
E. Pimentel, B. Venneri and J. Wells (Eds.): Workshop on
Intersection Types and Related Systems 2010 (ITRS 2010).
EPTCS 45, 2011, pp. 90–100, doi:10.4204/EPTCS.45.7
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This paper presents a type theory with a form of equality reflection: provable equalities can be used
to coerce the type of a term. Coercions and other annotations, including implicit arguments, are
dropped during reduction of terms. We develop the metatheory for an undecidable version of the
system with unannotated terms. We then devise a decidable system with annotated terms, justified in
terms of the unannotated system. Finally, we show how the approach can be extended to account for
large eliminations, using what we call quasi-implicit products.

1 Introduction

The main goal of this paper, as of several recent works, is to facilitate external reasoning about depen-
dently typed programs [9, 2]. This is hampered if one must reason about specificational data occurring
in terms. Specificational data are data which have no effect on the result of the computation, and are
present in program text solely for verification purposes. Intraditional formal methods, specification data
are also sometimes called ghost data. For example, considerthe familiar example of vectors〈vec φ l〉
indexed by both the typeφ of the elements and the lengthl of the vector. An example dependently typed
program is theappendφ function (we work here with monomorphic functions, but willelide type sub-
scripts), operating on vectors holding data of typeφ . We can defineappendso that it has the following
type, assuming a standard definition ofpluson unary natural numbersnat :

append : Πl1 : nat .Πl2 : nat .Πv1 : 〈vec φ l1〉.Πv2 : 〈vec φ l2〉. 〈vec φ (plus l1 l2)〉

We might wish to prove thatappendis associative. In type theories such as COQ’s Calculus of Inductive
Constructions, we would do this by showing that the following type is inhabited:

Πl1 : nat .Πl2 : nat .Πl3 : nat .Πv1 : 〈vec φ l1〉.Πv2 : 〈vec φ l2〉.Πv3 : 〈vec φ l3〉.
(append(plus l1 l2) l3 (append l1 l2 v1 v2) v3) = (append l1 (plus l2 l3) v1 (append l2 l3 v2 v3))

Notice how the lengths of the vectors are cluttering even thestatement of this theorem. Tools like COQ

allow such arguments to be elided, when they can be uniquely reconstructed. So the theorem to prove
can be written in the much more palatable form:

Πl1 : nat .Πl2 : nat .Πl3 : nat .Πv1 : 〈vec φ l1〉.Πv2 : 〈vec φ l2〉.Πv3 : 〈vec φ l3〉.
(append(append v1 v2) v3) = (append v1 (append v2 v3))

This is much more readable. But as others have noted, while the indices have been elided, they are not
truly erased. This means that the proof of associativity ofappendmust make use of associativity also of
plus, in order for the lengths of the two vectors (on the two sides of the equation) to be equal. Indeed,
even stating this equation may require some care, since the types of the two sides are not definitionally

http://dx.doi.org/10.4204/EPTCS.45.7
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equal: one has(plus (plus l1 l2) l3) where the other has(plus l1 (plus l2 l3)). This is where techniques
like heterogeneous equality come into play [7].

One solution to this problem is via intersection types, alsocalled in this settingimplicit products,
as in the Implicit Calculus of Constructions [8]. An implicit product∀x : φ .φ ′ is the type for functions
whose arguments are erased during conversion (cf. [9, 2]). Such a type can also be viewed as an infinite
intersection type, since its typing rule will assertΓ ⊢ t : ∀x : φ .φ ′ wheneverΓ,x : φ ⊢ t : φ ′. This rule
formalizes (approximately) the idea thatt is in the type∀x : φ .φ ′ whenever it is in each instance of that
type (i.e., each type[u/x]φ ′ for u : φ ). Thus, membership in the∀-type follows from membership in the
instances of the body of the∀-type, making the∀-type an intersection of those instances. Note that this
is an infinitary intersection, and thus different from the classical finitary intersection type of [4]. We note
in passing that the current work includes first-class datatypes, while the other works just cited all rely on
encodings of inductive data as lambda terms.

