
A DEPENDENTLY TYPED LANGUAGE
WITH NONTERMINATION

Vilhelm Sjöberg

A DISSERTATION
in

Computer and Information Science
Presented to the Faculties of the University of Pennsylvania

in
Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2015

Supervisor of Dissertation

Stephanie Weirich
Professor of Computer and Information Science

Graduate Group Chairperson

Lyle Ungar
Professor of Computer and Information Science

Dissertation Committee
Jean Gallier (Professor of CIS)
Benjamin C. Pierce (Professor of CIS; Committee Chair)
Aaron Stump (Professor of Computer Science, University of Iowa)
Steve Zdancewic (Professor of CIS)

Acknowledgments

The most thanks for this thesis go to Stephanie Weirich, who has been a fantastic
research advisor and mentor. Stephanie always has time for her students—whenever
I ran into technical difficulties she seemed genuinely happy to drop everything else to
work together on the whiteboard (where her skills are very impressive). Her enthusi-
asm is contagious, and I always leave her office happy and full of energy. All in all I
could not wish for a better phd advisor.

The work described in this thesis came out of the Trellys project, and I benefitted
very much from co-operation with the rest of the Trellys team. Their contributions
are described in more detail in Section 1.2. Here I would like to particularly thank two
of them. Chris Casinghino was my closest collaborator at Penn. Both our research
(on two different parts of the same programming language) was improved by having
someone to bounce ideas with. Aaron Stump was a constant source of new ideas and
insights. I would also like to thank him for inviting me to spend a very enjoyable
summer visiting the University of Iowa.

The University of Pennsylvania is a great place to be a programming languages stu-
dent. The Penn PL Club is a vibrant and tightly-knit place, the faculty (Benjamin
Pierce and Steve Zdancewic) are very helpful to everyone in the group, and the stu-
dents and postdocs always have interesting research projects to talk about. Special
thanks to the plclub people who I shared my office with over the years—it was lots
of fun chatting with you all the time!

When typesetting this document, two very helpful tools were Ott by Sewell et al. [115],
and pulp by Daniel Wagner.1

This work was supported by the National Science Foundation (NSF grants 0910500
and 1319880).

1https://github.com/dmwit/pulp

ii

ABSTRACT

A DEPENDENTLY TYPED LANGUAGE WITH NONTERMINATION

Vilhelm Sjöberg
Stephanie Weirich

We propose a full-spectrum dependently typed programming language, Zombie, which

supports general recursion natively. The Zombie implementation is an elaborating

typechecker. We prove type saftey for a large subset of the Zombie core language,

including features such as computational irrelevance, CBV-reduction, and proposi-

tional equality with a heterogeneous, completely erased elimination form. Zombie

does not automatically β-reduce expressions, but instead uses congruence closure for

proof and type inference. We give a specification of a subset of the surface language

via a bidirectional type system, which works “up-to-congruence,” and an algorithm

for elaborating expressions in this language to an explicitly typed core language. We

prove that our elaboration algorithm is complete with respect to the source type sys-

tem. Zombie also features an optional termination-checker, allowing nonterminating

programs returning proofs as well as external proofs about programs.

iii

Contents

1 Introduction 1
1.1 Zombie: Full-spectrum dependent types with nontermination 3

1.1.1 Core language: nontermination, erasure, CBV, and equality . 4
1.1.2 Surface language: congruence closure and unification 5
1.1.3 Optional termination checking 7

1.2 Who did what? . 8
1.3 Prior publications . 9

2 Zombie by example 12
2.1 Dependently typed programming . 14
2.2 External proofs about programs . 16
2.3 Programming up to congruence . 20

2.3.1 Smart case . 22
2.4 Lightweight verification: a DPLL SAT-solver 26
2.5 Other Zombie examples . 30

3 Core language 32
3.1 Syntax . 34
3.2 Annotations and erasure . 36
3.3 Operational semantics . 38
3.4 Basic typing rules . 40
3.5 Operational semantics at typechecking time 41
3.6 Reasoning about equality . 43

3.6.1 Lack of functional extensionality 47
3.6.2 Proof irrelevance for equations 48
3.6.3 Carefree equality reasoning . 49

3.7 Datatypes . 51
3.8 Computational Irrelevance . 53

3.8.1 Computationally irrelevant functions and applications 55
3.8.2 Computationally irrelevant datatype arguments 56
3.8.3 The value restriction is too restrictive 57

3.9 Metatheory . 58

iv

3.9.1 The language . 59
3.9.2 Annotated and unannotated type systems 59
3.9.3 Properties of parallel reduction 60
3.9.4 Preservation . 61
3.9.5 Progress . 62

4 Variations on the core language 64
4.1 Interpretations of propositional equality 65

4.1.1 Abstracting the equivalence relation 65
4.1.2 Contextual equivalence . 66
4.1.3 Evaluation only . 67
4.1.4 Unrestricted β-reduction . 70
4.1.5 Erasure as a form of unrestricted β-reduction 71

4.2 General versus value-dependent application 72
4.2.1 Value-dependent application 73
4.2.2 Effects beyond nontermination 75

5 Programming up to congruence 77
5.1 Type annotations and type casts . 79
5.2 Congruence closure . 81
5.3 Surface language . 83
5.4 Elaboration . 88

5.4.1 Properties of the congruence closure algorithm 93
5.5 Implementing congruence closure . 94

5.5.1 Labelling terms . 94
5.5.2 Untyped congruence closure 96
5.5.3 Typing restrictions and generating core language proofs 98

5.6 Extensions . 102
5.6.1 Full application rule . 102
5.6.2 Datatypes . 103
5.6.3 Reduction modulo congruence 104

6 Towards unification-based type inference 109
6.1 When, where, and what to infer . 110

6.1.1 “Equational” versus “inhabitational” arguments 111
6.1.2 Marking arguments as inferable 112
6.1.3 When to solve for unknown terms 114

6.2 Solving equational constraints . 117
6.2.1 Simple syntactic unification 118
6.2.2 Unification on equivalence-classes 119

6.3 Challenges for complete type inference 121
6.3.1 Typed rigid E-unification . 121
6.3.2 Simultaneous rigid E-unification 124

v

6.4 Future work: a type system based on simultaneous rigid E-unification? 126

7 Termination checking 128
7.1 Why termination checking? . 130

7.1.1 Precision . 131
7.1.2 Performance . 132

7.2 Design choices . 134
7.2.1 Type-based termination . 134
7.2.2 Internalizing the termination classifier 140

7.3 Core calculus: Non-termination as a possible world 141
7.3.1 Operational semantics . 145
7.3.2 Subsumption . 146
7.3.3 Internalized termination classifier 146
7.3.4 Mobile types . 147
7.3.5 Subtyping . 149
7.3.6 Full Zombie: Polymorphism and Datatypes 150
7.3.7 Previous publications . 153

7.4 Core calculus: Nontermination as an effect 154
7.4.1 Mixing L and P expressions in a program 157
7.4.2 Subtyping . 159

7.5 Translating between the two systems 159
7.5.1 Translating from possible-world to effectful 160
7.5.2 Translating from effectful to possible-world 162

7.6 Normalization . 163
7.6.1 Normalization for the possible-world style calculus 167

7.7 Limitations and future work . 168
7.7.1 Termination inversion and Fixpoint induction 168
7.7.2 “Non-logical” types . 176
7.7.3 Surface language concerns . 181

7.8 What was gained by the effect-style system? 184

8 Related work 186
8.1 Computational irrelevance . 186

8.1.1 Prop and Set in Coq . 186
8.1.2 Irrelevant arguments in Ynot 187
8.1.3 The Implicit Calculus of Constructions 189
8.1.4 Pfenning-style irrelevance . 189
8.1.5 Intersection and union types 190
8.1.6 Truncation in HoTT . 191
8.1.7 GHC Core . 192

8.2 Nontermination and dependent types 193
8.2.1 Potential nontermination both at typecheck- and runtime . . . 194
8.2.2 Terminating both at typecheck- and runtime 194

vi

8.2.3 Terminating at runtime only 195
8.2.4 Terminating at typechecking-time only 195

8.3 Propositional equality . 198
8.3.1 Propositional equality and congruence closure 199
8.3.2 Stronger equational theories 200

8.4 Congruence closure . 202
8.4.1 Simplifying congruence proofs 202
8.4.2 Dependent programming with congruence closure 203

9 Conclusion and future work 204
9.1 How close are we to a language for lightweight verification? 205
9.2 Future work and future impact . 205

A Proofs related to Chapter 5 207
A.1 Assumptions . 207

A.1.1 Assumptions about the annotated core language 207
A.1.2 Algorithmic congruence closure relations 208

A.2 Proofs about the congruence closure relation 209
A.2.1 Properties of typed congruence closure relation 209

A.3 The untyped congruence closure algorithm and its correctness 226
A.3.1 Flattening . 226
A.3.2 Main Algorithm . 231
A.3.3 Soundness . 233
A.3.4 Completeness . 233

A.4 Proofs about the core language . 245
A.4.1 Equivalent contexts . 245

A.5 Properties of injrng . 251
A.6 Proofs about elaboration . 251

A.6.1 Checking is closed under CC 253
A.6.2 Context conversion for elaboration 254
A.6.3 Completeness of elaboration 257

Bibliography 266

vii

List of Figures

1.1 Features included in the full Zombie implementation (left), and in the
core calculus defined in Chapter 3 (right). 5

1.2 The fragment of the core calculus targeted by the surface type system
in Chapter 5. 6

1.3 The calculi studied in Casinghino’s thesis [30] (left) and in Chapter 7
(right). 8

2.1 First-order unification in Agda . 23
2.2 First-order unification in Zombie . 24
2.3 Pattern matching can be tricky in Agda 25

3.1 Features included in the full Zombie implementation (left), and in the
core calculus defined in this chapter (right). 33

3.2 Syntax . 35
3.3 The erasure function | · | . 36
3.4 Operational semantics . 38
3.5 Typing: Basics . 40
3.6 Parallel reduction . 42
3.7 Typing: Equality . 44
3.8 Typing: Datatypes . 50
3.9 Typing: Irrelevant function arguments 54

5.1 The “classic” congruence closure relation for untyped first-order logic
terms . 78

5.2 Typed congruence closure relation . 82
5.3 Surface language typing: functions and variables 84
5.4 Surface language typing: equality . 85
5.5 Elaboration: functions and variables 89
5.6 Elaboration: equality . 90
5.7 Core language injectivity restriction 90
5.8 Untyped congruence closure on labelled terms 95
5.9 Simplification rules for evidence terms 100
5.10 Derived forms for reasoning about equations 106
5.11 Reduction of annotated terms . 107

viii

7.1 The calculi studied in Casinghino’s thesis [30] (left) and in this chapter
(right). 129

7.2 Expressions and values . 141
7.3 Typing: variables, functions, and equations 142
7.4 Typing: datatypes . 143
7.5 Typing: subsumption and internalized consistency classification . . . 143
7.6 Typing: Mobile types and cross-fragment case expressions 144
7.7 Typing: Subtyping . 149
7.8 The previously published version of the calculus (dashed line) and the

version in this chapter (solid line). 154
7.9 Effect-style calculus: Types, expressions, and values 155
7.10 Effect-style kinding and typing . 156
7.11 Effect-style typing: subtyping . 159
7.12 Type interpretation . 164
7.13 Pick any two. 175

8.1 Part of the GHC core language [139] 192

A.1 Untyped congruence closure . 209
A.2 (Untyped, labelled) congruence closure, tracking the evidence terms . 211
A.3 Simplification rules for evidence terms (with names for rules) 212
A.4 The equivalence relation generated by a set of equations E 234
A.5 Context equivalence . 245
A.6 Typing rules for surface language, with added extra regularity premises:

functions and variables . 259
A.7 Typing rules for surface language, with added extra regularity premises:

equality . 260

ix

Chapter 1

Introduction

Of all the ideas to come out of programming language research, my favorite is de-
pendent types. Formally, dependency is a very simple feature: types are allowed to
contain program expressions, and the return type of a function is allowed to mention
the function arguments. Starting with a description of a type system for an ordinary
functional programming language, dependent types can be added with just a handful
of extra typing rules, much less formalism than is needed to describe e.g. a Java-style
object system. Yet they add lots of extra power.

First, dependent types enable type-level programming. For example, C++ program-
mers may (ab)use the details of template instance selection in order to chose one
of two types depending on a compile-time parameter, or encode lists of types by a
stylized use of templated classes [6]. In a dependent language one can use ordinary
if-expressions and the ordinary list datatype. One particularly impressive example
of how dependent types allow more programs to be written is type-generic program-
ming. Languages like Haskell provide special-purpose infrastructure and libraries to
let programmers write generic recipes for how to, e.g., compare, pretty-print, serial-
ize, or randomly generate values, and then automatically instantiate that recipe for
arbitrary data types [68, 75]. In a dependently typed language, it turns out the same
programs can be written without any special language support [138].

Second, dependent types enable program verification. While ordinary types express
fairly coarse properties like “being a floating-point number” or “being an RSA key”,
dependent type systems add precision, e.g. “a number whose square is 4” or “a key
which is used by Alice to certify text messages for declassification”. In fact, the sky is
the limit. There is a close connection between (terminating) programs and (construc-
tive) proofs, the “propositions as types” principle [140], which lets us formulate any
property expressible in logic as a dependent type, and any proof as a dependent pro-
gram. Indeed, considered as a logic dependent types are more expressive than most
other formulations (such as first-order logic), because propositions can be defined by

1

type-level recursion.

In a traditional verification system such as ACL2 [72] the programmer uses one pro-
gramming language to write functions, a different logic to write specifications, and
yet another command language to drive the theorem prover. In a dependently typed
system the same language is used for programming ordinary functions, for type-level
programming, for writing specifications, and for proving programs correct. And the
typing rules that enable this are beautifully elegant, just as one would expect given
that the idea originated in mathematical logic.

Working software engineers may not primarily care about beauty or elegance when
they select their tools. But dependent type systems have the potential to be useful
for practical software development also. Among technologies for formally reasoning
about software, type systems are by far the most widely adopted. Probably this is
because type checking is relatively unobtrusive, while still providing benefits to the
programmer (such as improved understanding of, and confidence in the software).
We hope to move from simple type systems to dependent types without losing that
advantage.

In order to make software verification more generally attractive, we believe that it is
important to support what we call lightweight verification [117]. This term should
be understand as the opposite of full functional verification: instead of spending
a Herculean effort on proving that a piece of software is completely correct, the
programmer identifies a few important properties and spends a limited development
budget on proving those.

A programming language aimed at lightweight verification needs above all to not get
in the way: a programmer who is uninterested in formal verification should be able
to write programs in exactly the same way as in a normal mainstream language.
(For the purposes of this thesis, we consider the mainstream to consist of functional
programming languages like ML and Haskell. ,) As the program evolves, one can
add more precise specifications and proofs in places where more assurance is desired.

Dependent types seem particularly suited for this type of language. Because specifi-
cations are stated in types, one can add more precise specifications by adding more
information to existing types, rather than having to switch to a separate system to
manage pre- and postconditions.

Dependent types also offer a low barrier to entry. In a non-type-based verification
system like ACL2, the programmer has to learn to write specifications and proofs as
a completely separate activity. The effort to learn to use the tool and integrate it
in the programming workflow is hard to justify unless one intends to use it heavily.
Dependent types use a single language, so they should be easier both to learn and to
dip one’s toes into.

2

1.1 Zombie: Full-spectrum dependent types with

nontermination

Dependently typed languages already support almost all features of functional lan-
guages like ML or Haskell. However, one big limitation is termination-checking.
Functional programmers are used to being able to write general recursive programs
without ceremony, but Coq and Agda2 require every function definition to pass a
(necessarily conservative) termination checker. The goal of this thesis is to lift this
restriction by developing a dependently typed language which allows functions defined
by general recursion. We call our language Zombie.

Further, we aim to allow nontermination while retaining the power of dependent
types. While there are many examples of languages that combine nontermination with
dependent or indexed types, most take care to ensure that nonterminating expressions
can not occur inside types, either by making the type language completely separate
from the expression language or by restricting dependent application to values or
“pure” expressions. In Zombie, types and expressions are unified and types can be
computed by functions. In other words, this is a full-spectrum dependent type
system.

Full-spectrum dependency with nontermination is a less explored area of the design
space. The most comparable languages are Cayenne [10], Cardelli’s Type:Type lan-
guage [29], Nuprl extended with partial types [36, 40], and ΠΣ [9]. However, there
are still things to be learned here, and as we will see, Zombie is quite different from
all of these languages when it comes to evaluation-order, equational theory, support
for logical proofs, and reasoning principles for recursive functions.

One of the lessons from combining dependency and nontermination has been to tease
apart two different roles that the restriction to normalizing programs served in previ-
ous designs: for semantic concerns (particularly erasability, which in turn is related
to logical consistency and type safety) and to enable type checking (by making βη-
convertibility decidable).

The Zombie prototype implementation is structured around a typed core language
(similar to e.g. the GHC Haskell compiler). In that setting, the above concerns map
neatly onto compiler stages. We work out the semantic issues by defining the core
language and proving type safety. Then we study type checking and proof inference by
defining a surface language and writing a type-checker/elaborator from the surface
language to the core. This approach is helpful from a software engineering point
of view (bugs in the elaborator can be detected when checking the generated core

2In this thesis we consider Coq and Agda as the prototypical examples of “mainstream” depen-
dently typed programming languages, and assume that the reader is passingly familiar with at least
one of them. For an introduction for beginners, see e.g. Norell and Chapman’s Agda tutorial [99].

3

expressions), and also from a language design point of view (because it factors the
design process into two smaller tasks).

The design work benefited from having an implemented typechecker—writing medium-
sized programs in the language uncovered several interesting corner cases in the core
semantics, and provided guidance for the design of the surface language. Being able
to write programs is also a good minimum test of whether the proposed language is
really practical or not. Chapter 2 gives some examples of the programming we have
done in Zombie, while at the same time giving a tour of the novel features of the
language.

1.1.1 Core language: nontermination, erasure, CBV, and
equality

In Chapters 3 and 4 we formally define and study the core language.

Because of our unusual design goal, our core language includes several novel features.
It is call-by-value, which is a particularly good fit for nonterminating dependent lan-
guages (Section 3.3). To enable efficient compilation it supports computational irrel-
evance (i.e. erasure reflected in the type system). Irrelevance requires some care in a
language with nontermination, because we must be careful to only erase terminating
expressions. And perhaps most interestingly, we adopt a novel treatment of propo-
sitional equality, which is computationally irrelevant (equality proofs do not need to
be examined during computation) and “very heterogenous” (we can state and use
equations between terms of different types).

In addition to these novel features, the Zombie implementation also supports the
standard features needed for dependently typed programming and verification: func-
tion definitions by (terminating) structural recursion, inductively defined datatypes,
type-level computation with large eliminations, a universe hierarchy Type`, etc.

This presents a methodological problem, because the full core language is too large to
prove results about. The type-safety of the full language depends on correctness of the
(optional) termination checking, and normalization proofs for realistic dependently
typed languages are technically very complicated. The solution is to study calculi
which include some but not all of the features of the full language.

In Chapter 3 we define such a calculus, which forms the centerpiece of this dissertation.
It is a subset of the full Zombie core language—it keeps most of the novel features,
but omits Zombie’s sophisticated system for optional termination checking. Instead,
we just assume that any expression may diverge, and in places where the full language
requires a know-terminating expression, the calculus requires a syntactic value. At
the same time we can simplify the language by omitting features, such as structural
recursors and stratified universes, which are only used for ensure termination. Apart

4

from the lack of the termination checking, this calculus is even slightly more expressive
than the current version of the full language, because we collapse all the universe levels
and assume Type : Type. (As we describe in Section 7.7.2, there are technical reasons
that make Type : Type challenging to combine with our termination-checking rules.)
Figure 1.1 shows the features of the full language and the formalized calculus.

In Chapter 3, we prove that this core calculus is type safe. As we describe in Sec-
tion 1.1.3 below, we have also formally studied the typing rules for termination-
checking So the formal metatheory reassures us that the various features of Zombie
are sound. At the same time, the implementation lets us gather experience about
how these ideas carry over into a full-scale programming language.

Figure 1.1: Features included in the full Zombie implementation (left), and in the
core calculus defined in Chapter 3 (right).

The core calculus models Zombie as it is currently implemented, but this is only one
point in a larger space of possible designs. In Chapter 4 we describe two ways in which
the typing rules could be varied. First, there is a range of choices for internalizing
the operational semantics in the propositional equality type. Second, we contrast a
“value-dependent” application rule (which is commonly used by other effectful de-
pendent languages) with the Zombie application rule (which is more expressive, but
precludes certain side effects).

1.1.2 Surface language: congruence closure and unification

In Chapters 5 and 6, we turn to designing a programmer-friendly surface language
which elaborates into the core.

The main innovation here is that the surface language is based around a novel new
style of dependent programming up to congruence closure, as opposed to the
“programming up to β-convertibility” provided by most existing languages. This lets
us to handle nonterminating expressions gracefully, because the programmer is in
control of which expressions are evaluated during typechecking.

5

Congruence closure is an important algorithm for automatic theorem proving (so far
mainly used for untyped first-order logic), so even apart from nontermination it is
interesting to integrate congruence closure into a dependent type system. In doing so
we made novel contributions: we extend the definition of congruence closure to handle
equations between equations, and we give a new algorithm for generating proofs of
equations between typed expressions.

In addition to the implementation of the elaborator, the way we formulate the spec-
ification of the surface language is also interesting. Designing a language around an
elaborator—an unavoidably complicated piece of software—raises the risk of making
the language hard to understand. Programmers could find it difficult to predict what
core term a given surface term will elaborate to, or they may have to think about the
details of the elaboration algorithm in order to understand whether a program will
successfully elaborate at all.

We avoid these problems using two strategies. First, the syntax of the surface and
the core language differ only by erasable annotations and the operational semantics
ignores these annotations. Therefore the semantics of an expression is apparent just
from looking at the source; the elaborator only adds annotations that can not change
its behavior. Second, we define a declarative specification of the surface language,
and prove that the elaborator is complete for the specification. As a result, the
programmer does not have to think about the concrete elaboration algorithm.

In order to keep the proof of completeness small, the declarative type system in
Chapter 5 again only treats a subset of the full Zombie language. It elaborates into the
type system from Chapter 5, but omits two features: the rules related to datatypes,
and the fully general application rule (instead using value-dependent application).
The resulting calculus is shown in Figure 1.2. These features are present in the full
Zombie implementation, and as we describe in Section 5.6 the elaboration algorithm
handles them well.

Figure 1.2: The fragment of the core calculus targeted by the surface type system in
Chapter 5.

To get a pleasant programming experience the surface language must also support
type inference by unification. This is the subject of Chapter 6. The material in this

6

chapter is more preliminary than the rest of the thesis, because we do not yet have
a good theory of how much type inference can be done when combining congruence
closure and unification. However, we bracket the problem. On the one hand we
present an undecidibility result, which says that even with a limited set of features
we can not hope to infer all type arguments. On the other hand we describe the
current implementation in Zombie, which uses a heuristic algorithm but performs
very well on our suite of examples. We leave as future work the problem of the
defining a declarative type system that explains exactly what arguments unification
can succesfully infer.

1.1.3 Optional termination checking

Finally, Chapter 7 deals with termination checking in Zombie.

Zombie allows the programmer to identify certain expressions as terminating and have
the typechecker verify that. This capability is important both to express precise spec-
ifications and to compile programs efficiently. Our interest in lightweight verification
influeced the way we mix terminating and nonterminating code. Unlike most other
languages, nonterminating functions in Zombie are first-class citizens, which can be
written with no syntactic overhead and which reduce according the same operational
semantics as other expressions.

In addition to this thesis, Chris Casinghino also wrote a thesis about the theory
of the Zombie Core language [30], focusing specifically on the termination checking.
His main theorem is that all expressions that are marked terminating do in fact
normalize. To keep the proof tractable, he studies a core calculus that omits many of
Zombie’s features, e.g. general datatypes, erased arguments, large eliminations, and
the collapsed syntax for types and terms.

Casinghino’s thesis is the definite reference for how to handle Zombie’s features in
a normalization proof. In the first half of Chapter 7 we describe the same rules for
termination checking, while comparing them to other dependently typed languages.
However, the calculus in this chapter represents an even smaller subset of full Zombie,
because we leave out features (such as polymorphism and type-level computation)
which are standard but make normalization proofs difficult. Figure 1.3 compares
these two calculi.

After this recapitulation of previously published work, the second half of Chapter 7
presents a new result. The way termination is handled in Zombie is inspired by type
systems based on modal logic. We prove that one can design an equally expressive
type system in the standard type-and-effect style. This result is useful for several
reasons. First, thinking about nontermination as an effect is a common intutition
in other dependent languages, so it is interesting to know how the expressivity of

7

Figure 1.3: The calculi studied in Casinghino’s thesis [30] (left) and in Chapter 7
(right).

Zombie compares (it is equivalent). More importantly, we argue that the effect-
style formulation is a more suitable target for elaboration, and that it simplifies the
metatheory. In particular, we give a new proof of normalization (Section 7.6), which
is considerably simpler than the proof we previously published.

1.2 Who did what?

This research was carried out in the context of the Trellys project, an NSF-founded
research project about language design for dependent types. The NSF grant lasted
for 4 years plus an extension, and involved researchers from three universities:

University of Pennsylvania University of Iowa Portland State University

Stephanie Weirich Aaron Stump Tim Sheard

Chris Casinghino Harley Eades Ki Yung Ahn

Vilhelm Sjöberg Peng (Frank) Fu Nathan Collins

Garrin Kimmell

The closeness of collaboration varied of the course of the project. We began by getting
into a conference room to think about what features a dependently typed language
should have (nontermination, erasure), and how to combine them in a core language.
That language eventually evolved into Zombie Core. In later years the collaboration
became looser, with different people focusing on particular subproblems.

Some of the material in this thesis therefore owes credit to other team members.
The type system for Zombie Core includes design ideas from the entire Trellys team.
The particular subset of it that is formalized in Chapter 3 was first presented and
proved type safe in a workshop paper [120] where I was the lead author. So the

8

precise formulation of the typing rules of the core calculus are due to me, as is the
type safety proof. At the same time, the Trellys team implemented a typechecker for
the core language (mostly done by Garrin Kimmel) and wrote about ten examples
in it (mostly done by Nathan Collins), e.g. natural number division and vector
append. This gave us an idea of how many annotations the core language by itself
requires. I then extended the typechecker to implement the Zombie surface language
described in Chapter 5, and used that implementation to write the examples described
in Chapter 2.

The most closely related Trellys research was done by Chris Casinghino, who also
wrote a thesis about the theory of the Zombie Core language [30]. As described above,
he focuses on the termination-checking rules. In Chapter 7, I also discuss termination
in Zombie, so the material in that chapter overlaps with Casinghino’s work. In
particular, we first presented the type system in Section 7.3 in a paper (Casinghino,
Sjöberg, and Weirich [31]) as an incremental step towards a normalization proof for
the full core language. (The same system is also presented, as a warm-up excercise,
in Chapter 4 of Casinghino’s thesis.) The design of these typing rules were done
by all three paper authors jointly, but Casinghino was mainly responsible for the
termination proof. In Chapter 7 I define a new type system (Section 7.4) and prove
a theorem relating it to the old one—these are new contributions due to me.

1.3 Prior publications

The material in this thesis draws on the following papers.

• Vilhelm Sjöberg, Chris Casinghino, Ki Yung Ahn, Nathan Collins, Harley D.
Eades III, Peng Fu, Garrin Kimmell, Tim Sheard, Aaron Stump, and Stephanie
Weirich. Irrelevance, heterogeneous equality, and call-by-value dependent type
systems. In James Chapman and Paul Blain Levy, editors, MSFP ’12: Pro-
ceedings of the Fourth Workshop on Mathematically Structured Functional Pro-
gramming, volume 76 of EPTCS, pages 112–162. Open Publishing Association,
2012.

This paper is the basis for Chapter 3. It formalizes a subset of the Zombie core
language and proves type safety.

• Limin Jia, Jianzhou Zhao, Vilhelm Sjöberg, and Stephanie Weirich. Dependent
types and program equivalence. In POPL ’10: Proceedings of the 37th an-
nual ACM SIGPLAN-SIGACT symposium on Principles of Programming Lan-
guages, pages 275–286, 2010. doi: 10.1145/1706299.1706333.

