then

$$(\neg \neg x) = x$$
 ×

cannot be proved!

In fact, if $x \equiv 42$ then $(\neg \neg 42) = 42$.

- Rule: Infer types only from available facts of the forms
 - $x \approx exp$

•
$$\forall y \in S : x(y) \approx exp$$

where $\approx \in \{=, \in, \subseteq\}$, x is a symbol and *exp* any expression.

- These facts are usually provided by **type invariants** in the specification.
- Drawback: now " $S = \{\} \Rightarrow S \subseteq Nat$ " cannot be proved.

The target language: SMTLIB

SMTLIB grammar:

(sorts)
$$\sigma ::= s | (s \sigma^+)$$

(terms) $t ::= Var | Number | (f t^+) | (= t t) | (ite c t t) | (and t t) | (or t t) | (not t) | ([forall|exists] (((x \sigma))^+)) t$

where s is a sort identifier, and f is a function symbol. (Yices native input format is similar to SMTLIB)

- Each well-formed expression has a unique sort.
- We use the AUFLIRA logic.
 - quantified formulas over the theory of linear integer and real arithmetic (and arrays)

Translation operator $\llbracket exp \rrbracket_T : SMT^*$.

- $SMT^* = SMT$ input format $+ \lambda$ -terms
- $\bullet\,$ Type discipline ensures that all $\lambda\text{-abs}$ are $\beta\text{-reduced}$

Translation operator $\llbracket exp \rrbracket_{T} : SMT^*$.

- $SMT^* = SMT$ input format $+ \lambda$ -terms
- Type discipline ensures that all λ -abs are β -reduced

Translation rules:

• Arithmetic $\begin{bmatrix} e_1 + e_2 \\ [e_1 < e_2]_T &\equiv (+ \\ [e_1]_T \\ [e_2]_T \end{bmatrix} = (< \\ [e_1]_T \\ [e_2]_T]$ • Logic $\begin{bmatrix} e_1 \land e_2 \\ [T]_T &\equiv (and \\ [e_1]_T \\ [e_2]_T] \\ [\forall x : e]_T &\equiv type \oplus (x \mapsto \bot) \vdash \\ [e, Bool]_I; \\ (forall (([x]_T \\ [type(x)]_S)) \\ [e]_T]$

Sets and functions are encoded as uninterpreted functions

- $[\![S]\!]_{\mathcal{T}}$ represents the *characteristic predicate* of set S
- Only simple sets are allowed

$$\begin{split} \llbracket x \rrbracket_{\mathcal{T}} & \equiv & \mathsf{case } type(x) \mathsf{ of} \\ & \mid (_ \to \mathsf{P}_) : & \lambda y, z. (\mathbf{x} \ y \ z) \\ & \mid (_ \to \mathsf{P}_) : & \lambda y. (\mathbf{x} \ y) \\ & \mid (_ \to _) \mid (\mathsf{P}_) : & \lambda y. (\mathbf{x} \ y) \\ & \mid _: & \mathbf{x} \end{split} \\ \\ \llbracket e \in S \rrbracket_{\mathcal{T}} & \equiv & \llbracket S \rrbracket_{\mathcal{T}} \ \llbracket e \rrbracket_{\mathcal{T}} & (\lambda \text{-application}) \\ \llbracket f[e] \rrbracket_{\mathcal{T}} & \equiv & \llbracket f \rrbracket_{\mathcal{T}} \ \llbracket e \rrbracket_{\mathcal{T}} \\ \llbracket [x \in S \mapsto e(x)] \rrbracket_{\mathcal{T}} & \equiv & \lambda y. \ \llbracket e(x \leftarrow y) \rrbracket_{\mathcal{T}} \end{split}$$

Problem: function domains are not directly translated.

•
$$\llbracket \phi \rrbracket_{\mathcal{T}} \rightsquigarrow \llbracket f = [x \in 1..5 \mapsto x+1] \Rightarrow f[0] = 0 \rrbracket_{\mathcal{T}}$$

 $\rightsquigarrow \llbracket \forall x : f[x] = x+1 \Rightarrow f[0] = 0 \rrbracket_{\mathcal{T}}$

Problem: function domains are not directly translated.

