
Refinement Types for TLA+

Stephan Merz1 and Hernán Vanzetto1,2

1 INRIA, Villers-lès-Nancy, France & LORIA
2 Microsoft Research-INRIA Joint Centre, Saclay, France

Abstract. TLA+ is a specification language, mainly intended for concurrent and
distributed systems. Its non-temporal fragment is based on a variant of (untyped)
ZF set theory. Motivated by the integration of the TLA+ Proof System with SMT

solvers or similar tools based on multi-sorted first-order logic, we define a type
system for TLA+ and we prove its soundness. The system includes refinement
types, which fit naturally in set theory. Combined with dependent function types,
we obtain type annotations on top of an untyped specification language, getting
the best of both the typed and untyped approaches. After implementing the type
inference algorithm, we show that the resulting typing discipline improves the
verification capabilities of the proof system.

1 Introduction

The specification language TLA+ [11] combines a variant of Zermelo-Fraenkel (ZF)
set theory for the description of the data manipulated by algorithms and linear-time
temporal logic for the specification of their behavior. The TLA+ Proof System (TLAPS)
integrates different backends for automatic proving to provide proof support for TLA+.
The work reported here is motivated by the development of an SMT backend through
which users of TLAPS interact with standard SMT (satisfiability modulo theories) solvers
for non-temporal reasoning in the set theory of TLA+.

In line with the foundations of classical mathematics, TLA+ is an untyped formal-
ism [12]. On the other hand, it is generally accepted that strong type systems such
as Martin-Löf type theory or HOL (Church’s simple type theory) and its variants help
provide semi-automatic proof support for highly expressive modeling languages. Auto-
matic first-order theorem provers, including SMT solvers, are generally based on multi-
sorted first-order logic that have interpreted operators over distinguished sorts, such as
arithmetic operators over integers. Similarly, specification languages such as Z [19] or
B [1] use typed variants of set theory that correspond naturally to multi-sorted first-order
logic [5].

A sound way of encoding TLA+ in SMT-LIB [4], the de-facto standard input lan-
guage for SMT solvers, described in our previous work [14], is to introduce a distin-
guished sort U corresponding to TLA+ values, with injections from existing sorts, such
as int2u : Int → U for integer values. To represent an operator such as addition, we
declare a function plus that takes arguments and returns results in U, but we relate it to
the built-in addition operator +, over the image of int2u , by the axiom

∀m,n : Int. plus(int2u(m), int2u(n)) = int2u(m + n).

1 declare int2u : (Int) U
2 declare plus : (U U) U
3 assert ∀m,n : Int. int2u(m) = int2u(n)⇒ m = n
4 assert ∀m,n : Int. plus(int2u(m), int2u(n)) = int2u(m + n)
5 assert ¬(∀x : U. (∃n : Int. x = int2u(n))⇒ plus(x , int2u(0)) = x)

Fig. 1. Encoding of the proof obligation ∀x . x ∈ Int ⇒ x + 0 = x in SMT-LIB.

With this representation, the SMT backend will be unable to prove the TLA+ formula
∀x .x+0 = x because the value of the bound variable x is not known to be in the image
of int2u . Indeed, this formula is not a theorem of TLA+; for example, the expression
{}+ 0 is syntactically correct, but its value is unspecified. However, the TLA+ formula
∀x . x ∈ Int ⇒ x + 0 = x can be proved, based on the (pretty-printed) SMT-LIB
encoding shown in Fig. 1. As can be seen from this example, this style of encoding
requires a substantial number of quantified formulas that degrade the performance of
SMT solvers. In particular, the hypothesis x ∈ Int in the TLA+ formula gives rise to the
subformula ∃n : Int. x = int2u(n). If we could detect appropriate type information
from the original TLA+ formula, we could simply translate it to ∀x : Int. x + 0 = x .

The above example motivates the definition of a type system and an associated type
inference algorithm for TLA+. Our previous work [14] contained a preliminary pro-
posal in this direction. By necessity, type systems impose restrictions on the admissible
formulas, and one can therefore not expect type inference to succeed for all TLA+ proof
obligations. If no meaningful types can be inferred, the translation can fall back to the
“untyped” encoding described above. The question is then how expressive the type sys-
tem should be in order to successfully handle a large class of TLA+ formulas. The type
system of [14] was fairly restricted and could in certain cases not express adequate type
information. In particular, handling function applications in TLA+ often requires pre-
cise type information, where it must be proved that the argument is in the domain of the
function. For example, consider the TLA+ formula3

∀f ∈ [{1, 2, 3} → Int]. f [0] < f [0] + 1

This formula should not be provable: since 0 is not in the domain of f , we should not
infer that f [0] is an integer. In our previous work, we over-approximated the type of f
as a function from Int to Int, then generated a side condition that attempted to prove
0 ∈ dom f . However, computing the domain of a function is not always as easy as
in this example, leading to failed proof attempts. The design of an appropriate type
system is further complicated by the fact that some formulas, such as f [x]∪ {} = f [x],
are actually valid irrespectively of whether x ∈ dom f holds or not. This observation
motivates the use of a more expressive type system. Using refinement types [7, 20], the
type of dom f is {x : Int | x = 1 ∨ x = 2 ∨ x = 3}. During type inference, the system
will try to prove that x = 0 ⇒ x ∈ dom f , and this will fail, hence the translation
will fall back to the untyped encoding (which will in turn fail to prove the formula, as

3 In TLA+, [S → T] denotes the set of functions with domain S and co-domain T , and the
application of function f to argument e is written f [e].

it should). In many practical examples, the domain condition can be established during
type inference, leading to shorter and simpler SMT proof obligations.