We seek to take the previous approaches further, and erase not just arguments to functions typed with
implicit products, but all annotations. This is not the casein the Implicit Calculus of Constructions, for
example, or its algorithmic developmentICC∗ [2], where typing annotations other than implicit argu-
ments are not erased from terms. When testingβ -equivalence of terms, we will work with unannotated
versions of those terms, where all type- and proof-annotations have been dropped. For associativity of
append, the proof does not require associativity ofplus. From the point of view of external reasoning,
appendon vectors will be indistinguishable fromappendon lists (without statically tracked length).

The Tvec Type Theory. This paper studies versions of a type theory we callTvec . This system is
like Gödel’s System T, with vectors and explicit equality proofs. We first study an undecidable version
of Tvec with equality reflection, where terms are completely unannotated (Section 2). We establish
standard meta-theoretic results for this unannotated system (Section 3). We then devise a decidable
annotated version of the language, which we also callTvec (the context will determine whether the
annotated or unannotated language is intended). The soundness of annotatedTvec is justified by erasure
to the unannotated system (Section 4). We consider the associativity of appendin annotatedTvec , as
an example (Section 4.1). This approach of studying unannotated versus annotated versions of the type
theory should be contrasted with the approach taken in NuPRL, based on Martin-Löf’s extensional type
theory [3, 6]. There, one constructs typing derivations, asseparate artifacts, for unannotated terms. Here,
we unite the typing derivation and the unannotated term in a single artifact, namely the annotated term.

Large eliminations. Type-level computation poses challenges for our approach.Because coercions
by equality proofs are erased from terms, if we naively extended the system with large eliminations
(types defined by pattern matching on terms) we would be able to assign types to diverging or stuck
terms. We propose a solution based on what we callquasi-implicit products. These effectively serve
to mark the introduction and elimination of the intersection type, and prohibit call-by-value reduction
within an introduction. This saves Normalization and Progress, which would otherwise fail. We develop
the meta-theory of an extension of the unannotated system with large eliminations and call-by-value
reduction, including normalization (Section 5).

The basic idea of basing provable equality on the operational semantics of unannotated terms has
been implemented previously in the GURU dependently programming language, publicly available at
http://www.guru-lang.org [10]. The current paper improves upon the work on GURU, by de-
veloping and analyzing a formal theory embodying that idea (lacking in [10]).

http://www.guru-lang.org
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(λx.a) a′  [a′/x]a
(Rnat a a′ 0)  a
(Rnat a a′ (S a′′))  (a′ a′′ (Rnat a a′ a′′))
(Rvec a a′ nil )  a
(Rvec a a′ (cons a1 a′′))  (a′ a1 a′′ (Rvec a a′ a′′))

Figure 1: Reduction semantics for unannotatedTvec terms

2 Unannotated Tvec

The definition of unannotatedTvec uses unannotated termsa (we sometimes also writeb):

a ::= x | (a a′) | λx.a | 0 | (S a) | (Rnat a a′ a′′) | nil | (cons a a′) | (Rvec a a′ a′′) | join

Here, x is for λ -bound variables andS is for successor (not theS combinator). Rnat is the recursor
over natural numbers, andRvec is the recursor over vectors. We have constructorsnil andcons for
vectors. The term constructjoin is the introduction form for equality proofs. We will not need an
elimination form, since our system includes a form of equality reflection. For readability, we sometimes
use meta-variablel for termsa intended as lengths of vectors. Typesφ are defined by:

φ ::= nat | 〈vec φ a〉 | Πx : φ .φ ′ | ∀x : φ .φ ′ | a= a′

The firstΠ-type is as usual, while the second is an intersection type abstracting a specificationalx. This
x need not beλ -abstracted in the corresponding term, nor supplied as an argument when that term is
applied, similarly to Miquel’s implicit products [8].

