
Automatic Verification Of TLA+ Proof
Obligations With SMT Solvers

Stephan Merz1 and Hernán Vanzetto1,2

1 INRIA Nancy Grand-Est & LORIA, Nancy, France
2 Microsoft Research-INRIA Joint Centre, Saclay, France.

Abstract. TLA+ is a formal specification language that is based on ZF
set theory and the Temporal Logic of Actions TLA. The TLA+ proof
system tlaps assists users in deductively verifying safety properties of
TLA+ specifications. tlaps is built around a proof manager, which in-
terprets the TLA+ proof language, generates corresponding proof obli-
gations, and passes them to backend verifiers. In this paper we present
a new backend for use with SMT solvers that supports elementary set
theory, functions, arithmetic, tuples, and records. Type information re-
quired by the solvers is provided by a typing discipline for TLA+ proof
obligations, which helps us disambiguate the translation of expressions
of (untyped) TLA+, while ensuring its soundness. Preliminary results
show that the backend can help to significantly increase the degree of
automation of certain interactive proofs.

1 Introduction

TLA+ [10] is a language for specifying and verifying systems, in particular con-
current and distributed algorithms. It is based on a variant of Zermelo-Fraenkel
(ZF) set theory for specifying the data structures, and on the Temporal Logic
of Actions (TLA) for describing the dynamic system behavior. Recently, a first
version of the TLA+ proof system tlaps [5] has been developed, in which users
can deductively verify safety properties of TLA+ specifications. TLA+ contains a
declarative language for writing hierarchical proofs, and tlaps is built around a
proof manager, which interprets this proof language, expands the necessary mod-
ule and operator definitions, generates corresponding proof obligations (POs),
and passes them to backend verifiers, as illustrated in Figure 1. While tlaps is
an interactive proof environment that relies on users guiding the proof effort, it
integrates automatic backends to discharge proof obligations that users consider
trivial.

The two main backends of the current version of tlaps are Zenon [4], a
tableau prover for first-order logic and set theory, and Isabelle/TLA+, a faithful
encoding of TLA+ in the Isabelle [13] proof assistant, which provides automated
proof methods based on first-order reasoning and rewriting. The backends avail-
able prior to the work presented here also included a generic translation to the
input language of SMT solvers that focused on quantifier-free formulas of linear
arithmetic (not shown in Fig. 1). This SMT backend was occasionally useful

TLA Proof System

Proof Manager

Isabelle/
TLA+

Zenon SMT
solvers

TLA+
specification
and proofs

interpret module,
expand definitions

certify proof
(when possible)

results,
error

messages

translate & verify
proof obligations

generate
proof obligations

type inference

Fig. 1. General architecture of tlaps.

because the other backends perform quite poorly on obligations involving arith-
metic reasoning. However, it covered a rather limited fragment of TLA+, which
heavily relies on modeling data using sets and functions. Assertions mixing arith-
metic, sets and functions arise frequently in TLA+ proofs.

In the work reported here we present a new SMT-based backend for (non-
temporal) TLA+ formulas that encompasses set-theoretic expressions, functions,
arithmetic, records, and tuples. By evaluating the performance of the backend
over several existing TLA+ proofs we show that it achieves good coverage for
“trivial” proof obligations. The new modules comprising our backend appear
shaded in Figure 1.

State of the art and context. Over the last years there have been several efforts
to integrate interactive and automatic theorem provers (ATPs). ATP systems
are satisfiability solvers for first-order logic, while the Satisfiability Modulo The-
ories (SMT) approach combines first-order reasoning with decision procedures
for theories such as equality, integer and real arithmetic, arrays and bit-vectors.
For example, Sledgehammer [3] integrates Isabelle/HOL, the encoding of poly-
morphic higher-order logic, with ATPs and SMT solvers. The translation to
SMT is allowed to be unsound, since proof scripts produced by the solvers are
reconstructed and verified in the trusted kernel of Isabelle/HOL.

TLA+ is an untyped language, which makes it very expressive and flexible,
but also makes automated reasoning quite challenging [11]. Since TLA+ variables
can assume any value, it is customary to start any verification project by prov-
ing a so-called type invariant that associates every variable of the specification
with the set of values that variable may assume. Most subsequent correctness
proofs rely on the type invariant. It should be noted that TLA+ type invariants
frequently express more sophisticated properties than what could be ensured by
a decidable type system.

2

The input languages of state-of-the-art SMT solvers are based on many-
sorted first-order logic. This allows us to design a unique translation from TLA+

expressions to an intermediate language, from which the translation to the actual
target languages of particular SMT solvers is straightforward. The considered
languages are: (i) SMT-LIB [1], the de facto standard input format for SMT
solvers (in our experiments we use the CVC3 solver [2] as a “baseline”), (ii) an
extension of SMT-LIB for the solver Z3 [6], and (iii) the native input language
of the solver Yices [8]. Using SMT-LIB as the target of our translation, tlaps
can be independent of any particular solver. Z3 adds support for datatypes, that
allows us to easily encode tuples and records. On the other hand, the Yices
language provides useful concepts such as sub-typing or a direct representation
of tuples, records and λ-terms. The considered TLA+ formulas are translated
to quantified first-order formulas over the theory of linear integer arithmetic,
extended with free sort and function symbols. In particular, we make heavy use
of uninterpreted functions, and we do not restrict ourselves to quantifier-free
formulas.

