Automatic Verification of TLA™ proof obligations

with SMT solvers

Stephan Merz and Herndn Vanzetto

7 MICROSOFT RESEARCH
informatics g mathematics INRIA
JOINT

LPAR-18, Mérida, Venezuela
March 12th, 2012

The TLA" language

@ Specification and verification language
for (concurrent and distributed) systems and algorithms
(Designed by Leslie Lamport, 1999)

@ Based on

» ZF set theory
» Temporal Logic of Actions (TLA)
(about 95% of the specs is not-temporal)

@ Includes also FO logic, functions, arithmetic, records, tuples, ...
@ ...and a proof language:

» hierarchical proof structure (tree)

» top-down development: refine assertions until they are
“obvious”

» leaf: invoke proof method, citing necessary assumptions and
facts

TLA" (toy) proof example

: MODULE AbsoluteValue |
VARIABLES n, abs

| |
I 1

THEOREM ASSUME n € Int,
abs =[x € Int — IF x > 0 THEN x ELSE —x]
PROVE abs[n] € Nat

TLA" (toy) proof example

: MODULE AbsoluteValue |
VARIABLES n, abs

| |
I 1

THEOREM ASSUME n € Int,
abs =[x € Int — IF x > 0 THEN x ELSE —x]
PROVE abs[n] € Nat
(1)1. cASEn >0

(1)2. cASEn < 0
(3. nelnt=(n>0Vn<D0)
BY SimpleArithmetic
(1)4. QED
: BY (1)1, (1)2, (1)3

TLA" (toy) proof example

: MODULE AbsoluteValue |
VARIABLES n, abs

| |
I 1

THEOREM ASSUME n € Int,
abs =[x € Int — IF x > 0 THEN x ELSE —x]
PROVE abs[n] € Nat
(1)1. cASEn >0
(2)1. n < 0= n € Nat
BY SimpleArithmetic
(2)2. QED
BY (2)1
(1)2. cASEn < 0
(3. nelnt=(n>0Vn<D0)
BY SimpleArithmetic
(1)4. QED
l BY (1)1, (1)2, (1)3

The TLA" Proof System

~

TLA Proof System
) (" Proof Manager)
T.L A+. interpret module, generate
specification expand definitions proof obhgallons
and proofs

~— @

results, [certify proof ranslate&venfy e
error K (when possible) proofobllgatlons P
messages
L
Isabelle/
Zenon
I TLA+ I | ene I solvers

@ Isabelle/ TLAT = faithful encoding of TLA" over Isabelle/Pure.
@ Zenon = tableau prover for FOL and Set Theory. Outputs Isar.

: MODULE AbsoluteValue |
VARIABLES n, abs

THEOREM ASSUME n € Int,
abs =[x € Int — IF x > 0 THEN x ELSE —x]
PROVE abs[n] € Nat
BY SMT

: MODULE AbsoluteValue |
VARIABLES n, abs

THEOREM ASSUME n € Int,
abs =[x € Int — IF x > 0 THEN x ELSE —x]
PROVE abs[n] € Nat
BY SMT

TLA* PO
~> (1) Type inference
~> (2) Translation to SMT
~> (Proof reconstruction in Isabelle/ TLA")

Dealing with an untyped language

TLAT is an untyped language®.

Why do we need to know the TLA" symbols’ types?
@ the SMT input languages are sorted
@ the translation of some operators depends on the type of their
arguments, e.g. equality:

x:Int = x=3 ~ x =3
ST:Pintk S=T ~ VYxelnt: xeSexeT

L Should your specification language be typed? (L. Lamport & L. Paulson, 1999)

Dealing with an untyped language

TLAT is an untyped language®.

Why do we need to know the TLA" symbols’ types?
@ the SMT input languages are sorted

@ the translation of some operators depends on the type of their
arguments, e.g. equality:
x:Int = x=3 ~ x =3

ST:Pintk S=T ~ VYxelnt: xeSexeT

Example:
@ THEOREM x € Nat = x+0=x v
@ THEOREM x +0 = x X

L Should your specification language be typed? (L. Lamport & L. Paulson, 1999)

Typing discipline for TLA"

Ad-hoc type system

7= 1 | Bool | String | Nat | Int | (atomic types)
Pr | 17— 7| Rec{field;,7;} | Tup[r;] (complex types)

o Partial order < on types is defined.

For example: 1 <7
P7'1§P7'2 ifT1§T2
Nat < Int

Type inference algorithm

@ Initially, all symbols have type L
e Type operator: [exp,e]; : 7 (e is the least type of exp)

Typing variable: type : symbol — T
@ Types are updated while recursing over the structure of the PO
o [e]; fails when:

© A symbol does not have an assigned type (x + 0 = x)
@ Cannot equate expressions that need to be of the same type,
i.e. =, +, <, C, IF-THEN-ELSE

S([er, &2, €) ; Bool
S([e1, e2], Nat) ; Bool

IIel = 62,5]][
[e1 < e2,¢]y

Type inference algorithm

Inference rules according to TLA" semantics for operators

o Logical: always return Boolean values.

[er A er,¢]; = if e < Bool
then [e;, Bool]; e, Bool],; Bool else fail

o Arithmetic: arguments should be in an arithmetic domain.

[er + e, e]; = let v = S([e1, €], €) in
if v € {Nat, Int, Real} then v else fail

@ Sets: always return a set (that depends on the arguments’ type)

[SUT,Pe],=1let Pry =[S,Pe];, Pro=[T,P¢]; in

if 71 = 75 then P7q else P L

Type inference algorithm

o If x is a symbol, then
(——x) = x X

cannot be proved!