The reduction relation is the compatible closure under arbitrary contexts of the rules in Figure 1.
Figure 2 gives type assignment rules forTvec , using a standard definition of typing contextsΓ. We
defineΓ Ok to mean that ifΓ ≡ Γ1,x : φ ,Γ2, thenFV(φ)⊂ dom(Γ1). We usea↓ a′ to mean thata anda′

are joinable with respect to our reduction relation (i.e., there exists ˆa such thata ∗ â anda′ ∗ â).
Perhaps surprisingly we do not track well-formedness of types, and indeed thejoin andconv rules

can introduce untypable terms into types. However, they preserve the invariant that terms deemed equal
are joinable, and that turns out to be enough to ensure type safety.

Type assignment is not syntax-directed, due to the(conv) , (spec-abs) , and (spec-app)
rules, and not obviously decidable. This will not pose a problem here as we study the meta-theoretic
properties of the system. Section 4 defines a system of annotated terms which is obviously decidable,
and justifies it by translation to unannotatedTvec . We work up to syntactic identity modulo safe renaming
of bound variables, which we denote≡.

3 Metatheory of Unannotated Tvec

Tvec enjoys standard properties: Type Preservation, Progress (for closed terms), and Strong Normaliza-
tion. These are all easily obtained, the last by dependency-erasing translation to another type theory (as
done originally for LF in [5]). Here, we consider a more semantically informative approach to Strong
Normalization. Omitted proofs may be found in a companion report on the second author’s web page
(seehttp://www.cs.uiowa.edu/ ˜ astump/papers/ITRS10-long.pdf ).

Theorem 1 (Type Preservation) If Γ ⊢ a : φ and a a′, thenΓ ⊢ a′ : φ .

http://www.cs.uiowa.edu/~astump/papers/ITRS10-long.pdf
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Γ(x)≡ φ ΓOk
Γ ⊢ x : φ

var

a ↓ a′ ΓOk
Γ ⊢ join : a= a′

join
Γ ⊢ a′′′ : a′ = a′′ Γ ⊢ a : [a′/x]φ x 6∈ dom(Γ)

Γ ⊢ a : [a′′/x]φ
conv

Γ,x : φ ′ ⊢ a : φ x 6∈ FV(a)

Γ ⊢ a : ∀x : φ ′.φ
spec-abs

Γ ⊢ a : ∀x : φ ′.φ Γ ⊢ a′ : φ ′

Γ ⊢ a : [a′/x]φ
spec-app

Γ,x : φ ′ ⊢ a : φ
Γ ⊢ λx.a : Πx : φ ′.φ abs

Γ ⊢ a : Πx : φ ′.φ Γ ⊢ a′ : φ ′

Γ ⊢ (a a′) : [a′/x]φ
app

ΓOk
Γ ⊢ 0 : nat

zero ΓOk
Γ ⊢ nil : 〈vec φ 0〉

nil

Γ ⊢ a : nat
Γ ⊢ (S a) : nat

succ

x 6∈ dom(Γ)
Γ ⊢ a′′ : nat
Γ ⊢ a : [0/x]φ
Γ ⊢ a′ : Πy : nat .Πu : [y/x]φ .[(Sy)/x]φ

Γ ⊢ (Rnat a a′ a′′) : [a′′/x]φ
Rnat

Γ ⊢ a : φ
Γ ⊢ a′ : 〈vec φ l〉

Γ ⊢ (cons a a′) : 〈vec φ (S l)〉
cons

x 6∈ dom(Γ)
Γ ⊢ a′′ : 〈vec φ ′ l〉
Γ ⊢ a : [0/y,nil /x]φ
Γ ⊢ a′ : Πz : φ ′.∀l : nat .Πv : 〈vec φ ′ l〉.Πu : [l/y,v/x]φ .