• Vilhelm Sjöberg and Aaron Stump. Equality, quasi-implicit products, and large
eliminations. In ITRS 2010: Proceedings of the 5th workshop on Intersection

9

Types and Related Systems, 2010. doi: 10.4204/EPTCS.45.7.

• Peter-Michael Osera, Vilhelm Sjöberg, and Steve Zdancewic. Dependent inter-
operability. In PLPV ’12: Proceedings of the sixth workshop on Programming
languages meets program verification, 2012. doi: 10.1145/2103776.2103779.

These three papers also prove type safety for dependent languages with nontermina-
tion, but the languages are not as feature-rich as the one in Chapter 3. The two first
can be seen as gradually working towards the full core language, while the third one
applies similar proof techniques to study language interoperability.

For the purposes of this thesis, the interesting feature is that all four papers listed
above use slightly different interpretations of propositional equality in terms of op-
erational semantics, so together they span a gamut of ways to handle equality in a
progress-and-preservation style type safety proof. We discuss the different options in
Chapter 4.

• Vilhem Sjöberg and Stephanie Weirich. Programming up to congruence. In
POPL ’15: 42nd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, 2015. doi: 10.1145/2676726.2676974.

This paper is the basis for Chapter 5.

• Aaron Stump, Vilhelm Sjöberg, and Stephanie Weirich. Termination casts: A
flexible approach to termination with general recursion. In PAR ’10: Proceedings
of the Workshop on Partiality and Recursion in Interactive Theorem Provers,
2010. doi: 10.4204/EPTCS.43.6.

• Chris Casinghino, Vilhelm Sjöberg, and Stephanie Weirich. Combining proofs
and programs in a dependently typed language. In POPL ’14: 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 2014.

These two papers propose different ways to include optional termination-checking into
a core language; only the second one has a normalization proof. Chapter 7 proves
that (slight variants of) the two calculi can type exactly the same programs, and also
contains a simpler proof of normalization.

• Garrin Kimmell, Aaron Stump, Harley D. Eades III, Peng Fu, Tim Sheard,
Stephanie Weirich, Chris Casinghino, Vilhelm Sjöberg, Nathan Collins, and
Ki Yung Ahn. Equational reasoning about programs with general recursion
and call-by-value semantics. In PLPV ’12: Proceedings of the sixth workshop on
Programming languages meets program verification, 2012. doi: 10.1145/2103776.
2103780.

This paper reports on Sep3, another language to come out of the Trellys project. For
the purposes of this thesis, the most interesting result is a new language construct
called termination-case, which is used to reason about potentially nonterminating

10

programs. It turns out that it would not be sound to add termination-case to Zombie,
for reasons explained in Section 7.7.1.

11

Chapter 2

Zombie by example

At its most basic, Zombie is yet another functional programming language. The
syntax is inspired by Haskell with some ML influences For example, the following
code defines a datatype of binary search trees, and a function member which checks
whether an element is present in the tree.

data Tree (a:Type) : Type where

EmptyTree

BranchTree of (t1 : Tree a) (x : a) (t2 : Tree a)

prog member : [a:Type] ⇒ Ord a ⇒ (x : a) → (t : Tree a) → Bool

member = λ [a] order x. rec member t =

case t of

EmptyTree → False

BranchTree t1 y t2 → case (ordLt x y) of

True → member t1

False → case (ordLt y x) of

True → member t2

False → True

The syntax of Zombie datatype declarations looks a bit like ML. The datatype Tree

contains two constructors, EmptyTree which takes no arguments, and BranchTree

which takes three arguments named t1, x, and t2. Like in OCaml, datatype con-
structors need to be fully applied when they are used.

The function member illustrates two ways to form functions: by λ-expressions and
by recursive functions rec f x .a. Because the first three arguments stay constant
throughout the recursion we choose to bind those by λ-expressions, and then use
a single-argument recursive function. The rec-expression binds a variable member,
which is distinct from the top-level declaration.

12

The function member is polymorphic, because it takes a type a as an argument. The
square brackets around a indicates that a is computationally irrelevant. That is, a is
only used to typecheck the program, but is not used at runtime, so the compiler can
erase it.

In order to reduce clutter, we mark the arguments a and ord as inferable, using
the fat arrow⇒. Whenever the function member is called later in the program, the
typechecker will create two unification variables corresponding to these arguments,
and try to infer what they should be using unification. (Unification will not be able
determine the order parameter, so this example relies on a rather hacky second pass
that fills in uninstantiated unification variables using any variable in context. We
further discuss unification-based inference in Chapter 6.)

The keyword prog indicates the main contribution of this thesis: it tells the type-
checker that member is a potentially nonterminating program, which can be written
using general recursion.

A simple function like member is also easy to write in a way that lets the typechecker
verify that the function is always terminating. We use keyword log to say that the
definition does not use any features which can cause nontermination. (The word log

alludes to the fact that terminating functions correspond to logical proofs under the
“propositions as types” principle.)

log member’ : [a:Type] ⇒ Ord a ⇒ (x : a) → (t : Tree a) → Bool

member’ = λ [a] order x. ind member’ t =

case t [t_eq] of

EmptyTree → False

BranchTree t1 y t2 → case (ordLt x y) of

True → member’ t1 [ord t_eq]

False → case (ordLt y x) of

True → member’ t2 [ord t_eq]

False → True

To make the typechecker accept the function as terminating we have to use a struc-
turally recursive function ind f x .a instead of a generally recursive function rec f x .a.
The difference is that with ind every recursive call takes an extra argument, for exam-
ple we write member’ t1 [ord t_eq] instead of member t1. The expression inside
the brackets is a proof that t1 is a smaller value than t, so the recursion is decreasing.

In order to manufacture such a proof, we use the fact that t1 is an immediate subterm
of t. And this in turn uses a novel feature of the Zombie case-expressions. Instead of
case t of ... we write case t [t_eq] of This binds a variable t_eq in each
of the braches, where the type of the variable records the result of the pattern match.
For example, in the second branch of the case expression, the context contains the
assumption

13

t_eq : t = BranchTree t1 y t2

The ord (which is a built-in construct in Zombie) converts such an equation into
a proof that t1 is smaller than t. (The details of the typing rule are shown in
Section 7.2.1.)

2.1 Dependently typed programming

The above code did not yet use dependent types. As an example of dependently
typed programming, we can define two datatypes which encode the propositions “the
element x occurs in the tree t”, and “the tree t satisfies the binary-search-tree invari-
ant”.

data InTree (a:Type) (x : a) (t : Tree a) : Type where

InHere of (t1 : Tree a)

(t2 : Tree a)

(t = BranchTree t1 x t2)

InLeft of (t1 : Tree a)

(y : a)

(t2 : Tree a)

(InTree a x t1)

(t = BranchTree t1 y t2)

InRight of (t1 : Tree a)

(y : a)

(t2 : Tree a)

(InTree a x t2)

(t = BranchTree t1 y t2)

data IsBST (a:Type) (t : Tree a) (order : Ord a) : Type where

IsBSTEmpty of (t = (EmptyTree : Tree a))

IsBSTBranch of (t1 : Tree a) (x : a) (t2 : Tree a)

(t = BranchTree t1 x t2)

(IsBST a t1 order)

((y : a) → InTree a y t1 → ordLt y x = True)

(IsBST a t2 order)

((y : a) → InTree a y t2 → ordLt x y = True)

Unlike Tree, the datatypes InTree and IsBST are dependent, because in the con-
structors, the types of later constructor arguments mention (“depend on”) the names
of previous arguments. For example, the third argument of InHere is an equation
which mention the first two arguments t1 and t2.

14

We can use these declarations to define a more strongly typed function memberS.
Instead of just returning a boolean, we make it return Maybe (InTree a x t). That
is, we do not have to trust the function that an element is in the tree—it returns a
proof that the element is there. This stronger type is enough to catch some simple
bugs, e.g. if the programmer accidently swapped the arguments in one of the calls to
ordLt, the last line of memberS would not typecheck.

prog memberS : [a:Type] ⇒ Ord a ⇒ (x : a) → (t : Tree a)

→ Maybe (InTree a x t)

memberS = λ [a] order x. rec memberS t =

case t of

EmptyTree → Nothing

BranchTree t1 y t2 →
case (ordLt x y) of

True → case (memberS t1) of

Just p → Just (InLeft t1 y t2 p _)

Nothing → Nothing

False → case (ordLt y x) of

True → case (memberS t2) of

Just p → Just (InRight t1 y t2 p _)

Nothing → Nothing

False →
let _ = ordLtAntiSymm [a] order x y _ _ in

Just (InHere t1 t2 _)

The implementation is mostly unsurprising, except that the constructors of InTree
require proofs of equations. In particular, the last two lines refer to a lemma that
states that x 6< y∧y 6< x =⇒ x = y. The line let _ = ordLtAntiSymm ... in ...

introduces a new equation of type x=y into the context, and the underscore tells the
typechecker to pick an arbitrary fresh name for it. To produce the last argument for
InHere we then use a feature of Zombie that lets us write just an underscore for a
proof of an equation, as long as the equation is provable using assumptions in the
context.

The function memberS is an example of internal verification. That is, we encode the
specification of the function (that it is correct about membership claims) into the
type of the function itself. Instead of a separate proof about a function, we have a
function which returns a proof.

The ability to verify programs in the internal style is one of the big advantages of using
dependent types for program verification, instead of other logical frameworks such as
first-order or higher-order logics. To write a separate proof about the correctness
of member we would use structural induction over the tree it takes as input. That
induction follows exactly the same pattern as the recursion over the tree that the

15

function itself carries out. By incorporating the correctness property into the function
type itself we avoid such duplication—the “induction hypothesis” p is conveniently
available after each recursive call. What enables this is the dependent type

(x : a) → (t : Tree a) → Maybe (InTree a x t)

where the return type of the function mentions the arguments x and t.

2.2 External proofs about programs

However, the internal verification style also has drawbacks. In particular, it does not
scale well to more ambitious verification efforts that aim to prove full correctness.

For example, the above property alone does not characterize member; we also want to
know the converse, that if member returns False and the tree satisfies the search-tree
invariant, then the element really is not present in the tree. For more complicated
functions, full correctness may include even more theorems. In general, it becomes
clumsy to require the programmer to think of all correctness properties ahead of time,
bake them into the function type, and mix proofs of all of them into the function
definition. In such cases, it is better to use external reasoning. That is, we first
write the simply-typed function member, and later prove separate theorems about the
function.

The feature that enables external proofs in dependent languages is that the compiler
can evaluate expressions during typechecking. In Zombie, this is done by the equality
constructor join. The expression join is a proof of an expression a = b if both a
and b reduce to some common expression c. For example, we can prove that looking
up 5 in a tree representing the set {2, 4, 5, 7} returns True:

log example :

(member 5

(BranchTree (BranchTree EmptyTree 2 EmptyTree)

4

(BranchTree (BranchTree EmptyTree 5 EmptyTree)

7

EmptyTree)))

= True

example = join

In order to check this expression, the typechecker will reduce the two sides of the
equation ((member 5 ...) and True), and note that they both evalute to the same
thing (True).

16

Note that example is classified as log. The definition is already a value (join), so
it certainly terminates. On the other hand, the type of example involves member,
which was defined using general recursion. This illustrates an important property
of Zombie, which we call freedom of speech: although proofs cannot themselves use
general recursion, they are allowed to refer to arbitrary programmatic expressions. By
contrast, in so-called value-dependent languages this theorem cannot even be stated,
because non-value expressions are not allowed in types. (We discuss this further in
Section 4.2.)

While we know that join will not diverge at runtime, we also have to worry about
the typechecker diverging when checking it. In Zombie, the typechecker will reduce
the two sides until they reach a value, or at most for a certain number of steps (by
default 1000), and signal a type error if they do not rearch a common reduct by
then. The programmer can override this to give more fuel for particular equations
by writing e.g. join 5000 (reduce for up to 5000 steps). Because Zombie types may
involve nontermination, a general design principle is that the programmer should
always be in control over when expressions get reduced during typechecking, e.g. by
using join. Unlike other dependently typed languages, the Zombie typechecker will
not automatically reduce expressions that appear in types.

Most interesting theorems about programs are proved by induction. For example, if
we were writing an informal pen-and-paper proof about the property of member that
we proved internally above, we might begin as follows.

Claim: For all x and t, if member x t = True, then x is in the tree t.

Proof: By induction on the structure of t. Consider the case when t =
(BranchTree t1 y t2). By the definition of member, we have

member x (BranchTree t1 y t2)

= case (ordLt x y) of

True → member x t1

False → case (ordLt y x) of

True → member x t2

False → True

Now there are two cases, depending on whether (ordLt x y) is true or
false. If it is true, then we know

case True of

True → member x t1

False → case (ordLt y x) of

True → member x t2

False → True

= member x t1

17

so by transitivity we have member x t1 = member x t = True. By the
induction hypothesis for t1 we know that x is in t1, so therefore it is also
in t. (Several more cases of the proof omitted.)

Under “propositions as types”, inductive proofs correspond to structurally recursive
functions. We can express the above proof as a Zombie function using ind and join

as follows:

log member_In1 : (a:Type) → (order : Ord a) → (x : a) → (t : Tree a)

→ member x t = True → InTree a x t

member_In1 = λ a order x. ind member_In1 t = λ isMember.

case t [t_eq] of

BranchTree t1 y t2 →
let _ = (pjoin : member x (BranchTree t1 y t2)

= ((case (ordLt x y) of

True → member x t1

False → case (ordLt y x) of

True → member x t2

False → True) : Bool)) in

case (ordLt x y) of

True →
let _ = (pjoin : ((case True of

True → member x t1

False → case (ordLt y x) of

True → member x t2

False → True) : Bool)

= member x t1) in

let IH = (member_In1 t1 [ord t_eq] _) in

InLeft t1 y t2 IH _

False → -- ... several lines omitted

EmptyTree → -- ... several lines omitted

The function follows exactly the same plan as the informal proof; induction corre-
sponds to ind, case analysis to case, and appeals to the definition of member to pjoin.
(The difference between join and pjoin is that the latter asks the typechecker to
reduce using parallel reduction instead of plain CBV reduction. We discuss this fur-
ther in Section 4.1.3.) In order to deal with equational reasoning we use the same
idiom as in memberS, by first introducing equations into the context with fresh names
(let _ = ...), and then writing underscores for proofs. In particular, the recursive
call to member_In1 requires a proof that member x t1 = True, and the underscore
builds the proof using transitivity.

The Zombie term looks a bit daunting, particularly the big pjoin-expressions. To
some extent this is an unavoidable problem when combining reasoning using equations

18

with reasoning by reduction. In particular, it would not do to reduce the expression
member x (BranchTree t1 y t2) too much, by starting to step into the implemen-
tation of ordLt (which projects out a comparison function from the record order and
applies it), because then the hypothesis (ordLt x y) = True would no longer apply.
A proof of the same property in Coq or Agda would also need care from the program-
mer to simplify expressions just enough to make them match the known equations,
although a Coq programmer would use tactics to build the proof term rather than
write it manually.

The Zombie implementation does however include a feature that can help here. The
keywords smartjoin and unfold ask the typechecker to use reduction modulo con-
gruence, i.e. to reduce expressions in a “smart” way using equation assumptions in
the context. This is implemented entirely in the elaborator, and the generated core
term will use multiple lets and joins similar to the program above. (We describe
the details in Section 5.6.3.) The implementation of this feature is one of the least
polished parts of Zombie, and we have not studied its theory, but when it works it
is very helpful indeed. For example, the proof of member_In1 can be written much
more compactly, as follows.

log member_In1 : (a:Type) → (order : Ord a) → (x : a) → (t : Tree a)

→ member x t = True → InTree a x t

member_In1 = λ a order x. ind member_In1 t = λ isMember.

case t [t_eq] of

BranchTree t1 y t2 →
case (ordLt x y) of

True →
let _ = (smartjoin : member x t = member x t1) in

let IH = (member_In1 t1 [ord t_eq] _) in

InLeft t1 y t2 IH _

False →
case (ordLt y x) of

True →
let _ = (smartjoin : member x t = member x t2) in

let IH = (member_In1 t2 [ord t_eq] _) in

InRight t1 y t2 IH _

False →
let _ = ordLtAntiSymm [a] order x y _ _ in

InHere t1 t2 _

EmptyTree → unfold (member x t) in

contra (_ : True = False)

We can also write a similar proof of the converse property, this time by structural
recursion on the witness of InTree a x t.

19

log member_In2 : (a:Type) → (order : Ord a) → (x : a) → (t : Tree a)

→ IsBST a t order → (InTree a x t)→ member x t = True

We show only the type and omit the proof itself (which can be found in the Zombie
test suite).

2.3 Programming up to congruence

As we have seen in the above examples, the proof obligations of programming in
Zombie are somewhat different from Agda or Coq. On one hand, in order to deal
with nontermination, equations that are true by reduction must be introduced by
explicit join-expressions, wheras in other languages some such proofs can be omitted
because types are considered up to βη-convertibility. But on the other hand Zombie is
able to automatically construct easy proofs of equations using equality assumptions in
the context. This is not just used in places where the programmer explicitly writes an
underscore; it is a definitional equality, so the type system treats every type modulo
the equations in the context.

There is a precise definition of which proofs are considered “easy”. The definitional
equality is the congruence closure of the equations in the context, i.e. the equations
which are provable by symmetry, reflexivity or transitivity, or by injectivity of con-
structors, or by rewriting a subexpression of a larger expression. (A formal definition
is shown in Figure 5.2). Congruence closure is a standard notion in automatic theo-
rem proving for first-order logic, although we adapted it to fit with dependent types
(Chapter 5).

So Zombie and conventional languages like Agda differ about what annotations are
needed, but neither system provides a strictly stronger equational theory than the
other. As an illustration of the difference, we implement first-order unification in
both Agda and Zombie (Figures 2.1 and 2.2), taking care to make the two programs
correspond as closely as we can. For this example, the term language is the simplest
possible, consisting only of binary trees constructed by branch and leaf and possibly
containing unification variables, var, represented as natural numbers. We also use
a type Substitution of substitutions, which are built by the functions singleton

and compose, and applied to terms by ap. Finally, we need some lemmas about
substitutions. The types are as follows (the definitions are elided):

data Term : Type where

leaf

branch of (t1 : Term) (t2 : Term)

var of (x : Nat)

Substitution : Type

20

empty : Substitution

singleton : Nat → Term → Substitution

ap : Substitution → Term → Term

compose : Substitution → Substitution → Substitution

apCompose : (s1 s2 : Substitution) → (t : Term) →
ap (compose s1 s2) t = ap s1 (ap s2 t)

-- determining whether a variable appears in a term

isin : (x: Nat) → (t : Term) → Dec (In x t)

varSingleton : (x : Nat) → (t : Term) → t = ap (singleton x t) (var x)

singletonNotIn : (t : Term) → (x: Nat) → (s : Term)

→ (((In x t)@log) → Void) → ap (singleton x s) t = t

First-order unification is an interesting opportunity for lightweight verification. Prov-
ing that unify terminates is difficult because the termination metric involves not just
the structure of the terms but also the number of unassigned unification variables.
(For example, see McBride [83].) To save development effort, a programmer may
elect to prove only a partial correctness property: if the function terminates then the
substitution it returns is a unifier.

In other words, if the unify function returns, it either says that the terms do not
match, or produces a substitution s and a proof that s unifies them. We write the
data structure in Zombie as follows (the Agda version is similar):

data Unify (t1 : Term) (t2 : Term) : Type where

nomatch

match of (s : Substitution) (pf : ap s t1 = ap s t2)

With the scene thus set, we can compare the Agda and Zombie implementations to see
the effect of programming up-to-congruence instead of up-to-β. For example, in the
case when the function successfully unifies (branch t11 t12) and (branch t21 t22)

and returns the unifier (compose s’ s), it needs to construct a proof of equality.
Both the Zombie and the Agda version use the lemma apCompose here. However,
they differ in what parts of the proof can be left implicit. The Agda definitional
equality automatically includes the equation

ap s’ (ap s (branch t11 t12)

≡ branch (ap s’ (ap s t11)) (ap s’ (ap s t12))

which the Zombie programmer has to explicitly request using an unfold statment.
On the other hand, Zombie can automatically conclude that two branch-terms are
equal if their subterms are, and to use symmetry and transivitity, while the Agda
programmer invokes lemmas fom the Agda standard library:

cong2 : ∀ {A B C : Set } (f : A → B → C) {x y u v}

21

→ x ≡ y → u ≡ v → f x u ≡ f y v

sym : ∀ {A : Set} {x y : A} → x ≡ y → y ≡ x

trans : ∀ {A : Set} {x y z : A} → x ≡ y → y ≡ z → x ≡ z

2.3.1 Smart case

Congruence closure is directly helpful to infer proofs of equations. Having it available
also has a subtler effect on the language design, because it allows us to make Zombie’s
type rules for dependent pattern matching both simple and powerful. As we saw
above, in a case-expression

case a of

d1 x y ⇒ body1

d2 x y ⇒ body2

when checking body1 the typing context is extended with an equation a = d1 x y.
This idea is known as smart case [7], and lets the typing rule exactly express what
branch was taken.

The smart-case rule is attractive because Zombie will use the equation automatically.
Languages like Coq and Agda do not extend the context with an equation, but if the
above expression is checked against some type A, the typechecker will see whether A
contains a as a subexpression. If so, it will check body1 against a different type A′

where all occurences of a have been replaced with d1 x y. In simple cases, this can
typecheck the same examples as Zombie’s rule, without the programmer having to
write an explicit proof using an equality assumption.

However, in more complicated examples the replacement-based rule can be clumsy.
For example, A may contain multiple occurences of a and we only want to replace
some of them. Or a may not occur in A, but will show up if we later reduce a
subexpresion of A. Agda deals with this by the “inspect on steroids” trick, using a
datatype constructor [_] to make some parts of the type opaque to the typechecker.
A fun puzzle3 which illustrates how this can sometimes be tricky, is to define a the
operation snoc which appends an element to the end of a list, and then try to prove
that it is injective using only pattern matching.

Figure 2.3 compares (parts of) of the proofs in Zombie and Agda. The Zombie proof
snoc_inv is quite pedestrian: when both lists are nonempty, the proof argument can
be used to derive that x = y (using the injectivity of Cons), and the recursive call
shows that xs’ = ys’. Congruence closure both puts these together in a proof of
Cons x xs’ = Cons y ys’ and supplies the necessary proof for the recursive call.
The pure pattern matching Agda solution snoc-inv is not long, but it is not at all

3Posed by Eric Mertens on #agda.

22

{-# NO_TERMINATION_CHECK #-}

unify : (t1 t2 : Term) → Unify t1 t2

unify leaf leaf = match empty refl

unify leaf (branch t2 t3) = nomatch

unify (branch t1 t2) leaf = nomatch

unify (branch t11 t12) (branch t21 t22)

with unify t11 t21

... | nomatch = nomatch

... | match s p with unify (ap s t12) (ap s t22)

... | nomatch = nomatch

... | match s’ q

= match (compose s’ s)

(trans (apCompose (branch t11 t12))

(trans (cong2 (λ t1 t2 →
branch (ap s’ t1) t2) p q)

(sym (apCompose (branch t21 t22)))))

unify t1 (var x) with (x is∈ t1)

... | no q

= match (singleton x t1)

(trans (singleton- 6∈ t x t q)

(varSingleton x t))

... | yes p with t

... | var y

= match empty (cong var (sym (invvar p)))

... | _

= nomatch

unify (var x) t2 with unify t2 (var x)

... | nomatch = nomatch

... | match s p = match s (sym p)

Figure 2.1: First-order unification in Agda

23

prog unify : (t1 t2 : Term) → Unify t1 t2

rec unify t1 = λ t2 . case t1, t2 of

leaf, leaf → match empty _

leaf, branch _ _ → nomatch

branch _ _, leaf → nomatch

branch t11 t12, branch t21 t22 →
case (unify t11 t21) of

nomatch → nomatch

match s p → case (unify (ap s t12) (ap s t22)) of

nomatch → nomatch

match s’ _ →
unfold (ap s’ (ap s t1)) in

unfold (ap s’ (ap s t2)) in

let _ = apCompose s’ s t1 in

let _ = apCompose s’ s t2 in

match (compose s’ s) _

_ , var x → case (isin x t1) of

no q →
let _ = varSingleton x t1 in

let _ = singletonNotIn t1 x t1 q in

match (singleton x t1) _

yes _ → case t1 of

var y → let [_] = invvar x y p in

match empty _

_ →
nomatch

var x, _ → case (unify t2 (var x)) of

nomatch → nomatch

match s p → match s _

Figure 2.2: First-order unification in Zombie

24

straightforward, and requires advanced knowledge of Agda idioms. Alternatively, the
reasoning used in the Zombie example is also available in Agda, as in the definition of
snoc-inv’. However, this version requires the use of helper functions to prove that
cons is injective and congruent.

-- Solution in Zombie

log snoc_inv : (xs ys : List A) → (z : A)

→ ((snoc xs z) = (snoc ys z)) → xs = ys

ind snoc_inv xs = λ ys z pf. case xs [xeq], ys of

Cons x xs’ , Cons y ys’ →
let _ = (smartjoin : (snoc xs z) = Cons x (snoc xs’ z)) in

let _ = (smartjoin : (snoc ys z) = Cons y (snoc ys’ z)) in

let _ = snoc_inv xs’ [ord xeq] ys’ z _ in

_

...

-- Solution in Agda using pattern matching

snoc-inv : ∀ xs ys z → (snoc xs z ≡ snoc ys z) → xs ≡ ys

snoc-inv (x :: xs’) (y :: ys’) z pf

with (snoc xs’ z) | (snoc ys’ z)

| inspect (snoc xs’) z | inspect (snoc ys’) z

snoc-inv (.y :: xs’) (y :: ys’) z refl

| .s2 | s2 | [p] | [q] with (snoc-inv xs’ ys’ z (trans p(sym q)))

snoc-inv (.y :: .ys’) (y :: ys’) z refl

| .s2 | s2 | [p] | [q] | refl = refl

...

-- Alternative Agda solution based on congruence and injectivity

cons-inj1 : ∀ {x xs y ys} → ((x :: xs) ≡ y :: ys) → x ≡ y

cons-inj1 refl = refl

cons-inj2 : ∀ {x xs y ys} → x :: xs ≡ y :: ys → xs ≡ ys

cons-inj2 refl = refl

snoc-inv’ : ∀ xs ys z → (snoc xs z ≡ snoc ys z) → xs ≡ ys

snoc-inv’ (x :: xs’) (y :: ys’) z pf =

cong2 _::_ (cons-inj1 pf) (snoc-inv’ xs’ ys’ z (cons-inj2 pf))

...

Figure 2.3: Pattern matching can be tricky in Agda

25

2.4 Lightweight verification: a DPLL SAT-solver

In the unification example above, we noted that proving that a program terminates
might not be the best use of the programmer’s time. An application which shows
this even clearer is a SAT-solver for propositional logic. More and more programs
rely on SAT-solvers, and the solvers themselves are complicated pieces of software, so
constructing a formal proof that they return the correct answer is valuable. On the
other hand, showing that the solver always terminate is both very subtle (to prove
that a clause-learning solver terminates, one must prove that the clauses it learns
eventually rule out all possible assignments), and uninteresting in practice (typically
it will run out of memory long before it terminates).

Most modern SAT-solvers use the clause-learning algorithm pioneered in zChaff [148].
A realistic solver is too big to be written as part of this thesis, but we can illustrate
the interplay between termination-checked and nonterminating code by verifying a
simple Davis-Putnam-Logemann-Loveland (DPLL) solver. The DPLL algorithm is
an immediate ancestor of the clause-learning algorithm, so it is a good illustration of
how to structure such proofs.

Recall that a boolean formula is a conjunction of clauses, each clause is a disjunction
of literals, and a literal is either a plain or a negated variable. The SAT problem is
to either find an assigment from variables to booleans that makes the formula true,
or prove that there exists no such assignment.