The main contribution of this paper is thus a novel use of refinement types for
TLA+ formulas. Since TLA+ is very close to untyped Zermelo-Fraenkel set theory, we
believe that our approach is more widely applicable for theorem proving in set-theoretic
languages. A type system with refinement types is very expressive and actually quite
close to set theory; it gives rise to proof obligations that are undecidable. Specifically,
subtyping between two refinement types {x : τ | φ1} and {x : τ | φ2} reduces to
prove φ1 ⇒ φ2. This is comparable to the use of predicate types in the PVS theorem
prover [18] where type checking conditions may be generated that have to be discharged
interactively. In our case, we divide the problem of type inference into constraint gener-
ation and constraint solving. Constraint generation rules are derived directly from type
checking rules, and always succeed. For constraint solving, we again use SMT solvers,
which may succeed or not. In case constraint solving fails, we fall back to the untyped
encoding (restricted to the corresponding part of the proof obligation), which is compa-
rable to dynamic type checking.

Paper outline. In Section 2 we present a formal definition of a fragment of TLA+. Sec-
tion 3 contains the definition of the type system, including the key concepts of typing
hypothesis and safe types, the typing rules and finally the proof of soundness of the sys-
tem. The typing rules give raise to the inference algorithm in Section 4. Next, we show
some experimental results of a prototype implementation of the system in Section 5 and
Section 6 concludes.

2 A fragment of TLA+

We now introduce a fragment of TLA+, called L , that represents the essential concepts
of TLA+. The main simplifications are: we restrict the discussion to unary operators and
do not handle TLA+’s CHOOSE operator, tuples, strings, records, or sequences. In order
to adhere to a more standard presentation of ZF set theory, we also assume a distinc-
tion between terms (non-Boolean expressions) and formulas, whereas TLA+ does not.
However, in the “liberal interpretation” of TLA+ [11] that underlies TLAPS, the results
of Boolean connectives are always Boolean. Using a pre-processing step of “Boolifi-
cation” that replaces all possibly non-Boolean arguments e of Boolean operators by
e = true, the distinction between terms and formulas can be recovered.

Syntax. We assume given non-empty, infinite, and disjoint sets V of variables and O
of (unary) operator symbols, the latter subdivided into Boolean operators wb and non-
Boolean operators w .4 The set-theoretic kernel of L is given by the following grammar
where for clarity we distinguish between different syntactic categories of expressions.

4 TLA+ operator symbols correspond to the standard function and predicate symbols of first-
order logic but we reserve the term “function” for functional values in TLA+.

Language L grammar

(terms) t ::= v | w(e)
(sets) s ::= t | {} | {e, e} | Ps | ∪ s | {v ∈ s : φ}
(expressions) e ::= s
(formulas) φ ::= wb(e) | false | φ⇒ φ | ∀v . φ | e = e | e ∈ s

A term is either a variable symbol v in V or results from the application of an opera-
tor symbol w inO to an expression. Since TLA+ is a set-theoretic language, every term
denotes a set. The language also contains explicit set constructors corresponding to the
empty set, pairs, the powerset, the generalized union, and set comprehension. Initially,
expressions are just sets. Formulas are built from the application of a Boolean operator
symbol wb to an expression, from false, implication and universal quantification (from
which the remaining first-order connectives can be defined), and from the binary oper-
ators = and ∈. This language, plus an object of infinity (the set of integer numbers Int
that we will add later), corresponds to MacLane set theory, which is a suitable fragment
to formalize large parts of mathematics.

As a first extension of this purely set-theoretic language, we now introduce (total)
functions. In standard set theory, functions are defined as binary relations (i.e., sets of
pairs) restricted so that each element of the domain is mapped to a unique element in
the range of the relation. TLA+ instead introduces functions axiomatically using three
primitive constructs. The expression f [e] denotes the result of applying the function f
to the expression e , and dom f denotes the domain of f . The expression λx ∈ S . e
denotes the function f with domain S such that f [x] = e , for any x ∈ S . For x /∈ S ,
the value of f [x] is unspecified. The expression [S → T] denotes the set of functions
with domain S and co-domain T . The characteristic predicate for a TLA+ value being
a function is defined as IsAFcn(f) , f = λx ∈ dom f . f [x].

Furthermore, L also contains arithmetic expressions. Natural numbers are primitive
symbols, Int denotes the set of integer numbers, and the operators +, −, and < denote
the usual operations when applied to integers. For further reading, a more detailed pre-
sentation of the formal definition of TLA+ appears in [11, Sec. 16].

Extension with functions

(terms) t ::= ... | f [e]
(sets) s ::= ... | dom f

| [s → s]
(functions) f ::= t | λv ∈ s. e
(expressions) e ::= ... | f

Extension with arithmetic

(sets) s ::= ... | Int
(numbers) n ::= t | 0 | 1 | 2 | · · ·

| n + n | n − n
(expressions) e ::= ... | n
(formulas) φ ::= ... | n < n

A many-sorted version of L , written Lτ , is obtained by decorating variables with
sorts, and by assigning a type 〈τ1, τ2〉 to every operator where τ1 and τ2 denote the type
of the argument and of the result. Our type system will be introduced in Section 3. In
particular, we will write ∀v : τ.φ for a quantified formula where the bound variable has
sort τ .

The definitions of free variables and substitution are the usual ones for first-order
logic over the set of variables V . We write fv(φ) for the set of free variables of φ, and
e[y ← z] for the expression or formula e where all occurrences of the free variable y
are substituted by z .