[(S l)/y,(cons z v)/x]φ
Γ ⊢ (Rvec a a′ a′′) : [l/y,a′′/x]φ

Rvec

Figure 2: Type assignment system for unannotatedTvec
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Theorem 2 (Progress) If Γ ⊢ a : φ and dom(Γ)∩FV(a) = /0, then either a is a value or∃a′.a a′.
Here avalueis a term of the form

v ::= λx.a | 0 | (S v) | nil | (cons v v′) | join

3.1 Semantics of equality

For our Strong Normalization proof, a central issue is providing an interpretation for equality types in the
presence of free variables. We would like to interpret equations like(plus2 2) = 4 (where the numerals
abbreviate terms formed withSand 0 as usual, andplushas a standard recursive definition), as simply
(plus2 2) ↓ 4. But when the two terms contain free variables – e.g., in(plus x y) = (plus y x) – or when
the context is inconsistent, the semantics should make the equation true, even though its sides are not
joinable. So our semantics for equality types is joinability under allground instancesof the contextΓ.
The notation for this isa∼Γ a′. The definition must be given as part of the definition of the interpretation
of types, because we want to stipulate that the substitutions σ replace each variablex by a ground term
in the interpretation ofσΓ(x). WhenΓ is empty, we will writea ∼Γ a′ asa ∼ a′. We use a similar
convention for other notations subscripted by a context below.

3.2 The interpretation of types

The interpretation of types is given in Figure 3. In that figure, we write⇒ and⇔ for meta-level implica-
tion and equivalence, respectively, and give⇔ lowest precedence among all infix symbols, and⇒ next
lowest precedence. We stipulate up front (not in the clausesin the figure) thata∈ [[φ ]]Γ requiresa∈ SN
(whereSN is the set of strongly normalizing terms) andΓ ⊢ a : φ . The definition in Figure 3 proceeds
by well-founded recursion on the triple(|Γ|,d(φ), l(a)), in the natural lexicographic ordering. Here,|Γ|
is the cardinality ofdom(Γ), and ifa∈ SN, then we make use of a (finite) natural numberl(a) bounding
the number of symbols in the normal form ofa. We need to assume confluence of reduction elsewhere
in this proof, so it does not weaken the result to assume here that each term has at most one normal form.
While we believe confluence for this language should be easily established by standard methods, that
proof remains to future work. The quantityd(φ) is the depth ofφ , defined as follows:

d(nat ) = 0 d(〈vec φ l〉) = 1+d(φ)
d(Πx : φ .φ ′) = 1+max(d(φ),d(φ ′)) d(∀x : φ .φ ′) = 1+max(d(φ),d(φ ′))
d(a= a′) = 0

Note thatd(φ) = d([a/x]φ) for all a, x, andφ . Also, in the clause forvec -types, since the right hand
side of the clause conjoins the conditiona∈SN, l(a) is defined, and we havel(a′′)< l(cons a′ a′′). The
figure gives an inductive definition for whenσ ∈ [[Γ]]∆. We call such aσ aclosable substitution.

In general, the inductive definition of closable substitution σ ∈ [[Γ]]∆ allows the range of the substi-
tution to contain open terms. When∆ is empty,σ is a closingsubstitution. The definition of[[·]] for
types uses the definition of closable substitutions in a well-founded way. We appeal only to[[Γ]] (with an
empty context∆) in the definitions of[[φ ]]Γ and[[φ ]]+Γ . Where the definition of[[Γ]]∆ appeals back to the
interpretation of types, it does so only when thisΓ was non-empty, and with an empty context given for
the interpretation of the type. So|Γ| has indeed decreased from one appeal to the interpretation of types
to the next.
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a∈ [[nat ]]Γ ⇔ ⊤
a∈ [[〈vec φ l〉]]Γ ⇔ (a ∗ nil ⇒ l ∼Γ 0) ∧