The first challenge is therefore to design a typing discipline that is compatible
with the logics of SMT solvers but accommodates typical TLA+ specifications.
In a first step of the translation, a suitable type is assigned to every expression
that appears in the proof obligation. We make use of this type assignment during
the translation of expressions. For example, equality between integer expressions
will be translated differently from equality between sets or functions.

Type inference may fail because not every set-theoretic expression is typable
according to our typing discipline, and in this case the backend aborts. Oth-
erwise, the proof obligation is translated to SMT formulas. Observe that type
inference is relevant for the soundness of the SMT backend: a proof obligation
that is unprovable according to the semantics of untyped TLA+ must not be-
come provable due to incorrect type annotation. As a trivial example, consider
the formula x + 0 = x, which should be provable only if x is known to be of
arithmetic sort. Type inference essentially relies on assumptions that are present
in the proof obligation and that constrain the values of symbols (variables or op-
erators).

Paper outline. A brief introduction to TLA+ and the input languages of SMT
solvers appear in the next section. A type system for TLA+ together with its in-
ference algorithm is described in Section 3, and the translation rules in Section 4.
Results for some case studies and conclusions are given in Sections 5 and 6.

2 TLA+ and the SMT languages

2.1 The non-temporal fragment of TLA+

Our backend handles non-temporal TLA+ expressions, which make up the vast
majority of proof obligations that arise in TLA+ developments. For the purposes
of this paper we fix a core subset of the language to illustrate just the main chal-
lenges, where we only include main primitive operators and constructs. This

3

fragment of the language, named ξ, is defined and described below by the fol-
lowing simplified grammar, which defines TLA+ expressions φ, where Id is an
identifier name for a constant, variable, record field or operator with possible
arguments. Other symbols include strings and integer numbers.

φ ::= Id | Id(φ, . . . , φ) | String | Number | (φ)

| true | false | boolean | Nat | Int (atomic expressions)

| if φ then φ else φ | ¬φ (conditional, negation)

| φ [∧ | ∈ | ∪ | ⊆ | = |+ | <] φ (infix operators)

| ∀ Id : φ | ∃ Id : φ (quantifiers)

| {} | {φ, . . . , φ} (enumerated sets)

| [Id ∈ φ 7→ φ] | [φ→ φ] | φ[φ] | domain φ (function expressions)

| [Id 7→ φ, . . . , Id 7→ φ] | φ.Id | 〈φ, . . . , φ〉 (records and tuples)

– The basic set operators consist of ∈, ∪, and ⊆. In TLA+, equality is also an
operator of set theory, since it formally means equality of sets.

– Operators on functions include function application f [e], domain f (domain
of function f), [x ∈ S 7→ e] (the function f such that f [x] = e for x ∈ S),
and [S → T] (the set of functions f with domain S and f [x] ∈ T for x ∈ S).

– TLA+ provides the usual operators of propositional logic; our restricted frag-
ment includes ∧ and ¬. boolean denotes the set {true, false}. Quantified
formulas are of the form Qx : e, where Q ∈ {∀,∃}.

– A record [h1 7→ e1, . . . , hn 7→ en] is a function whose domain is the finite
set of strings {“h1”, . . . , “hn”}. Access to record fields is written r.h, abbre-
viating r[“h”], thus [h1 7→ e1, . . . , hn 7→ en].hi = ei. Similarly, an n-tuple
〈e1, . . . , en〉 is a function whose domain is {1, . . . , n} and 〈e1, . . . , en〉[i] = ei,
for 1 ≤ i ≤ n.

– A TLA+ operator is a symbol of arity 0 or higher. Operators are associated
with definitions whose expansion is controlled by the user. Expansion of
defined operators is handled by the proof manager: definitions for operators
that occur in proof obligations passed to backends are hidden. Operators
by themselves are not expressions (they correspond to class functions in set
theory), and they cannot be quantified over.

– Finally, the arithmetic operators include + and <. Nat and Int are the sets
of natural and integer numbers, respectively. We also include the construct
if/then/else for conditional expressions.

We omit several features from this simplified description that can be intro-
duced as syntactic sugar and that are handled by our backend, such as except
constructs for functions, and set comprehension. The extension to a larger sub-
set of the language is straightforward following the TLA+ semantics. A notable
TLA+ construct that is not handled by our backend is the choose primitive,
known as Hilbert’s ε operator. A detailed description of the full TLA+ syntax
and semantics can be found in [10, Chap. 16].

4

2.2 Input languages of SMT solvers

The input languages of SMT solvers are based on a many-sorted first-order
logic. Accordingly, each well-formed expression has a unique sort. The languages
provide syntax and commands for declaring new sort and function symbols, and
for asserting formulas over the resulting signature. With each function symbol
are associated the sorts of its arguments and its result sort. Terms and formulas
are written in a Lisp-like language.