In fact, if x = 42 then (——42) = 42.

Type inference algorithm

o If x is a symbol, then
(——x) = x X
cannot be proved!
In fact, if x = 42 then (——42) = 42.

@ Rule: Infer types only from available facts of the forms
> X R exp
» Vy € S:x(y) ~ exp

where = € {=, € ,C}, x is a symbol and exp any expression.

Type inference algorithm

o If x is a symbol, then
(——x) = x X

cannot be proved!

In fact, if x = 42 then (——42) = 42.

@ Rule: Infer types only from available facts of the forms
> X R exp
» Vy € S:x(y) ~ exp
where = € {=, € ,C}, x is a symbol and exp any expression.
@ These facts are usually provided by type invariants in the
specification.
@ Drawback: now “S = {} = S C Nat" cannot be proved.

The target language: SMTLIB

SMTLIB grammar:

(sorts) o :=s]| (so™)

(terms) t ::= Var | Number | (f t7) | (=t t) | (ite c t t)
| (and t t) | (or t t) | (not t)
| ([forall|exists] (((x a))™)) t

where s is a sort identifier, and f is a function symbol.
(Yices native input format is similar to SMTLIB)

@ Each well-formed expression has a unique sort.
@ We use the AUFLIRA logic.

» quantified formulas over the theory of linear integer and real
arithmetic (and arrays)

From TLA" to SMT formats

Translation operator [exp]+ : SMT™.
@ SMT* = SMT input format + A-terms
@ Type discipline ensures that all A\-abs are 3-reduced

From TLA" to SMT formats

Translation operator [exp]+ : SMT™.
@ SMT* = SMT input format + A-terms
@ Type discipline ensures that all A\-abs are 3-reduced

Translation rules:

@ Arithmetic
[ee +elr = & [alr (el
[< e]r = & [e]r [elr
e Logic
|[e1 A 62]]7- = (and |[61]]T |[62]]T)
[Vx:e]r = type® (x— L) [e, Bool]; ;

(forall (([x]t [type(x)]s)) [e]+)

From TLA" to SMT formats

Sets and functions are encoded as uninterpreted functions

o [S]+ represents the characteristic predicate of set S

@ Only simple sets are allowed

Ix]+ = case type(x) of
| (c—=P_): Ay,z.(x y z)
{ (c—=2)(P2): Ay.(x y)
[e € S+ = [S]+ [elr (A\-application)
[flell~ [f17 [el+

[[x € S= e+ Ay [elx < y)lr

From TLA" to SMT formats

Problem: function domains are not directly translated.
o [¢p]lr~ [f =[x € 1.5 x+1]= f[0] = 0]+
~ [x:flx]=x+1=f[0]=0]r X

From TLA" to SMT formats

Problem: function domains are not directly translated.
o [¢p]lr~ [f =[x € 1.5 x+1]= f[0] = 0]+
~ [x:flx]=x+1=f[0]=0]r X
@ Instead, we want to prove also that the argument is in the
domain: ~ [Vx:f[x]=x+1=f[0]=0A0¢€ 1.5]r

From TLA" to SMT formats

Problem: function domains are not directly translated.
o [¢p]lr~ [f =[x € 1.5 x+1]= f[0] = 0]+
~ [x:flx]=x+1=f[0]=0]r X
@ Instead, we want to prove also that the argument is in the
domain: ~ [Vx:f[x]=x+1=f[0]=0A0¢€ 1.5]r
@ [-]F computes function arguments belonging to their domain:

[flelle = [fl N [ele N e € DOMAIN f
[VxeS:elr = Vxe S:[e]le

The rest of expressions are computed as TRUE or conjunctions.
e [¢]r ~ TRUEAO € DOMAIN f ATRUE ~ 0€ 1.5

Translation example

: MODULE AbsoluteValue |
VARIABLES n, abs

THEOREM ASSUME n € Int,
abs =[x € Int — IF x > 0 THEN x ELSE —x]
PROVE abs[n] € Nat
BY SMT

Translation example

: MODULE AbsoluteValue |
VARIABLES n, abs

THEOREM ASSUME n € Int,
abs =[x € Int — IF x > 0 THEN x ELSE —x]

PROVE abs[n] € Nat
BY SMT

(declare-fun n () Int)
(declare-fun abs (Int) Int)

(assert (forall ((7x Int))
(= (abs ?x) (ite (>= ?x 0) ?x (- ?7x)))))

(assert (not (and (>= (abs n) 0))))

Experimental results

@ Bakery algorithm (/N-process mutual exclusion)
» 105 (nested) quantifiers
» from 320 to 1 line of proof
» Yices: split by cases
@ Memoir system (security architecture/generic framework for
executing modules of code in a protected environment)
» only type invariant and main part of safety invariant
» manual Skolemization in 3 out of 11 subcases

Original ~ SMT-LIB/CVC3 Yices Z3

size time size time size time | size time
Bakery 398 24 7 33 76 11 7 5
Memoir | 2381 53 208 7 208 5 208 7

Conclusions and Future work

Type system and inference algorithm for (untyped) TLAT.
Handles a useful fragment of TLAT:
» FOL, elementary sets, functions, arithmetic, records, tuples

Translates to CVC3 (SMT-LIB), Yices and Z3.
Interactive proof size could be reduced significantly.

This method replaced Cooper's algorithm.

Future work:
@ Try untyped encoding (ie., types handled by the solver).
@ Interpret SMT solvers output and certify it with Isabelle/ TLAT.
@ Automatic Skolemization of second-order quantifiers.