∀a′.∀a′′.a ∗ (cons a′ a′′) ⇒ (i) a′ ∈ [[φ ]]Γ ∧ ∃l ′.
(ii) a′′ ∈ [[〈vec φ l ′〉]]Γ ∧
(iii ) l ∼Γ (S l′)

a∈ [[Πx : φ ′.φ ]]Γ ⇔ ∀a′ ∈ [[φ ′]]+Γ . (a a′) ∈ [[[a′/x]φ ]]Γ
a∈ [[∀x : φ ′.φ ]]Γ ⇔ ∀a′ ∈ [[φ ′]]+Γ . a∈ [[[a′/x]φ ]]Γ
a∈ [[a1 = a2]]Γ ⇔ (a ∗ join ⇒ a1 ∼Γ a2)

where:
a∼Γ a′ ⇔ ∀σ . σ ∈ [[Γ]] ⇒ (σa) ↓ (σa′)
a∈ [[φ ]]+Γ ⇔ a∈ [[φ ]]Γ ∧ (|Γ|> 0 ⇒ ∀σ ∈ [[Γ]]. σa∈ [[σφ ]])

and also:

/0∈ [[·]]∆

a∈ [[σφ ]]+∆ σ ∈ [[Γ]]∆
σ ∪{(x,a)} ∈ [[Γ,x : φ ]]∆

Figure 3: The interpretationa∈ [[φ ]]Γ of strongly normalizing terms withΓ ⊢ a : φ

3.3 Critical properties

A term is defined to beneutral iff it is of the form (a a′) or (RB a a′ a′′) (with B ∈ {nat ,vec }), or
if it is a variable. We prove three critical properties of reducibility at typeφ , by mutual induction on
(|Γ|,d(φ), l(a)). Here we writenext(a) = {a′ | a a′}.

R-Pres. If a∈ [[φ ]]Γ, thennext(a) ⊂ [[φ ]]Γ.
R-Prog. If a is neutral andΓ ⊢ a : φ , thennext(a)⊂ [[φ ]]Γ impliesa∈ [[φ ]]Γ.
R-Join. Supposea1 ∼Γ a2; Γ ⊢ a′ : a1 = a2 for somea′; andx 6∈ dom(Γ). Then[[[a1/x]φ ]]Γ ⊂ [[[a2/x]φ ]]Γ.

3.4 Soundness of typing with respect to the interpretation

Our typing rules are sound with respect to our interpretation of types (Figure 3). As usual, we must
strengthen the statement of soundness for the induction to go through. We need a quasi-order⊂ on
contexts, defined by:∆ ⊂ Γ ⇔ ∀x∈ dom(∆). ∆(x) = Γ(x).

Theorem 3 (Soundness for Interpretations) SupposeΓ ⊢ a : φ . Then for any∆Ok with ∆ ⊂ Γ and
σ ∈ [[Γ]]∆, we have(σa) ∈ [[σφ ]]∆.

Critically, we quantify over possibly open substitutionsσ , whose ranges consist of closable terms.

Corollary 1 (Strong Normalization) If Γ ⊢ a : φ , then a∈ SN.

Corollary 2 If Γ ⊢ a : φ andΓ ⊢ a′ : φ ′, then a↓ a′ is decidable.

Corollary 3 (Equational Soundness) If · ⊢ a : b1 = b2, then b1 ↓ b2.

Corollary 4 (Logical Soundness) There is a typeφ such that⊢ a : φ does not hold for any a.

Proof. By Equational Soundness, we do not have⊢ a : 0= (S0) for anya.
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|x| = x |(t t ′)| = (|t| |t ′|)
|(t t ′)−| = |t| |λx : φ .t| = λx.|t|
|λ−x : φ .t| = |t| |0| = 0
|(S t)| = (S |t|) |(nil φ)| = nil
|(cons t t ′)| = (cons |t| |t ′|) |(Rnat x.φ t t ′ t ′′)| = (Rnat |t| |t ′| |t ′′|)
|(Rvec x.y.φ t t ′ t ′′)| = (Rvec |t| |t ′| |t ′′|) |(join t t ′)| = join
|(cast x.φ t t ′)| = |t ′|

Figure 4: Translation from annotated terms to unannotated terms

4 Annotated Tvec

We now define a system of annotated termst, and a decidable type computation system deriving judg-
mentsΓ t : φ , justified by dropping annotations via| · | (defined in Figure 4). The annotated termst are
the following. Annotations include typesφ , possibly with designated free variables, as inx.φ (bound by
the dot notation).