In particular, the SMT-LIB [1] initiative provides a common input format, as
well as a repository of benchmarks, for SMT solvers. In general, an SMT input
file is a sequence of declarations of sorts, functions, assumptions, and a goal. It is
related with a logic, identified by a pre-established name, to which are associated
sort and function declarations, and possibly syntactic and semantic restrictions.
Our backend produces formulas for the SMT-LIB logic AUFLIA, which supports
quantified formulas over the theory of linear integer arithmetic extended with
free sort and function symbols. In this logic the predefined sorts are Bool and
Int. Set theory is not currently supported natively by any pre-defined logic in
SMT-LIB.

Simplified grammars for SMT-LIB sorts and terms can be given as follows:

σ ::= s | (s σ+)

t ::= x | Number | (f t+) | ([forall|exists] (((x σ))+) t)

where σ is a sort, s is a sort identifier, t is a term, x is a variable symbol,
and f is a function symbol. A sort constructor is defined by its name and the
argument sorts. A function declaration is composed of the function symbol, a
list of argument sorts, and the sort of the result. Constants are simply functions
with no arguments. SMT-LIB provides by default a Boolean sort for terms and
the standard functions and, or, not, true and false. The logic AUFLIA provides
a sort for integer numbers and the arithmetic functions +, −, ∗, /, <, <=, >=
and >, to which we add an extra sort of arity 0 to represent the universe of
TLA+ constants of unspecified sort3.

The Z3 input format is an extension of the one defined above, in particular
adding algebraic datatypes that we use for representing tuples and records. The
structure and syntax of the Yices input format are similar to SMT-LIB, and
supports lambda expressions, tuples, and records. Boolean and integer sorts are
also pre-defined, as well as a sort for natural numbers.

3 Type inference for TLA+

We define a type system for TLA+ expressions that underlies our SMT transla-
tion. We consider types τ according to the following grammar:

τ ::= ⊥ | Bool | Str | Nat | Int | P τ | τ → τ | Rec {hi 7→ τi} | Tup [τi].

3 The logic AUFLIA also provides a theory of arrays, that we do not make use of.

5

The atomic types are ⊥ (terms of unspecified type), Bool (propositions), strings,
and natural and integer numbers. Complex types are sets (of base type τ), func-
tions, records (defined by a mapping from field names hi to types) and tuples
(as a fixed-size list of types). A partial order ≤ on types, with ⊥ as the smallest
element, is defined as the least reflexive and transitive relation that satisfies

⊥ ≤ τ for any type τ
P τ1 ≤ P τ2 if τ1 ≤ τ2
τ1 → τ2 ≤ τ ′1 → τ ′2 if τ1 ≤ τ ′1 and τ2 ≤ τ ′2
Rec {hi 7→ τi}i∈1..n ≤ Rec {hi 7→ τ ′i}i∈1..n′ if n ≤ n′ and τi ≤ τ ′i for 1 ≤ i ≤ n
Tup [τi]i∈1..n ≤ Tup [τ ′i]i∈1..n if τi ≤ τ ′i for 1 ≤ i ≤ n
Nat ≤ Int

We define an inference algorithm for this type system that is based on an operator
[[e, ε]]I whose arguments are a TLA+ expression e and an expected lower bound ε
for the type of e according to the partial order. The computation either returns
the inferred type or fails. The operator recurses over the structure of TLA+

expressions, gathering information in a typing environment type, that maps each
TLA+ symbol to its type. Therefore, type(x) is the type of symbol x.

Initially, we consider that every symbol has the unspecified type ⊥. Recursive
calls to the operator [[·]]I may update the type of symbols as recorded in type by
new types that are larger than the previous ones. A type assignment is definitive
only when types for all expressions in the proof obligation have been successfully
inferred. For example, consider a proof obligation including two hypotheses S =
{} and S ⊆ Int. After evaluating the first one, S will have type P⊥, but it will
be updated to P Int when the second hypothesis is processed.

The rules of [[·]]I are defined in Figures 2 and 3. Before describing them,
we introduce some preliminary definitions and notations. The rules are defined
operationally: for example, we write [[. . .]]I ≡ f ; g to indicate that f is evaluated
first and the result of the overall rule is the result computed by g. We also use if
and case with their usual meanings, let that performs pattern matching, and :=
for variable assignment. The base function b τ is the dual of P τ , and is defined
by bP τ = τ , whereas b τ fails if τ is not a set type. The function ch(c) fails
when condition c is false. The function ret(c(τ)) returns the type τ if c(τ) is
satisfied, otherwise fails. For example, rule (3.6) first checks that the minimum
type ε is ⊥ or Bool, it tries to “equalize” the type of both subexpressions, and
then the resulting type τ is checked to be Bool before returning it. The function
max returns the greater of two comparable types as defined by

max(τ1, τ2) ≡ if τ1 ≤ τ2 then τ2 else (if τ2 ≤ τ1 then τ1 else fail).