Semantics. A single-sorted model M is composed of a non-empty set D called the
domain, a valuation function ϕ : V → D that assigns to each variable an element in
the domain, and an interpretation function I that, in particular, assigns to each operator
symbol w a function I(w) : D → D. The definition of the interpretation continues
in the standard way. In particular, models respect the extensionality and foundations
axioms of ZF, functions are governed by the axiom

f = λx ∈ s. e ⇔ ∧ IsAFcn(f)
∧ dom f = s
∧ ∀y ∈ s. f [y] = e[x ← y]

and arithmetic expressions are interpreted in the standard way when arguments are in-
tegers. The semantics of the multi-sorted language Lτ is analogous with the usual mod-
ifications corresponding to the presence of sorts [13].

A formula φ is valid (noted ` φ) iff it holds in every model.

3 A Type System with Refinements

Types are given by the following grammar.

τ ::= t1 | t2 | . . . | Bool | Int | α | Set τ | (v : τ)→ τ | τ] τ | {x : τ | φ}

The basic types consist of a denumerable set of atomic types t1, t2, . . ., as well as of
types Bool for formulas and Int for integers. Further type constructors are directly cor-
related to set objects. For instance, the Set constructor determines the level of set strata
for P and ∪. Type variables α are interpreted over the resulting Herbrand universe of
types. A ground assignment σ is a total function σ of type variables to atomic types.

A refinement type {x : τ | φ} is intended for representing set comprehension ob-
jects. It describes the set of values of type τ that satisfy the refinement predicate φ,
where x is free in φ. Refinement types have the property (3.1) that the refinement of
a refinement type is also a refinement type. From this property, we know also that any
type τ can be written as the (trivial) refinement type {x : τ | true}.

{x : {y : τ | φ1} | φ2} = {x : τ | φ1[y ← x] ∧ φ2} (3.1)

The type of the empty set is defined as the type ∅τ , Set {x : τ | false}, for any
type τ . A pair {a, b} has the type τa] τb , the logical union of the types of a and b. The
union type constructor] is an operation on refinements and sets and it is defined by:

{x : τ | φ1}] {x : τ | φ2} = {x : τ | φ1 ∨ φ2} (3.2)
(Set τ1)] (Set τ2) = Set (τ1] τ2) (3.3)

A function f has the dependent type (x : τ1) → τ2 [2], where τ1 represents the
domain of f and the term x may occur in the range type τ2. The variable x of type τ1 is
bound in type τ2. If x does not occur in τ2, we can omit it from the syntax to obtain the
standard function type τ1 → τ2.

3.1 Typing Propositions and Typing Hypotheses

When encoding a multi-sorted language into a single-sorted one, the traditional method
[6] is straightforward. For every sort τ , it defines a characteristic proposition Pτ that
represents the set of values having sort τ . For instance, the proposition associated to
Set τ is derived from the axiom of power set. Then, it relativizes the quantifiers, that is,
it replaces the sort annotations x : τ by new hypotheses Pτ (x). This method is applied
to formulas without type variables, therefore all types should be grounded. For each
atomic type ti , we introduce a new unary predicate symbol ti and an axiom stating that
these predicates partition the universe of ground types in disjoint sets.

Definition 1 (Typing propositions). Given a type assignment x : τ , an encoding of it
can be constructed into the formula Pτ (x), defined as follows:

Pti (x) , ti(x) PBool(x) , x ∈ {true, false} PInt(x) , x ∈ Int

PSet τ (x) , ∀z ∈ x . Pτ (z) Pτ1]τ2(x) , Pτ1(x) ∨ Pτ2(x)
P{y:τ | φ}(x) , Pτ (x) ∧ φ[y ← x]

P(x :τ1)→τ2(f) , ∧ f = λx ∈ dom f . f [x]
∧ ∀z . z ∈ dom f ⇔ Pτ1(z)
∧ ∀z . Pτ1(z)⇒ (∀x .Pτ1(x)⇒ Pτ2(f [z]))

For example, PSet {x :Int | p(x)}(s) = ∀z ∈ s. z ∈ Int ∧ p(z).

Definition 2 (Relativization). A typed formula is relativized by recursively replacing
the type annotations x : τ by a new hypothesis corresponding to the typing proposition
Pτ (x). The relevant transformation is ∀x : τ. φ ∀x . Pτ (x)⇒ φ.

Lemma 1 (Relativization is sound). ` ∀x : τ. φ implies ` ∀x . Pτ (x)⇒ φ.

Proof. The proof follows [13] with the addition of the Set and refinement types. ut

Now suppose we want to annotate the formula ∀x , y . ∪ {x , y} = ∪{y , x}. We can
safely say that the type of x and y should be Set t, for some atomic type t. Semantically
speaking, all values in the untyped universe D denote sets. And the stratification of sets
using the Set constructor supports the key idea that a set must have a different type from
its elements.

Definition 3 (Safe types). A type is said to be safe if it is an atomic type ti , for some i ,
or if it is Set τsafe, where τsafe is safe.

Since all values are sets and typing predicates are uninterpreted, safe types cannot in-
troduce any unsoundness to a typed formula.

Lemma 2. The relativization of the formula ∀x : τsafe. φ is equisatisfiable with ∀x . φ.

Proof. By the definitions of relativization and typing proposition of Set and atomic
types. ut

In this paper we are going in the opposite direction, that is, from an unsorted to
a many-sorted universe. We will obtain the type information from propositions that
appear in the unsorted language in the form of typing hypotheses.5

Definition 4 (Typing hypothesis). A typing hypothesis H(x) for variable the x is a
premise of the form x ∈ e or x = e , for any expression e where x is not free in e .