In our implementation we represent variables as bounded natural numbers (Fin),
literals as pairs (Times) of a variable and a boolean, and assignments as vectors of
boolean. Formulas are represented as lists of lists of literals, and the interp function
evaluates a formula under a given assignment.4 We take advantage of dependent
types by indexing the formula by the number of variables, so the typechecker can
check that the vector access is in bounds.

log Formula : (n:Nat) → Type

Formula = λ n. List (List (Times (Fin n) Bool))

log interp_lit : [n:Nat] ⇒ Vector Bool n

→ (Times (Fin n) Bool @log) → Bool

interp_lit [n] assign lit = case lit of

Prod i b → bool_eq b (lookup i assign)

log interp_clause : [n:Nat] ⇒ Vector Bool n →
(List (Times (Fin n) Bool) @log) → Bool

4For reasons explained in Section 7.7.3, the functions interp_lit and interp_clause have a
spurious @log in their types. This qualifier makes no difference semantically here, but is needed due
to a limitation of type inference.

26

interp_clause [n] env clause = any (interp_lit env) clause

log interp : [n:Nat] ⇒ Vector Bool n → Formula n → Bool

interp = λ [n] env .

unfold (Formula n) in all (interp_clause env)

While searching for a solution, the solver manipulates partial assigments, which spec-
ify the values of only some of the variables. In our program we represent these as
Vector (Maybe Bool) n. It easy to treat a partial assignment as an assigment, by
picking some arbitrary value (True, say) for the missing variables. In order to state
the invariants of the algorithm, we say an assignment φ extends a partial assignment
ψ if it agrees whereever ψ is defined.

log extend : [n:Nat] ⇒ Vector (Maybe Bool) n → Vector Bool n

extend = λ [n] xs . vmap (maybe True) [n] xs

log Extends : (n:Nat) ⇒ Vector (Maybe Bool) n → Vector Bool n → Type

Extends n psi phi =

(i : Fin n) → (b:Bool)

→ (lookup i psi = (Just b))

→ (lookup i phi = b)

Now we can state the specification of the solver. When given an argument partial it
should return either an assignment together with a proof that the formula evaluates
to true (Sat n formula), or a proof that there is no way to extend partial into a
satisfying assignment (Unsat n formula partial). At the beginning of the run we
will ask for a solution extending the empty assignment, i.e. for any solution at all.

data Sat (n:Nat) (formula : Formula n) : Type where

SAT of (partial : Vector (Maybe Bool) n)

[_ : interp (extend partial) formula = True]

data Unsat (n:Nat) (formula : Formula n)

(phi : Vector (Maybe Bool) n) : Type where

UNSAT of [_ : (phi’ : Vector Bool n)

→ Extends phi phi’

→ (interp phi’ formula = False)]

So how do we find the solution? Davis, Putnam, Logemann, and Loveland [42, 43]
proposed two rules to use:

Unit propagation If there is some clause which is currently unsatisfied and which
only contains one unassigned variable, set that variable to make the clause
true. This rule corresponds to inference using implications. For example, an
implication (p∧ q =⇒ r) is encoded as the clause (¬p∨¬q ∨ r). So if at some

27

point we learn that p and q are true, then r is the only remaining unassigned
variable in the clause and we can set r to true as well.

Branch Otherwise, pick some currently unassigned variable and guess its value. If
the search later fails, we backtrack and try the other value instead.

(The original presentation also included a third rule, pure literal elimination.
However, this is expensive to implement, so modern solvers usually omit it, and we
do not include it in our program.)

We use two helper functions that implement these rules, which each take a formula
and a partial assignment as inputs. The function setunits finds all unit clauses in
the formula, and returns a new assignment with the corresponding variables set. The
function partial_interp either notes that the formula is alread satisfied, or that
all variables are assigned and it is unsatisfied, or it picks some currently unassigned
variable. Its return type is Or (Sat n f) (Or (Unsat n f partial) (Fin n)).

With these two helper function, we can implement the solver itself:

prog dpll : [n:Nat]

⇒ (formula : Formula n)

→ (partial : Vector (Maybe Bool) n)

→ (Or (Sat n formula) (Unsat n formula partial))

rec dpll [n] = λ formula partial .

let upartial = setunits formula partial in

case (partial_interp upartial formula) [s_eq] of

InL sat → InL sat

InR (InL unsat) → InR (unsat_units formula partial unsat)

InR (InR i) →
case (dpll formula

(set i (Just True) upartial)) of

InL sat → InL sat

InR unsat1 →
case (dpll formula

(set i (Just False) upartial)) of

InL sat → InL sat

InR unsat2 →
InR (unsat_units formula partial

(unsat_branch i formula upartial

unsat1 unsat2))

Most of the function directly implements the backtracking search. Because the func-
tion is in prog this can be done using general recursion, just as in any other pro-
gramming language. The extra work to verify correctness shows up at the end of the
function, in the call to InR. This is when the search failed and we must return a

28

proof that the formula is unsatisfiable. From the recursive calls we have available two
proofs unsat1 and unsat2, stating that there are no solutions after unit-propagating
and guessing either True or False for the variable i. So to complete the proof we
need two correctness lemmas about unsatisfiablility:

log unsat_units : [n:Nat] ⇒ (f : Formula n)

→ (p : Vector (Maybe Bool) n)

→ Unsat n f (setunits f p)

→ Unsat n f p

log unsat_branch : [n:Nat] ⇒ (i : Fin n) → (f : Formula n)

→ (phi : Vector (Maybe Bool) n)

→ Unsat n f (set i (Just True) phi)

→ Unsat n f (set i (Just False) phi)

→ Unsat n f phi

A real SAT solver would be more complicated in various ways. It needs to use more
efficient data structures in memory. It needs to pick the branch variable intelligently
(partial_interp just picks the first unassigned variable), and use a better heuristic
of how far to backtrack. It should use the efficient “two watched variables” scheme to
find unit clauses (setunits scans through all the clauses each time). But note that
none of these affect the correctness statement that we are proving, so they can all be
done in prog. Finally, it should use clause learning to record more information when
it backtracks. That would require an additional soundness lemma stating that the
new clause is implied by the existing ones.

The function dpll illustrates many of the ideas that we discussed earlier in this
chapter. First, it is an example of a program mostly defined by general recursion,
without worrying about termination.

Second, it uses both internal and external reasoning. For the functions dpll and
partial_interp it is very convenient to use the internal style (which is well suited to
these kind of partial correctness statements for potentially nonterminating functions).
But we also found that some lemmas, like unsat_units, are more natural to state
and prove separately from the function they talk about.

Finally, dpll makes crucial use of erasure. The implementation of the function chains
together many applications of the soundness lemmas to eventually build a proof of
unsatisfiability. It would be very slow if those functions had to be actually invoked
at runtime. But the proof arguments of SAT and UNSAT are marked erasable (square
brackets). So at runtime, the Unsat type is isomorphic to a unit type, and the return
type of dpll, (Or (Sat n formula) (Unsat n formula partial)) is isomorphic
to Maybe (Vector (Maybe Bool) n). The reasoning about correctness is done com-
pletely statically, during the type checking.

29

2.5 Other Zombie examples

Combined, all the files in the Zombie test suite contain a little over 8000 lines of code.
However, that includes a lot of duplication and boring unit tests that exercise the
different rules of the type checker. The interesting programs are as follows.

Name LOC Description
Prelude, List, Logic,

Maybe, Fin, Product,
Vectors, Arithmetic,
ArithmeticDiv

860 Standard datatypes like natural numbers
and lists, and lemmas about them.

NatElimination 110 Written by Nathan Collins. Examples of
lexicographic recursion (Section 7.2.1).

Admiss2 104 Smith’s Paradox (Section 7.7.1).
LessThanNat,

LessThanNat LT,
LessThanNat lt eq True,
StrongNat

1152 Written by Nathan Collins. Lemmas about
the less-than relation on natural numbers,
and a proof that course-of-values induction
is derivable from ordinary induction.

Paper 396 Examples associated with our previous
paper [31]. Includes an example of
course-of-values induction using Zombie’s
built-in structural order type
(Section 7.2.1).

RLE 112 An implementation of data compression by
run-length encoding, and proof of
correctness.

Sort 480 Written by Chris Casinghino. An
implementation of merge sort, and an
external proof that it terminates.

BSTprog 408 Lookup and insertion into binary search
trees (Section 2.2 above).

Unify2 310 First-order unification (Section 2.3 above).
Snoc 46 The example in Section 2.3.1 above.
UnsatUnit 371 DPLL-style SAT solver (Section 2.4 above).
Total 4349

The overall contribution of this thesis is to present one new point in the design-
space of dependently typed languages, and evaluate how well it works. One kind
of evaluation is what we will carry out in the following chapters: formalize various
subsets of the language, and prove that it satisfies properties such as type safety,
completeness of elaboration, and logical consistency. These results form a good sanity
check by establishing that the design does not suffer from certain particularly bad
flaws. However, they do not show that a language is useable for programming—the

30

only way to do that is to actually try it and see what it feels like.

Of course, this presents a methodological problem, because developing realistically
large programs takes a lot of time and resources, all the more so when using a proto-
type implementation with poor tooling. The example programs presented in this
chapter could be called “program sketches”. We hope to show that Zombie is usable
for a wide-variety of tasks, but for each of these, we tackle a simplified version of the
problem which is solvable in a few hundred lines. The small examples means that we
can not make any claims about productivity or programming in the large, but the fact
that the programs are possible to write at all is still informative. In fact, originally
not all of them were—having a set of examples to refer to was invaluable when
developing Zombie, and uncovered lots of design problems which were not obvious
from just looking at the typing rules.

31

Chapter 3

Core language

Zombie is implemented as an elaborator from the surface language that the program-
mer write, into a core language. Designing a language this way helps protect against
errors in the implementation, because the generated core language terms can be sep-
arately type checked, and mistakes in the elaborator will usually produce an ill-typed
result. It also helps the language designer, because the design can be divided into
two parts. The core language needs enough features to express all desired programs,
but because it will not be manually written by the programmer it is okay for it to
be very verbose. Conversely, as long as the core language is type safe and logically
consistent, there is no need to worry about the soundness of the surface language.

Accordingly, this chapter has two goals. In Sections 3.1 to 3.8 we describe the what
the core language looks like, with particular emphasis on the combination of features
that sets Zombie apart from other dependently typed languages. Then in Section 3.9
we describe our proof that the language is type safe (we will come back to the issue
of logical consistency in Chapter 7).

Programs in the core language are quite verbose, particularly when involving proofs
of equations. In Chapter 5 we will discuss how to create a surface language which
can automatically infer some such proofs.

Formalizing a subset of the language as a calculus In order to keep the
type safety proof tractable, we do not formalize the full Zombie Core language as
implemented. Instead, the calculus we define in this chapter has been simplified by
omitting all typing rules to do with termination checking. Whenever the type checker
in the full implementation requires an expression to be known-terminating, the type
system defined in this chapter requires the expression to be a syntactic value. (This is
the simplest possible scheme to check termination.) At the same time we simplify the
rest of the language by removing features that are only used for termination checking.
The full language contains a keyword ind defining structurally recursive functions,

32

but in this core calculus we only need to treat (possibly nonterminating) recursive
functions rec. Similarly, the full language contains an infinite hierarchy of universes
Type0,Type1, . . . , but because we do not worry about diverging expressions we can do
even better, and collapse all these with the powerful Type : Type axiom. Figure 3.1
(repeated from the Chapter 1) shows this schematically.

Figure 3.1: Features included in the full Zombie implementation (left), and in the
core calculus defined in this chapter (right).

Relying only on value restrictions for termination checking is too simple to handle all
the programs we want to write (see Section 3.8.3 and Section 7.1). In Chapter 7 we
will go back and study Zombie’s rules for termination checking, but in the context of
a different smaller calculus. Meanwhile, the results in this chapter gives confidence
that the rest of the typing rules are sound.

Novel features in Zombie The core calculus defined in this chapter combines
full-spectrum dependent types with nontermination, so it is inconsistent as a logic
but very expressive as a programming language. In this respect it is comparable to
languages like Cayenne [10] or ΠΣ [9]. However, Zombie has a number of features
which sets it apart from other dependently typed language, which we will describe in
this chapter.

• Our operational semantics is call-by-value. As we describe in Section 3.3 this is
a good choice when the language includes nontermination.

• To clarify the relation between surface language expressions and the core ex-
pressions they elaborate into, we distinguish certain subexpressions as erasable
annotations (Section 3.2). A core language expression is just a surface expres-
sion with additional annotations.

• The idea of annotations also fits nicely with supporting computationally irrel-
evant arguments, i.e. function arguments that are used to state the types but
do not affect runtime behavior. Similar to previous work on dependent lan-
guages [15, 91] we use the type system to track which arguments are irrelevant,

33

and use that information to aid compile-time reasoning. However, unlike pre-
vious languages we combine irrelevant arguments with nontermination, which
reveals some new issues (Section 3.8).

• Propositional equality in this language is a primitive, and we treat the elimina-
tion form for equality (type casts) as computationally irrelevant (Section 3.6).
Taking equality as a primitive instead of defining it as a datatype simplifies our
typing rules for datatypes (Section 3.7), since the machinery for casting types
does not need to be baked into the case-rule.

• Our treatment of equality is unusual in that it is completely “operational”, i.e.
based on the reduction behavior of expressions with little reference to their
types. This has some drawbacks, but it means that we can easily support “very
heterogeneous” type casts and n-ary type casts (Section 3.6).

Our proof of type safety (Section 3.9) is also a contribution. We use a fairly standard
Wright-Felleisen progress/preservation proof extended with one extra lemma to deal
with equality types. This is much simpler than previous work on dependent types
with nontermination, which used denotational semantics or logical interpretations.

3.1 Syntax

The syntax of the core calculus appears in Figure 3.2. Terms, types and the sort
Type are collapsed into one syntactic category, as in pure type systems [14]. By
convention, we use lowercase metavariables a, b for expressions that are terms and
uppercase metavariables A,B for expressions that are types. Some of the expressions
are standard: the sort of types Type, variables, the usual dependent function type,
recursive function definition, function application, datatype constructors, data con-
structors, and case-expressions. The two final lines of the figure deal with irrelevance
and propositional equality; these will be explained in Sections 3.8 and 3.6. In this cal-
culus all functions are defined as expressions rec f x .a, but we write λx .a as syntactic
sugar when x is not free in a.

Figure 3.2 also defines which expressions are values. Because our operational seman-
tics (Section 3.3) is call-by-value, this grammar controls when one is allowed to reduce
a β-redex. Also, several typing rules require that subexpressions be values in order to
ensure that that they terminate—this restriction ensures type safety despite logical
inconsistency. Notice that variables are classed as values; this is sound in a CBV
language.

In this syntax, we use overline notation to denote a sequence of syntactic elements. For
example, ai is a list of expressions. Several expression forms bind expression variables,
including arrow types and recursive functions. Each branch of a case expression binds

34

x, y, f, g, h ∈ variables
D ∈ datatypes, including Nat
d ∈ constructors, including 0 and S

i, j, ` ∈ natural numbers

expressions a, b, c, A,B,C ::= Type | x
| (x :A)→ B | rec fA x .a | a b

| D Ai | dA ai | case ay of {dj ∆j ⇒ bj
j∈1..k}

| •(x :A)→ B | rec fA •x .a | a •b
| a = b | joinΣ | a.b

strategies Σ ::= . . .
telescopes ∆ ::= · | (x : A)∆ | •x :A ∆
expression lists ai ::= · | a ai | •a ai

values v ::= Type | x
| (x :A)→ B | rec fA x .a
| D Ai | dA vi
| •(x :A)→ B | rec fA •x .a
| a = b | joinΣ | v.b

Figure 3.2: Syntax

35

|Type| = Type
|x | = x
D Ai	= D	Ai		
dA ai	= d	ai		
rec fA x .a	= rec f x .	a		
rec fA •x .a	= rec f •.	a		
a b	=	a		b
a •b	=	a	•	
(x :A)→ B	= (x :	A)→	B
• (x :A)→ B	= •(x :	A)→	B
case ay of {pats}	= case	a	of {	pats
a = b	=	a	=	b
joinΣ	= join			
a.b	=	a		

Figure 3.3: The erasure function | · |

the given telescope of variables ∆ in the body of that branch. Within the telescope,
the variables are also bound in subsequent typing annotations. Both expression lists
and telescopes can contain a mix of computationally relevant and irrelevant items,
where the latter are shown as subscripted bullets (•). We use the notation {a/x}B
to denote the capture-avoiding substitution of a for x in B and the notation FV (a)
to calculate the set of free variables appearing in an expression.

The typing judgement is written Γ ` a : A. The typing contexts Γ are lists containing
variable declarations and datatype declarations

Γ ::= · | Γ, x : A | Γ, data D ∆ where { di of ∆i
i∈1..j }

3.2 Annotations and erasure

The syntactic elements appearing in subscripts are called annotations and are optional
elements. When all annotations are present, the core typing judgement Γ ` a : A
is syntax-directed and type checking is trivially decidable. Given a context and an
expression, there is a simple algorithm to determine the type of that expression (if
any). We call an expression that includes all annotations an annotated expression.

Annotations are needed for type-checking, but are erased during compilation and
require no run-time representation. Since this is a dependent language we want
to reflect this fact in the type system: if two expressions are identical except in
their annotations, they should be treated as equivalent when comparing types. We

36

formalize this using the meta-operator |a| (Figure 3.3), which removes all annotations
from expressions. (This includes erasing binders, e.g. |rec fA •x .a| = rec f •.|a|, so
strictly speaking the operation is only well defined for well-typed expressions. The
type system has a check that x 6∈ FV (|a|).) Expressions that contain no typing
annotations are called erased. The core typing judgement is also used to specify
when erased expressions type check by non-deterministically guessing the annotations.
Specifically, we define Γ ` ∃ a : A if there exists some a ′ such that |a ′| = a and
Γ ` a ′ : A However, this type system is undecidable. There is no algorithm to decide
whether an erased expression should type check.

Thus figure 3.2 can be seen as defining two languages at once (in the implementa-
tion the annotated and the erased languages are defined as two separate datatypes).
This distinction between annotated and erased expressions follows ICC* [15] and
EPTS [91]. It is also similar to the design of Nuprl [35], where our erased expres-
sions are similar to Nuprl expressions, and annotated expressions are similar to Nuprl
typing derivations.

In Chapter 5 we go on to define a source language which retains decidable type
checking but allows the removal of some of these annotations. Zombie is implemented
as an elaborator from that surface language into the fully annotated core language.
Defining the syntax with optional annotations in this way presents a novel point of
view: the source language (what the programmer writes), the core language (what the
elaborator targets), and the erased language (what the compiler backend and runtime
system deals with) are essentially the same language, just with different amounts of
annotation.

Elaborating compilers for simply-typed languages like Haskell do not need an orga-
nizing principle like this—there the core language is just an implementation concern,
and it does not matter that Haskell Core expressions can look quite different from
the source program. But in a dependent language the programmer needs to reason
about the reduction behavior of elaborated expressions. As a simple example, if a
Coq programmer writes a case-expression with deep patterns, the compiler expands
it into several nested case expression—and the expanded version will be displayed
in all proof obligations. More advanced Coq features, like Function and Program,
result in more transformations of the source code, and some Coq programmers rec-
ommend avoiding them in order to have more detailed control over the generated
expressions [32]. Agda and Idris make still more radical changes, because their target
language is a simple version of Type Theory where only top-level function definitions
can do pattern matching [25]. Because termination checking and definitional equality
operate on that elaborated version, seemingly small changes in the source code can
cause the program to no longer type check.

In this formalized calculus the connection is perfectly clear, because the source pro-
gram and its elaboration are always identical up to erasure. The Zombie implemen-

37

a ;cbv b

(rec f x .a) v ;cbv {v/x} {rec f x .a/f } a
SCappbeta

(rec f •.a) •;cbv {rec f •.a/f } a
SCiappbeta

case (di vi) of {dj xij ⇒ aj
j∈1..k};cbv {vi/xii} ai

SCcasebeta

a ;cbv b

E [a] ;cbv E [b]
SCctx

Evaluation contexts
E ::= [] | E a | v E | E • | case E of {dj xij ⇒ aj} | d vi E ai

Figure 3.4: Operational semantics

tation departs from this ideal in a few places (in particular, complex pattern matches
are expanded in the same way as in Coq), but we try to resist that temptation.

3.3 Operational semantics

Strongly normalizing languages can be agnostic about evaluation order, since any
order gives the same answer (e.g. Coq can extract to both ML and Haskell). With
nontermination we have to choose, and we pick call-by-value. This choice is different
from previous full-spectrum dependent languages, which are generally call-by-name.

The rules for the evaluation relation ;cbv are shown in figure 3.4. The rules are
entirely standard except the rule for irrelevant applications (SCiappbeta), which
will become clearer in Section 3.8. Note that the step relation is defined for erased
expressions, so it is independent of typing. In other words, we take a Curry-style
approach to semantics, where the evaluation of raw lambda expressions is the gold
standard and we design a type system around it. Occasionally we will abuse notation
and write a ;cbv b meaning |a| ;cbv |b| when a and b contains annotations. Later,
when designing the surface language, we will also define a relation a ;a b which
reduces annotated expressions without first erasing them (Section 5.6.3).

Why choose CBV? In addition to the usual reasons (easier to optimize for speed;
a simple cost model for the programmer), there is a particularly nice fit between
nonterminating dependent languages and CBV evaluation, because the strictness of
evaluation partially compensates for the fact that all types are inhabited.

38

For example, consider integer division. Suppose the standard library provides a func-
tion

div : Nat → Nat → Nat

which performs truncating division and throws an error if the divisor is zero. If we
are concerned about runtime errors, we might want to be more careful. One way to
proceed is to define a wrapper around div, which requires a proof of div’s precondition
that the denominator be non-zero:

safediv : Nat → (y:Nat) → (p: isZero y = false) → Nat

safediv = λ x:Nat.λ y:Nat.λ p:(isZero y = false).div x y

Programs written using safediv are guaranteed to not divide by zero, even though
our language is inconsistent as a logic. This works because λ-abstractions are strict in
their argument, so if we provide an infinite loop as the proof then the entire expression
safediv 1 0 (loop()) diverges and never reaches the division.

With safediv strictness is “only” a matter of expressivity. But when type casts are
involved, strictness is required for type safety. For example, if a purported proof
of Bool = Nat were not evaluated strictly, we could use an infinite loop as a proof
and try to add two booleans. (This affects all languages with nontermination. For
example, even though Haskell is generally lazy it evaluates equality proofs strictly,
see Section 8.1.7.)

While strict λ-abstractions give preconditions, strict data constructors can be used
to express postconditions. For example, we might define a datatype characterizing
what it means for a string (represented as a list of characters) to match a regular
expression:5

data Match : String → Regexp → Type where

MChar : (x:Char) → Match (x::nil) (RCh x)

MStar0 : (r:Regexp) → Match (nil) (RStar r)

MStar1 : (r:Regexp) → (s s’:String) →
Match s r → Match s’ (RStar r) → Match (s ++ s’) (RStar r)

...

and then define a regexp matching function to return a proof of the match

match : (s:String) → (r:Regexp) → Maybe (Match s r)

Such a type can be read as a partial correctness assertion: we have no guarantee
that the function will terminate, but if it does and says that there was a match, then
there really was. Even though we are working in an inconsistent logic, if the function

5For familiarity, this datatype declaration is written using Coq-style indexed datatypes. In real
Zombie, the programmer would write it in “parameters only” style (Section 3.7)

39

Γ ` a : A

` Γ

Γ ` Type : Type
Ttype

` Γ
x : A ∈ Γ

Γ ` x : A
Tvar

Γ ` A : Type
Γ, x : A ` B : Type

Γ ` (x :A)→ B : Type
Tpi

Γ ` (x :A1)→ A2 : Type
Γ, f : (x :A1)→ A2, x : A1 ` a : A2

Γ ` rec f(x:A1)→A2 x .a : (x :A1)→ A2

Trec

Γ ` a : (x :A)→ B
Γ ` b : A
Γ ` {b/x}B : Type

Γ ` a b : {b/x}B
Tapp

Figure 3.5: Typing: Basics

returns at all we know that the constructors of Match were not given bogus looping
terms.

3.4 Basic typing rules

Having defined the syntax and operational semantics of the language, we go on to
define a type system for it.

Figure 3.5 shows the basic typing rules for variables and functions. The language uses
collapsed syntax and uses the type system to identify which expressions are types:
A is a well-formed type if Γ ` A : Type. The rule Ttype ensures that Type itself
is typeable. In a language with general recursion it makes sense to use Type : Type
rather than a full predicative hierarchy. Having Type : Type makes the system logically
inconsistent, but because of general recursion it already is.

Function types are kind-checked by the rule Tpi. We use the notation A → B as
syntactic sugar for (x :A)→ B when x is not free in B .

(Recursive) functions are introduced using expressions rec f x .a, with the typing rule
Trec. Rec-expressions are values, and applications step by the rule (rec f x .a) v ;cbv

{v/x} {rec f x .a/f } a. For non-recursive functions (when f does not occur in a) we
also write λx .a as syntactic sugar for rec f x .a. Functions are eliminated by the
application rule Tapp.

The application rule is different from pure dependently typed languages, because
it has an extra kinding premise Γ ` {b/x}B : Type. In pure languages, the type
{b/x}B would always be well-formed, so the kinding premise would be superfluous.
In this calculus, the best we can say is that the arrow type is well-formed. However,
the derivation of Γ ` (x : A) → B : Type may rely on the fact that x is a value.
Specifically, the derivation may involve CBV-reductions, and substituting a non-value

40

b for x may block a β-reduction that used to have x as an argument. Intuitively this
makes some sense: under CBV-semantics, a is really called on the value of b, so the
type B should be able to assume that x is an effect-free value. In practice, this is a
very mild restriction. While it is possible to construct examples where it triggers (see
Section 4.2), those examples are very artificial, and when writing real programs we
never encountered it.

3.5 Operational semantics at typechecking time

The relation a ;cbv b specifies how compiled programs evaluate, but we are not
done yet. We also need to consider how the typechecker reduces expressions at type-
checking time, which is internalized in the type system by the equality type a = b.

The reduction relation used by the typechecker does not have to be exactly the same
as the evaluation relation. Since the typechecker deals with open expressions, it is
beneficial to allow more reductions. In our core calculus the rule is specified in terms
of a parallel reduction relation a ;p b, shown in figure 3.6. The difference is that ;p

allows reduction under binders, e.g. (λx .1 + 1) ;p (λx .2) even though (λx .1 + 1) is
already a CBV value.

The ;p relation respects CBV contextual equivalence. The typechecker can only
carry out a β-reduction of an application or case-expression if the argument or scru-
tinee is a value. Note however, that values include variables. Treating variables as
values is crucial when reasoning about open terms. For example, to typecheck the
usual append function we want Vec Nat (0 + x) and Vec Nat x to be equal types, but
if x was considered a non-value the expression 0 + x would be stuck.

The reduction relation is used by the introduction rule for equality, which says that
two expressions can be considered equal if their erasures reduce to a common expres-
sion c. Formulating suitable annotations for this rule is slightly subtle. In previous
work [120] we proved type safety when the type system included the following rule:

|a|;∗
p c |b|;∗

p c Γ ` a = b : Type

Γ ` join : a = b
Tjoin

This rule is underspecified in two ways. First, the relation ;p is itself nondetermin-
istic: it is allowed, but not required, to reduce expressions under binders. Second, we
need to know how many steps to reduce the two expressions to reach the common
reduct c. Because of nontermination, it is undecidable whether two arbitrary expres-
sions a and b are joinable in this sense. So phrasing the type-safety theorem in this
way is very strong, because it tells us that any choice of reduction strategy is OK.
But to use this rule in practice requires additional annotations, which in general have
to by supplied by the programmer.