t ::= x | (t t ′) | (t t ′)− | λx : φ .t | λ−x : φ .t | 0 | (S t) | (Rnat x.φ t t ′ t ′′)
| (nil φ) | (cons t t ′) | (Rvec x.y.φ t t ′ t ′′) | (join t t ′) | (cast x.φ t t ′)

Three new constructs correspond to the typing rules(spec-abs) , (spec-app) , and (conv) of
Figure 2: λ−x : φ ′.φ , (t t ′)− and (cast x.φ t t ′). Figure 5 gives syntax-directed type-computation
rules, which constitute a deterministic algorithm for computing a typeφ as output from a contextΓ and
annotated termt as inputs. Several rules use the| · | function, since typesφ (as defined in Section 2
above) may mention only unannotated terms.

Theorem 4 (Algorithmic Typing) GivenΓ and a, we can, in an effective way, either findφ such that
Γ  a : φ , or else report that there is no suchφ .

This follows in a standard way from inspection of the rules, using Corollary 2 for thejoin -rule.

Theorem 5 (Soundness for Type Assignment) If Γ  t : φ thenΓ ⊢ |t| : φ .

4.1 Example

Now let us see versions of the examples mentioned in Section 1, available in theguru-lang/lib/vec.g
library file for GURU (seewww.guru-lang.org ). The desired types for vector append (“append”)
and for associativity of vector append are:

append : ∀l1 : nat .∀l2 : nat .Πv1 : 〈vec φ l1〉.Πv2 : 〈vec φ l2〉.〈vec φ (plus l1 l2)〉
appendassoc : ∀l1 : nat .∀l2 : nat .∀l3 : nat .

Πv1 : 〈vec φ l1〉.Πv2 : 〈vec φ l2〉.Πv3 : 〈vec φ l3〉.
(append(append v1 v2) v3) = (append v1 (append v2 v3))

www.guru-lang.org
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Γ  t : φ Γ  t ′ : φ ′ |t| ↓ |t ′|

Γ  (join t t ′) : |t|= |t ′|

Γ  t : a= a′ Γ  t ′ : [a/x]φ
Γ  (cast x.φ t t ′) : [a′/x]φ

Γ,x : φ ′
 t : φ x 6∈ FV(|t|)

Γ  λ−x : φ ′.t : ∀x : φ ′.φ

Γ  t : ∀x : φ ′.φ Γ  t ′ : φ ′

Γ  (t t ′)− : [|t ′|/x]φ
Γ,x : φ ′

 t : φ
Γ  λx : φ ′.t : Πx : φ ′.φ

Γ  t : Πx : φ ′.φ Γ  t ′ : φ ′

Γ  (t t ′) : [|t ′|/x]φ

Γ  t ′′ : 〈vec φ ′ l〉
Γ  t : [0/x,nil /y]φ
Γ  t ′ : ∀l : nat .Πz : φ ′.Πv : 〈vec φ ′ l〉.Πu : [l/x,v/y]φ .

[(S l)/x,(cons z v)/y]φ
Γ  (Rvec x.y.φ t t ′ t ′′) : [l/x, |t ′′|/y]φ

Figure 5: Type-computation system for annotatedTvec (selected rules)

We consider now annotated inhabitants of these types. The first is the following:

append = λ−l1 : nat .λ−l2 : nat .λv1 : 〈vec φ l1〉.λv2 : 〈vec φ l2〉.
(Rvec (x.y.〈vec φ (plus x l2)〉)

(cast (x.〈vec φ x〉) P1 v2)
(λ−l : nat .λx : φ .λv′1 : 〈vec φ l〉.λ r : 〈vec φ (plus l l2)〉).