•
$$\llbracket \phi \rrbracket_{\mathcal{T}} \rightsquigarrow \llbracket f = [x \in 1..5 \mapsto x+1] \Rightarrow f[0] = 0 \rrbracket_{\mathcal{T}}$$

 $\rightsquigarrow \llbracket \forall x : f[x] = x+1 \Rightarrow f[0] = 0 \rrbracket_{\mathcal{T}}$

Instead, we want to prove also that the argument is in the domain: → [[∀x : f[x] = x + 1 ⇒ f[0] = 0 ∧ 0 ∈ 1..5]]_T

From TLA $^+$ to SMT formats

<u>Problem</u>: function domains are not directly translated.

•
$$\llbracket \phi \rrbracket_{\mathcal{T}} \rightsquigarrow \llbracket f = [x \in 1..5 \mapsto x+1] \Rightarrow f[0] = 0 \rrbracket_{\mathcal{T}}$$

 $\rightsquigarrow \llbracket \forall x : f[x] = x+1 \Rightarrow f[0] = 0 \rrbracket_{\mathcal{T}}$

- Instead, we want to prove also that the argument is in the domain: $\rightsquigarrow \quad [\forall x : f[x] = x + 1 \Rightarrow f[0] = 0 \land 0 \in 1..5]]_T$
- $\llbracket \cdot \rrbracket_F$ computes function arguments belonging to their domain:

$$\llbracket f[e] \rrbracket_F \equiv \llbracket f \rrbracket_F \land \llbracket e \rrbracket_F \land e \in \text{Domain } f$$

$$\llbracket \forall x \in S : e \rrbracket_F \equiv \forall x \in S : \llbracket e \rrbracket_F$$

The rest of expressions are computed as TRUE or conjunctions.

• $\llbracket \phi \rrbracket_F$ \rightsquigarrow true $\land 0 \in$ domain $f \land$ true \rightsquigarrow $0 \in 1..5$

Translation example

MODULE AbsoluteValue					
VARIABLES	n, abs				
THEOREM	ASSUME	$n \in lnt$, $abs = [x \in lnt \mapsto if x \ge 0$ then x fise $-x$]			
by SMT	PROVE	$abs = [x \in mt + \gamma \Pi \times \underline{>} 0 \Pi \Pi \Pi \times \underline{>} 1]$ $abs[n] \in Nat$			

Translation example

MODULE AbsoluteValue					
VARIABLES	n, abs				
THEOREM	ASSUME	$n \in Int,$ $abs = [x \in Int \mapsto \text{if } x \ge 0 \text{ then } x \text{ else } -x]$			
by SMT	PROVE	$abs[n] \in Nat$			

Experimental results

- Bakery algorithm (*N*-process mutual exclusion)
 - 105 (nested) quantifiers
 - from 320 to 1 line of proof
 - Yices: split by cases
- Memoir system (security architecture/generic framework for executing modules of code in a protected environment)
 - only type invariant and main part of safety invariant
 - manual Skolemization in 3 out of 11 subcases

	Original		SMT-LIB/CVC3		Yices		Z3	
	size	time	size	time	size	time	size	time
Bakery	398	24	7	33	76	11	7	5
Memoir	2381	53	208	7	208	5	208	7

Conclusions and Future work

- Type system and inference algorithm for (untyped) TLA⁺.
- Handles a useful fragment of TLA⁺:
 - ► FOL, elementary sets, functions, arithmetic, records, tuples
- Translates to CVC3 (SMT-LIB), Yices and Z3.
- Interactive proof size could be reduced significantly.
- This method replaced Cooper's algorithm.

Future work:

- Try untyped encoding (ie., types handled by the solver).
- \bullet Interpret SMT solvers output and certify it with Isabelle/TLA+.
- Automatic Skolemization of second-order quantifiers.