41

a ;p a
SPrefl

a ;p a ′

(rec f x .a) ;p (rec f x .a ′)
SPrec

A ;p A′

B ;p B ′

(x :A)→ B ;p (x :A′)→ B ′
SPpi

A ;p A′

B ;p B ′

•(x :A)→ B ;p •(x :A′)→ B ′
SPipi

a ;p a ′

b ;p b ′

a = b ;p a ′ = b ′
SPeq

a ;p a ′

b ;p b ′

a b ;p a ′ b ′
SPapp

a ;p a ′

v ;p v ′

(rec f x .a) v ;p ({v ′/x} {rec f x .a ′/f } a ′)
SPappbeta

a ;p a ′

(rec f •.a) •;p ({rec f •.a ′/f } a ′)
SPiappbeta

∀i . Ai ;p A′i

D Ai ;p D Ai
′ SPtcon

∀i . ai ;p a ′i
d ai ;p d ai

SPdcon

a ;p a ′

∀j . aj ;p a ′j

case a of {dj xij ⇒ aj
j∈1..k};p case a ′ of {dj xij ⇒ a ′j

j∈1..k}
SPcase

∀i . vi ;p v ′i
ai ;p a ′i

case (di vi) of {dj xij ⇒ aj
j∈1..k};p {vi′/xii} a ′i

SPcasebeta

Figure 3.6: Parallel reduction

42

In the implementation, the type checker for the core language offers two particular
reduction strategies. The first is standard CBV-evaluation. The second is a particular
determinized version of parallel reduction, which works as follows. First, reducing
β-redex takes precedence over reducing its subexpressions, and the implementation
does try to reduce both the redex and its subexpressions in the same step. For
example, when the implementation encounters an application expression (a b) it tries
the two following rules in order. Both rules are subsets of the full nondeterministic
;p-relation.

(rec f x .a) v ;p {v/x} {rec f x .a/f } a
beta

a ;p a ′

b ;p b ′

a b ;p a ′ b ′
congruence

Second, in order to avoid unfolding expressions indefinitely (see Section 4.1.3), the
implementation “turns off” reduction of recursive functions when going under binders.
For example, the rule for reducing the body of a rec-expression is

a ;−
p a′

(rec f x .a) ;p (rec f x .a ′)
congruence

where ;−
p denotes the same determinized reduction relation except that the β-rule

only triggers for non-recursive functions λx .a, but not properly recursive functions
rec f x .a.

With these choices, the reduction path of an expression is completely determined
by the number of steps to take, so the core term is annotated to specify reduction
strategy and step-count. This is shown as rules Tjoinc and Tjoinp in figure 3.7. We
abuse notation by using the same symbol ;p for both the nondeterministic relation
and the determinized version in the implementation.

In the annotated syntax, the term constructor for these typing rules is written joinΣ,
where Σ is the “strategy” for proving the equality (i.e. in Tjoinc/p the Σ specifies
evaluation strategy and the step counts). The annotation Σ is erasable, so the type-
checker will consider two proofs of equations to be equal regardless of the details of
how they were proven.

3.6 Reasoning about equality

The previous section discussed the introduction form for equality (join). Next we
consider how equations can be eliminated. The typing rules are shown in Figure 3.7.
The rules are different in several ways from other dependently typed languages. First,
the equational theory is very “operational”, i.e. two expressions are considered equal

43

Γ ` a : A

Γ ` a : A Γ ` b : B

Γ ` a = b : Type
Teq

Γ ` a : A Γ ` v : A = B
Γ ` B : Type

Γ ` a.v : B
Tcast

|a|;i
cbv c |b|;j

cbv c
Γ ` a = b : Type

Γ ` join;cbvi j :a=b : a = b
Tjoinc

|a|;i
p c |b|;j

p c
Γ ` a = b : Type

Γ ` join;pi j :a=b : a = b
Tjoinp

Γ ` B : Type
∀k . Γ ` vk : ak = bk
|B | = |({a1/x1} ... {aj/xj} c = {b1/x1} ... {bj/xj} c)|

Γ ` join{∼v1/x1} ... {∼vj /xj }c:B : B
Tjsubst

Γ ` v : ((x :A1)→ B1) = ((x :A2)→ B2)

Γ ` joininjdom v : A1 = A2

Tjinjdom

Γ ` v1 : ((x :A)→ B1) = ((x :A)→ B2)
Γ ` v : A

Γ ` joininjrng v1 v : {v/x}B1 = {v/x}B2

Tjinjrng

Γ ` v1 : (•(x :A1)→ B1) = (•(x :A2)→ B2)

Γ ` joininjdom v1 : A1 = A2

Tjiinjdom

Γ ` v1 : (•(x :A)→ B1) = (•(x :A)→ B2)
Γ ` v : A

Γ ` joininjrng v1 v : {v/x}B1 = {v/x}B2

Tjiinjrng

Γ ` v1 : D Ai = D Ai
′

Γ ` joinntheqk v1 : Ak = A′k
Tjinjtcon

Γ ` v1 : (A1 = A2) = (B1 = B2)

Γ ` joininjeq i v1 : Ai = Bi

Tjinjeq

Figure 3.7: Typing: Equality

44

based on whether they evaluate to the same thing, with the types of the expres-
sions playing little role. Second, using an equation in a type cast is considered a
computationally irrelevant operation.

The formation rule Teq states a = b is a well-formed type whenever a and b are two
well-typed expressions. There is no requirement that they have the same type—that is
to say, our equality type is heterogeneous. Allowing heterogeneous equations is useful
because developments using indexed types often involve expressions whose types are
provably but not definitionally equal. (As a simple example, consider stating that
depedently typed functions respect equality, x = y → f x = f y , where f x : A x and
f y : A y .) Coq and Agda include a heterogeneous equality type in their standard
library. In Zombie heterogeneous equality is even more useful, because the Zombie
definitional equality is weaker (doesn’t include βη-convertibility).

The equality elimination rule is Tcast. Given a proof of an equation A = B we can
change the type of an expression from A to B . Since our equality is heterogeneous,
we need to check that the rhs of the equation is in fact a type, which is done by the
premise Γ ` B : Type. In the core calculus we require the proof to be a value in order
to rule out type safety problems from diverging “proofs”. In the full Zombie language
the proof is allowed to be a nonvalue as long as it is known to terminate (Chapter 7).

The proof term v in a type cast is treated as an erasable annotation, so the typechecker
will consider equalities like a = a.v to be trivially true. This corresponds to the
fact that casting between two provably equal types has no operational significance.
The fact that type casts are erasable is similar to Nuprl, but different from Coq and
Agda—in Coq and Agda the computational behavior of a type cast is to first evaluate
the proof until it reaches refl eq, the only constructor of the equality type, and then
step by a.refl eq ; a.

The reason Coq and Agda uses this computationally-relevant semantics is to en-
sure strong normalization for open terms. If casts are irrelevant, then in a context
containing the assumption h : (Nat → Nat) = Nat it is possible to type the term
(λxNat.x x) (λxNat.x x).h which loops since evaluation does not get stuck on the as-
sumption h. Of course, in our language expressions are not normalizing in the first
place, so we enjoy the more powerful reduction relation and accept that reduction
may not terminate. (Section 8.2 discusses these tradeoffs in more detail.)

Another interesting feature of the Tcast rule is that the two sides of the used equal-
ity are allowed to have different types. By contrast, the conventional treatment of
heterogeneous equality is JMeq [84], which allows the programmer to state any equal-
ity, but only use it if both sides have (definitionally) the same type. The lack of such
a restriction in this rule means less work for the programmer when using equations.
(But there is corresponding drawback, described in Section 3.6.1 below.)

The rest of the figure specifies additional introduction rules for equality, which pro-

45

duce new equations from old ones. Equality proofs do not carry any information at
runtime, so all the introduction rules use the same term constructor join, but with
different (erasable) annotations.

The rule Tjsubst states that two expressions are equal if their subexpressions are
equal, or in other words that equality is a congruence. The simplest use of the rule
is to change a single subexpression, using a proof v. The use of the proof is marked
with a tilde; for example, if Γ ` v : y = 0 and Γ ` a : Vec Nat y , then joinVec Nat (∼v)

has type Vec Nat y = Vec Nat 0.

Unlike other dependent languages, Zombie also allows eliminating several different
equality proofs in one use of the rule: for example if Γ ` v1 : x = 0 and Γ ` v2 :
y = 0, then we can use both proofs at once in the expression joinVec Nat (∼v1+∼v2) :
Vec Nat (x + y) = Vec Nat (0 + 0). Having an n-ary congruence rule available is
helpful for the programmer (Section 3.6.3) and when implementing the elaborator
(Section 8.3.1).

The tilde is part of the concrete syntax of the annotation. In other words, the Σ used
with Tjsubst can be an arbitrary expression A, except additionally it can contain
subexpressions of the form ∼v in places where the syntax of ordinary expressions
would allow a variable x. When stating the typing rule we express this using sub-
stitution, so in the expression join{∼v/x}A, the tilde is part of the syntax of the core
calculus, but the {b/x} part denotes the meta-operation substitution. If the full anno-
tation has the form {∼v1/x1} ... {∼vj/xj}A and Γ ` vk : ak = bk , one can think of the
expression A as the “template” for the proved equality, e.g. the left-hand side of the
proved equality is obtained by substituting the left-hand sides ak into the appropriate
places in A.

In addition to the template and the proofs, the subst strategy also includes an anno-
tation B which states the equation to be proven. The typechecker verifies that the
annotation matches the equation produced by substituting into the template up to
erasure. Making B an explicit annotation serves two purposes. First, it provides a
way for the elaborator to specify what kinding derivation should be used to check
B : Type, rather than leaving it to core checker to construct it. Second and more
importantly, this allows the rule to exploit computational irrelevance, because the
two types are only compared up to erasure.

Finally, the rules Tjinjdom, Tjinjeq, Tjinjrng, Tjiinjdom, Tjiinjrng, and
Tjinjdtcon state that datatype constructors, the equality type constructor, and
arrow type constructors are injective. The rule for arrow domains is exactly what
one would expect: if (x : A) → B = (x : A′) → B , then A = A′. The rule for
arrow codomains needs to account for the bound variable x, so it states that the
codomains are equal when any value v2 is substituted in. Making type construc-
tors injective is unconventional for a dependent language. On the one hand, it is
validated by our interpretation of equality in terms of operational semantics. On

46

the other hand, it is incompatible with e.g. Homotopy Type Theory, which proves
Nat → Void = Bool → Void (because semantically, both sides are empty). In our
language we need injectivity to prove type preservation, because type casts do not
block reduction (see Sections 3.9.4 and 5.6.3). Haskell Core includes type-constructor
injectivity for the same reason. It also turns out to be helpful to have injectivity
available when designing the elaborator for the surface language (Section 5.4).

3.6.1 Lack of functional extensionality

One of the unique things about Zombie’s treatment of equality is that heterogenous
equations can be used even if the two sides have different types. This freedom has
a downside: we are unable to support certain type-directed equality rules. In par-
ticular, adding functional extensionality would be unsound. Extensionality implies
(λxVoid.1) = (λxVoid.0) since the two functions agree on all arguments (vacuously). But
our annotation-ignoring equality shows (λxVoid.1) = (λxNat.1), so by transitivity we
would get (λxNat.1) = (λxNat.0), and from there 1 = 0. This also entails a restriction
on rewriting under binders: even if a = b is provable in the context Γ, x : A we can
not in general conclude λx .a = λx .b in the context Γ, because bringing the variable
x into scope requires a use of extensionality. (On the other hand, if x is not free in a
and b, then the equation is provable using Tjsubst.)

How limiting is this? In the example programs we have written so far (Chapter 2)
we did not encounter any situations where we would have wanted to use functional
extensionality, even if it had been available. This may be simply because we have not
written enough programs to hit upon an example where it is needed, but it may also
be an effect of the type of theorems we are proving. Zombie is primarily intended as
a language for software verification, and in that context it is fairly natural to avoid
the use of extensionality by rephrasing a theorem f = g to instead say ∀x.f x = g x.
After all, a user can never directly observe the equality of two programs, only compare
their input-output behavior. Extensionality is much more frequently used in purely
mathematical developments, where theorems often directly talk about functions being
equal to each other.

While we cannot support functional extensionality in general, it could be that there
are some weaker instances which could be added. Since the above counter-example
involved an empty function domain, one could add a precondition to the extensionality
axiom which requires the domain-type to be inhabited. Also, one can wonder about
instances of the η-rule for functions, which states that f = λx.f x whenever f can
be given a function type (although this rule must be restricted in a CBV language).
We are not aware of any ways to derive inconsistency using either of these axioms.
However, we have not pursued any formal proof that they are consistent, because
doing so would make the metatheory of the language more difficult. When studying
the current language we can interpret equality as simply joinability under reduction

47

(Section 3.9.5). In order to justify extensionality-like axioms, one has to use a more
complicated interpretation (typically some form of logical relation).

3.6.2 Proof irrelevance for equations

In intensional type theories (ITTs) such as Coq and Agda, it is interesting to ask if
all equality proofs are provably equal. That is to say, given p : a = b and q : a = b, is
it always the case that p = q? It turns out that this claim is not provable in Coq, but
it is consistent to assume it as an axiom. (There are several equivalent formulations
of the axiom, such as Streicher’s Axiom K [125] or “uniqueness of identity proofs”.)

Having this principle available in ITT is helpful for several reasons. First, as men-
tioned above, those languages can prove a.join = a, but not generally a.b = a, so
being able to replace an arbitrary proof b with the equality constructor join allows
reduction to make progress. Also, this principle turns out to be needed to show injec-
tivity of type constructors. And McBride [82] showed that it can be used to elaborate
dependent pattern-matching statements into nested uses of induction over datatypes.
On the other hand, the axiom is only sound if there really only is one way to cre-
ate equality proofs. In particular, Homotopy Type Theory [135] extends type theory
with an a new constructor for equality proofs, the “univalence axiom” ua f , with the
reduction rule a.(ua f) ; f(a). This extension is incompatible with assuming that all
equality proofs are equal, since we would have f(a) = a.(ua f) = a.(ua g) = g(a) for
unrelated f and g.

Zombie is halfway towards proof-irrelevant equations. Presumably nothing would go
wrong if we added an Axiom K-like rule to the type system, but in the current system
it is not possible to prove that two arbitrary equality proofs are equal. However,
the use-cases that motivate Axiom K are already satisfied, since computationally
irrelevant type casts (Tcast), injective datatype constructors (Tjinjtcon), and
dependent pattern matching (Tcase, below) are included as primitives.

Because type casts are computationally irrelevant, all equality proofs can be “canon-
icalized” to just join. That is, whenever we can prove an equation by some proof v,
we can prove the same equation with join:

Γ ` join;cbv00:a=a : a = a
Tjoinc

Γ ` v : a = b
Γ ` joina=∼v : (a = a) = (a = b)

Tjsubst

Γ ` join;cbv00:a=a.joina=∼v
: a = b

Tcast

This means that the programmer never needs to worry about whether a function argu-
ment of equality type should be relevant or irrelevant, since an irrelevant assumption
can be used to create a join-expression which can be used in relevant positions.

48

3.6.3 Carefree equality reasoning

The fact that our equality is not compatible with functional extensionality or the
univalence axiom is certainly a limitation, and in e.g. a system aimed at formalizing
advanced mathematics this would probably not be a good choice. On the other hand,
the rules address some frustrations that come up in everyday programming in Coq.

First, Coq programmers view type casts with suspicion. Particularly when writing
functions that takes indexed datatypes as input, it can be tricky to make the types
agree. (For an example, see zip in Section 3.7 below.) Often the most obvious
solution would be to insert a type cast. However, such a cast would interfere with
reduction of the function, so the preferred solution is instead to try to use partial
function applications and extra λ-expressions (the “convoy pattern” [32]) to finagle
the Coq pattern matching rule into producing the right type. Because type casts in
Zombie are irrelevant we avoid the need for this.

Second, we allow a single use of Tsubst to eliminate more than one proof in order
to make sure that equality is a congruence. For example, suppose that we have the
context

f : A→ C , g : B → C , a : A, b : B, p : f = g, q : a = b

and we want to prove f a = g b. In our system the proof is just join∼p ∼q. However, if
we could only use one equation at a time, we would have to use a chain of reasoning
such as f a = f b = g b, where the intermediate term is not well-typed. The usual way
this problem comes up in practice is when reasoning about indexed datatypes such
as vectors; for example consider proving Cons m x xs = Cons n x ys, where m and n
are propositionally but not definitionally equal. It is still possible to prove this kind
of equations through judicious use of type casts and abstraction (see Chlipala [32]
Chapter 9, and Bertot and Castéran [20] Section 8.2.7), but it is more tricky.

In this author’s experience, reasoning about equality is by far the most subtle and
confusing part of programming in Coq. (Programming in Agda is not quite as bad,
since the typechecker works hard behind the scenes to unify type indices when pattern
matching.) With our set of rules for equality, equality works more like in first-order
logic: equal expressions can be used interchangeably, as long as the types still work
out. Since our ultimate goal is to make it easier for programmers to transition from
functional to dependent programming, we try to make reasoning about equality as
simple as we can.

49

Γ ` a : A

data D ∆+ where { di of ∆i
i∈1..j } ∈ Γ

Γ ` Ai : ∆+

Γ ` D Ai : Type
Ttcon

data D ∆+ ∈ Γ
Γ ` Ai : ∆+

Γ ` D Ai : Type
Tabstcon

data D ∆+ where { di of ∆i
i∈1..j } ∈ Γ

Γ ` Ai : ∆+

Γ ` ai : {Ai/∆+}∆i

Γ ` dkD Ai
ai : D Ai

Tdcon

Γ ` b : D Bi

Γ ` A : Type

data D ∆+ where { di of ∆i
i∈1..j } ∈ Γ

∀i . Γ, {Bi/∆
+}∆i , y : b = di ∆i ` ai : A

∀i . y /∈ FV (|ai |)
∀i . dom−(∆i) # FV (|ai |)

Γ ` case by of {di ∆i ⇒ ai
i∈1..j} : A

Tcase

Figure 3.8: Typing: Datatypes

50

3.7 Datatypes

Our core language includes datatypes D Ai, which are introduced by data constructors
dD Ai

ai and eliminated by case-expressions. The treatment of datatypes is mostly
standard, but the way the typing rule for case handles type dependency is interesting.

Datatype declarations have the form

data D ∆ where { di of ∆i
i∈1..j }

Once a declaration datatype is in the context, the rule Ttcon allows it to be used
as a well-formed type.

To reduce clutter we write the rules using telescope notation. Metavariables ∆ range
over lists of relevance-annotated variable declarations like (x : A) •y:B (z : C), also
known as telescopes, while overlined metavariables ai range over lists of terms like
a •b c. Metavariables ∆+ range over telescopes that have only relevant declarations.
Depending on where in an expression they occur, telescope metavariables stand in for
either declarations or lists of variables, according to the following scheme:

a1 ∆ ≡ a1 x •y z
{ai/∆} a1 ≡ {a/x} {b/y} {c/z} a1

Γ,∆ ≡ Γ, x : A, y : B , z : C
Γ ` ai : ∆ ≡ Γ ` a : A ∧ Γ ` b : {a/x}B ∧ Γ ` c : {b/y} {a/x}C

Datatypes have parameters but not indices. That is, a datatype has a list of pa-
rameters ∆, and the return type of each of its data constructor di is D ∆ (the type
constructor D applied to the same list of variables). Cases where one would want
non-uniform indexes, e.g. the usual type Vec of length-indexed lists, can instead be
handled by a combination of parameters and equality proofs:

data Vec (a:Type) (n:Nat) where

Nil of (p:n=0)

Cons of (m:Nat) (p:n=Succ m) (x:a) (xs:Vec a m)

The simplicity of parameters-only makes it attractive for a core language (e.g. this is
how Haskell GADTs are elaborated into GHC Core [131]). One could elaborate the
usual parameters-and-indexes formulation into this format. However, we have found
that with some support from the typechecker (Crefl in Section 5.3) it is quite easy
to manage the extra equality proofs explicitly even in the surface language.

The introduction rule Tdcon checks data constructors by looking them up in the
datatype declaration. For simplicity, data constructors are fully-applied (like in
OCaml) rather than implicitly curried (like in Haskell). In other words, d by it-
self is not a well-formed expression; it must be applied to a list of type parameters

51

and arguments dD Ai
ai.

Finally, datatypes are eliminated by case-expressions in the rule Tcase. The pro-
grammer must write one branch di ∆i ⇒ ai for each constructor of the datatype D .
The branch only introduces pattern variables for the constructor arguments, as the
parameters are fixed throughout the case. The parameters are used to refine the
context that the match is checked in: if the scrutinee has Γ ` b : D Bi, then for each
branch we check

Γ, {Bi/∆
+}∆i , y : b = di ∆i ` ai : A

The context also includes an equality assumption. The case expression (case ay of . . .)
binds the variable y, which can occur in the match branches. In the concrete syntax
we write (case b [y] of ...). The variable y must only occur in computationally
irrelevant positions in the branches, which is enforced by the premise y /∈ FV (|ai |) .

From a language-design perspective, this equality assumption is the most interesting
part of the rule—sometimes this rule is called smart case [7]. Having the equation y
available resolves a notoriously delicate issue in dependent languages, which is how
to make the new information from a case statically available. For example, consider
a function which does a match on a length-indexed list:

zip : (A:Type) → (B:Type) → (n:nat)

→ (u : Vec A n) → (v : Vec A n) → Vec (A*B) n

zip A B n u v =

case v [y] of

Nil p ⇒ ... e1 ...

Cons m p x xs ⇒ ... e2 ...

If the program execution reaches e1, we have learned two new things: the expression
v is equal to Nil, and the type index n is equal to 0. In our system, this information
is exposed very straightforwardly, since the context has been extended with the two
equations y : v = Nil and p : n = 0. This design is feasible because type casts are
irrelevant, so uses of y and p will not interfere with the reduction behavior of zip,
and because the surface language uses the equations automatically (Chapter 5).

Existing languages have less convenient case rules. In Coq one would typically write
the datatype in a non-uniform-indices style, and by default no equation y is added.
Then in the above example, e2 would be checked in a context

xs : Vec A m

v : Vec A n

with no relation between m and n, so there is no way to complete the function. The
programmer can manually specify that the branches should be checked at a different
type (calculated as a function of the indexes and the scrutinee), but even simple
functions such as zip can require some care to write.

52

By contrast, Agda makes information about type indices available, but at the cost of
a quite complicated typing rule. In each branch the type checker computes the most
general unifier of the indices appearing in the scrutinee type and constructor type,
and then applies that substitution to the context that the branch body is checked
in. For example, in the branch e2 the type of v would be Vec A (suc m) rather
than Vec A (suc n). This makes programming easier, but the specification of the
typing rule is complex since it involves unification. Indeed, pattern matching in Agda
and Idris is a rather heavy operation which is only available in top-level functions;
expression-level pattern matching has to be elaborated into new anonymous top-
level functions, which can sometimes be confusing for the programmer. The use of
unification can also get in the way: for example if we instead had a variable of type
v : vec A (f n), for some function f , then Agda would not allow a case expression
on v at all because it could not guarantee a unique solution to the unification problem
f n = suc m. Our language simply adds that equation to the context, instead of
having to first solve for n.

Also, we saw in Section 2.3.1 that even in cases when no unification is done, the rule
used by Coq and Agda can be clumsy because the typechecker needs to guess how to
refine the return type.

Sometimes, adding a propositional equation to the context is exactly what the pro-
grammer wants, for example in writing an explicit proof term which reasons by cases.
(For example, consider the branch on (ordLt x y) in the proof in Section 2.2.) In
these circumstances, Coq and Agda both have established idioms (the case tactic,
and the inspect pattern) which produce essentially our typing rule as a derived rule.
Because equality proofs in these languages are not erased, however, indiscriminate
use of these idioms can interfere with the reduction behavior of a term, so they are
not a general solution.

3.8 Computational Irrelevance

Previously we saw that since the equality proof in a cast a.b has no computational
role, it can be treated as an erasable annotation. The same idea can be extended to
function arguments. To support this, in addition to the normal function type, we also
include computationally irrelevant function types •(x :A)→ B , which are inhabited
by irrelevant functions rec fA •x .b and eliminated by irrelevant applications a •b .

In a dependent language many arguments are only used for type checking, but do not
affect the runtime behavior of the program—consider for instance type arguments to
polymorphic functions (e.g. map : •(A B : Type) → (A → B) → List A → List B),
indices to dependent datatypes (e.g. append : •(n m : Nat) → Vec n → Vec m →
Vec (n + m)), and preconditions to functions (e.g. safediv : (x y : Int) → •(y 6=

53

Γ ` a : A

Γ ` A : Type
Γ, x : A ` B : Type

Γ ` •(x :A)→ B : Type
Tipi

Γ ` •(x :A1)→ A2 : Type
Γ, f : •(x :A1)→ A2, x : A1 ` a : A2

x /∈ FV (|a|)
Γ ` rec f(x:A1)→A2 •x .a : (x :A1)→ A2

Tirec

Γ ` a : •(x :A)→ B
Γ ` b : A

Γ ` a •v : {v/x}B
Tiapp

Figure 3.9: Typing: Irrelevant function arguments

0) → Int). If the programmer marks these arguments as irrelevant, the typechecker
will ignore them when comparing expressions for equality, making it easier to write
proofs. For example, if both p and q have type y 6= 0, the typechecker will treat
safediv x y •p and safediv x y •q as equal without looking at the last argument.

One good example which shows how irrelevant arguments make it easier to write
proofs is reasoning about appending vectors. Suppose we write a function to append
vectors belonging to the Vec type above.6

app : (n1 n2 : Nat) → (a : Type) → Vec a n1 → Vec a n2 → Vec a (n1+n2)

app n1 n2 a xs ys =

case xs of

(Nil _) → ys

(Cons n x xs) → Cons a (n+n2) _ x (app n n2 a xs ys)

Having defined this operation, we might wish to prove that the append operation is
associative. This amounts to defining a recursive function of type

app-assoc : (n1 n2 n3:Nat) →
(v1 : Vec a n1) → (v2 : Vec a n2) → (v3 : Vec a n3) →
(app a n1 (n2+n3) v1 (app a n2 n3 v2 v3))

= (app a (n1+n2) n3 (app a n1 n2 v1 v2) v3)

If we proceed by pattern-matching on v1, then when v1 = cons n x v we have to
show, after reducing the RHS, that

6The underscores represent the equality proofs about length. The shown function definition is
not valid Zombie code; in order to make it typecheck one also needs two lines introducing join-proofs
for the equations 0 + n = n and (Suc n) +m = Suc (n+m). See Append2.trellys in the Zombie
testcases.

54

(Cons (n + (n2 + n3)) _

x

(app a n (n2 + n3) v (app a n2 n3 v2 v3)))

= (Cons ((n + n2) + n3) _

x

(app a (n + n2) n3 (app a n n2 v v2) v3))

By a recursive call/induction hypothesis, we have that the tails of the vectors are
equal, so we are almost done, except we also need to show

n + (n2 + n3) = (n + n2) + n3

which requires a separate lemma about associativity of addition. In other words, when
reasoning about indexed data, we are also forced to reason about their indices. In
this case it is particularly frustrating because these indices are completely determined
by the shape of the data—a Sufficiently Smart Compiler would not even need to keep
them around at runtime [26].

The solution is to change the definition of Vec to make the length argument n to Cons
an irrelevant argument. For good measure, we can make the equation p irrelevant
also. In the concrete syntax we use square brackets for the irrelevant function type
constructor and application ([x:A] → B and a [b]), while the LaTeX-typeset version
uses a bullet (•(x :A)→ B and a •b).

data Vec (a:Type) (n:Nat) where

Nil of [p:n=0]

Cons of [m:Nat] [p:n=Succ m] (x:a) (xs:Vec a m)

Irrelevant constructor arguments are not represented in memory at run-time, and
equations between irrelevant arguments are trivially true since our t join rule is
stated using erasure. With this definition of Vec, the proof of app-assoc can be
concluded without needing any lemmas about natural numbers.

3.8.1 Computationally irrelevant functions and applications

The typing rules for irrelevant functions are shown in Figure 3.9. These rules are
closely inspired by previous languages, in particular ICC* [15] and EPTS [91]. The
introduction rule for irrelevant functions, Tirec, is similar to the rule for normal
functions, but with the additional restriction that the bound variable must not remain
in the erasure of the body b. This restriction means that x can only appear in
irrelevant positions in b, such as type annotations and proofs for type casts. On the
other hand, x is available at type-checking time, so it can occur freely in the type B .

The application rule Tiapp is almost identical to the computationally relevant ap-
plication rule. However, there is one difference: the argument is required to be a

55

value. This is done to ensure that the argument terminates. While it is fine to allow
safediv 1 0 (loop()) (which is stuck in a loop and never reaches the division), we
really must forbid safediv 1 0 [loop()] (which reduces in one step to div 1 0).