The type information that can be obtained from an untyped formula is almost di-
rectly taken from their typing hypotheses and can be captured with precision by re-
finement types. Suppose we want to annotate the invalid formula ∀x . x + 0 = x . It is
incorrect to say that x is an integer: that would make the formula valid. However, the
formula ∀x . x ∈ Nat ⇒ x + 0 = x contains a hypothesis from which we can soundly
infer the type {y : Int | 0 ≤ y} for x . With this in mind, we define the typing rules.

3.2 Typing rules

We start by declaring some conventional auxiliary definitions. A typing context Γ :
V ∪ O → τ is a finite partial function from variable and operator symbols to types.
Its grammar is Γ ::= x : τ | Γ, x : τ . A triple Γ ` φ : τ is a pre-judgement. It is a
(valid) judgement if it can be derived from the typing rules. A pair (Γ, τ) is a typing of
φ iff fv(φ) ⊆ dom(Γ) and Γ ` φ : τ is valid. Likewise, the typing of a formula is just
Γ . A formula φ is typable iff it admits a typing. Given an untyped formula φ , ∀x . ϕ
such that Γ ` ϕ : Bool is a judgment and fv(ϕ) ⊆ dom(Γ), then the corresponding
annotated (sorted) formula is φ′ , ∀x : Γ (x). ϕ.

The definition of the typing rules is similar to the standard rules for simple typed λ-
calculus. The typing rules introduce many fresh type variables noted α, α1, α2, ..., etc.
during a type derivation. In contrast to type inference in programming languages where
type variables are unified throughout the whole derivation to obtain a most general type,
here we just want to unify variables when deriving the typing hypotheses. In the rest of
the formula, we just check that types are well-formed. The core of the typing rules lies
in the definition of four binary relations on types. Equality≡ and subtyping<: are used
to unify type variables. They have their corresponding non-unifiable versions: equality
checking ≈ and subtype checking ≺:. Unless explicitly noted, they are all interpreted
in a context Γ , for example, as Γ ` τ1 ≡ τ2, to bind the free variables the refinement
predicates may have.

The equality condition τ1 ≡ τ2 tries to unify both types when one of them is a
type variable. The subtyping relation <: is a pre-order on types (i.e., it is reflexive
and transitive). For any ground types τ1 and τ2, τ1 <: τ2 iff ∀x . Pτ1(x) ⇒ Pτ2(x);
when at least one of τ1 and τ2 is a type variable, the types are unified, as explained

5 TLA+ was designed with the philosophy that the user should not think in terms of types when
she writes the specifications and proofs. In practice, it is customary that the first thing the
user does after declaring the variables in a TLA+ module is to write a type invariant for every
declared variable. Once proved, this invariant is used as a hypothesis in the other theorems.

Typing rules for first-order formulas and set objects
[T-FALSE]

Γ ` false : Bool

[T-IMPLIES]
Γ `φ1 : Bool Γ `φ2 : Bool

Γ `φ1 ⇒ φ2 : Bool

[T-QUANT]
Γ, x : α`φ : Bool

Γ `∀x . φ : Bool

[T-CHECK]
Γ, x : τ `φ : Bool

Γ `∀x : τ. φ : Bool

[T-VAR]
Γ (x) ≡ α
Γ ` x : α

[T-OP]
Γ (w) ≡ α1 → α2 Γ ` e : α1

Γ `w(e) : α2

[T-SETCOMP]
Γ ` s : Setα Γ, x : α`φ : Bool x /∈ fv(s)

Γ `{x ∈ s : φ} : Set {x : α | φ}

[T-EMPTY]

Γ `{} : Set∅α

[T-PAIR]
Γ ` e1 : α1 Γ ` e2 : α2

Γ `{e1, e2} : Set (α1] α2)

[T-POWER]
Γ ` s : Setα

Γ `Ps : Set Setα

[T-UNION]
Γ ` s : Set Setα

Γ ` ∪ s : Setα

Γ ` e1 : α1

Γ ` e2 : α2

Γ `α1 ≺: α3

Γ `α2 ≺: α3

Γ ` e1 = e2 : Bool
[T-EQ]

Γ ` e1 : α1

Γ ` e2 : Setα2
Γ `α1 ≺: α2

Γ ` e1 ∈ e2 : Bool
[T-MEM]

[TH-EQ]
Γ ` e : α Γ, x : α`φ : Bool x /∈ fv(e)

Γ `∀x . x = e ⇒ φ : Bool

[TH-MEM]
Γ ` e : Setα Γ, x : α`φ : Bool x /∈ fv(e)

Γ `∀x . x ∈ e ⇒ φ : Bool

Typing rules for function and arithmetic expressions
Γ ` f : α1

Γ ` e : α2

Γ `α1 ≈ (x : α3)→ α4

Γ `α2 ≺: α3

Γ ` f [e] : [x 7→ e] · α4
[T-APP]

Γ ` f : α1

Γ `α1 ≈ (x : α2)→ α3

Γ ` dom f : Setα2
[T-DOM]

Γ ` s : Setα1 Γ, x : α1 ` e : α2

Γ `λx ∈ s. e : (x : α1)→ α2
[T-FUN]

Γ ` s : Setα1 Γ ` t : Setα2

Γ ` [s → t] : Set (α1 → α2)
[T-FUNSET]

Γ ` Int : Set Int [T-INT]
Γ ` ei : αi Γ `αi ≺: Int i ∈ {1, 2}
Γ ` e1 + e2 : {x : Int | x = e1 + e2}