(cast (x.〈vec φ x〉) P2 (cons x r))
v1)

The two cases in theRvec term return a type-cast version of what would standardly be returned in
an unannotated version ofappend. The proofsP1 and P2 used in those casts show respectively that
l2 = (plus0 l2) and(S(plus l l2)) = (plus(S l) l2). They are simple join-proofs:

P1 = (join l2 (plus0 l2)) P2 = (join (S(plus l l2)) (plus(S l) l2))

Now for appendassoc, we can use the following annotated term:

appendassoc = λ−l1 : nat .λ−l2 : nat .λ−l3 : nat .
λv1 : 〈vec φ l1〉.λv2 : 〈vec φ l2〉.λv3 : 〈vec φ l3〉.
(Rvec (x.y.(append(append v1 v2) v3) = (append v1 (append v2 v3)))

(join (append(appendnil v2) v3) = (appendnil (append v2 v3)))
(λ−l : nat .λx : φ .λv′1 : 〈vec φ l〉.
λ r : (append(append v′1 v2) v3) = (append v′1 (append v2 v3)).

P3))

The omitted proofP3 is an easy equational proof of the following type:

(append(append(cons x v′1) v2) v3) = (append(cons x v′1) (append v2 v3))

5 Tvec with Large Eliminations

Next we study an extended version ofTvec with large eliminations, i.e. types defined by pattern match-
ing on terms. This extended language no longer is normalizing under generalβ -reduction , but we



98 Equality and Implicit Products

φ ::= . . . | ifZero a φ φ ′ a ::= . . . | λ .a | a� v ::= . . . | λ .a

Γ,x : φ ′ ⊢ a : φ x 6∈ FV(a)

Γ ⊢ λ .a : ∀x : φ ′.φ
spec-abs’

Γ ⊢ a : ∀x : φ ′.φ Γ ⊢ a′ : φ ′

Γ ⊢ a� : [a′/x]φ
spec-app’

Γ ⊢ a : φ
Γ ⊢ a : ifZero 0 φ φ ′ foldZ

Γ ⊢ a : ifZero 0 φ φ ′

Γ ⊢ a : φ unfoldZ

Γ ⊢ a : φ ′ Γ ⊢ a′ : nat

Γ ⊢ a : ifZero (S a′) φ φ ′ foldS
Γ ⊢ a : ifZero (S a′) φ φ ′ Γ ⊢ a′ : nat

Γ ⊢ a : φ ′ unfoldS

Figure 6: Types, terms, values, and typing rules forTvec with large eliminations.

will prove that well-typed closed terms normalize under call-by-value evaluation v. In particular, the
language is type safe and logically consistent.

The additions to the language and type system are shown in figure 6.
The type language is extended with the simplest possible form of large elimination, a type-level

conditional ifZero which is introduced and eliminated by thefold andunfold rules. While type
conversion and type folding/unfolding are completely implicit, we replace thespec-abs/app rules
with new rulesspec-abs’/app’ which require the place where we introduce or eliminate the∀-type
to be marked by newquasi-implicit forms λ .a and a �. These forms do not mention the quantified
variable or the term it is instantiated with, so we retain theadvantages of specificational reasoning. The
point of these forms is their evaluation behavior:(λ .a) �  v a, andλ .a counts as a value so CBV
evaluation will never reduce inside it. Besides this, the CBV operational semantics is standard, so we
omit it here.

In the language with large eliminations we no longer have normalization or type safety for arbitrary
open terms. This is because the richer type system lets us make use of absurd equalities: whenever we
haveΓ ⊢ a : φ andΓ ⊢ p : (S a′)=0, we can showΓ ⊢ a : φ ′ for anyφ ′ by going via the intermediate type
(ifZero 0 φ(α .φ ′)). In particular, this means we can show judgments like

p : 1=0⊢ (λx.x x) (λx.x x) : nat and p : 1=0⊢ 0 0 :nat .

This is also the reason we introduce the quasi-implicit products. Using our old rulespec-abs we
would be able to show⊢ 0 0 :∀p : 1=0.nat , despite 0 0 being a stuck term in our operational semantics.