In the full Zombie implementation, the implicit application rule is more permissive,
allowing any implicit argument which is known to terminate. The value-restricted
version used in this core calculus is a useful approximation for which we can develop
the metatheory without getting bogged down in termination proofs.

In addition to the safediv example, there is another reason to require termination
checking of irrelevant arguments. If we want propositional equality to approximate
CBV contextual equivalence, we should not substitute nonterminating expressions for
variables. This is discussed more in Section 4.1.5.

3.8.2 Computationally irrelevant datatype arguments

In addition to functions, data constructors also support irrelevant arguments. They
are typically used for data constructor fields which serve as type indexes or for fields
containing proofs, as we saw with Vec above.

Whether a datatype parameter is irrelevant or not depends on where it occurs. This
was first worked out by Mishra-Linger in his thesis [90]. Parameters to data con-
structors are always irrelevant, since they are completely fixed by the types. So in an
expression like dD Ai

ai, the D Ai part is erasable.

On the other hand, it never makes sense for parameters to datatype constructors to
be irrelevant. For example, if the parameters to Vec were made irrelevant, the join
rule would validate Γ ` join : (Vec •Nat •1) = (Vec •Bool •2), which would defeat the
point of having the parameters in the first place. So in the typing rule, the telescope
of parameters is a ∆+, i.e. a telescope with no irrelevant variables.

Finally, arguments to data constructors di can be marked as relevant or not. Marking
them as irrelevant leads to a corresponding restriction for case expressions: since the
argument has no run-time representation it may only be used in irrelevant positions.
For example, in a case branch

Cons [m:Nat] [p:n=Succ m] (x:a) (xs:Vec a m) ⇒ ...body...

the code in the body can use x without restrictions but can only use m in irrelevant
positions such as type annotations and type casts. (In the typing rule this is the
premise dom−(∆i) # FV (|ai |) ; the notation dom−(∆i) means the variables in the
telescope ∆i that are marked irrelevant.) With the original Vec type we could write
a constant-time length function by projecting out m, but that is not possible if m is
made irrelevant.

56

The annotation D Ai in a data constructor application dD Ai
ai is erased, just as the

argument in an implicit application a •v . Despite this, in this calculus we do not
require the type parameters to be values. Intuitively, this is sound because type pa-
rameters are only compared for equality, not used as typing assumptions. Formally,
this is because when proving type preservation for reduction of case-expressions we
only use the substitution lemma for the constructor arguments, not for the type
parameters. The full Zombie language as implemented is actually a little more re-
strictive. In order to form the type D Ai, all the subcomponents Ai are required to
check in the termination-checked fragment (c.f. Section 7.7.2). So in full Zombie the
treatment of type parameters agree with the treatment of irrelevant arguments. In
future work it would be useful to see if type parameters can be handled more freely
even in a termination-checked language.

3.8.3 The value restriction is too restrictive

The value restriction on irrelevant arguments, as adopted in this core language, is
a severe limitation on the practical use of irrelevant arguments. For example, one
of the cases of the app function returns Cons [a] [n+n2] x (app n n2 a xs ys),
and n+n2 is not a syntactic value. As noted above, this is permitted because Cons is
a data constructor rather than a general function. However, if Cons had been defined
as a function (even just an η-expansion of the constructor), we would have to evaluate
the expression to a value at runtime:

app : (n1 n2 : Nat) → (a : Type) → Vec a n1 → Vec a n2 → Vec a (n1+n2)

app n1 n2 a xs ys =

case xs of

Nil → ys

(Cons n x xs) → let m = n+n2 in

Cons a [m] x (app n n2 a xs ys)

(In order to make the above program typecheck we would also have to insert a type
cast, to change the return type from Vec a m to Vec a (n1+n2).) Evaluating type
parameters at runtime is very unsatisfying. First, if our natural number type uses
unary representation (as is common, to make it easier to reason about numbers at
compile time), then the above change makes the running time of append quadratic
instead of linear. Second, because we do the addition at runtime, the arguments n1

and n2 to app itself can not be made irrelevant.

Of course, in general we do want to use irrelevant arguments with functions as well as
constructors. For example, just as app is defined in terms of Cons, we may later want
to define other functions such as concat in terms of app, and we want the length
arguments of app to be irrelevant to ease reasoning about concat.

57

In full Zombie this is not a problem. It is easy to prove that addition in terminating,
so the expression n+n2 is accepted as a type index as-is. Value-restricted irrelevance
already has uses. For example, except for type-level computation all types are values,
so we could compile ML into this core language erasing all types. But in general, it
is not enough for dependently type programming.

3.9 Metatheory

We prove type safety for the core calculus via standard preservation and progress
theorems. We previously published a detailed proof [120], so we refer the reader to
the appendix of that paper for details, and in this chapter we only highlight the
most interesting parts of the proof. (In fact, in the few years since the publication of
that paper we have slightly updated the typing rules, as described in Section 3.9.1.
However, none of the changes significantly affects the proof.)

One of the appealing results of this research is that the proof is not very difficult.
Most prior work on full-spectrum dependent languages either did not prove type
safety at all (e.g. Cayenne, ΠΣ, Idris, Agda), or proved much more ambitious results
which also included logical consistency (e.g. Coq, Nuprl). While consistency proofs
are often notoriously hard, if we are only interested in type safety a mostly standard
Wright-Felleisen[144]-style proof suffices, even though our calculus includes advanced
features like nontermination, type-level computation, and large eliminations. The
sequence of lemmas goes as follows.

1. Structural properties (weakening and substitution).

2. Preservation.

3. Equational soundness: if · ` v : A = B , then there exists C such that A ;∗
p C

and B ;∗
p C .

4. Progress.

Only step 3 would be unfamiliar to a programming languages researcher who has
not previously worked with dependent types, and even there the interpretation of
equalities is simply (some would say crudely) based on operational semantics. This
treatment of equations is probably the most interesting part of the proof. In later
chapters we will see that the same interpretation also works in a normalization proof
(Section 7.6; also Casinghino [30] Section 5.4.2), and that it can be varied to accom-
modate some more powerful equational reasoning (Section 4.1).

58

3.9.1 The language

In a previously published paper [120] we described essentially the same calculus as
the one in this chapter. In the present version we have made three improvements:

• The presentation of the syntax is re-structured to emphasize the role of anno-
tations (but both presentations define essentially the same syntax).

• Instead of a single rule Tconv which can eliminate multiple equality proofs,
we have refactored it as two rules Tcast and Tjsubst. This makes it easier
to reduce annotated expressions (Section 5.6.3).

• The paper had three different expression types to define functions: relevant
lambdas, irrelevant lambdas, and one-argument recursors which can be com-
bined with either type of lambda-expression. However, this formulation does
not fit with adding structurally recursive functions (Section 7.3.1), so in this
thesis we fuse them into two expression types. (That is, the expression rec f x .a
in this chapter corresponds to rec f.λ x.a in the paper).

Also, the paper featured uncatchable exceptions abort, which have been omitted from
this chapter for simplicity. (They are however included in full Zombie, and mentioned
in Section 4.1.4.)

To make this section less confusing when compared to the previous parts of the chap-
ter, the discussion below “cheats” by changing the statement of canonical forms to
the current syntax, and by talking about Tcast instead of Tconv. This is differ-
ent from the actual published proof. It still discusses λ- rather than rec-expressions,
because λs already illustrate all the interesting cases.

3.9.2 Annotated and unannotated type systems

While we have defined the typing judgement in terms of a system with optional
annotations, in the preservation proof it is inconvenient to take into consideration
that expressions may have annotations embedded inside them. So the first step of the
proof is to develop a second set of typing rules which characterizes when a completely
erased term is well-typed (according to the nondeterministic Γ ` ∃ a : A judgement).

We use metavariables m,n,M,N for completely erased expressions, and the metavari-
able H for contexts Γ containing only completely erased types.

We then define a second set of typing rules for a different judgement, which we will
punningly write H ` m : M . In practice, the unannotated rules simply mirror the
annotated rules, except that all the terms in them have gone through erasure. As an

59

example, compare the annotated and unannotated versions of the iapp rule:

Γ ` a : •(x :A)→ B
Γ ` b : A

Γ ` a •v : {v/x}B
Tiapp

H ` m : •(x :M)→ N
H ` u : M

H ` m • : {u/x}N
ETiapp

By design, the erasure into the unannotated system preserves well-typedness.

Lemma 1 (Annotation soundness). If Γ ` a : A then |Γ| ` |a| : |A| (where the
second judgement is in the annotated system).

Since our operational semantics is defined for unannotated terms, the preservation
and progress theorems will be also stated in terms of the unannotated system.

3.9.3 Properties of parallel reduction

The key fact about propositional equality is that in an empty context it coincides with
joinability under parallel reduction. We will need some basic lemmas about parallel
reduction throughout the proof. These are familiar from, e.g., the metatheory of pure
type systems [14], except that the usual substitution lemma is replaced with two
special cases because we work with CBV reduction.

Lemma 2 (Substitution of ;p). If N ;p N ′, then {N /x}M ;p {N ′/x}M .

Lemma 3 (Substitution into ;p). If u ;p u ′ and m ;p m ′, then {u/x}m ;p

{u ′/x}m ′.

Definition 4 (Joinability). We write m1 . m2 if there exists some n such that
m1 ;∗

p n and m2 ;∗
p n.

Lemma 5 (Confluence of ;p). If m ;∗
p m1 and m ;∗

p m2, then m1 . m2

Using the above lemmas we can prove the important properties of joinability.

Lemma 6 (Properties of .).

1. . is an equivalence relation.

2. If m1 ;cbv m2, then m1 . m2.

3. If m1 . m2 then {m1/x}m . {m2/x}m.

4. If m1 . m2 and {m1/x}m . {m1/x}m ′, then {m2/x}m . {m2/x}m ′.

Proof. For property (1), symmetry and reflexivity are immediate from the definition
of joinability. Transitivity uses the fact that ;p is confluent (lemma 5).

Property (2) is true because the relation ;p is a superset of ;cbv.

60

Property (3) follows by lemma 2.

For property (4), note that we have

{m2/x}m . {m1/x}m by property (3) and symmetry,
{m1/x}m . {m1/x}m ′ by assumption,
{m1/x}m ′ . {m2/x}m ′ by property (3),

then conclude by transitivity.

3.9.4 Preservation

For the preservation proof we need the usual structural properties: weakening and
substitution. Weakening is standard, but substitution is restricted to substituting
values u into the judgement, not arbitrary terms. This is because our equality is
CBV, so substituting a non-value could block reductions and cause types to no longer
be equal.

Lemma 7 (Substitution). If H1, x1 : M1,H2 ` m : M and H1 ` u1 : M1, then
H1, {u1/x1}H2 ` {u1/x1}m : {u1/x1}M .

Preservation also needs inversion lemmas for λs, irrelevant λs, rec, and data construc-
tors. They are similar, and we show the one for λ-abstractions as an example.

Lemma 8 (Inversion for λs). If H ` λx .n : M , then there exists m1, M1, N1, such
that H ` m1 : M = ((x :M1)→ N1) and H , x : M1 ` n : N1.

Notice that this is weaker statement than in a language with computationally relevant
type casts. For example, in a pure type system we would have that M is β-convertible
to the type (x :M1)→ N1, not just provably equal to it. But in our language, if the
context contained the equality (Nat → Nat) = Nat, then we could show H ` λx .x :
Nat using a (completely erased) cast. As we will see, we need to add extra injectivity
rules to the type system to compensate.

Now we are ready to prove preservation. For type safety we are only interested in
preservation for ;cbv, but it is convenient to generalize the theorem to ;p.

Theorem 9 (Preservation).

If H ` m : M and m ;p m ′, then H ` m ′ : M .

The proof is mostly straightforward by an induction on the typing derivation. There
are some wrinkles, all of which can be seen by considering some cases for applications.

61

The typing rule looks like

H ` m : (x :M)→ N
H ` n : M
H ` {n/x}N : Type

H ` m n : {n/x}N
ETapp

First consider the case when m n steps by congruence, m n ;p m n ′. Directly
by IH we get that H ` n ′ : M , but because of our CBV-style application rule we
also need to establish H ` {n ′/x}N : Type. By substitution of ;p we know that
{n/x}N ;p {n ′/x}N , so this also follows by IH (this is why we generalize the
theorem to ;p).

This showed H ` m n ′ : {n ′/x}N , but we needed H ` m n ′ : {n/x}N . Since
{n/x}N ;p {n ′/x}N we have H ` join : {n ′/x}N = {n/x}N , and we can conclude
using the conv rule. This illustrates how fully erased type casts generalize the β-
equivalence rule familiar from pure type systems.

Second, consider the case when an application steps by β-reduction, (λx .m0) u ;p

{u/x}m0, and we need to show H ` {u/x}m0 : {u/x}N . The inversion lemma for
λx .m0 gives H , x : M1 ` m0 : N1 for some H ` join : ((x : M) → N) = ((x : M1) →
N1). Now we need to convert the type of u to H ` u : M1, so that we can apply
substitution and get H ` {u/x}m0 : {u/x}N1, and finally convert back to {u/x}N .
To do this we need to decompose the equality proof from the inversion lemma into
proofs of M = M1 and {u/x}N1 = {u/x}N . We run into the same issue in the
cases for irrelevant application and pattern matching on datatypes. So we add a set
of injectivity rules to our type system to make these cases go through (figure 3.7).

For the preservation proof we only need injectivity rules for arrow types and datatypes,
but we also include a rule for equations (Tjinjeq). This rule is also justified by our
interpretation of equality as joinability, and it is useful to have it available in the
surface language (see Section 5.4).

3.9.5 Progress

As is common in languages with dependent pattern matching, when proving progress
we have to worry about “bad” equations. Specifically, this shows up in the canonical
forms lemma. We want to say that if a closed value has a function type, then it is
actually a function. However, what if we had a proof of Nat = (Nat → Nat)? To
rule that out, we start by proving a lemma characterizing when two expressions can
be propositionally equal. From now on, HD denotes a context which is empty except
that it may contain datatype declarations.

62

Lemma 10 (Soundness of equality). If HD ` u : M and M . (m1 = n1), then
m1 . n1.

Proof. By induction on HD ` u : M . To rule out rules like λ-abstraction, we need to
know that it is never the case that (x :M)→ N . (m1 = n1), which follows because
;p preserves the top-level constructor of a term. To handle the injectivity rules, we
need to know that . is injective in the sense that (x : M1) → N1 . (x : M2) → N2

implies M1 . M2; again this follows by reasoning about ;p.

Finally, consider the type cast rule.

HD ` u1 : M = N
HD ` u : M
HD ` N : Type

HD ` u : N
ETcast

We have as an assumption that N . (m1 = n1), and the result would follow from
the IH for u if we knew that M . (m1 = n1). But by the IH for u1 we know that
N . M , so this follows by transitivity of ..

The soundness lemma is the place in the proof where we benefit from working with
a simplified subset of the full Zombie core language. As can be seen above, it is
slightly subtle, because we need the induction hypothesis itself in order to deal with
the case for ETcast. If we wanted to show type safety for full Zombie, we would need
a similar lemma which talks about expressions in the termination-checked language
instead of about values.

With the soundness lemma in hand, canonical forms and progress follow straightfor-
wardly.

Lemma 11 (Canonical forms). Suppose HD ` u : M .

1. If M . (x :M1)→ M2, then u is rec f x .m.

2. If M . •(x :M1)→ M2, then u is rec f •.m

3. If M . D Mi then u is d ui, where data D ∆+ where { di of ∆i
i∈1..j } ∈ HD and

d is one of the di .

Theorem 12 (Progress). If HD ` m : M , then either m is a value or m ;cbv m ′ for
some m ′.

63

Chapter 4

Variations on the core language

The previous chapter formalized a subset of the Zombie core language as it is actually
implemented. This is the outcome of several years of tinkering. Along the way,
there are points where the language designer could reasonably choose one of several
alternatives, and indeed in previous publications we have gone back and forth on
some of these.

This chapter describes two such choices:

• The notion of reduction used by the typechecker can be varied a lot, from just
CBV evaluation, to any approximation of contextual equivalence, or even to
allowing reductions which change the termination behavior of an expression.
(Sections 4.1.1–4.1.4).

• The presence of nontermination means that the application rule must be re-
stricted. Zombie adopts the most generous application rule to date, which
allows any expressions as arguments. One alternative, adopted by many other
dependent languages with nontermination, is to only allow a value-dependent
rule. That is less expressive, but it opens the door for adding more effects.
(Section 4.2).

We also use the value-dependent application rule when formalizing a subset of the
surface language in Chapter 5—the application rule as stated in that chapter is a
restricted version of the rule as implemented in Zombie. This choice was made mainly
to make it easier to compare the surface language calculus against other dependent
languages when we published it as a separate paper (other language often use the
value-dependent version), but it also turned out to make one key lemma easier to
prove (Section 5.6.1).

64

4.1 Interpretations of propositional equality

As we saw in Section 3.9, the most interesting part of the type safety proof is how deal
with propositional equality. In that proof we interpret equality as joinability under
parallel reduction (;p). So even though at runtime terms evaluate according to ;cbv,
it is safe to state the equality introduction form Tjoin in terms of the relation ;p

which equates more terms. The fact that the compile-time reduction relation does
not have to be exactly the same as the run-time evaluation relation is curious. Just
how different can we make them?

The core language described in Chapter 3 is the latest iteration of a series of similar
calculi to which we have gradually added more features [71, 102, 119]. Each of these
used a slightly different reduction relation for the equality introduction rule, so to-
gether they show much this choice can be varied while still making the type safety
proof work.

On the other hand, the three preliminary versions had more limited features than
the system in Chapter 3, so their type safety proofs do not directly carry over. The
important difference is that in the three preliminary versions, types and terms are in
separate syntactic categories, and propositional equality equates terms only.

4.1.1 Abstracting the equivalence relation

In previous work [71] we sought to find out how much the interpretation of equality
can be varied by defining small calculus which we called λ

∼=, where the type system
is parameterized by an abstract equivalence relation a ∼= b. We then axiomatized
a list of properties of ∼= that are sufficient to prove type safety. The list includes
some structural properties about reasoning in a context of assumptions (which the ∼=
relation takes as input), and also the following:

1. If a ;cbv b, then a ∼= b.

2. a ∼= b is an equivalence relation.

3. If a ∼= b then {v/x}a ∼= {v/x}b.

4. In an empty assumption context, it is not the case that d v ∼= d′ v′ for two
distinct data constructors d and d′.

5. If d v ∼= d v′, then v ∼= v′.

Each of these properties are motivated by particular steps in the preservation and
progress proofs. When an application steps a b ;cbv a b ′ its type changes from
{b/x}B to {b ′/x}B , so we need (1) to know that those two types are equal. To han-
dle multiple steps we need transitivity (2). When a beta redex steps, (λx .a) v ;cbv

65

{v/x} a, we need (3) to preserve the type derivation of a. We need discrimina-
tion (4) to deal with types defined by type-level computation: we have types like
if b then Nat else Bool, so we need to know that true ∼= false is not provable, or all
types would be equal and progress would fail. Property (5) is an artifact of how the
λ
∼= type system is set up; in a stronger calculus (like the system defined in Chapter 3)

it is provable using the other typing rules.

The λ
∼= type system includes equations between terms, but not between types. In

order to adapt it to a system with Type : Type one would have to extend the discrim-
ination property (4) to talk about type constructors as well as data constructors, to
prove the canonical forms lemma (Section 3.9.5).

4.1.2 Contextual equivalence

This generalized treatment of equivalence justifies systems where the propositional
equality identifies more terms. In particular, we proved that contextual equivalence
satisfies the above list of properties. Two expressions a and b are said to be con-
textually equivalent if, for any evaluation context E and any closing substitution σ,
the expression E [σ a] terminates iff E [σ b] terminates.7 This the gold standard when
reasoning about programs.

As a simple application, we see that it would be safe to use a more generous β-
reduction rule. As we explained in Section 3.3, in Zombie the reduction rule only
triggers when the argument to a function is a value. But since contextual equivalence
is substitutive, it would also be safe to allow it to trigger whenever the argument is
known to be terminating:

∃v.b ;∗
cbv v

(λx .a) b = {b/x} a

In a language with a termination checker, one can conservatively approximate the
condition that b is a pure, terminating expression. We have studied one calculus where
reduction rule is formulated in exactly this way, introducing an auxiliary judgement
val b meaning that b is provably terminating [74].

This picture, where the equality type is seen as a decidable approximation of contex-
tual equivalence, provides helpful intuition. The classic typing rules of e.g. pure type
systems, where equivalence is hardcoded as β-convertibility, can lead the imagination
in the wrong direction because they seem to suggest that the essence of dependency
is to evaluate program expressions at compile-time. But that view does not provide
guidance for adding dependent types to effectful programs—if your type contains a

7To be precise, Mason and Talcott [81] call this relation CIU-equivalence and prove it is equivalent
to the usual definition of contextual equivalence. And while λ

∼= has only term-level equations, for
a system with Type : Type one would presumably need to expand the notion of observation to also
discriminate expressions headed by different type constructors, not just different termination.

66

printf expression, should the typechecker print a message? In this picture the an-
swer is clear: the type system should fix some notion of observable effects (which may
or may not include IO), and reason about which programs would be equivalent up to
those observations if they were executed, but no actual effects should happen during
type-checking.

However, one must admit that in the current framework the added generality of using
contextual equivalence instead of β-convertibility is somewhat illusory. The problem
is that the way we have set up the system, we only consider the equivalence of erased
terms, and pay no attention to their types. Accordingly, the version of contextual
equivalence that we consider is untyped contextual equivalence: two terms are equal
if they behave the same in any context, not just well-typed contexts. It is a classic
theorem [81] that untyped contextual equivalence contains β-convertibility, but it
does not contain much more than that. For instance λxNat.x and λxNat.x + 0 are not
equivalent, since they behave differently when applied to a constant true (one of them
crashes and one of them does not). As noted in Section 3.6.1, the inability to do this
kind of type-based reasoning is a limitation of the treatment of equality in Zombie
also.

4.1.3 Evaluation only

Conversely, one can ask what’s the least ambitious we can make the equivalence
relation. By looking at the list of axioms, we see that any such relation must at least
contain joinability under ;cbv. That is to say, if there exists c such that a ;∗

cbv c
and b ;∗

cbv c, then a ∼= b.

One can indeed design the type system using ;cbv instead of ;p, and we have fully
worked out one calculus which makes this choice [102]. The formal development is
mostly unsurprising, but there is one interesting interaction with the application rule.
In the proof of type preservation, we need to know that when an application steps
a b ;cbv a b ′ the result type {b ′/x}B is still well-kinded. In Section 3.9 the type
system used parallel reduction and the preservation lemma was stated in terms of
;p, so that followed by induction hypothesis. But in the system using ;cbv it is
not the case that {b/x}B ;cbv {b ′/x}B . Instead we generalize the statement of the
preservation lemma:

If Γ ` {a/x} a0 : A and a ;cbv a ′, then Γ ` {a ′/x} a0 : A.

Even when the type system is defined in terms of ;cbv, the ;p relation is still useful
in the type safety proof in order to state an intermediate lemma. This is because
we need to show that the equivalence relation does not equate distinct constructors
(property 4 in Section 4.1.1). In our development [102] we do this in exactly the
same ways as in Section 3.9.5, by showing that term equivalence is contained in ;p-
joinability. By contrast, it is not contained in ;cbv-joinability, because ;cbv is not

67

closed under substitution (c.f. lemma 2 in Section 3.9.3).

This type safety proof show that it is possible to base a type system around just eval-
uation without going under binders. One attractive aspect of such a system is that it
is very easy for the programmer to understand how the evaluation will proceed. If the
language also provides a rule for substitution of equal terms (i.e. given a = b, con-
clude {a/x} c = {b/x} c) it turns out that this is sufficiently expressive to typecheck
many simple programs. For example, if we define natural number addition plus by
structural recursion, then CBV-evaluation is enough to prove all the properties we
want.

However, when we consider slightly bigger examples where functions call other func-
tions, we begin to need reduction under binders. For example, consider a function to
look up an item in a binary search tree (c.f. Section 2.2).

member : (x : a) → (t : Tree a) → Bool

member = λ x. rec mem t =

case t of

EmptyTree → False

BranchTree t1 y t2 →
case (compare x y) of

LT → mem t1

GT → mem t2

EQ → True

In order to reason about this function, one wants to prove the recursion equation

(member x (BranchTree t1 y t2))

= (case (compare x y) of

LT → member x t1

GT → member x t2

EQ → True)

However, under CBV reduction the left-hand-side of the equation instead reduces to

case (compare x y) of

LT → (rec mem ...) t1

GT → (rec mem ...) t2

EQ → True

Bridging the gap between member x t1 and (rec mem ...) t1 requires a β-reduction,
but CBV-evaluation alone will not reach this subexpression because evaluation is
stuck on compare x y.

Part of the problem is that the function member is written with a 1-argument rec-
expression, where the parameter x is held constant outside the recursion. We could

68

also implement it with a 2-argument function rec mem x t = Then the left-
hand side gets closer:

case (compare x y) of

LT → (rec mem ...) x t1

GT → (rec mem ...) x t2

EQ → True

That still leaves the question of whether member (a variable bound by a top-level
definition) and the function expression (rec mem ...) are considered equal. In the
calculus in Chapter 3 we did not say anything about how definitions are handled,
but in the Zombie implementation there is a reduction rule which replaces a defined
name by its definition. (Coq calls this a δ-reduction). So even with a 2-argument
rec, Zombie does not consider the two expressions convertable under CBV-evaluation,
because the δ-reduction does not take place.

In full Zombie there is an even more common third variation on this problem. In order
to support provably terminating programs we include a type of recursive function
expressions, ind f x.a, which enforces structural recursion. However, the reduction
rule for these (Section 7.3.1) introduces an extra λ-abstraction, which again prevents
the equation from holding.

For each of these, one could imagine a workaround (e.g., extend the definitional
equality in Chapter 5 to include top-level definitions, and phrase the reduction rule for
ind-expressions in terms of hereditary substitution to eliminate any redexes that arise
from substituting a λ-expression). But in general, these problems seem to suggest
that having only CBV-evaluation at compile time is too brittle, and that in a practical
language one wants something stronger.

In pure normalizing languages, the obvious choice is full β-reduction, which is sim-
ple to implement and provably the “best” reduction relation. But in a language
which includes nontermination the choice is not so clear. Aggressively reducing un-
der binders will diverge even for functions which are in fact total. For example, the
usual definition of plus can be unfolded arbitrarily much,

plus x y

= case x of

Zero → y

Succ x’ → Succ (plus x’ y)

= case x of

Zero → y

Succ x’ → Succ (case x’ of

Zero → y

Succ x’’ → Succ (plus x’’ y))

= ...

69

This issue is known from strongly normalizing languages, and requires some restriction
on when to unfold recursive calls. But with nontermination the situation is worse still,
since reduction is no longer convergent. This means that there is no simple choice
of which subexpression should be chosen for reduction, and it seems that checking
β-convertibility has to rely on heuristics or an expensive exhaustive search.

For now, Zombie provides two possible strategies, simple CBV evaluation and a ver-
sion of parallel reduction (described in more detail in Section 3.5). The surface lan-
guage (Chapter 5) mentions evaluation explicitly rather than hiding it in an automatic
conversion rule, partly because there is no one-size-fits-all algorithm.

4.1.4 Unrestricted β-reduction

The sharp-eyed reader may have noticed that the list of axioms in Section 4.1.1
permits equivalence relations which identify more terms than contextual equivalence.
For example, we will not get in trouble if we make the typechecker treat an infinite
loop as equal to the number 42. (Of course, we can not make the same loop equal
to the number 7 at the same time, or by transitivity we would get the contradiction
42 = 7).

Such an arbitrary identification would be silly. But there does exists a useful and
tempting way to coarsen the equivalence relation: allow beta reductions with non-
value arguments. That is, make (λx .a) b = {b/x} a unconditionally provable. We
have developed a calculus which takes this approach [119], and proved that it still
enjoys type safety and logical consistency.

One argument against this idea is that the meaning of equality becomes unclear for
the programmer. Previously, proving a = b meant that a and b could always be used
interchangeably, whereas now it means—what exactly? Looking back at the example
in Section 3.3 this variation would let us prove safediv 3 0 (loop()) = div 3 0,
which is at least surprising. On the other hand, even ordinary contextual equivalence
will ignore some important distinctions between different programs, such as time or
space cost.