The typing environment is updated only when evaluating symbols (rule 3.1),
where type ⊕ s denotes the typing environment type, updated with the map-
ping s. The rules (3.8) and (3.21) introducing bound variables silently rename
the variables in order to avoid any clashes with symbols already introduced. Just
as any other symbol, these fresh variables are initially assigned type ⊥. Upon
recursive calls to [[·]]I , appropriate return types are passed on to subexpressions,

6

Symbols and other constructs

[[x, ε]]I ≡ α := max (type(x), ε); type := type ⊕ {x 7→ α};α (3.1)

[[true, ε]]I ≡ ch(ε ≤ Bool);Bool [[false, ε]]I ≡ ch(ε ≤ Bool);Bool (3.2)

[[boolean, ε]]I ≡ ch(ε ≤ PBool);PBool [[“...”, ε]]I ≡ ch(ε ≤ Str); Str (3.3)

[[e(e1, . . . , en), ε]]I ≡ let α1 = [[e1,⊥]]I , . . . , αn = [[en,⊥]]I in

let (→ . . .→ → αn+1) = [[e, α1 → . . .→ αn → ε]]I in αn+1 (3.4)

[[if p then e1 else e2, ε]]I ≡ ch([[p,Bool]]I = Bool); eq([e1, e2], ε) (3.5)

Logic

[[e1 ∧ e2, ε]]I ≡ ch(ε ≤ Bool); eq([e1, e2],Bool);Bool (3.6)

[[¬ e, ε]]I ≡ ch(ε ≤ Bool); [[e,Bool]]I ;Bool (3.7)

[[Q x : e, ε]]I ≡ ch(ε ≤ Bool); [[e,Bool]]I ;Bool for Q ∈ {∀,∃} (3.8)

Arithmetic

[[e1 + e2, ε]]I ≡ ch(ε ≤ Int);α := eq([e1, e2], ε); ret(α ∈ {Nat, Int}) (3.9)

[[e1 < e2, ε]]I ≡ ch(ε ≤ Bool); ch(eq([e1, e2],Nat) ≤ Int);Bool (3.10)

[[n, ε]]I ≡ ch(ε ≤ Int); ret(Nat ≤ ε) (where n is a number) (3.11)

[[Nat, ε]]I ≡ ch(ε ≤ P Int); ret(PNat ≤ ε) [[Int, ε]]I ≡ ch(ε ≤ P Int);P Int (3.12)

Sets

[[e1 = e2, ε]]I ≡ ch(ε ≤ Bool); eq([e1, e2],⊥);Bool (3.13)

[[S ⊆ T, ε]]I ≡ ch(ε ≤ Bool); eq([S, T],P⊥);Bool (3.14)

[[e1 ∈ e2, ε]]I ≡ [[{e1} ⊆ e2, ε]]I (3.15)

[[S ∪ T, ε]]I ≡ max (P⊥, eq([S, T], ε)) (3.16)

[[{}, ε]]I ≡ max (P⊥, ε) (3.17)

[[{e1, . . . , en}, ε]]I ≡ P eq([e1, . . . , en],bε) (3.18)

Functions

[[f [e], ε]]I ≡ α := [[e,⊥]]I ; let (α′ → β) = [[f, α→ ε]]I in (ch(α = α′);β) (3.19)

[[domain f, ε]]I ≡ let (α→) = [[f,bε→ ⊥]]I in Pα (3.20)

[[[x ∈ S 7→ e], ε]]I ≡ case ε of | α→ β : b[[S,Pα]]I → [[e, β]]I

| ⊥ : b[[S,P⊥]]I → [[e,⊥]]I (3.21)

[[[S → T], ε]]I ≡ case ε of | P (α→ β) : P (b[[S,Pα]]I → b[[T,Pβ]]I)

| ⊥ : P (b[[S,P⊥]]I → b[[T,P⊥]]I) (3.22)

Fig. 2. Rules for the type inference operator [[·]]I .

7

Records and Tuples

[[r.h, ε]]I ≡ let Rec {. . . , h 7→ α, . . .} = [[r,Rec {h 7→ ε}]]I in α (3.23)

[[t[i], ε]]I ≡ let Tup [. . . , αi, . . .] = [[t,⊥]]I in max (αi, ε) (3.24)

[[[h1 7→ e1, . . . , hn 7→ en], ε]]I ≡ case ε of | Rec {hi 7→ εi} :Rec {hi 7→ [[ei, εi]]I}
| ⊥ : Rec {hi 7→ [[ei,⊥]]I} (3.25)

[[〈e1, . . . , en〉, ε]]I ≡ case ε of | Tup [εi] : Tup [[[ei, εi]]I]

| ⊥ : Tup [[[ei,⊥]]I] (3.26)

Fig. 3. Rules for the type inference operator [[·]]I (continued).

propagating the type information through the formula. The type information
associated with a symbol x is updated to a larger type when so required by the
expected minimum type ε.

The operator [[·]]I assigns types to complex expressions based on the types of
their constituents. Although expressions such as 〈a〉∪0 or 3+true appear silly,
they are allowed in TLA+, yet their meaning is unknown. Our fragment rules out
such expressions by enforcing a typing discipline that requires subexpressions to
have types compatible with the larger expression.

When type inference succeeds on a proof obligation, the typing environment
type will contain the resulting final type assignments. There are two reasons why
the inference algorithm may fail: (1) The expected type ε or the type obtained
from subexpressions can be incompatible with the type associated with primitive
operators, as in the examples given above. The inference rules check for this kind
of mismatch using the operators ch and ret. (2) Type inference can fail to solve
a constraint stating that two or more expressions need to be of the same type,
as we discuss next.