Because of thisquod libetproperty it is no longer convenient to prove Progress and Preservation be-
fore Normalization. While the proof of Preservation is not hard, Progress as we have seen depends on the
logical consistency of the language, which is exactly what we hope to establish through Normalization.
To cut this circle we design an interpretation of types (figure 7) that lets us prove type safety, Canonical
Forms and Normalization in a single induction.

5.1 Semantics of Equality

We need to pick an interpretation for equality types. Since we are only interested in closed terms, this
can be less elaborate than in section 3. Perhaps surprisingly, even though we are interested in CBV-
evaluation of programs, we can still interpret equality as joinability ↓ under unrestrictedβ -reduction.
In the interpretation we use v for the program being evaluated, but whenever we talk about terms
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a∈ [[nat ]] ⇔ ∃n.a ∗
v n

a∈ [[〈vec φ l〉]] ⇔ (a ∗
v nil ∧ l  ∗ 0) ∨

∃v v′ n. a ∗
v (cons v v′)∧ l  ∗ (S n)

∧ v∈ [[φ ]] ∧ v′ ∈ [[〈vec φ n〉]]
a∈ [[Πx : φ ′.φ ]] ⇔ ∃a′.a ∗

v (λx.a′) ∧ ∀a′ ∈ [[φ ′]]. (a a′) ∈ [[[a′/x]φ ]]
a∈ [[∀x : φ ′.φ ]] ⇔ ∃a′.a ∗

v (λa′) ∧ ∀a′ ∈ [[φ ′]]. (a�) ∈ [[[a′/x]φ ]]
a∈ [[a1 = a2]] ⇔ a ∗

v join ∧ a1 ↓ a2

a∈ [[ifZero b φ φ ′]] ⇔











a∈ [[φ ]] if b ∗ 0

a∈ [[φ ′]] if b ∗ (S n)

False otherwise

/0∈ [[·]]

v∈ [[σφ ]] σ ∈ [[Γ]]
σ ∪{(x,v)} ∈ [[Γ,x : φ ]]

Figure 7: Type interpretationa∈ [[φ ]] and context interpretationσ ∈ [[Γ]] for Tvec with large eliminations

occurring in types (namely invec , =, and R-types). Thejoin typing rule is specified in terms of , so
when doing symbolic evaluation of programs at type checkingtime the type checker can use unrestricted
reduction, which gives a powerful type system than can provemany equalities.

5.2 Normalization to Canonical Form

We define the interpretation[[ ]] as in figure 7 by recursion on the depth of the typeφ . As we only deal
with closed terms, the definition can be simpler than the one in section 3. The proof then proceeds much
like the proof for open terms:
R-Canon. If a∈ [[φ ]], thena ∗

v v for somev. Furthermore, if the top-level constructor ofφ is nat , Π,
∀, =, or vec , thenv is the corresponding introduction form.
R-Pres. If a∈ [[φ ]] anda v a′, thena′ ∈ [[φ ]].
R-Prog. If a v a′, anda′ ∈ [[φ ]], thena∈ [[φ ]].
R-Join. If a1 ↓ a2, thena∈ [[[a1/x]φ ]] impliesa∈ [[[a2/x]φ ]].

Theorem 6 If Γ ⊢ a : φ andσ ∈ [[Γ]], thenσa∈ [[σφ ]].

Corollary 5 (Type Safety) If ⊢ a : φ , then a ∗
v v.

Corollary 6 (Logical Soundness) ⊢ a : 1=0 does not hold for any a.

6 Conclusion and Future Work

TheTvec type theory includes intersection types and a form of equality reflection, justified by translation
to an undecidable unannotated system. The division into annotated and unannotated systems enables
us to reason about terms without annotations, while retaining decidable type checking. We have seen
how this approach extends to a language including large eliminations, by introducing a novel kind of
quasi-implicit products. The quasi-implicit products allow convenient reasoning about specificational
data, while permitting a simple proof of normalization of closed terms. Possible future work includes
formalizing the metatheory, and extending to a polymorphictype theory. Adding an extensional form of
equality while retaining decidability would also be of interest, as in [1].
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