Whether unrestricted β-reduction is type-safe or not depends on exactly what other
features are included in the language. For example, in one version of the core
calculus [120] we included the uncatchable error expression abort, which can be
given any well-formed type and propagates past any evaluation context by the rule
E [abort] ;cbv abort. This is a standard treatment of errors. However, note that
this evaluation rule conflicts with unrestricted β-reduction, e.g. (λx .3) abort eval-
uates to abort under CBV but to 3 under CBN. We can not have both equations
((λx .3) abort) = abort and ((λx .3) abort) = 3 at the same time, since by transitivity
all terms would be equal. So in a language with abort the unrestricted β-rule would
not be type-safe.

70

The unrestricted β-rule may be philosophically doubtful, but there is an eminently
practical reason to adopt it. It turns out to be extremely useful when writing proofs
about potentially nonterminating programs. As an example, suppose we have de-
fined natural number addition as recursive function, and want to prove associativity
(x+y)+z = x+(y+z). But using induction on x, we get stuck already in the base
case, where we need to prove 0+(y+z) = (0+y)+z for some arbitrary variables y and
z. In Coq or Agda that equation would hold just by definitional equivalence. In our
language, we can get a bit on the way by reducing (0+y)+z to y+z. However, the
left hand side of the equation is harder to simplify. It is a function call where the
argument (y+z) is a non-value, so we are not allowed to β-reduce it.

If the + function is known to be terminating (because we wrote it in a sub-language for
which we have a termination checker), then this equation is provable. One can either
use the generalized β-rule described in section 4.1.2, or in Zombie one can get the same
effect by adding a let-expression naming the subexpression y+z (see Section 5.6.3).
But the whole point of this research is to abolish the requirement for termination-
checking, and as this example illustrated, in such a setting the CBV-respecting β-rule
is rather weak.

Of course, addition is associative with respect to the ordinary notion of contex-
tual equivalence. So rather than bringing out the sledgehammer of unrestricted β-
reduction, we would ideally like to strengthen the equational reasoning enough to
make this and similar theorems provable, without making it strong enough to prove
false statements. We discuss some possible directions for this in Section 7.7.1.

4.1.5 Erasure as a form of unrestricted β-reduction

There is a connection between the interpretation of equality and the reduction rule for
irrelevant applications. In full Zombie, any terminating expression b may be marked
as irrelevant, and the reduction rule proves join : (λ•x :A.a) •b = {b/x} a. This involves
substituting a non-value b, even though Zombie is a CBV language. However, as
long as b terminates there is no cause for concern; as mentioned in Section 4.1.2, we
could consistently assume this equation even for computationally relevant applications
because it is included in CBV contextual equivalence.

Obviously we need some restriction on what expressions are allowed as irrelevant
arguments, because if a function uses an erased variable as the proof of a type cast
we had better know that there exists a corresponding proof term (c.f. the safediv

example in Section 3.8). But one may wonder if it would be possible to be even more
permissive than Zombie. In the safediv example the erased argument belonged
to the uninhabited type 0 6= 0. Perhaps it would be safe to erase any argument,
terminating or not, as long as it belonged to a type inhabited by some value?

However, doing so would involve substituting nonterminating expressions for vari-

71

ables. This is similar to the unrestricted β-reduction discussed in section 4.1.4,
and at least as soon as one adds a control effect like abort it leads to inconsis-
tency. In particular, the following example shows that we can get in trouble by
erasing an abort of type Nat (a type which is very inhabited). First, since the
reduction relation treats variables as values, (λx .Bool) x ;p Bool. So we have
join : ((λxNat.Bool) x = (λxNat.Nat) x) = (Bool = Nat). Then the following term
typechecks:

λ•x :Nat.λh((λxNat.Bool) x)=((λxNat.Nat) x).h.join

: •(x :Nat)→ (h : (λxNat.Bool) x = (λxNat.Nat) x)→ (Bool = Nat)

On the other hand, by our reduction rule for error terms (λx .Bool) abort ;p abort,
so

join : ((λxNat.Bool) abortNat) = ((λxNat.Nat) abortNat).

So if we allowed abortNat to be given as an irrelevant argument, then we could write
a terminating proof of Bool = Nat. Note that all the equality proofs involved are just
join, so this example does not depend on type casts being computationally irrelevant.

4.2 General versus value-dependent application

As discussed in Section 3.4, our application rule contains a premise Γ ` {b/x}B : Type
which is not needed pure languages like Coq and Agda, but is needed to account for
the various value-restrictions in our typing rules:

Γ ` a : (x :A)→ B
Γ ` b : A
Γ ` {b/x}B : Type

Γ ` a b : {b/x}B
Tapp

In our experience, this restriction essentially never rules out interesting programs. It
is possible to construct examples where it triggers, but they are quite artificial. There
are essentially two sources of value restrictions in the language. First, the β-reduction
rule requires function arguments to be values, so if f : Nat → Nat, then we have e.g.

join : (((λ y.0) : Nat→Nat) x) = 0

but not

join : (((λ y.0) : Nat→Nat) (f 3)) = 0

So if the context contained a function g

72

g : (x : Nat) → (join : (((λ y.0) : Nat→Nat) x) = 0)=(join : 0 = 0)

then the type of g is well-formed, but an application like g (f 3) would be disallowed
because the resulting type would not be well-formed.

There is also a value restriction on the type-cast rule, a.v . So similarly, we could
construct a typing context where the type of g requires a type cast to be wellkinded:

data T (n : Nat) : Type where

mkT

S : T 0 → Type

n : Nat

g : (t: T n) → (n = 0) → S t

f : Unit → (n = 0)

Here the typechecker has to implicitly insert a cast (using the method described
in Chapter 5) to make the return type S t well-formed. Then an application like
g mkT (f()) is disllowed, because the expression f() is not known to terminate,
so it cannot be used as the proof of the cast. The full Zombie language includes a
more general system for termination checking (Chapter 7), which leads to analogous
value-restrictions.

Both these examples also illustrate why the well-formedness restriction is rarely a
problem in practice: the value restrictions have to do with what expressions count as
valid proofs, and while it is common for dependent programs to involve proof-terms,
it is less common to need nontrivial proofs just to state a type.

4.2.1 Value-dependent application

Several other languages with effects, such as Aura [70] and F∗ [133], adopt a more
restricted typing rule for applications. They allow any application when the applied
function has a simple type, but in cases when there is an actual dependency (i.e. the
applied function has type (x : A) → B and x occurs in B), the argument must be a
syntactic value:

Γ ` a : A→ B
Γ ` b : A

Γ ` a b : B
TsimplApp

Γ ` a : (x :A)→ B
Γ ` v : A

Γ ` a v : {v/x}B
TvalApp

The value-restricted rule simplifies the metatheory, because there is no need to con-
sider types which contain non-value expressions.

Zombie subsumes both these rules. Because the language satisfies regularity, Γ `
a : (x : A) → B implies Γ, x : A ` B : Type. So given the premises of the two

73

rules above we can satisfy the additional well-formedness premise of our application
rule using strengthening (to get Γ ` B : Type) or substitution of values (to get
Γ ` {v/x}B : Type).

Zombie’s more expressive rule is easy to implement: instead of checking that the
argument is a value, the typechecker makes an extra call to verify that the return
type is well-kinded. Because function types are small this is quick, and if the check
fails the error message is as easy to understand for the programmer as any other type
error.

One may then ask how much extra expressivity the more general rule provides. The
intuition from simply-typed languages may be that it does not matter at all, since we
can always rewrite a b as let x = b in a x. Type systems for effects and monads
often enforce such let-sequencing just to simplify the presentation.

However, in a dependent system let-expansion is not always so benign, since it changes
the type of the application. We saw in Section 3.8.3 that it is too restrictive to limit
computationally irrelevant function arguments to syntactic values when they are used
as type indices. Indeed, F∗ offers the possibility to index types by “propositional
formulas”, which are syntactically separate from ordinary expressions and have no
value restriction.

The value-restricted application rule also limits the ways one can write proof terms.
It fits quite well with nonterminating programs written in the “internal” verification
style, where the type of the function says that the returned value has the desired
property. For example in the function match from Section 3.3,

match : (s:String) → (r:Regexp) → Maybe (Match s r)

the type constructor Match is applied to only variables.

Being able to apply functions to non-values becomes more interesting if we extend
the language with a termination-checked fragment and start writing external proofs.
For example, a programmer may want to first prove a lemma about addition

log plus_zero : (n:Nat) → plus n 0 = n

and then instantiate the lemma to prove a theorem about a particular expression in
the logical fragment.

plus_zero (f x) : plus (f x) 0 = (f x).

This calls the function with a non-value expression, and creates a return type con-
taining non-values.

74

4.2.2 Effects beyond nontermination

The generous application rule is implemented in Zombie, and seems very suitable for
CBV-languages where the only effect is nontermination/error. On the other hand,
it is not clear if the intuitions behind it will extend to systems with a richer class
of effects. In particular, trying to add ML-style references to Zombie while keeping
these type rules runs into at least two problems.

First, without memory effects it is the case that if a ;cbv a ′ then a and a ′ are
contextually equivalent. With memory effects this is not true, and the best we can
say (as in Mason and Talcott [81]) is that the pairs (S, a) and (S ′, a′) are equivalent,
where S is a syntactic representation of the store. This creates problems with our style
of preservation proof, since we want to say that when an application a b : {b/x}A
steps to a b ′ : {b ′/x}B , then the type is preserved because b and b ′ are equivalent.
For example, in a store where the location l maps to 3, we might expect to type

(λ (y:Nat) (q: !l = y) . q) (!l) join : !l = !l

But this steps to

(λ (y:Nat) (q: !l = y) . q) 3 join

which is probably not typeable—while !l = !l is justified by contextual equivalence,
!l = 3 is not.

Second, in the presence of memory effects, a type is not necessarily “well-behaved”
just because it is well-kinded. For example, if x is a variable of type Unit, then it
seems reasonable to be able to prove (l:=2;x;!l)=(l:=2;();!l), since variables
should range over values and so have no effects. That would allow writing a function

f : (x:Unit) → ((l:=2;x;!l)=(l:=2;();!l)).

On the other hand, the function call f (l:=3) should be disallowed, since the re-
sulting type (l:=2;l:=3;!l)=(l:=2;();!l) is bad. However, although this type is
plainly false it is well-kinded, so the premise Γ ` {b/x}B : Type does not rule it out.

The big advantage of restricting the application rule to value-dependency is that it can
accommodate memory effects like this. For example F∗ supports ML-style references.
Because F∗ prohibits non-values from appearing anywhere inside a type, in particular
location references or assignments can never occur in a type. The condition one really
needs is that the expressions appearing in types do not have any read or write memory
effects, so it is safe to allow slightly more than just syntactic values. For example,
Deputy [34] allows dependency on “pure expressions”.

Thus, by being more restrictive about what kind of proofs the programmer can write,
these languages can be more liberal about what effects they support. Of course,

75

the restriction to pure expressions also precludes stating any interesting specifica-
tions about memory effects. To support that requires additional machinery in the
programming language.

76

Chapter 5

Programming up to congruence

The Zombie core language provides a solid foundation—as the work in Chapter 3 and
in Casinghino’s dissertation [30] shows, it is type safe, logically consistent, and simple
enough to be checked by a small trusted kernel. However, it is not feasible to write
programs directly in the core language, because the terms get cluttered with type
annotations and type casts. In this chapter we turn to the other half of the language
design: crafting a programmer-friendly surface language which elaborates into the
core.

We reduce the required number of type annotations by using bidirectional type check-
ing, which is a standard technique. However, inferring type casts is more interesting.
Most dependently-typed languages are able to omit many proofs of type equality be-
cause they define types to be equal when they are (at least) β-convertible, but in
Zombie this is awkward because of nontermination. To check whether two types are
β-equivalent the type checker has to evaluate expressions inside them, which becomes
problematic if expressions may diverge—what if the type checker gets stuck in an infi-
nite loop? The best we can say is that type checking terminates if the type-expression
being checked terminates [5]. Existing languages fix an arbitrary global cut off for
how many steps of evaluation the typechecker is willing to do (Cayenne [10]), or only
reduce expressions that have passed a conservative termination test (Idris [27]).

Zombie, somewhat radically, omits automatic β-conversion completely. Instead, β-
equality is available only through explicit conversion. Because Zombie does not in-
clude automatic β-conversion, it provides an opportunity to explore an alternative
definition of equivalence in a surface language design.

Congruence closure is a basic operation in automatic theorem provers for first-order
logic (particularly SMT solvers, such as Z3 [44]). Given some context Γ which contains
assumptions of the form a = b, the congruence closure of Γ is the set of equations
which are deducible by reflexivity, symmetry, transitivity, and changing subterms.
Figure 5.1 specifies the congruence closure of a given context.

77

a = b ∈ Γ
Γ ` a = b Γ ` a = a

Γ ` b = a
Γ ` a = b

Γ ` a = c Γ ` c = b
Γ ` a = b

Γ ` a = a ′ Γ ` b = b ′

Γ ` a b = a ′ b ′

Figure 5.1: The “classic” congruence closure relation for untyped first-order logic
terms

Although efficient algorithms for congruence closure are well-known [49, 96, 118] this
reasoning principle has seen little use in dependently-typed programming languages.
This is not for lack of opportunity: programmers in dependently typed languages
write lots of equality proofs. However, the adaption of this first-order technique to
the higher-order logics of dependently-typed languages is not straightforward. The
combination of congruence closure and full β-reduction makes the equality relation
undecidable (Section 8.3.2). As a result, most dependently-typed languages take the
conservative approach of only incorporating congruence closure as a meta-operation,
such as Coq’s congruence tactic. While this tactic can assist with the creation of
equality proofs, such proofs must still be explicitly eliminated. Proposals to use
equations from the context automatically [7, 124, 126] have done so in addition to β-
reduction, which makes it hard to characterize exactly which programs will typecheck,
and also leaves open the question of how expressive congruence closure is in isolation.

We define the surface language in this chapter to be fully “up to congruence”, i.e.
types which are equated by congruence closure can always be used interchangeably,
and then show how the elaborator can implement this type system. Specifically, this
involves the following contributions:

• We define a typed version of the congruence closure relation that is compatible
with our core language, including features (erasure, injectivity, and generalized
assumption) suitable for a dependent type system (Section 5.2).

• We specify the surface language using a bidirectional type system that uses this
congruence closure relation as its definition of type equality (Section 5.3).

• We define an elaboration algorithm of the surface language to the core lan-
guage (Section 5.4) based on a novel algorithm for typed congruence closure
(Section 5.5). We prove that our elaboration algorithm is complete for the sur-
face language and produces well-typed core language expressions. Our typed
congruence closure algorithm both decides whether two terms are in the relation
and also produces core language equality proofs.

• The full Zombie implementation extends the ideas in the chapter to also cover
datatypes, pattern matching, the full application rule, etc. Congruence closure
works well in this setting; in particular, it significantly simplifies the typing

78

rules for case-expressions (Section 5.6).

• The Zombie implementation also provides a facility for reducing expressions
modulo equations in the context, which makes it easier to write external proofs
(Section 5.6.3).

In order to make the proofs smaller, we only treat a subset of the full Zombie language.
Although it elaborates into the core language from Chapter 3, the type system for
the surface language in this chapter omits all rules dealing with datatypes, and uses
the value-restricted restricted form of the application rule (which we described in
Section 4.2). The actual Zombie implementation of course also handles datatypes
and general application, as we describe in Section 5.6. The full proofs are given in
Appendix A, so in this chapter only the statements of the lemmas are quoted.

5.1 Type annotations and type casts

In order to get an idea of what parts of core language terms can be inferred by our
system, consider as an example this simple proof in Agda, which shows that zero is a
right identity for addition.

npluszero : (n : Nat) → n + 0 ≡ n

npluszero zero = refl

npluszero (suc m) = cong suc (npluszero m)

The proof follows by induction on natural numbers. In the base case, refl is a proof
of 0 = 0. In the next line, cong translates a proof of m + 0 ≡ m (from the recursive
call) to a proof of suc(m + 0) ≡ suc m.

This proof relies on the fact that Agda’s propositional equality relation (≡) is reflexive
and a congruence relation. The former property holds by definition, but the latter
must be explicitly shown. In other words, the proof relies on the following lemma:

cong : ∀ {A B} {m n : A}

→ (f : A → B) → m ≡ n → f m ≡ f n

cong f refl = refl

Now compare this proof to a similar result in Zombie. The same reasoning is present:
the proof follows via natural number induction, using the reduction behavior of ad-
dition in both cases.

npluszero : (n : Nat) → (n + 0 = n)

npluszero n =

case n [eq] of

Zero → (join : 0 + 0 = 0)

Suc m → let _ = npluszero m in

(join : (Suc m) + 0 = Suc (m + 0))

79

Because Zombie does not provide automatic β-equivalence, reduction must be made
explicit above. The term join explicitly introduces an equality based on reduction.
However, in the successor case, the Zombie type checker is able to infer exactly how
the equalities should be put together.

For comparison, the corresponding Zombie core language term includes a number of
explicit type casts:

npluszero : (n : Nat) → (n + 0 = n)

npluszero (n : Nat) =

case n [eq] of

Zero → join [; 0 + 0 = 0]

. join [~eq + 0 = ~eq]

Suc m →
let ih = npluszero m in

join [; (Suc m) + 0 = Suc (m + 0)]

. join [(Suc m) + 0 = Suc ~ih]

. join [~eq + 0 = ~eq]

Comparing the core language version against the surface language version, we see
several improvements. First, the core term required a type annotation (n : Nat) on
the argument to the recursive function. In the surface language that can be omitted,
because bidirectional typechecking propagates the same information from the top-
level type declaration.

More interestingly, several type casts (a. b) in the core term can be omitted from the
surface version. In core Zombie, the equality proof b can be formed in two ways, either
via β-reduction (e.g. the proof join [; 0 + 0 = 0] above), or by congruence (e.g.
the proof join [~eq + 0 = ~eq] above, which proves ((0+0) = 0) = ((n+0) = n)).
In the above example, both kinds of reasoning are used. In the successor branch, we
can express the reasoning in words as follows. We have (Suc m)+0 = Suc (m+0) (by
reduction, using the definition of plus). This is the same as (Suc m) + 0 = Suc m (by
the IH, which states m + 0 = m). And this in turn is the same as n + 0 = n (using
hypothesis eq : n = Suc m, which comes from the typing rule for pattern matching).
The surface language term can omit the latter two casts because they were proved by
congruence, which makes the term less cluttered.

On the other hand, the surface language still requires join expressions with explicit
annotations. The annotations specify what terms should be reduced. For example,
without the annotation in the first branch, the typechecker would have tried to reduce
join n n, which gets stuck on a pattern match on n.

In this example, we just want to reduce the expression as much as possible. The
Zombie typechecker includes some additional support to reduce expressions while
taking equations in the context into account, with the syntax unfold/smartjoin

80

(Section 5.6.3). Using that feature, we can write a more streamlined version of the
surface language term:

npluszero : (n : Nat) → (n + 0 = n)

npluszero n =

case n [eq_n] of

Zero → smartjoin

Succ m → let _ = npluszero m in

smartjoin

The Zombie surface language is “the dual” of intensional type theories like Coq and
Agda: while they automatically use equalities that follow from β-reductions but do
not automatically use assumptions from the context, Zombie uses assumptions but
does not automatically reduce expressions.

In the case of npluszero, the proof in Zombie ended up slightly longer than a similar
proof in Coq or Agda would. In our experience, this is quite typical: most equational
proofs tend to make more heavy use of β-reduction than of congruence reasoning,
so writing them Zombie a little more clumsy than in Coq or Agda. However, one
should keep in mind that Zombie is solving a harder problem, because programs are
not restricted to be strongly normalizing. The payoff is that functional programs that
do not make heavy use of equational reasoning, but which are written using general
recursion, require less ceremony.

5.2 Congruence closure

The driving idea behind our surface language is that the programmer should never
have to explicitly write a type cast a.v if the proof v can be inferred by congruence
closure. In this section we exactly specify which proofs can be inferred, by defining
the typed congruence closure relation Γ � a = b shown in Figure 5.2.

Like the usual congruence closure relation for first-order terms (Figure 5.1), the rules
in Figure 5.2 specify that this relation is reflexive, symmetric and transitive. It
also includes rules for using assumptions in the context and congruence by changing
subterms. However, we make a few changes:

First, we add typing premises (in TCCrefl and TCCerasure) to make sure that
the relation only equates well-typed and fully-annotated core language terms. In
other words,

If Γ � a = b, then Γ ` a : A and Γ ` b : B .

Next, we adapt the congruence rule so that it corresponds to the Tjsubst rule of the
core language. In particular, the rule TCCcongruence includes an explicit erasure

81

Γ � a = b

Γ ` a : A

Γ � a = a
TCCrefl

Γ � a = b

Γ � b = a
TCCsym

Γ � a = b Γ � b = c

Γ � a = c
TCCtrans

|a| = |b|
Γ ` a : A Γ ` b : B

Γ � a = b
TCCerasure

x : A ∈ Γ
Γ � A = (a = b)

Γ � a = b
TCCassumption

Γ ` A = B : Type ∀k . Γ � ak = bk
|A = B | = |{a1/x1} ... {aj/xj} c = {b1/x1} ... {bj/xj} c|

Γ � A = B
TCCcongruence

Γ � (a1 = a2) = (b1 = b2)

Γ � ak = bk
TCCinjeq

Γ � ((x :A1)→ B1) = ((x :A2)→ B2)

Γ � A1 = A2

TCCinjdom

Γ � (A1 → B1) = (A2 → B2)

Γ � B1 = B2

TCCinjrng

Γ � (•(x :A1)→ B1) = (•(x :A2)→ B2)

Γ � A1 = A2

TCCiinjdom

Γ � (•A1 → B1) = (•A2 → B2)

Γ � B1 = B2

TCCiinjrng

Figure 5.2: Typed congruence closure relation

step so that the two sides of the equality can differ in their erasable portions.

Furthermore, we extend the relation in several ways.8 The rule TCCerasure makes
sure that the programmer can ignore all annotations when reasoning about programs.
Because irrelevant arguments a •b are considered to be annotations, this also means
that our surface language automatically makes use of computational irrelevance, at
no extra implementation cost.

Also, we reason up to injectivity of datatype constructors (in rules TCCinjdom,
TCCinjrng, and TCCinjeq). As mentioned in Section 3.6 these rules are valid in

8Systems based around congruence closure often strengthen their automatic theorem prover in
some way, e.g. Nieuwenhuis and Oliveras [97] add reasoning about natural number equations, and
the Coq congruence tactic automatically uses injectivity of data constructors [39].

82

the core language, and we will see in Section 5.4 that there is good reason to make the
congruence closure algorithm use them automatically. Note that we restrict the rules
TCCinjrng and TCCiinjrng so that they apply only to nondependent function
types; we explain this restriction in Section 5.4.

Finally, the rule TCCassumption is a bit stronger than the classic rule from first
order logic. In the first-order logic setting, this rule is defined as just the closure over
equations in the context:

x : a = b ∈ Γ
Γ � a = b

However, in a dependently typed language, we can have equations between equations.
In this setting, the classic rule does not respect CC-equivalence of contexts. For
example, it would prove the first of the following two problem instances, but not the
second.

x :Nat, y :Nat, a :Type, h1 : (x = y) = a, h2 :x = y � x = y

x :Nat, y :Nat, a :Type, h1 : (x = y) = a, h2 :a � x = y

Therefore we replace the rule with the stronger version shown in the figure.

We were led to these strengthened rules by theoretical considerations when trying
to show that our elaboration algorithm was complete with respect to the declarative
specification (see Section 5.4). Once we implemented the current set of rules, we
found that they were useful in practice as well as in theory, because they improved
the elaboration of some examples in our test suite.

The stronger assumption rule is useful in situations where type-level computation
produces equality types, for example when using custom induction principles. Say
we want to prove a theorem ∀n.f(n) = g(n) by first proving that course-of-values
induction holds for any predicate P : Nat → Type, and then instantiating the in-
duction lemma with P := (λn.f(n) = g(n)). Then in the step case after calling the
induction hypothesis on some number m, the context will contain H : P (m), and by
β-reduction we know that P (m) = (f(m) = g(m)). In that situation, the extended
assumption rule says that H should be used when constructing the congruence closure
of the context, even if the programmer does not apply an explicit type cast to H,
which accords with intuition.

5.3 Surface language

Next, we give a precise specification of the surface language, which shows how type
inference can use congruence closure to infer casts of the form a.v . This process
involves determining both the location of such casts and the proof of equality v .

Figures 5.3 and 5.4 define a bidirectional type system for a partially annotated lan-

83

Γ ` a ⇒ A
` Γ⇐

Γ ` Type⇒ Type
Itype

` Γ⇐ x : A ∈ Γ Γ ` A⇐ Type

Γ ` x ⇒ A
Ivar

Γ ` A⇐ Type Γ, x : A ` B ⇐ Type

Γ ` (x :A)→ B ⇒ Type
Ipi

Γ ` a ⇒ (x :A)→ B
Γ ` v ⇐ A
Γ �∃ injrng (x :A)→ B for v
Γ ` {vA/x}B ⇐ Type

Γ ` a v ⇒ {vA/x}B
Idapp

Γ ` a ⇒ A→ B Γ ` b ⇐ A
Γ ` B ⇐ Type

Γ ` a b ⇒ B
Iapp

Γ ` A⇐ Type Γ, x : A ` B ⇐ Type

Γ ` •(x :A)→ B ⇒ Type
Iipi

Γ ` a ⇒ •(x :A)→ B
Γ ` v ⇐ A
Γ �∃ injrng • (x :A)→ B for v
Γ ` {vA/x}B ⇐ Type

Γ ` a •v ⇒ {vA/x}B
Iidapp

Γ ` a ⇐ A

Γ, f : (x :A1)→ A2, x : A1 ` a ⇐ A2

Γ, f : (x :A1)→ A2, x : A1 �∃ injrng (x :A1)→ A2 for x
Γ, f : (x :A1)→ A2 ` (x :A1)→ A2 ⇐ Type

Γ ` rec f x .a ⇐ (x :A1)→ A2

Crec

Γ, f : •(x :A1)→ A2, x : A1 ` a ⇐ A2

x /∈ FV (|a|)
Γ, f : •(x :A1)→ A2, x : A1 �∃ injrng • (x :A1)→ A2 for x
Γ, f : •(x :A1)→ A2 ` •(x :A1)→ A2 ⇐ Type

Γ ` rec f •.a ⇐ •(x :A1)→ A2

Cirec

Figure 5.3: Surface language typing: functions and variables

84

Γ ` a ⇒ A Γ ` a ⇐ A

Γ ` a ⇒ A
Γ �∃ A = B Γ ` B ⇐ Type

Γ ` a ⇒ B
Icast

Γ ` a ⇐ A
Γ �∃ A = B Γ ` B ⇐ Type

Γ ` a ⇐ B
Ccast

Γ ` A⇐ Type Γ ` a ⇐ A

Γ ` aA ⇒ A
Iannot

Γ ` a ⇒ A

Γ ` a ⇐ A
Cinf

Γ ` a1 = a2 ⇐ Type

|a1|;i
cbv b |a2|;j

cbv b

Γ ` join;cbvi j :a1=a2 ⇒ a1 = a2

Ijoinc
Γ �∃ a = b

Γ ` join⇐ a = b
Crefl

Γ ` a1 = a2 ⇐ Type
|a1|;i

p b |a2|;j
p b

Γ ` join;pi j :a1=a2 ⇒ a1 = a2

Ijoinp

Γ �∃ a = b

Γ′ � a ′ = b ′ |a| = |a ′| |b| = |b ′| |Γ| = |Γ′|
Γ �∃ a = b

Eeq

Γ �∃ injrng A for v

∀A′B′. Γ �∃ ((x :A)→ B) = ((x :A′)→ B ′)
implies Γ �∃ {v/x}B = {v/x}B ′

Γ �∃ injrng (x :A)→ B for v
EIRipi

∀A′B′. Γ �∃ (•(x :A)→ B) = (•(x :A′)→ B ′)
implies Γ �∃ {v/x}B = {v/x}B ′

Γ �∃ injrng (x :A)→ B for v
EIRipi

Figure 5.4: Surface language typing: equality

85

guage. This type system is defined by two (mutually defined) judgements: type
synthesis, written Γ ` a ⇒ A, and type checking, written Γ ` a ⇐ A. Here Γ and a
are always inputs, but A is an output of the synthesizing judgement and an input of
the checking judgement.