The sorting discipline of SMT solvers requires in several cases that subex-
pressions of a TLA+ expressions be assigned the same type. This is in particular
true for the expressions e1 and e2 in e1 = e2, e1 ⊆ e2, if p then e1 else e2
(rules 3.13, 3.14, 3.5); the second of these expressions moreover requires e1 and
e2 to be of set type. Arithmetic expressions (rules 3.9-3.10) and set operators
(3.16 and 3.18) pose similar constraints. The expression e1 ∈ e2 requires e2 to
be of type Pα and e1 of type α (rule 3.15), and f [e] requires f to be of type
α → α′, and e of type α (rule 3.19), for some types α, α′. Similarly, we do not
allow different applications of the same function or operator symbol to return
values of different types. For those cases, the type inference rules make use of the
function eq([e1, . . . , en], ε) : τ , that given a list of expressions e1, . . . , en and an
expected type ε, returns the common type of all expressions ei (bounded below
by ε), or fails if no such type can be assigned.

Type inference proceeds in three steps, that all rely on (variants of) the opera-
tor [[·]]I . We will explain the algorithm using a proof obligation whose hypotheses
are x ∈ S and S ⊆ Nat and whose conclusions are x+0 = x and y∪{} = y. In the
first step, the algorithm computes an approximate type assignment for the proof

8

obligation by applying the operator [[·]]safeI , which differs from [[·]]I by restricting
types to safe types defined by the grammar τs ::= ⊥ | P τs (the rules of Figs. 2
and 3 are adapted accordingly). In other words, this step only distinguishes be-
tween elementary values and sets, and ensures that all symbols that appear in
the proof obligation are used consistently according to these categories. In our
running example, it infers types ⊥ for the symbol x, and P⊥ for y and S.

The second step refines this type assignment by running the operator [[·]]I on
“typing hypotheses”, i.e. available facts of the forms

x⊗ e and ∀a1 ∈ S1, . . . , an ∈ Sn : x(a1, . . . , an)⊗ e,

for ⊗ ∈ {=,∈,⊆}, starting from the typing environment computed during the
first step. In these expressions, x is a constant, variable or operator, and e is
an expression whose type can already be inferred.4 These typing hypotheses
are obtained by decomposing the assumptions present in a proof obligation by
elementary heuristics. In our example, we have the typing hypotheses x ∈ S and
S ⊆ Nat, and the previously inferred types for x and S will be refined to Nat
and PNat. The reason to perform this step on a restricted set of facts is to avoid
the evaluation of [[·]]I on hypotheses such as z /∈ Nat , which would incorrectly
assign type Nat to z.

The third step ensures that the entire proof obligation can be typed using
the typing environment computed in the first two steps. It does so by applying
the operator [[o]]checkI , which differs from [[·]]I in that the rule 3.1 for symbols is
defined as [[x, ε]]I ≡ ch(ε ≤ type(x)). In particular, the typing environment is
not updated. This step will succeed for our running example, given the previ-
ously assumed typing hypotheses for x. (No typing hypothesis is needed for y.)
However, it would fail without an appropriate typing hypothesis because the
subexpression x+ 0 requires x to be of arithmetic type, not ⊥.

Similarly, consider the proof obligation (¬¬P) = P . While we may infer that
¬¬P is Boolean, the typing rule for equality requires that the expressions on
both sides must be of equal type. However, the type of P inferred during the
first step is just ⊥. If we allowed the algorithm to assign Bool as the type of
P the above proof obligation could be proved without any hypotheses – but its
instance (¬¬42) = 42 should not be provable in TLA+. The soundness of the
type inference algorithm is asserted by the following proposition.

Proposition 1. Assume given a TLA+ proof obligation o for which type infer-
ence succeeds. Then for any expression e occurring in the obligation, to which
the algorithm assigns a non-safe type τ , we have Γ ` e ∈ [[τ]]TLA+ where Γ de-
notes the set of typing hypotheses of o and [[τ]]TLA+ denotes the TLA+ expression
representing the set of values of type τ .

Proof (idea). The first step of the algorithm assigns only safe types, so there is
nothing to prove. Note that semantically, safe types correspond to the universe

4 For variables, facts of this kind usually come from the type invariant. Our backend
requires similar type-correctness lemmas for operators.

9

of all TLA+ values, so that step cannot introduce any unsoundness. However, if
it fails, the proof obligation cannot be represented in the multi-sorted logic of
SMT solvers. The assertion for the second and third steps is proved by induction
on the expression e, using the rules of Figs. 2 and 3. qed

4 From TLA+ to SMT

Once a type assignment is determined for the symbols in a TLA+ proof obliga-
tion, it can be translated to the input languages of SMT solvers. This is done
in two steps. In a first phase, the proof obligation is pre-processed to eliminate
expressions that are not directly available in SMT, such as set operators or func-
tion expressions. The resulting formula will contain only TLA+ expressions that
have a direct representation in the first-order logic of SMTs, namely, the logi-
cal and arithmetic operators and the if/then/else construct. These are called
basic expressions in the language ξb. The translation to our target languages –
SMT-LIB, Yices and Z3 – is then just a syntactic rewriting.