[T-PLUS]

n ∈ {0, 1, 2, ...}
Γ `n : {x : Int | x = n} [T-NUM]

Γ ` ei : αi Γ `αi ≺: Int i ∈ {1, 2}
Γ ` e1 < e2 : Bool

[T-LESS]

Rules for <≺: (that is, <: or ≺:) and ≈
Γ ` e : τ1 Γ ` τ1 <≺: τ2

Γ ` e : τ2
[T-SUB]

Γ `α1 ≡ τ1 Γ `α2 ≡ τ2
Γ ` (x : τ1)→ τ2 ≈ (x : α1)→ α2

[MATCH-ARROW]

[EQ-REF]
Γ, x : τ `φ1 ⇔ φ2

Γ `{x : τ | φ1} ≡ {x : τ | φ2}

[EQ-ARROW]
Γ ` τ1 ≡ τ ′1 Γ ` τ2 ≡ τ ′2

Γ ` (x : τ1)→ τ2 ≡ (x : τ ′1)→ τ ′2

[EQ-SET]
Γ ` τ1 ≡ τ2

Γ `Set τ1 ≡ Set τ2

[SUB-REF]
Γ, x : τ `φ1 ⇒ φ2

Γ `{x : τ | φ1} <≺: {x : τ | φ2}

[SUB-ARROW]
Γ ` τ ′1 <≺: τ1 Γ, x : τ ′1 ` τ2 <≺: τ ′2
Γ ` (x : τ1)→ τ2 <≺: (x : τ ′1)→ τ ′2

[SUB-SET]
Γ ` τ1 <≺: τ2

Γ ` Set τ1 <≺: Set τ2

Fig. 2. Typing and subtyping rules.

later by the rules of constraint solving. The condition τ1 ≺: τ2 is valid iff both types
are ground types and τ1 <: τ2. That is, it checks that τ1 is a subtype of τ2, without
unifying type variables. We use the symbol <≺: as a shorthand for <: and ≺:. The rules
EQ-REF and SUB-REF yield type verification conditions on first-order formulas that
have to be proved correct to satisfy the type property. Therefore, the verification of
these conditions is an undecidable problem [17]. Well-formedness conditions on types
reduce basically to check the type conditions.

The typing rules are given in Figure 2. As expected, once a formula has been Boo-
lified (cf. Section 2), the rules for false and ⇒ are trivial. Rule T-QUANT evaluates
the body of ∀x . φ by adding x to the context with a fresh type variable α. We ob-
tain the typing hypotheses by decomposing the assumptions present in a formula by
elementary heuristics. The rules TH-EQ and TH-MEM, which are applied with higher
priority than rule T-QUANT, encapsulate this requirement in a simplified way. However,
the information provided by the typing hypotheses may not be completely captured by
merely syntactic analysis. For example, the typing proposition PSet Int(s) is equal to
∀z ∈ s. z ∈ Int , but the typing hypothesis may appear, for instance, as the equivalent
formula s ∈ PInt . The sub-expressions x ∈ s in the rules T-SETCOMP and T-FUN are
typing hypotheses and are therefore treated as such.

The precise type information of refinement types imposes a weak form of type
equality (rule T-EQ). If we require the types of the arguments to be exactly equal, we
would be ruling out many typable expressions. Instead, the rule requires them to a have
common super-type. Suppose we want to type the expression 3 = 4. It is false, but still
typable because the types {x : Int | x = 3} and {x : Int | x = 4}, which have the same
base type Int, are both subtypes of {x : Int | x = 3 ∨ x = 4}.

Functions are contravariant on their arguments while they are covariant on their
result (rule SUB-ARROW). This has the effect of shrinking their domain while expand-
ing their codomain. To extract the domain from a function type, as needed by rules
T-APP and T-DOM, we use the condition τ1 ≈ τ2 as a kind of pattern-matching for
functions (MATCH-ARROW). When τ is a function type and α1 and α2 fresh variables,
τ ≈ (x : α1)→ α2 obtains the domain of τ in α1 and the codomain in α2. Function ap-
plications (T-APP) have type [x 7→ e] ·α4: it is the type α4 of the function’s codomain,
to which it is applied a substitution of the variable x by expression e . The substitution
has to be delayed until it is applied to a refinement type, when we can simplify it as:

[x 7→ e] · {x ′ : τ | φ} −→ {x ′ : τ | φ[x ← e]}

Literal integers and the set of integers have a constant type (T-NUM and T-INT).
Rules T-PLUS and T-LESS require that their arguments to be integers with the condition
ei ≺: Int. The rule for x − y is similar to the rule T-PLUS.

Finally, to type check an annotated formula, we use the same type system, except
that the typing rules TH-MEM, TH-EQ and T-QUANT for quantifiers are no longer
needed; they are replaced by the rule T-CHECK. This means that during type checking
there are no derivations from typing hypotheses, and type annotations in quantifiers are
passed directly to the body’s context.

3.3 Soundness

Type annotations, as well as the typing hypotheses, restrict the domain of evaluation
of the quantified variables. Suppose the formula φ is not valid. Then there exists some
valuation in the universe D which makes the formula false. Still, there may exist some
other valuation in D that makes φ true. Let us call A the set of all valuations that make
φ true. We want to show that the type system does not generate annotations for φ,
resulting in φ′, such that those annotations restrict or confine the domain of evaluation
of the variables to the set A which would make φ′ valid.

For example, consider ∀x .x < x +1 which is false in some valuations of x , namely
when x /∈ Int . However, if we annotate x incorrectly as an integer, ∀x : Int. x < x + 1
would become valid, because x would be evaluated precisely in those values that make
x < x + 1 true. In essence, we need to prove that type assignments only follow from
typing hypotheses.