A few of the rules have side conditions of the form Γ �∃ injrng A for v , which is a
separate judgement. Roughly, it states that the set of equations in the context Γ is
closed under injectivity of function arrows, at least with respect to the expressions
A and v. This condition is virtually always satisfied in practical programs, but it is
needed to ensure completeness of our type checking and elaboration algorithm. We
will leave the details of it mysterious for now and come back to it in when we discuss
elaboration in Section 5.4.

Bidirectional systems are a standard form of local type inference. In such systems,
the programmer must provide types for top-level definitions, and those definitions are
then checked against the ascribed types. As a result, some type annotations can be
omitted, e.g. in a definition like

foo : Nat → Nat → Nat

foo = λ x y . 2*x + y

there is no need for type annotations on the bound variables x and y, since the
function is checked against a known top-level type.

Most rules of this type system are standard for bidirectional systems [109], including
the rules for inferring the types of variables (IVar), the well-formedness of types
(Ieq, Itype, and Ipi), non-dependent application (Iapp), and the mode switching
rules Cinf and Iannot. Any term that has enough annotations to synthesize a type
A also checks against that type (Cinf). Conversely, some terms (e.g. functions)
require a known type to check against, and so if the surrounding context does not
specify one, the programmer must add a type annotation (Iannot).

The rules Icast and Ccast in Figure 5.4 specify that checking and inference work
“up-to-congruence.” At any point in the typing derivation, the system can replace the
inferred or checked type with something congruent. The notation Γ �∃ A = B lifts
the congruence closure judgement from Section 5.2 to the partially annotated surface
language. These two rules contain kinding premises to maintain well-formedness of
types.

The rule for checking functions (Crec) is almost identical to the corresponding rule
in the core language, with just two changes. First, the programmer can omit the types
A1, and A2, because in a bidirectional system they can be deduced from the type the
expression is checked against. Second, the new premise injrng slightly restricts the
use of this rule (as we will explain in Section 5.4).

Equations that are provable via congruence closure are available via the checking

86

rule, Crefl. In this case the proof term is just join, written as an underscore in the
concrete syntax. Because this is a checking rule, the equation to be proved does not
have to be written down directly if it can be inferred from the context. We used this
feature extensively in the examples in Chapter 2.

The rule Ijoinp proves equations using the operational semantics. We saw this rule
used in the npluszero example, written join : 0 + 0 = 0 in the concrete syntax.
Note that the programmer must explicitly write down the terms that should be re-
duced. The rule Ijoinp is a synthesizing rather than checking rule in order to ensure
that the typing rules are effectively implementable. Although the type system works
“up to congruence” the operational semantics do not. So the expression itself needs to
contain enough information to tell the typechecker which member of the equivalence
class should be reduced—it cannot get this information from the checking context.
(In practice, having to explicitly write this annotation can be annoying. The Zombie
implementation includes a feature smartjoin which can help—see Section 5.6.3).

It is also interesting to note the rules that do not appear in Figures 5.3 and 5.4. For
example, there is no rule or surface syntax corresponding to Tcast, because this
feature can be written as a user-level function. Similarly, the rather involved machin-
ery for rewriting subterms and erased terms (rule Tjsubst) can be entirely omitted,
since it is subsumed by the congruence closure relation. The programmer only needs
to introduce the equations into the context and they will be used automatically.

Finally we note that the surface language does not satisfy some of the usual properties
of type systems. In particular, it does not satisfy a substitution lemma because that
property fails for the congruence closure relation. (We might expect that Γ, x :
C � a = b and Γ ` v : C would imply Γ � {v/x} a = {v/x} b. But this fails
if C is an equation and the proof v makes use of the operational semantics.) It
lacks a general weakening lemma, because the the injrng relation is not closed under
arbitrary weakenings—if you add an equation to the context, you also need to add
all the relevant consequences of injectivity. (The consequences are provable, but
the programmer has to prove and add them manually.) And it does not satisfy a
strengthening lemma, because even variables that do not occur in a term may be
implicitly used as assumptions of congruence proofs.

The situations where weakening and substitution fail are rare (we have never en-
countered one when writing example programs in Zombie) and there are straight-
forward workarounds for programmers. Furthermore, these properties do hold for
fully annotated expressions, so there are no restrictions on the output of elabora-
tion. However, the typing rules for the declarative system must be formulated to
avoid these issues, which requires some extra premises. The rule Ivar requires
Γ ` A ⇐ Type (proving this from ` Γ ⇐ would need weakening); Iapp requires
Γ ` B ⇐ Type (proving this from Γ ` A → B : Type would need strengthening);
and Crec requires Γ, f : (x : A1) → A2 ` (x : A1) → A2 ⇐ Type (proving this from

87

Γ ` (x :A1)→ A2 ⇐ Type would need weakening).

5.4 Elaboration

We implement the declarative system using an elaborating typechecker, which trans-
lates a surface language expression (if it is well-formed according to the bidirectional
rules) to an expression in the core language.

We formalize the algorithm that the elaborator uses as two inductively defined judge-
ments, written Γ′ a ⇒ a ′ : A′ (Γ′ and a are inputs) and Γ′ a ⇐ A′ ; a ′ (Γ′, a,
and A′ are inputs). The variables with primes (Γ′, a ′ and A′) are fully annotated ex-
pressions in the core language, while a is the surface language term being elaborated.
The elaborator deals with each top-level definition in the program separately, and the
context Γ′ is an input containing the types of the previously elaborated definitions.
The complete set of rules is shown in Figures 5.5 and 5.6.

The job of the elaborator is to insert enough annotations in the term to create a
well-typed core expression. It should not otherwise change the term. Stated more
formally,

Theorem 13 (Elaboration soundness).

1. If Γ a ⇒ a ′ : A, then Γ ` a ′ : A and |a| = |a ′|.

2. If Γ ` A : Type and Γ a ⇐ A ; a ′, then Γ ` a ′ : A and |a| = |a ′|.

Furthermore, the elaborator should accept those terms specified by the declarative
system. If the type system of Section 5.3 accepts a program, then the elaborator
succeeds (and produces an equivalent type in inference mode).

Theorem 14 (Elaboration completeness).

1. If Γ ` a ⇒ A and Γ ; Γ′ and Γ′ A ⇐ Type ; A′, then Γ′ a ⇒ a ′ : A′′

and Γ′ � A′ = A′′

2. If Γ ` a ⇐ A and Γ ; Γ′ and Γ′ A⇐ Type ; A′, then Γ′ a ⇐ A′ ; a ′.

Designing the elaboration rules follows the standard pattern of turning a declarative
specification into an algorithm: remove all rules that are not syntax directed (in this
case Icast and Ccast), and generalize the premises of the remaining rules to create
a syntax-directed system that accepts the same terms. At the same time, the uses of
congruence closure relation Γ � a = b must be replaced by appropriate calls to the
congruence closure algorithm. We specify this algorithm using the following (partial)
functions:

88

Γ a ⇒ a ′ : A

Γ Type⇒ Type : Type
EItype

x : A ∈ Γ Γ A⇐ Type ; A0

Γ x ⇒ x : A
EIvar

Γ A⇐ Type ; A′

Γ, x : A′ B ⇐ Type ; B ′

Γ (x :A)→ B ⇒ (x :A′)→ B ′ : Type
EIpi

Γ a ⇒ a ′ : A1

Γ A1 =? (x : A)→ B ; v1

Γ v ⇐ A ; v ′

Γ � injrng (x :A)→ B for v ′

Γ a v ⇒ a ′.v1 v ′ : {v ′/x}B
EIdapp

Γ a ⇒ a ′ : A1

Γ A1 =? A→ B ; v1

Γ b ⇐ A ; b ′

Γ a b ⇒ a ′.v1 b ′ : B
EIapp

Γ A⇐ Type ; A′

Γ, x : A′ B ⇐ Type ; B ′

Γ •(x :A)→ B ⇒ •(x :A′)→ B ′ : Type
EIipi

Γ a ⇒ a ′ : A1

Γ A1 =? [x : A]→ B ; v1

Γ v ⇐ A ; v ′

Γ � injrng • (x :A)→ B for v ′

Γ a •v ⇒ a ′.v1 •v ′ : {v ′/x}B
EIidapp

Γ a ⇐ A ; a ′

Γ A =? (x : A1)→ A2 ; v1

Γ, f : (x :A1)→ A2, x : A1 a ⇐ A2 ; a ′

Γ, f : (x :A1)→ A2, x : A1 � injrng (x :A1)→ A2 for x
Γ, f : (x :A1)→ A2 (x :A1)→ A2 ⇐ Type ; A0

Γ rec f x .a ⇐ A ; (rec f(x:A1)→A2 x .a ′)
.symm v1

ECrec

Γ A =? [x : A1]→ A2 ; v1

Γ, f : •(x :A1)→ A2, x : A1 a ⇐ A2 ; a ′

Γ, f : •(x :A1)→ A2, x : A1 � injrng • (x :A1)→ A2 for x
x /∈ FV (|a ′|)
Γ, f : •(x :A1)→ A2 •(x :A1)→ A2 ⇐ Type ; A0

Γ rec f •.a ⇐ A ; (rec f•(x:A1)→A2 •x .a ′).symm v1

ECirec

Figure 5.5: Elaboration: functions and variables

89

Γ a ⇒ a ′ : A Γ a ⇐ A ; a ′

Γ A⇐ Type ; A′

Γ a ⇐ A′ ; a ′

Γ aA ⇒ a ′ : A′
EIannot

Γ a ⇒ a ′ : A

Γ A
?
= B ; v1

Γ a ⇐ B ; a ′.v1
ECinf

|a|;i
cbv c |b|;j

cbv c
Γ a = b ⇐ Type ; a ′ = b ′

Γ join;cbvi j :a=b ⇒ join;cbvi j :a ′=b′ : a ′ = b ′
EIjoinc

Γ A =? (a = b) ; v1

Γ a
?
= b ; v

Γ join⇐ A ; v.symm v1

ECrefl

|a|;i
p c |b|;j

p c
Γ a = b ⇐ Type ; a ′ = b ′

Γ join;pi j :a=b ⇒ join;pi j :a ′=b′ : a ′ = b ′
EIjoinp

Figure 5.6: Elaboration: equality

Γ � injrng A for v

Γ ` v : A Γ ` (x :A)→ B : Type
∀A′B′.(Γ � ((x :A)→ B) = ((x :A′)→ B ′))

implies (Γ � {v/x}B = {v.v0/x}B ′ where Γ ` v0 : A = A′)

Γ � injrng (x :A)→ B for v
IRpi

Γ ` v : A Γ ` •(x :A)→ B : Type
∀A′B′.(Γ � (•(x :A)→ B) = (•(x :A′)→ B ′))

implies (Γ � {v/x}B = {v.v0/x}B ′ where Γ ` v0 : A = A′)

Γ � injrng • (x :A)→ B for v
IRpi

Figure 5.7: Core language injectivity restriction

90

Γ A
?
= B ; v , which checks A and B for equality and

produces core-language proof v .
Γ A =? (x : B1)→ B2 ; v , which checks whether A is equal

to some function type and produces that type and proof v .
Γ A =? (B1 = B2) ; v , which is similar to above, except

for equality types.

For example, consider the rule for elaborating function applications, EIdapp in Fig-
ure 5.5. In the corresponding declarative rule (Idapp) the applied term a must have
an arrow type, but this can be arranged by implicitly using Icast to adjust a’s type.
Therefore, in the algorithmic system, the corresponding condition is that the type
of a should be equal to an arrow type (x : A) → B modulo the congruence closure.
Operationally, the typechecker will infer some type A1 for a, then run the congruence
closure algorithm to construct the set of all expressions that are equal to A1, and
check if the set contains some expression which is an arrow type. The elaborated core
term uses the produced proof of A1 = (x :A)→ B in a cast to change the type of a.

At this point there is a potential problem: what if A1 is equal to more than one arrow
type? For example, if A1 = (x : A) → B = (x : A′) → B , then the elaborator has to
choose whether to check b against A or A′. A priori it is quite possible that only one
of them will work; for example the context Γ may contain an inconsistent equation
like Nat → Nat = Bool → Nat. We do not wish to introduce a backtracking search
here, because that could make type checking too slow.

This kind of mismatch in the domain type can be handled by extending the congruence
closure algorithm. Note that things are fine if Γ � A = A′, since then it does not
matter if A or A′ is chosen. So the issue only arises if Γ � (x :A)→ B = (x :A′)→ B
and not Γ � A = A′. Fortunately, type constructors are injective in the core language
(Section 3.6). Including injectivity as part of the congruence closure judgement (by
the rule TCCinjdom) ensures that it does not matter which arrow type is picked.

We also have to worry about a mismatch in the codomain type, i.e. the case when
Γ � A1 = (x : A) → B and Γ � A1 = (x : A′) → B ′ for two different types. At
first glance it seems as if we could use the same solution. After all, the core language
includes a rule for injectivity of the range of function types (rule Tjinjrng). There
is an important difference between this rule and Tjinjdom, however, which is the
handling of the bound variable x in the codomain B : the rule says that this can be
closed by substituting any value for it. As a result, we cannot match this rule in the
congruence closure relation, because the algorithm would have to guess that value.
In other words, to match this rule in the congruence closure relation would mean to
add a rule like

Γ � (x :A)→ B = (x :A)→ B ′ Γ ` v : A

Γ � {v/x}B = {v/x}B ′

This proposed rule is an axiom schema, which can be instantiated for any value v .

91

Unfortunately, that makes the resulting equational theory undecidable. For example,
the equational theory of SKI-combinators (which is undecidable) could be encoded
as an assumption context containing one indexed datatype T and two equations:

data SK = S | K | App of SK SK

T : SK → Type

ax1 : ((x y : SK) → T (App (App K x) y))

= ((x y : SK) → T x)

ax2 : ((f g x : SK) → T (App (App (App S f) g) x))

= ((f g x : SK) → T (App (App f x) (App g x)))

Here, any value of type SK represents a combinator expression. In order to encode
combinator equivalence problems as type checking problems we use a type vari-
able T—it does not matter what the inhabitants of T is, just that it is indexed
by SK. Finally, the two assumptions ax1 and ax2 represent the β-rules for K and
S. For example, using the rule Tjinjdom twice, with the equation ax1 and the
values v and u, proves T (App (App K u) v) = T u, and then Tjinjdcon proves
(App (App K u) v) = u. Together with the congruence and transitivity rules, we
would have that two values of type SK are provably equal in this context iff they
represent β-convertible combinator expressions.

As far as writing an elaborator goes, maybe it is ok that the injectivity axiom leads
to undecidability when used with arbitrary values—after all, we only want to apply
the axiom to the particular value v from the function application a v . However, there
does not seem to be any natural way to write a declarative specification explaining
what values v should be candidates.

Instead, we restrict the declarative language to forbid this problematic case. That
is, the programmer is not allowed to write a function application unless all possible
return types for the function are equal. Note that in cases when an application
is forbidden by this check, the programmer can avoid the problem by proving the
required equation manually and ensuring that it is available in the context.

In the fully-annotated core language we express this restriction with the rule IRpi (in
Figure 5.7), and then lift this operation to partially annotated terms by rule EIRpi
(Figure 5.3). Operationally, the typechecker will search for all arrow types equal to A1

and check that the codomains with v substituted are equal in the congruence closure.
This takes advantage of the fact that equivalence classes under congruence closure
can be efficiently represented—although the rule as written appears to quantify over
potentially infinitely many function types, the algorithm in Section 5.5 will represent
these as a finite union-find structure which can be effectively enumerated. In the core
language rule we need to insert a cast from A to A′ to make the right-hand side well
typed. By the rule TCCinjdom that equality is always provable, so the typechecker
will use the proof term v0 that the congruence closure algorithm produced.

92

In the case of a simple arrow type A → B , the range injectivity rule is unproblem-
atic and we do include it in the congruence closure relation (TCCinjrng). So the
application rule for simply-typed functions (EIapp) does not need the injectivity re-
striction. On the other hand, if the core language did not support injectivity for arrow
domains, we could have used the same injectivity restriction for both the domain and
codomain.

The rule for checking function definitions (ECrec in Figure 5.5) uses the same ideas
that we saw in the application rule. First, while the declarative rule checks against a
syntactic arrow type, the algorithmic system searches whether the type A is equivalent
to some arrow type (x :A1)→ A2. Second, to avoid trouble if there is more than one
such function type, we add an injrng restriction.

Thus the ECrec rule ensures that although there may be some choice about what
type A1 to give to the new variable x in the context, all the types that can be chosen
are equal up to CC. We then design the type system so that all judgements respect
CC-equivalence of typing contexts.

The rest of the elaborations rules hold few surprises. The rules for computationally
irrelevant abstractions and applications (EIipi, EIidapp, and ECirec) are exactly
analog to the rules for relevant functions.

On the checking side, the mode-change rule ECinf (in Figure 5.6) now needs to prove
that the synthesized and checked types are equal. This rule corresponds to a direct

call to the congruence closure algorithm, by the premise Γ A
?
= B ; v1 producing

a proof term v1. Note that the inputs are fully elaborated terms—in moving from
the declarative to the algorithmic type system, we replaced the undecidable condition
Γ �∃ A = B with a decidable one.

Finally, the rule ECrefl (in Figure 5.6) elaborates checkable equality proofs (written
join in the rule and as underscores in the concrete Zombie syntax). As in the rule
for application, the typechecker does a search through the equivalence class of the
ascribed type A to see if it contains any equations. If there is more than one equation
it does not matter which one gets picked, because the congruence relation includes
injectivity of the equality type constructor (TCCinjeq). In the elaborated term we
need to prove (a = b) = A given A = (a = b). This can be done using Tjoinp (for
reflexivity) and Tjsubst, and we abbreviate that proof term symm v1.

5.4.1 Properties of the congruence closure algorithm

It is attractive to base our type system around congruence closure because there
exists efficient algorithms to decide it. But the correctness proof for the elaborator
does not need to go into details about how that algorithm work. It only assumes

93

that the congruence closure algorithm satisfies the following properties. (We show
the statement of these properties for function types below, the others are similar.)

Property 15 (Soundness). If Γ A
?
= (x : B1) → B2 ; v , then Γ ` v : A = ((x :

B1)→ B2) and |v | = join and Γ � A = (x :B1)→ B2.

Property 16 (Completeness). If Γ � A = (x : B1) → B2 then there exists a B ′1, B ′2
and v such that Γ A

?
= (x :B ′1)→ B ′2 ; v .

Property 17 (Respects Congruence Closure). If Γ � A = B and Γ B
?
= (x :C1)→

C2 ; v then Γ A
?
= ((x :C ′1)→ C ′2) ; v ′.

In other words, the algorithm should be sound and complete with respect to the
Γ � A = B relation; it should generate correct core proof terms v ; and the output
should depend only on the equivalence class the input is in. In the next section we
show how to implement an algorithm satisfying this interface.

5.5 Implementing congruence closure

Algorithms for congruence closure in the first-order setting are well studied, and our
work builds on them. However, in our type system the relation Γ � a = b does more
work than “classic” congruence closure: we must also handle erasure, terms with
bound variables, (dependently) typed terms, the injectivity rules, the “assumption
up to congruence” rule, and we must generate proof terms in the core language.

Our implementation proves an equation a = b in three steps. First, we erase all
annotations from the input terms and explicitly mark places where the congruence
rule can be applied, using an operation called labelling. Then we use an adapted
version of the congruence closure algorithm by Nieuwenhuis and Oliveras [97]. Our
version of their algorithm has been extended to also handle injectivity and “assump-
tion up to congruence”, but it ignores all the checks that the terms involved are
well-typed. Finally, we take the untyped proof of equality, and process it into a proof
that a and b are also related by the typed relation. The implementation is factored
in this way because the congruence rule does not necessarily preserve well-typedness,
so the invariants of the algorithm are easier to maintain if we do not have to track
well-typedness at the same time.

5.5.1 Labelling terms

In the Γ � a = b judgement, the rule TCCcongruence is stated in terms of sub-
stitution. But existing algorithms expect congruence to be applied only to syntactic

94

Γ `L a = b

Γ `L a = a
LCCrefl

Γ `L a = b

Γ `L b = a
LCCsym

Γ `L a = b Γ `L b = c

Γ `L a = c
LCCtrans

x : A ∈ Γ Γ `L A = ((– = –) a b)

Γ `L a = b
LCCassum

∀k . Γ `L ak = bk

Γ `L F ai = F bi
LCCcong

Γ `L F a = F b F injective

Γ `L a = b
LCCinj

Figure 5.8: Untyped congruence closure on labelled terms

function applications: from a = b conclude f a = f b. To bridge this gap, we pre-
process equations into (erased) labelled expressions. A label F is an erased language
expression with some designated holes (written –) in it, and a labelled expression
is a label applied to zero or more labelled expressions, i.e. a term in the following
grammar.

a ::= F ai

Typically a label will represent just a single node of the abstract syntax tree. For ex-
ample, a wanted equation f x = f y will be processed into (– –) f x = (– –) f y . The
label (– –) means this is a function application, which is a single node. However, for
expressions involving bound variables, it can be necessary to be more coarse-grained.
For example, given a = b our implementation can prove rec f x .a + x = rec f x .b + x ,
which involves using rec f x .– + x as a label. In general, to process an expression a
into a labelled term, the implementation will select the largest subexpressions that
do not involve any bound variables.

The labelling step also deletes all annotations from the input expressions. This means
that we automatically compute the congruence closure up to erasure (rule TCCera-
sure), at the cost of needing to do more work when we generate core language
witnesses (Section 5.5.3).

Applying the labelling step simplifies the congruence closure problems in several ways.
We show the simpler problem by defining the relation Γ `L a = b defined in Fig-
ure 5.8. Compared to Figure 5.2 we no longer need a rule for erasure, congruence is
only used on syntactic label applications, all the different injectivity rules are handled
generically, and we do not ensure that the terms are well-typed. In Section A.2.1 we
formally define the label operation, and prove that it is complete in the following
sense.

Lemma 18. If Γ � a = b then label Γ `L label a = label b.

95

5.5.2 Untyped congruence closure

Next, we use an algorithm based on Nieuwenhuis and Oliveras [97] to decide the Γ `L
a = b relation. The algorithm first “flattens” the problem by allocating constants
ci (i.e. fresh names) for every subexpression in the input. After this transformation
every input equation has either the form c1 = c2 or c = F (c1, c2), that is, it is either an
equation between two atomic constants or between a constant and a label F applied
to constants. Then follows the main loop of the algorithm, which is centered around
three data-structures: a queue of input equations, a union-find structure and a lookup
table. In each step of the loop, we take off an equation from the queue and update
the state accordingly. When all the equations have been processed the union-find
structure represents the congruence closure.

The union-find structure tracks which constants are known to be equal to each other.
When the algorithm sees an input equation c1 = c2 it merges the corresponding union-
find classes. This deals with the reflexivity, symmetry and transitivity rules. The
lookup table is used to handle the congruence rule. It maps applications F (c1, c2) to
some canonical representative c. If the algorithm sees an input equation c = F (c1, c2),
then c is recorded as the representative. If the table already had an entry c′, then we
deduce a new equation c = c′ which is added to the queue.

In order to adapt this algorithm to our setting, we make three changes. First, we adapt
the lookup tables to include the richer labels corresponding to the many syntactic
categories of our core language. (Nieuwenhuis and Oliveras only use a single label
meaning “application of a unary function.”)

Second, we deal with injectivity rules in a way similar to the implementation of Coq’s
congruence tactic [39]. Certain labels are considered injective, and in each union-find
class we identify the set of terms that start with an injective label. If we see an input
equation c = F (c1, c2) and F is injective we record this in the class of c. Whenever
we merge two classes, we check for terms headed by the same F ; e.g. if we merge a
class containing F (c1, c2) with a class containing F (c′1, c

′
2), we deduce new equations

c1 = c′1 and c2 = c′2 and add those to the queue.

Third, our implementation of the extended assumption rule works much like injectiv-
ity. With each union-find class we record two new pieces of information: whether any
of the constants in the class (which represent types of our language) are known to
be inhabited by a variable, and whether any of the constants in the class represents
an equality type. Whenever we merge two classes we check for new equations to be
added to the queue.

In Section A.3 we give a precise description of our algorithm, and prove its correctness,
i.e. that it always terminates, and returns “yes” iff the wanted equation is in the
Γ `L a = b relation.

96

First we prove that flattening a context does not change which expressions are equal in
that context. Although the flattening algorithm itself is the same as in previous work,
the statement of the correctness proof is refined to say that the new assumptions h are
always used as plain assumptions h.refl, as opposed to the general assumption-up-to-
CC rule h.p . The distinction is important, because although the flattening algorithm
will process every assumption that was in the original context, it does not go on to
recursively flatten the new assumptions that it added. So for completeness of the
whole algorithm we need to know that there is never a need to reason about equality
between such assumptions.

Then the correctness proof of the main algorithm is done in two parts. The soundness
of the algorithm (i.e. if the algorithm says “yes” then the two terms really are provably
equal) is fairly straightforward. We verify the invariant that every equation which is
added to the input queue, union-find structure, and lookup table really is provably
true. For each step of the algorithm which extends these data structures we check
that the new equation is provable from the already known ones. In fact, this proof
closely mirrors the way the implementation in Zombie works: there the data structures
contain not only bare equations but also the evidence terms that justify them (see
section 5.5.3), and each step of the algorithm builds new evidence terms from existing
ones.

The completeness direction (if Γ `L a = b then the algorithm will return “yes”)
is more involved. We need to prove that at the end of a run of the algorithm, the
union-find structure satisfies all the proof rules of the congruence relation. For our
injectivity rule and extended assumption rule this means properties like

• For all ai and bi, if F ai ≈R F bi and F is injective, then ∀k.ak ≈R bk .

• If x : A ∈ Γ then for all a, b, if A ≈R (a = b) then a ≈R b.

where ≈R denotes the equivalence relation generated by the union-find links. The
proof uses a generalized invariant: while the algorithm is still running R satisfies the
proof rules modulo the pending equations E in the input queue, e.g. the invariant
for the assumption rule is

If x : A ∈ Γ then for all a, b, if A ≈R (a = b) then a ≈E ,R b.

However, the congruence rule presents some extra difficulties. The full congruence
relation for a given context Γ is in general infinite (if Γ `L a = b, then by the
congruence rule we will also have Γ `L Suc a = Suc b and Γ `L Suc (Suc a) =
Suc (Suc b) and . . .). So at the end of the run of an algorithm the data structures
will not contain information about all possible congruence instances, but only those
instances that involve terms from the input problem.

Following Corbineau [38] we attack this problem in two steps. First we show that
at the end of the run of the algorithm the union-find structure R locally satisfies the

97

congruence rule in the following sense:

If ai ≈R bi for all 0 ≤ i < n, and F ai and F bi both appeared in the list
of input equations, then F ai ≈R F bi.

We then need to prove that this local completeness implies completeness. This
amounts to showing that if a given statement Γ `L a = b is provable at all, it is
provable by using the congruence rule only to prove equations between subexpres-
sions of Γ, a, and b. There are a few approaches to this in the literature. The
algorithm by Nieuwenhuis and Oliveras [97] can be shown correct because it is an
instance of Abstract Congruence Closure (ACC) [11], while the correctness proofs for
ACC algorithms in general rely on results from rewriting theory. However, it is not
immediately obvious how to generalize this approach to handle additional rules like
injectivity. Corbineau [38] instead gives a semantic argument about finite and general
models.

As it happens, in our development there is a separate reason for us to prove that local
uses of the congruence rule suffice: we need this result to bridge the gap between
untyped and typed congruence. This is the subject of Section 5.5.3, and we use
lemma 21 from that section to finish the completeness argument. All in all, this
yields:

Lemma 19. The algorithm described above is a decision procedure for the relation
Γ `L a = b.