The operator [[·]]B : ξ → ξb transforms TLA+ expressions to basic expressions,
using the type information gathered previously. During this transformation, we
temporarily introduce λ-terms to represent non-basic expressions such as set
or function operators. We will prove that all λ-terms introduced during the
translation of a well-typed TLA+ expression can be β-reduced to an expression
in ξb, which no longer contains λ-expressions.

Sets are encoded by their characteristic predicate, allowing for the direct
translation of the set membership relation. Set of sets are not considered for this
translation, in order to stay within the realm of first-order logic. Any hypotheses
of a proof obligation that fall outside this class are discarded. For example,
hypotheses of the form S ∈ T where T is of type PP τ are useful during type
inference in order to determine the type of S but are then dropped during the
translation.

A similar translation for sets in Event-B was given by Déharbe [7], who
also considers alternative representations of sets, such as via arrays or using
a finite axiomatization of ZF set theory. Hence, if S is an expression of type
P τ then [[S]]B is a λ-abstraction, and [[e ∈ S]]B ≡ [[S]]B([[e]]B). Elementary
sets are represented as uninterpreted functions. The following rules indicate the
translation of more complex set expressions; we simplify the presentation of the
rules by omitting the type annotations.

[[S ∪ T]]B ≡ λx. [[x ∈ S ∨ x ∈ T]]B (4.1)

[[S ⊆ T]]B ≡ [[∀x : x ∈ S ⇒ x ∈ T]]B (4.2)

[[{}]]B ≡ λx. false (4.3)

[[{e1, . . . , en}]]B ≡ λx. [[x = e1 ∨ . . . ∨ x = en]]B (4.4)

[[Nat]]B ≡ λx. x ≥ 0 (4.5)

[[Int]]B ≡ λx. true (4.6)

10

Translation of equality depends on the type of the two sub-expressions, which
must be equal because of typing rule 3.13.

[[e1 = e2]]B ≡ case [[e1,⊥]]I of (4.7)

| P : [[∀x : x ∈ e1 ⇔ x ∈ e2]]B

| → : [[domain e1 = domain e2

∧ ∀x : x ∈ domain e1 ⇒ e1[x] = e2[x]]]B

| : [[e1]]B = [[e2]]B

Similarly to set membership, function application reduces to λ-aplication
(rule 4.8). A function [x ∈ S 7→ e] is translated to λy. [[e(x ← y)]]B (rule 4.9),
where x is replaced by y in the expression e (the domain S is represented sepa-
rately, as explained later).

[[f [e]]]B ≡ [[f]]B([[e]]B) (λ-application) (4.8)

[[[x ∈ S 7→ e]]]B ≡ λy. [[e(x← y)]]B (4.9)

[[[S → T]]]B ≡ λf. [[S = domain f ∧ ∀x ∈ S : f [x] ∈ T]]B (4.10)

[[domain f]]B ≡ [[dom(f)]]B (when f is a symbol)

[[domain [x ∈ S 7→ e]]]B ≡ [[S]]B (4.11)

The translation of function or operator symbols is guided by their types. In
case of atomic type, they are simply represented by symbols of appropriate type
declared in the SMT output. An n-ary operator or function that returns a set of
individuals is represented as an (n+1)-ary characteristic predicate. For example,
a function symbol f : Int → P Int will be encoded by a binary predicate f over
integers.

Because SMT functions have no notion of function domain other than their
argument type(s), we associate with each function or operator symbol f a set
domain f . We maintain a mapping dom : Id 7→ ξ that associates symbols with
their domains. Domains of operators are extracted from the corresponding typing
hypotheses. For every function or operator application that occurs in the proof
obligation, we check that the argument values are in the domain: otherwise
the value of the application would be unspecified. To this end, we define an
auxiliary operator [[·]]F : ξ → ξ that computes corresponding proof obligations. It
maintains the structure of the original proof obligation, preserving the quantified
variables and conditionals, and collects all function or operator applications that
occur in the formula. In particular, we define the following rules.

[[f [e]]]F ≡ [[f]]F ∧ [[e]]F ∧ e ∈ domain f

[[f(e)]]F ≡ [[f]]F ∧ [[e]]F ∧ e ∈ dom(f)

[[∀x : e]]F ≡ ∀x : [[e]]F [[e1 ∧ e2]]F ≡ [[e1]]F ∧ [[e2]]F etc.

[[[x ∈ S 7→ e]]]F ≡ ∀x : [[x ∈ S ⇒ e]]F

For compound expressions other than logical formulas, the operator [[·]]F recurses
on all subexpressions. For example, [[[e1 ⊆ e2]]]F ≡ [[e1]]F ∧ [[e2]]F . For atomic
expressions x, we define [[x]]F ≡ true.

11

It can be shown that given a well-typed TLA+ expression e from the fragment
ξ, all λ-terms that occur in its translation [[e]]B can be β-reduced, as stated by
the following proposition.

Proposition 2. Given a well-typed TLA+ expression from the fragment ξ that
contains only sets of individuals and functions whose arguments are atomic types,
then the β-normal form of [[e]]B does not contain λ-terms.