Theorem 1 (Soundness). If x : τ is a typing of φ, then ` ∀x . φ iff ` ∀x : τ. φ.

Proof. ⇒) If φ is true in all models of the untyped universe, then in a sorted universe
that restricts the domain of interpretation, φ will also be trivially true.
⇐) Assuming ` ∀x : τ. φ (named A1) we want to prove ` ∀x . φ.
PROOF. We know that:
〈1〉1. x : τ ` φ : Bool is valid (i.e. there is a type derivation), by hypothesis.
〈1〉2. ` ∀x . Pτ (x)⇒ φ (named A2), by assumption A1 and Lemma 1.
We need to show that Pτ (x), derived from x : τ , does not constraint the domain of
evaluation of x in φ.
〈1〉3. Suffices to prove that from ` A2 we can prove ` ∀x . φ, by step 〈1〉2.
We proceed by a case analysis on the shape of φ.
〈1〉4. CASE 1. If there is no typing hypothesis for the variable x in φ, then ` ∀x . φ.

PROOF.
〈2〉1. The type derivation on φ yields the judgment x : αx ` φ : Bool, by step 〈1〉1.
Type variable αx is fresh and after unification will be equal to τ . The first applied
rule is T-QUANT, the only possible one, since there are no typing hypotheses.
〈2〉2. The type αx can only be promoted to a safe type τ .

PROOF. The TH (typing hypothesis) rules, where unification of type variables
happens, do not apply, meaning that αx cannot be unified with any non-safe type
such as Bool, Int or functions. The only applicable rules that may promote αx are
the rules T-MEM, T-SETCOMP, T-PAIR, T-POWER or T-UNION, but these result
in a safe Set type. For example, rule T-PLUS requires establishing αx ≺: Int,
which is impossible.
〈2〉3. Finally, since τ is safe, it does not compromise the validity of A2 when x : τ
it is relativized to Pτ (x), by Lemma 2.

〈1〉5. CASE 2. If φ is of the formH(x)⇒ φ1, then ` ∀x .H(x)⇒ φ1.
PROOF.
〈2〉1. Suffices to prove thatH(x)⇒ Pτ (x).

〈2〉2. Suppose that H(x) is of the form x ∈ s . The first rule applied in the type
derivation is necessarily TH-MEM, yielding

` s : Setαx (1) and x : αx ` φ1 : Bool (2)

Here, we see that the fresh type variable αx is the same in both sides of the deriva-
tion, which results in the unification of the types of x and s . The TH rules are the
only ones that share type variables in their different premises.
We apply induction on fv(H(x)). For simplicity, we consider that H(x) does not
include quantified formulas.
〈3〉1. (Base case) There are no free variables, meaning that the type of x does
not depend on the type of any other variable. Therefore, it is trivially a constant
type or an atomic type t. For instance, if s is Int , the goal is to show that x ∈
Int ⇒ Pαx

(x). So αx is unified with Int and PInt(x) = x ∈ Int = H(x).
〈3〉2. (Inductive step) We proceed by a case analysis on the shape of s , which
has to be necessarily a set, otherwise it would not match with Setαx in (1).
〈4〉1. CASE s , Pt . The goal is to show that x ∈ Pt ⇒ Pαx

(x). Given that
t : αt , then αx is unified with Setαt . Then PSetαt

(x) = ∀z ∈ x . Pαt
(z), by

the inductive hypothesis z ∈ t ⇒ Pαt (z).
〈4〉2. The other cases are proved in a similar way.

〈2〉3. The case whereH(x) is of the form x = e is similar to the step 〈2〉2.
〈2〉4. QED, by 〈2〉1, 〈2〉2 and 〈2〉3.

〈1〉6. QED, by steps 〈1〉3, 〈1〉4 and 〈1〉5. ut

4 Type Inference Algorithm

The type inference algorithm takes a formula φ and returns a type assignment σ, that is,
a function from type variables to types. The algorithm consists of a constraint generation
phase followed by constraint solving.

Since the constraint-based algorithm is independent of the chosen type system we
can adapt one originally introduced for a variant of ML by Knowles and Flanagan [10].
The main difference is in the constraint language, where we use two additional kinds of
type checking conditions instead of only two for equality and subtyping. The constraint
language grammar is defined following the notation of [16].

c ::= τ ≡ τ | τ <: τ | τ ≈ τ | τ ≺: τ | > | ⊥ | c ∧ c | ∃~α. c | [x 7→ e] · c

In addition to the type constraints, there are the true and false constraints. Conjunc-
tion of constraints and existential quantification of type variables permit to replicate
the structure of a type derivation in a single constraint formula. Delayed substitutions
[x 7→ e] · c replace variable x by expression e in constraint c.