Proof (idea). The translation of expressions e ∈ S and f [e] introduces function
applications that, due to the assumption on the types of TLA+ expressions that
appear in the input, remove any λ’s introduced during the translation. The only
atomic formulas that directly involve set or function types are S ⊆ T , S = T , and
f = g, for sets S and T and functions f and g, and in these cases the translation
introduces explicit quantifiers that provide the required function arguments for
β-reduction. qed

After transforming a proof obligation o in ξ to a basic expression, [[o]]B is
ready to be translated to the input format of SMT solvers. Purely arithmetic
and first-order expressions are translated to the corresponding built-in operators
of the target languages. For example, the basic expression e1 + e2 (where e1 and
e2 must be of arithmetic type because of type checking) is translated to SMT-
LIB as (+ e1 e2) and ∀x : e as (forall ((x [[τx]]S)) e), where x is a fresh identifier,
τx is the type of x as determined by type inference, and where [[·]]S translates a
type to an SMT sort.

The SMT-LIB, Yices, and Z3 backends mainly differ in the encoding of tuples
and records. SMT-LIB currently does not have a pre-defined theory for these
types, whereas Yices supports them natively, and the Z3 extension of SMT-LIB
provides algebraic data types. These kinds of expressions are therefore translated
differently for each particular solver format. Currently, only constituents of tuples
and records of atomic types are allowed.

In the Yices format, the encoding of records and tuples is almost verba-
tim. For example, the TLA+ record [h1 7→ e1, h2 7→ e2] is translated to (mk-
record h1::e1 h2::e2) and the expression r.h corresponds to (select r h). The type
Rec {h1 7→ τ1, h2 7→ τ2} is represented as the sort (record h1 :: τ1 h2 :: τ2). The
translation of tuples is analogous, with indexes taking the place of record field
names.

For every record type r = Rec {h1 7→ τ1, . . . , hn 7→ τn}, the Z3 backend
declares the data type

(record-sortr (mk-recordr (h1 τ1) . . . (hn τn))

that introduces the new sort identifier record-sortr, the datatype constructor
mk-recordr, and the selector function hi with their corresponding types. Record
construction and selection are then translated according to the following rules
(the operator [[·]]T : ξ → SMT represents the translation function to SMT for-
mat.)

[[[h1 7→ e1, h2 7→ e2]]]T ≡ λr.[[r = mk-recordr(e1, e2)]]T (4.12)

[[r.h]]T ≡ [[h(r)]]T (4.13)

12

In the SMT-LIB backend, records are axiomatized as follows. For each record
sort r that occurs in the proof obligation, we declare a new sort record-sortr of
arity 0. The record constructor and the selector functions are declared separately
as uninterpreted functions with the appropriate sorts. The translation rules are
the same as above (4.12 and 4.13). The logical connection between the con-
stituents with their function selectors and the constructor are asserted for each
new declared datatype by the axioms

∀x1 : τ1, . . . , xn : τn. xi = hi(mk-recordr x1 . . . xn) for 1 ≤ i ≤ n.

5 Experimental results

We have used our new backend with good success on several examples that had
previously been proved interactively using tlaps. In particular, we show the
results for two cases in the following table. For each benchmark, we indicate the
size (number of lines) of the interactive proof, the time (in seconds) required to
verify that proof on a standard laptop, as well as the corresponding figures when
parts of the proof are performed using the SMT backend, in its three flavors.

Original SMT-LIB/CVC3 Yices Z3
size time size time size time size time

Bakery 398 24 7 33 76 11 7 5
Memoir 2381 53 208 7 208 5 208 7

The first example concerns the invariant proof for (an atomic version of)
the well-known N -process Bakery algorithm [9], which mainly uses set theory,
functions and arithmetic over the natural numbers. It could be reduced from
almost 400 lines of interactive proof to a completely automatic proof. The re-
sulting obligation generates SMT formulas containing 105 quantifiers (many of
them nested), which could be proved by the CVC3 SMT solver in around 33
seconds and by Z3 in 5 seconds. On the other hand, Yices could not handle
the entire proof obligation at once, and it was necessary to split the theorem
into separate cases per subaction; it then takes about 11 seconds to prove the
resulting obligations.

More interestingly, the backend could handle significant parts of the type
and safety invariant proofs of the Memoir security architecture [12], a generic
framework for executing modules of code in a protected environment. The proofs
were almost fully automated, except for three sub-proofs that required manual
Skolemization of second-order quantifiers. In terms of lines of proof, they were
reduced to around 10% of the original size. In particular, the original 2381 lines
of proof for the complete type invariant theorems were reduced to 208 lines. Our
three solvers took between 5 and 7 seconds to prove them.

These encouraging results show that significant automation can be gained
by using SMT solver for the verification of standard TLA+ models, without
adapting these models to the SMT backend. There are, however, certain proof

13

obligations that cannot be translated and on which the backend fails. Such ex-
amples typically involve the use of advanced set-theoretic constructs, or even
just sets of sets, which cannot be encoded in first-order logic using characteristic
predicates. For example, our backend cannot prove

∀S ∈ T : S 6= {} ∧ (∀x ∈ S : P (x))⇒ ∃x ∈ S : P (x).

In simple cases such as this one, it suffices to Skolemize the outermost quantifier:
the backend will then discard the irrelevant hypothesis S ∈ T that cannot be
translated.

Another source of failures is the use of TLA+ operators that accept arguments
of different SMT sorts and that cannot be type checked according to our typing
discipline. Fortunately, such cases appear rarely in actual specifications.