A constraint c is satisfiable, noted σ ` c, iff there exists a ground assignment σ
that satisfies c. Constraint judgements can be interpreted by the following rules, where
σ, α 7→ t is function σ updated with a new assignement for α and t is fresh atomic type:

σ ` >
στ1 στ2
σ ` τ1 τ2

(∈ {≡,', <:,≺:})
σc1 σc2

σ ` c1 ∧ c2

σ, α 7→ t ` c

σ ` ∃α. c

4.1 Constraint generation

To a pre-judgement Γ ` e : τ , where fv(e) ⊆ dom(Γ), we associate a constraint
〈〈Γ ` e : τ〉〉. Constraint generation (CG) rules are essentially derived from their corre-
sponding typing rules, with subsumption (rule T-SUB) distributed all through to make
the rules syntax-directed. CG rules take as arguments an environment Γ , an expression
e and a type variable τ . They are recursively defined on e . The resulting constraint has
a linear size with respect to the size of the original formula. As an example, we show
the CG rule obtained from the rule T-SETCOMP:

〈〈Γ ` {x ∈ s : φ} : αr 〉〉 , ∃α1α2. ∧ 〈〈Γ ` s : Setα1〉〉
∧ 〈〈Γ, x : α2 ` φ : Bool〉〉
∧ Γ ` α2 ≺: α1

∧ Γ ` αr ≡ Set {x : α1 | φ}

Note that: (i) every free type variable that appears in the typing rule are existentially
bounded by fresh type variables α1 and α2, (ii) the expected type for the expression in
the second argument is unified to the type variable αr passed as the third argument, and
(iii) the subsumption rule is implicitly applied to the sub-formula x ∈ s .

The following theorem asserts that the soundness and completeness of the generated
constraints, grounded by a type assignment σ.

Theorem 2 (CG soundness and completeness). σ ` 〈〈Γ ` φ : τ〉〉 iff σΓ ` φ : στ .

Proof (idea). By induction on φ, using the typing rules, the CG definitions and the
interpretation of constraints. For details, see [17]. ut

4.2 Constraint Solving

Constraint-based type inference for systems with subtyping is an extensive research
topic. Pottier [16] and Odersky et al. [15] have developed Hindley-Milner systems pa-
rameterized by a subtyping constraint system. Broadly speaking, we specify a constraint
solving algorithm following [9] as a non-deterministic system of constraint rewriting
rules and first-order unification rules for subtyping constraints. The algorithm proceeds
in one main step, that is repeated once, consisting of solving equality and subtyping
constraints. Once the first execution is finished, the final typing we were searching for
is Γ , but there are still some residual subtype checking constraints of the form τ1 ≺: τ2
to prove. The second step is to check that these constraints are satisfied, by converting
them to the form τ1 <: τ2 and solving them by executing the main step again. If the
remaining constraint is >, the algorithm finishes successfully.

To solve the equality and subtyping constraints we proceed as follows. Given a
context Γ and a constraint c, we apply the rules 3.1, 3.2, 3.3 and MATCH-ARROW
plus the following rules to eliminate the type variables introduced during constraint
generation. Note that rule 4.2 has to be carefully applied to avoid recursive substitutions.

(∃α. c1) ∧ c2 −→ ∃α. (c1 ∧ c2) if α /∈ fv(C2) (4.1)
∃α. (Γ ` α ≡ τ ∧ c) −→ c[τ ← α] if α does not occur in τ (4.2)

Subtype constraints Γ ` τ1 <: τ2 are solved by non-deterministically applying simpli-
fication rules SUB-REF, SUB-ARROW, and SUB-SET, or the unification rules:

Γ ` Set τ <: σ · α {α Z⇒ Set τ}
Γ ` (x : τ1)→ τ2 <: σ · α {α Z⇒ (x : α1)→ α2} (α1, α2 fresh variables)
Γ ` {x : τ | φ} <: σ · α {α Z⇒ {x : τ | γ}} (γ fresh placeholder)

Γ ` {x : τ | φ1} <: {x ′ : α | φ2} {α Z⇒ {x : τ | φ1}}

These four unification rules have their symmetric counterparts. They return a substitu-
tion {α Z⇒ τ} of a variable α by another type τ , which are immediately applied to Γ and
c. Any other pair combination of set, function or refinement types will make the algo-
rithm abort with a type error. The algorithm terminates when no rule can be applied. At
this point, only subtype constraints α1 <: α2 between type variables remain in c. The
type variables α1 and α2 can be set to a concrete ground type t, making the constraint
valid by reflexivity. Placeholder symbols are introduced to defer the reconstruction of
refinement predicates.

Solving placeholders. The final step in type inference algorithm is to find formulas to
replace the placeholders while satisfying the typing conditions. The placeholders appear
in conditions of the form Γ ` γ ⇒ φ, Γ ` γ1 ⇒ γ2 or Γ ` φ ⇒ γ. Our algorithm
to calculate concrete refinement predicates is almost entirely based on a similar one
developed in [10], which, in turn, is based on the intuition that implications can be
analyzed as dataflow graphs.

5 Experimental Results

We have implemented a prototype of the type inference algorithm in TLAPS. In par-
ticular, the following table shows results for two case studies. They correspond to the
invariant proofs of the N -process Peterson and Bakery algorithms for mutual exclusion,
whose data structures are represented by functions ranging over the processes and they
contain some basic arithmetic.

For each benchmark, we record the size of the proof, i.e. the number of non-trivial
proof obligations generated by the proof manager, and the time in seconds required to
verify those proofs on a standard laptop. The proof size corresponds to the number of
proof obligations that are passed to the backend prover, which is proportional to the
number of interactive steps and therefore represents the user effort for making TLAPS
check the proof. We compare these figures for the SMT backend using the previous
elementary type inference algorithm described in [14], and then for the SMT backend
equipped with the new type system with refinement types. The results for the new type
system includes three extra columns corresponding to the number of derived type ver-
ification conditions (non-trivial vs. total), total time in seconds to perform the type
inference (including proving the type conditions), and number of initially generated
constraints. The total time for the second system is the sum of the times required to do
type inference and the time to actually prove the SMT encoding of the proof obligation.
In all cases, the SMT solver used was CVC4 [3].