6 Conclusions

We defined a translation of certain TLA+ proof obligations to the input language
of state-of-the-art SMT solvers. The translation relies on imposing a typing dis-
cipline on the untyped specification language TLA+, and is based on a corre-
sponding type inference algorithm. This discipline restricts the class of TLA+

expressions that can be translated. Nevertheless, a significant fragment of the
source language can be handled. In particular, we support first-order logic, el-
ementary set theory, functions, integer and real arithmetic, records and tuples.
Sets and functions are represented as lambda-abstractions, which works quite ef-
ficiently but excludes handling second-order expressions involving, for example,
sets of sets. The translation of records and tuples relies on an axiomatization
for SMT-LIB, and on appropriate native constructs of Yices and Z3. Our type
inference and translation algorithms provide the formal basis for the implemen-
tation of an SMT-based backend prover for tlaps. Universal set quantifiers that
occur at the outermost level can easily be removed by the user of tlaps, by
introducing Skolem constants. An automatic pre-processing of such terms would
further improve the backend.

In future work, we intend to study the question of interpreting proofs that
many SMT solvers can produce for reconstructing them (as well as the type
assignment) in the trusted object logic of Isabelle/TLA+. This would allow us
to check the results of these solvers, as well as of the translation from TLA+

into SMT input, and would raise the confidence in the SMT backend, just as
currently tlaps can check proofs produced by Zenon.

We also envisage extending our translation to support λ-abstractions (for
functions as basic terms) using, for example, combinators, and to support some
more advanced set-theoretic constructions, perhaps using a different representa-
tion of sets.

Acknowledgements. Denis Cousineau, Damien Doligez, and Leslie Lamport pro-
vided constructive feedback on the design and implementation of the SMT back-
end. Helpful comments from the anonymous referees are gratefully acknowledged.

14

References

1. C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB standard: Version 2.0. In
A. Gupta and D. Kroening, editors, Satisfiability Modulo Theories (SMT 2010),
Edinburgh, UK, 2010. http://www.SMT-LIB.org.

2. C. Barrett and C. Tinelli. CVC3. In W. Damm and H. Hermanns, editors, 19th
Intl. Conf. Computer Aided Verification (CAV’07), volume 4590 of LNCS, pages
298–302, Berlin, Germany, 2007. Springer.

3. J. C. Blanchette, S. Böhme, and L. C. Paulson. Extending Sledgehammer with
SMT solvers. In N. Bjørner and V. Sofronie-Stokkermans, editors, 23rd Intl. Conf.
Automated Deduction, volume 6803 of LNCS, pages 116–130, Wroclaw, Poland,
2011. Springer.

4. R. Bonichon, D. Delahaye, and D. Doligez. Zenon : An extensible automated
theorem prover producing checkable proofs. In N. Dershowitz and A. Voronkov,
editors, 14th Intl. Conf. Logic for Programming, Artificial Intelligence, and Rea-
soning (LPAR 2007), volume 4790 of LNCS, pages 151–165, Yerevan, Armenia,
2007. Springer.

5. K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz. Verifying safety proper-
ties with the TLA+ proof system. In J. Giesl and R. Hähnle, editors, 5th Intl.
Joint Conf. Automated Reasoning (IJCAR 2010), volume 6173 of Lecture Notes in
Computer Science, pages 142–148, Edinburgh, UK, 2010. Springer.

6. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In C. R. Ramakrishnan
and J. Rehof, editors, 14th Intl. Conf. Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2008), volume 4963 of LNCS, pages 337–340,
Budapest, Hungary, 2008. Springer.

7. D. Déharbe. Automatic verification for a class of proof obligations with SMT-
solvers. In M. Frappier, U. Glässer, S. Khurshid, R. Laleau, and S. Reeves, editors,
Abstract State Machines, Alloy, B and Z (ASM 2010), volume 5977 of LNCS, pages
217–230, Orford, Canada, 2010. Springer.

8. B. Dutertre and L. de Moura. The Yices SMT solver. Tool paper at http://

yices.csl.sri.com/tool-paper.pdf, 2006.
9. L. Lamport. A new solution of Dijkstra’s concurrent programming problem. Com-

munications of the ACM, 17(8):453–454, 1974.
10. L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and

Software Engineers. Addison-Wesley, Boston, Mass., 2002.
11. L. Lamport and L. C. Paulson. Should your specification language be typed? ACM

Trans. Prog. Lang. Syst., 21(3):502–526, 1999.
12. B. Parno, J. R. Lorch, J. R. Douceur, J. Mickens, and J. M. McCune. Memoir:

Practical state continuity for protected modules. In IEEE Symp. Security and
Privacy, Berkeley, California, U.S.A., 2011. IEEE Computer Society. Formal Spec-
ifications and Correctness Proofs: Tech. Report, Microsoft Research, Feb. 2011.

13. M. Wenzel, L. C. Paulson, and T. Nipkow. The Isabelle framework. In O. A.
Mohamed, C. Muñoz, and S. Tahar, editors, 21st Intl. Conf. Theorem Proving in
Higher Order Logics (TPHOLs 2008), volume 5170 of LNCS, pages 33–38, Mon-
treal, Canada, 2008. Springer.

15