Simple Types Refinement Types
size time size time tvc type-inf const

Peterson 3 0.40 3 0.30 0/474 0.33 937
Bakery 15 9.52 3 1.51 6/1622 4.15 3317

The second case study, which is a significantly bigger specification than the first
one, takes slightly less time than the previous backend, whereas the overall time taken
is slightly longer for the Peterson case study. The size of the proof, i.e. the number of
human interactions, is considerably reduced for the second case. The current prototypi-
cal implementation of the constraint solving algorithm may benefit from optimizations
(see [16]) in order to speed up type inference.

In both examples, all non-trivial verification conditions were discharged almost in-
stantly by the SMT solver. Consequently, no dynamic domain checkings were needed in
the SMT-LIB encoding.

6 Conclusions

Beyond the recurring debates about using typed versus untyped languages for formaliz-
ing mathematics or software systems [12], we can observe that types, regarded just as a
classification of the elements of a language, arise quite naturally in untyped set theory.
In this paper, motivated by the use of powerful automatic provers for multi-sorted first-
order logic, we have defined a sophisticated type system for a fragment of the TLA+

specification language that captures with precision the values and semantics of sets and
functions using refinement and dependent types. When type inference succeeds, we ob-
tain type annotations on top of an untyped specification language, getting the best of
both the typed and untyped approaches.

Inevitably, the resulting type system constrains the set of accepted TLA+ expres-
sions. Occasionally useful expressions that are not typable by the type system are, for
example, enumerated sets whose elements are of different types. As we mentioned in the
introduction, formulas for which type inference fails will still be translated according
to the “untyped” encoding, and may thus be proved by the SMT solver. One advantage
of doing type inference with constraints is that we can know exactly what part of the
formula cannot be typed and can therefore restrict the use of the untyped encoding to
these parts and produce useful type checking warnings and error messages [8].

Our experience so far with the implementation of this approach in TLAPS has been
quite positive: types are successfully inferred for the vast majority of proof obligations
that we have seen in practice. Since the new type system is a refinement of the pre-
vious one, it never fails when the old one succeeded, and it has been able to increase
the number of proof obligations that the SMT backend can handle without human in-
teraction. The improvements are particularly noticeable in specifications that contain a
significant number of function applications, which are used quite frequently in TLA+

specifications.
The type system is easily extended to accommodate TLA+ constructs that we have

not considered in this paper, such as tuples and records. Support for the CHOOSE oper-
ator (Hilbert’s choice) is more challenging. It would be interesting to study the applica-
bility of our type system to proofs of mathematical theorems in ZF set theory.

References

1. J.-R. Abrial. Modeling in Event-B - System and Software Engineering. Cambridge University
Press, 2010.

2. D. Aspinall and A. B. Compagnoni. Subtyping dependent types. Theor. Comput. Sci., 266(1-
2):273–309, 2001.

3. C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King, A. Reynolds, and
C. Tinelli. Cvc4. In Proceedings of the 23rd International Conference on Computer Aided
Verification, CAV’11, pages 171–177, Berlin, Heidelberg, 2011. Springer-Verlag.

4. C. Barrett, A. Stump, and C. Tinelli. The Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org, 2010.

5. D. Déharbe. Integration of SMT-solvers in B and Event-B development environments. Sci.
Comput. Program., 78(3):310–326, 2013.

6. G. Dowek. Collections, sets and types. Mathematical. Structures in Comp. Sci., 9(1):109–
123, Feb. 1999.

7. T. Freeman and F. Pfenning. Refinement types for ML. In Proceedings of the ACM SIGPLAN
1991 conference on Programming language design and implementation, PLDI ’91, pages
268–277, New York, NY, USA, 1991. ACM.

8. B. Heeren, J. Hage, and D. Swierstra. Generalizing Hindley-Milner type inference algo-
rithms. Technical report, 2002.

9. J.-P. Jouannaud and C. Kirchner. Solving equations in abstract algebras: A rule-based survey
of unification. In Computational Logic - Essays in Honor of Alan Robinson, pages 257–321,
1991.

10. K. Knowles and C. Flanagan. Type reconstruction for general refinement types. In Proceed-
ings of the 16th European conference on Programming, ESOP’07, pages 505–519, Berlin,
Heidelberg, 2007. Springer-Verlag.

11. L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and Software
Engineers. Addison-Wesley, Boston, Mass., 2002.

12. L. Lamport and L. C. Paulson. Should your specification language be typed? ACM Trans.
Program. Lang. Syst., 21(3):502–526, May 1999.

13. M. Manzano. Extensions of First-Order Logic. Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2nd edition, 2005.

14. S. Merz and H. Vanzetto. Harnessing SMT Solvers for TLA+ Proofs. ECEASST, 53, 2012.
15. M. Odersky, M. Sulzmann, and M. Wehr. Type inference with constrained types. In Fourth

International Workshop on Foundations of Object-Oriented Programming (FOOL), 1997.
16. F. Pottier. Simplifying subtyping constraints. In In Proceedings of the 1996 ACM SIGPLAN

International Conference on Functional Programming, pages 122–133. ACM Press, 1996.
17. F. Pottier and D. Rémy. The essence of ML type inference. In B. C. Pierce, editor, Advanced

Topics in Types and Programming Languages, chapter 10, pages 389–489. MIT Press, 2005.
18. J. Rushby, S. Owre, and N. Shankar. Subtypes for Specifications: Predicate Subtyping in

PVS. IEEE Transactions on Software Engineering, 24(9):709–720, sep 1998.
19. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 1992.
20. H. Xi and F. Pfenning. Dependent types in practical programming. In A. W. Appel and

A. Aiken, editors, POPL, pages 214–227. ACM, 1999.