5.5.3 Typing restrictions and generating core language proofs

Along the pointers in the union-find structure, we also keep track of the evidence that
showed that two expressions are equal. The syntax of the evidence terms is given by
the following grammar. An evidence term p is either an assumption x (with a proof
p that x’s type is an equation), reflexivity, symmetry, transitivity, injectivity, or an
application of congruence annotated with a label A.

p, q ::= x.p | refl | p−1 | p; q | inji p | cong A p1 .. pi

Next we need to turn the evidence terms p into proof terms in the core calculus. This
is nontrivial, because the Nieuwenhuis-Oliveras algorithm does not track types. Not
every equation which is derivable by untyped congruence closure is derivable in the
typed theory; for example, if f : Bool → Bool, then from the equation (a : Nat) =
(b : Nat) we can not conclude f a = f b, because f a is not a well-typed term.
Worse still, even if the conclusion is well-typed, not every untyped proof is valid in
the typed theory, because it may involve ill-typed intermediate terms. For example,
let Id : (A : Type) → A → A be the polymorphic identity function, and suppose we

98

have some terms a : A, b : B, and know the equations x : A = B and y : a = b. Then

(congId x refl); (congId refl y)

is a valid untyped proof of Id A a = Id B b. But it is not a correct typed proof
because it involves the ill-typed term Id B a:

x : A = B a = a
Id A a = Id B a

cong
B = B y : a = b

Id B a = Id B b
cong

Id A a = Id B b
trans

Corbineau [39] notes this as an open problem. However, the above proof is unneces-
sarily complicated. We note that the same equation can be proved by a single use of
congruence.

x : A = B y : a = b

Id A a = Id B b
cong

Furthermore, the simpler proof does not have any issues with typing: every expression
occurring in the derivation is either a subexpression of the goal or a subexpression of
one of the equations from the context, so we know they are well-typed.

Our key observation is that this trick works in general. The only time a congruence
proof will involve expressions which were not already present in the context or goal
is when transitivity is applied to two derivations ending in cong. We simplify such
situations using the following CongTrans rule.

(cong A p1 .. pi); (cong A q1 .. qi) 7→ cong A (p1; q1) .. (pi ; qi)

This rule is valid in general, and it does not make the proof larger. We also need
rules for simplifying evidence terms that combine transitivity with injectivity or
assumption-up-to-CC, such as inji (cong A p1 .. pk) and x.(r ;cong = p q), rules for pushing
uses of symmetry (−1) past the other evidence constructors, and rules for rewriting
subterms. The complete simplification relation 7→ is shown in Figure 5.9.

Applying the simplification rules enough times will produce an evidence term which
is suitable for generating typed core proofs. Describing exactly what a fully simplified
evidence term looks like is a little involved, but we can define a grammar as follows.
We mutually define grammars for synthesizable terms pS , checkable terms pC , and
chained terms p∗ (containing zero or more ps—an empty chain denotes the term
refl, and a nonempty chain denotes a sequence of right-associated uses of transitivity
p1; (p2; (. . . ; pn))). The metavariable p∗LR ranges over chains that begin and end with
a synthesizable term (as opposed to an empty chain or a chain with a pC at the
beginning or end), and p∗R over chains that end with a pS (but may have a pC at the

99

p 7→ q

p 7→ p
refl−1 7→ refl
refl; p 7→ p
p; refl 7→ p
(p; q); r 7→ p; (q ; r)
p; p−1 7→ refl
p−1; p 7→ refl
p; (p−1; r) 7→ r
p−1; (p; r) 7→ r

p−1−1 7→ p

(p; q)−1 7→ q−1; p−1

(cong A p1 .. pi)
−1 7→ cong

A
p1
−1.. pi

−1

(inji p)−1 7→ inji (p−1)

(cong A p1 ... pi); (cong A q1 ... qi) 7→ cong A (p1; q1) .. (pi ; qi)

injk (cong A p1 ... pi) 7→ pk

injk ((cong A p1 .. pi); r) 7→ pk ; (injk r)
injk (r ; (cong A p1 ... pi)) 7→ (injk r); pk

x.(r ;cong = p q) 7→ p−1; (x.r); q

p 7→ p ′

x.p 7→ x.p′
assumption

p 7→ p ′

q 7→ q ′

p; q 7→ p ′; q ′
trans

∀k . pk 7→ p ′k
cong A p1 .. pi 7→ cong A p ′1 .. p

′
i

cong
p 7→ p ′

injk p 7→ injk p ′
inj

Figure 5.9: Simplification rules for evidence terms

100

beginning). Finally, x o is an abbreviation for x o
.refl.

o ::= 1 | − 1
pS ::= x o | x o

.p∗R
| inj i pS | p∗LR

pC ::= cong A p
∗
1 .. p

∗
i

p∗ ::= (pS | pC)∗

p∗R ::= (p∗; pS)
p∗LR ::= pS | (pS ; p∗; pS)

There is one additional condition which is not shown in the grammar: there must
never be two check-terms adjacent to each other in a chain.

Now, any evidence term p can be simplified into a normalized evidence term p∗. And
given p∗ it is easy to produce a corresponding proof term in the core language. The
idea is that one can reconstruct the middle expression in every use of transitivity
(p; q), because at least one of p and q will be a synthesizable term, so it is specific
enough to pin down exactly what equation it is proving. Formally, we define the
judgement Γ `L p : a = b by adding evidence terms to the rules in Figure 5.8, and
then prove:

Lemma 20. If Γ `L p : a = b and p 7→ q, then Γ `L q : a = b.

Lemma 21. If Γ `L p : a = b, then there exists some p∗ such that p 7→∗ p∗.

Lemma 22. If we have label Γ `L p∗ : label a = label b and Γ ` a = b : Type, then
Γ � a = b.

Simplifying the evidence terms also solves another issue, which arises because of the
TCCerasure rule. Because the input terms are preprocessed to delete annotations
(Section 5.5.1), an arbitrary evidence term will not uniquely specify the annotations.
For example, change the previous example by making the type parameter an erased
argument of Id, and suppose we have assumptions x : a = a ′ and y : a ′ = b. Then
the evidence term (cong Id • – x); (cong Id • – y) could serve as the skeleton of either the
valid proof

x : a = a′

Id •A a = Id •A a ′
cong

y : a′ = b

Id •A a ′ = Id •B b
cong

Id •A a = Id •B B
trans

or the invalid proof

x : a = a′

Id •A a = Id •B a ′
cong

y : a′ = b

Id •B a ′ = Id •B b
cong

Id •A a = Id •B B
trans

Again, this issue is only due to the cong-trans pair. Simplifying the evidence term
resolves the issue, because in a simplified term every intermediate expression is pinned

101

down.

Putting together the labelling step, the evidence simplification step and the proof term
generation step we can relate typed and untyped congruence closure. In the following
theorem, the relation Γ ` a = b is defined by similar rules as Figure 5.2 except that
we omit the typing premises in TCCrefl, TTCerasure and TTCcongruence.

Theorem 23. Suppose Γ ` a = b and Γ ` a = b : Type. Then Γ � a = b.
Furthermore Γ ` v : a = b for some v .

The computational content of the proof is how the elaborator generates core language
proof terms for equalities, so this shows the correctness of the Zombie implementation.
But it is also interesting as a theoretical result in its own right, and an important
part of the proof of completeness of elaboration (Section 5.4).

5.6 Extensions

The full Zombie implementation includes more features than the surface language
described in Section 5.3. We omitted them from the formal system in order to simplify
the proofs, but they are important to make programming up to congruence work well.

5.6.1 Full application rule

The dependent application rule of the core language does not restrict its argument
to be a value. Instead it includes a premise that requires that the substituted type is
well-formed (Section 3.4):

Γ ` a : (x :A)→ B
Γ ` b : A
Γ ` {b/x}B : Type

Γ ` a b : {b/x}B
Tapp

This is also the rule implemented by the full Zombie surface language. In the elab-
orator, the premise Γ ` {b/x}B : Type requires attention when checking the injrng
restriction. In the implementation we just change the test to say b instead of v:

Γ ` b : A Γ ` (x :A)→ B : Type
∀A′B′.(Γ � ((x :A)→ B) = ((x :A′)→ B ′))

implies (Γ � {b/x}B = {b.v0/x}B ′ where Γ ` v0 : A = A′)

Γ � injrng (x :A)→ B for b

102

However, with a general expression instead of a value, this test is perhaps unneces-
sarily restrictive. Among the arrow types that are equal to the type of the applied
functions, there may be some where the resulting type {b/x}B is well-formed and
others where it is not. Because the congruence closure relation only equates well-
typed expressions, the current definition of injrng says that the application is only
allowed if all possible function types would lead to a well-formed result. Perhaps one
could instead search for some type which works—usually B will be a small expres-
sion, so the check for well-formedness can be done quickly. On the other hand, the
question is somewhat academic, because in our experience the injrng condition never
seems to fail in practical programs.

So implementing the general application rule is not hard. However, if the typing rules
are generalized in this way, there is a gap in the proof of the completeness theorem
(theorem 14). In order to prove that the elaborator can match any declarative typing
derivation, we need to prove that for any expression Γ ` b ′ : A′ such that |b ′| = |b|,
we have Γ � {b/x}B = {b ′/x}B ′. Provided that {b ′/x}B ′ is a well-formed type
this is true, because |{b ′/x}B ′| = |{b.v0/x}B ′|. If the expression b ′ is a value, we
know that the type is well-formed by substitution. Even in the general case it seems
it will always be well-formed—the only thing that can cause the substitution to fail
is if it violates a value restriction, and we know that it does not because {b/x}B is
well-formed and erases to the same thing. But we have not formally proven this.

5.6.2 Datatypes

Although we do not include datatypes in the type system in this chapter, they are a
part of the Zombie implementation, and an important component of any dependently-
typed language. The rules for elaborating expressions manipulating datatypes follow
the same pattern as the rules for functions and equalities; in particular the rules
corresponding to the Tdcon and Tcase need to search the congruence closure to
see that the ascribed type and the type of the scrutinee are equal to some datatype.
We also extend the congruence closure relation to include injectivity of datatype
constructors.

The presence of congruence closure elaboration has a very positive effect on language
design, because it means that the core language can use the “smart case” typing rule
(Section 3.7). The downside to smart case has been that because equality informa-
tion is recorded as an assumption in the context, it is more work for the programmer.
However, with congruence closure, the type system is immediately able to take ad-
vantage of these equalities in each branch. Thus, the Zombie surface language has
the convenience of a traditional unification-based rule, while the core language enjoys
the simplicity of smart case.

Adding the elaboration rules related to datatypes to the implementation was straight-

103

forward. On the other hand, we omit them from the formalized type system in this
chapter, because they would add a lot of extra work in the completeness theorem.
Because the typing rules for datatypes are stated in terms of telescopes, they add
several new judgement forms and lemmas (telescope well-formedness, weakening and
substitution of telescopes, etc), and we would need to prove that each of these respect
CC-equivalence of contexts.

5.6.3 Reduction modulo congruence

In the type system in this chapter, all β-reductions are introduced by expressions
join : a = b. But in practice some additional support from the typechecker can
make programming much more pleasant.

First, one often wants to evaluate some expression a “as far as it goes”. Then making
the programmer write both sides of the equation a = b is unnecessarily verbose.
Instead we provide the syntax unfold a in body. The implementation reduces a to
normal form, a ; a′ ; a′′ ; a′′′ (if a does not terminate the programmer can specify
a maximum number of steps), and then introduces the corresponding equations into
the context with fresh names. That is, it elaborates as

let _ = (join : a = a’) in

let _ = (join : a’ = a’’) in

let _ = (join : a’’ = a’’’) in

body

Second, many proofs requires an interleaving of evaluation and equations from the
context, particularly in order to take advantage of equations introduced by smart
case. One example is npluszero in Section 5.1. The case-expression needs to return
a proof of n+0 = n. If we try to directly evaluate n+0, we would reach the stuck
expression case n of Zero → 0; Succ m’ → Succ (m’ + 0), so instead we used
an explicit type annotation in the Zero branch to evaluate 0+0. However, the context
contains the equation n = Zero, which suggests that there should be another way to
make progress.

To take advantage of such equations, we add some extra intelligence to the way unfold
handles CBV-evaluation contexts, that is expressions of the form f a or (case b of . . .).
When encountering such an expression it will first recursively unfold the function f ,
the argument a, or the scrutinee b (as with ordinary CBV-evaluation), and add the
resulting equations to the context. However, it will then examine the congruence
equivalence class of these expressions to see if they contain any suitable values—any
value v is suitable for a, a function value rec f x .a0 for f , and a value headed by a
data constructor for b—and then unfold the resulting expression (rec f x .a0) v . (If
there are several suitable values, one is selected arbitrarily). This way unfolding can
make progress where ordinary CBV-evaluation gets stuck.

104

In the Zombie implementation, there is one more way that unfold helps with stuck
expressions. In Section 4.1.4 we noted the that applications (λx .a) b are stuck unless
b is a value. In the full Zombie language it is possible to work around this, provided
that b is known to be terminating. One rewrites (join : (λ x.a) b = ...) to
let [y] = b in (join : (λ x.a) y = ...). The expression form let [y] = ...

is the computationally irrelevant version of let, so this transformation does not cause
b to get evaluated at runtime. Unfold automatically introduces this type of erased
variable bindings giving names to non-value expressions, in order to let β-redexes
make progress.

Using the same machinery we also provide a “smarter” version of join, which first
unfolds both sides of the equation, and then checks that the resulting expressions are
CC-equivalent. This lets us omit the type annotations from npluszero:

npluszero n = case n [eq] of

Zero → smartjoin

Suc m → ...

The unfold algorithm does not fully respect CC-equivalence, because it only converts
into values. For example, suppose the context contains the equation f a = v , Then
unfold g (f a) will evaluate f a and add the corresponding equations to the context,
but unfold g v will not cause f a to be evaluated. This gives the programmer more
control over what expressions are run.

One drawback of the current unfold algorithm is that because each join expression
only represents a single step, unfold can add a large number of equations to the
context. This results in large core terms and slow type checking. In future work, it
would be useful to optimize the algorithm by representing long chains of reductions
as a single join expression with a step-count.

We have not studied the theory of the unfold algorithm, and indeed it is not a complete
decision procedure for our propositional equality. If a subexpression of a does not
terminate, unfold will spend all its reduction budget on just that subexpression (but
this is OK, because the programmer decides what expression a to unfold). And if
the context contains e.g. an equation between two unrelated function values, unfold
will arbitrarily choose one of them (but it is hard to think of an example where this
would happen). We have found unfold very helpful when writing examples.

Operational semantics of annotated terms While the idea of unfold is simple,
implementing it requires some additional theory. For the plain join rule, the type-
checker erases all annotations and then reduces the terms according to the step rules
in Figure 3.4. We could try the same method for unfold, but then the final normal
form a′ would be unannotated, whereas the elaborator needs to produce a well-typed

105

Γ ` a : ((x :A)→ B) = ((x ′ :A′)→ B ′)

Γ ` domeq a : A′ = A
domeq

Γ ` a : ((x :A)→ B) = ((x :A′)→ B ′)
Γ ` v : A Γ ` v ′ : A′

|v | = |v ′|
Γ ` raneq a v v ′ : {v/x}B = {v ′/x}B ′

raneq

Γ ` a : D Ai = D Ai
′

Γ ` ntheqi a : Ai = A′i
injtcon

Γ ` a : A = B Γ ` b : B = C

Γ ` trans a b : A = C
transeq

Figure 5.10: Derived forms for reasoning about equations

annotated core term. In order to implement unfold, we need to define a reduction
relation ;a for annotated expressions.

The annotated reduction relation is the computational content of the type preserva-
tion proof. We want to ensure that if Γ ` a : A and |a| ;cbv b ′, then there exists b
such that a ;a b and |b| = b ′ and Γ ` b : A.

In order to state the reduction rules, it is convenient to define abbreviations for some
common operations on equations, as shown in figure 5.10. These rules are derivable in
the core calculus.9 The statement of the derived rules is less natural than the original
typing rules (domeq bakes in symmetry, raneq takes two values v and v′) in order
to make the reduction relation (figure 5.11) simpler.

The main challenge is to handle type casts. Since type casts are completely erased
they do not impede reduction, so an expression like (λx .a).b v can step. At this
point, the evaluator uses the injectivity rules for arrow types on the equality proof
b.10 For example in the rule as app rec, we know that rec fA y .a has some arrow
type (y : A1) → B1 since it is a rec-expression, and that (rec fA y .a).b0 has some
arrow type (y : A2) → B2 since it is applied to an argument v . So b0 is a proof of
((y : A1) → B1) = ((y : A2) → B2). Then domeq b0 : A2 = A1 and raneq b0 v v ′ :
{v/x}B1 = {v ′/x}B2, so the right-hand side of the step rule is well-typed.

The reduction rules are simple, but it took a few tries to get them to that state.
In a previous version of the core language [120] the rules Tcast and Tjsubst were
combined into a single rule which can eliminate several equations at once. That makes
for shorter programs—but also a terribly complicated as conv conv rule, which has

9For efficiency, the Zombie implementation actually includes these as primitive constructs in the
core language. Particularly having trans available as a primitive is very helpful, because if we prove it
as a lemma in terms of Tjsubst and Tcast, the lemma will need to take A, B, and C as arguments.
Being able to omit those expressions generates much smaller congruence proof terms.

10This is similar to other languages with erased equality casts, for example Haskell Core.

106

a ;a a ′

a ;a a ′

E [a] ;a E [a ′]
as ctx

(rec fA x .a) v ;a {rec fA x .a/f } {v/x} a
as app rec

(rec fA •x .a) •v ;a {rec fA •x .a/f } {v/x} a
as app irec

v ′ = v.domeq b0

((rec fA y .a).b0) v ;a ({v ′/y} {(rec fA y .a)/f } a).raneq b0 v ′ v

as app conv rec

v ′ = v.domeq b0

((rec fA •y .a).b0) •v ;a ({b ′/y} {(rec fA •y .a)/f } a).raneq b0 v ′ v

as app conv irec

a ;a a ′

a.b ;a a ′.b
as conv

(v.b).c ;a v.(trans b c)

as conv conv

case (diD Ai
vi)y of {dj ∆j ⇒ aj

j∈1...k}
;a {join;cbv(diD Ai

vi)=(diD Ai
vi)
/y} {vi/∆i} ai

as case dispatch

data D ∆ where { dj of ∆′j
j∈1...k } ∈ Γ

Γ ` b0 : D Ai = D Bi

∀i . v ′i = vi. ntheqi b0

case ((diD Ai
vi).b0)y of {dj ∆j ⇒ aj

j∈1...k}
;a case (diD Bi

vi
′)y of {dj ∆j ⇒ aj

j∈1...k}

as case conv

Figure 5.11: Reduction of annotated terms

107

to do anti-unification to combine all the different equations involved.

Another issue, which doesn’t come up in this simplified core calculus but becomes
relevant in the full Zombie system, is that the full system contains facilities for op-
tional termination checking (Chapter 7) and a predicative hierarchy of sorts Type`.
Therefore we need subsumption rules saying that expressions of type Typei can be
used instead of Typei+1, and that terminating expressions can be used in places ex-
pecting nonterminating expressions (TSub in Section 7.3.2). If it is just a question
of creating an annotation regime in which the right erased terms can be given types,
the simplest solution is to create separate (erasable) term constructors for subsump-
tion rules like these. However, when defining ;a such constructors will need special
stepping rules, so one is pushed towards a design which leaves them implicit and does
more inference when checking core terms.

Implementing reduction of annotated expressions is somewhat subtle, particularly
when using equations from the congruence closure to create values. But happily, it is
done entirely by the elaborator. The core language only talks about reducing erased
expressions, so it remains simple and trustworthy.

108

Chapter 6

Towards unification-based type
inference

Even when the surface language includes congruence closure and reduction modulo,
as described in the previous chapter, some programs are still unreasonably verbose.
Mainstream dependently typed languages can infer term and type arguments using
unification-based algorithms, which makes programs much less cluttered.

Such inference is of course helpful even without dependent types. In ML-like lan-
guages it lets the programmer omit type arguments to polymorphic functions, e.g.
for functions dealing with lists the type checker can infer the list element type. But ar-
gument inference is even more important with dependent types, because more precise
types lead to more arguments. If we move from lists to length-indexed vectors, the
corresponding functions become parameterized over both element type and length.
For example, consider an equation about appending length-indexed lists.

append [a] [plus i j] [k]

(append [a] [i] [j] (VCons [i’] [_] x xs’) ys) zs

=

((VCons [plus (plus i’ j) k] [_] x (append [a] [plus i’ j] [k]

(append [a] [i’] [j] xs’ ys) zs))

: Vector a (Succ (plus (plus i’ j) k)))

The equation is hard to read because it is cluttered by function arguments, most
of which are fixed by the types of x, xs’, ys and zs. We can simplify it by using
unification to propagate the information from those types:

append (append (VCons x xs’) ys) zs

=

VCons x (append (append xs’ ys) zs).

109

The Zombie implementation supports unification-based inference which allows the
programmer to write the second expression instead of the first. This feature is a
crucial part of creating a practically usable programming language, and it made a big
difference in the ease of writing our example programs.

The theory of unification-based inference is less well developed than the material in
previous chapters. Zombie features both unification-based inference and automatic
reasoning using congruence closure, and we do not yet know precisely how much
inference can be done by combining these two methods. However, in this chapter we
bracket the problem in two directions.

In the first direction, we describe the current Zombie implementation. The type sys-
tem is based on the bidirectional system from Chapter 5 extended with additional
rules for inferable arguments (Section 6.1). To check types “up to congruence” it
uses a heuristic algorithm to search for unifiers modulo the equations in the context
(Section 6.2). If the inference fails the typechecker will complain about an uninstan-
tiated unification variable and the programmer has to add an annotation. However,
it works very well on our suite of example programs—the programs are not more
cluttered than in other languages, and we can infer all the arguments that we would
expect.

In the other direction, we present an undecidability result which states that we can
not hope to infer all type arguments (Section 6.3). Unification modulo equations
is a hard problem, and if our type system includes an “up to congruence” rule like
Ccast in Chapter 5 then even if the rest of the type system is kept very minimal it
is still possible to construct programs that require the type checker to solve arbitrary
unification problems (Section 6.3.2). Even if one could restrict the language to rule out
these situation, there are still open problems that would need to be solved to create
a complete inference algorithm. In particular, although unification modulo equations
has been investigated, previous work mostly deals with untyped terms, whereas we
would need a system that handles dependently typed expressions (Section 6.3.1).

These two observation suggest a direction for future work (Section 6.4): explain
the “unreasonable effectiveness” of the current Zombie implementation by defining
a declarative types system which concisely explains what arguments unification can
successfully infer. We suggest that this problem could be factored into two parts:
first define a type system in terms of simultaneous equational unification, and then
look for a decidable class of such unification problems.

6.1 When, where, and what to infer

In the past, different languages have taken different approaches to inferring argu-
ments. For example, they differ in whether the programmer explicitly needs to turn

110

on inference for a particular function, what to do when an argument is under-specified,
and how far to propagate constraint information from a given site in the program text.
The choices made by Zombie are not novel, but it is useful to indicate what they are.

6.1.1 “Equational” versus “inhabitational” arguments

Mainstream programming languages offer two different forms of inferable arguments,
exemplified by type parameters in Haskell or ML, and typeclass dictionaries in Haskell.
The difference is whether there is expected to be a unique solution or not. Type
parameters are supposed to be completely determined by the context. On the other
hand, for typeclass instances the exact way that the compiler constructs a dictionary
does not matter as long as it has the right type.

The same distinction also holds true in dependently typed languages, but here more
kinds of objects can be usefully inferred. In addition to type arguments, it is also
often possible to infer type indices. Just like types, indices are an important part of
the interface that a program exposes, so we do not want the typechecker to guess
which index-expression was intended but we welcome the saved keystrokes if it can
be inferred automatically. And in addition to typeclasses, one can also infer proofs.
In mechanized mathematics it is usually the case that proofs are computationally
irrelevant: we want to know e.g. that a divisor is nonzero or that a purported group
operation is associative, but how the proof is constructed makes no difference for
the rest of the program—only that there exists some proof term inhabiting the type.
Coq provides a feature called “canonical structures” for automatically constructing
inhabitants of certain types, which for example has been used to great effect to
manage proofs about algebraic structures (including the famous proof of the Odd
Order theorem) [61, 62].

Although Haskell keeps typeclass dictionaries and ordinary data values quite separate
(they are in different namespaces and defined using different syntax), the current trend
in language design seems to be to make them more similar. In Scala, the corresponding
feature (“implicits” [101]) works on ordinary objects: any local variable can be marked
as being part of the “implicit context”, and the typechecker will try to instantiate
“implicit function arguments” with an implicit variable of the right type. Similarly,
recent versions of Agda has added “instance arguments” (written using double-braces,
{{ eq T }}, in the concrete syntax), which are instantiated by any in-scope variable
of the right type [48].

From a language design perspective, the problem with the inhabitation-style search
is what happens if there is more than one possible variable of the right type. Agda
and Scala will reject a program if there is more than one candidate in the context,
forcing the programmer to specify explicitly which one should be picked. Another
solution is to somehow ensure that the choice doesn’t matter. For example, Haskell

111

maintains as an invariant that there can only be one typeclass instance globally for
any given type, so even if there is more than one way to build a dictionary from local
variables, the choice will have no observable effect at runtime.

(It is tempting to draw a connection to computational irrelevance here, and say
that computationally irrelevant arguments can always be guessed freely. However,
even if the choice does not matter at runtime, in a dependent language it can still
affect further typechecking. For example, suppose we are given a function with two
irrelevant arguments, •(x :A)→ •(y :A)→ (B x y), and we treat x and y as Agda-
style instance arguments. It is possible that other parts of the program requires
a type B a1 a2 where a1 and a2 are definitionally equal, which would depend on
the details of which instance arguments the typechecker picked. So Agda retains
the requirement that there be a unique candidate for instance arguments, even for
irrelevant arguments.)

In Zombie, we so far focus on the equational kind of inferable arguments. We have also
added an experimental option (--typeclassy) which instantiates left-over unification
variables by any variable of the right type from the context. This can be used to
implement programs using typeclasses like as Eq and Ord (e.g. member in Chapter 2),
but neither the implementation nor the language design is polished.

However, although we do not claim a general mechanism for typeclasses/implicits/in-
stances in Zombie, there are some types for which we do try to infer any inhabitant:
equations. Proofs of equations in Zombie never carry any interesting computational
content (they always evaluate to the uninformative value join), so the run-time be-
havior of a program never depends on what proof was inferred. And as we saw in
Section 3.6.2, they satisfy something close to proof irrelevance at typechecking-time:
although not all expressions of equational type are equal, it is always possible to
replace an arbitrary expression with just join, so there is never any reason for the pro-
grammer to write a type that depends in any interesting way on a particular proof.
Inferring proofs of equations makes a lot of sense because we base the surface lan-
guage around congruence closure, so there is a particular automatic theorem proving
algorithm available to find such proofs.

6.1.2 Marking arguments as inferable

Another design decision is how the programmer indicates that a certain argument of a
function should be inferred automatically. In ML, this is done through the distinction
between terms and types: term arguments are explicit and type arguments inferred.
The programmer does not need to annotate the program in any way in order to enable
this.

Coq provides a feature (Set Implicit Arguments) which tries to provide similar
automatic support in a dependent setting. Given a function type such as

112

cons : (A:Type) → (n:Nat) → A → Vec A n → Vec A (Suc n)

Coq will automatically realize that when cons is fully applied, the arguments A and
n can be inferred from the types of the last argument, and so does not need to be
given. However, a completely automatic system like this is not flexible enough. In
order to deal with partial applications, or to provide redundant arguments for clarity,
most languages seem to be moving towards making the programmer explicitly mark
inferable arguments. Coq, Agda, and Twelf all allow the programmer to explicitly
control inferability (by writing curly braces around inferable arguments and round
parentheses around non-inferable ones).

This is also the solution we adopt in Zombie. However, instead of curly braces, infer-
able arguments are indicated by double arrows (as in Haskell typeclass arguments).11

So the type of cons can be given as

cons : (A:Type) ⇒ (n:Nat) ⇒ A → Vec A n → Vec A (Suc n)

The inferable arguments get inserted when elaborating applications. The rule for
checking an application a b first synthesizes the type for a. If a’s type begins with
some inferable arrows, e.g. a : (x : A) ⇒ (y : B) ⇒ C , the elaborator creates new
unification variables tagged with the expected types, in this case XA and YB , and then
goes on to check the application a XA YB b. So for example, an application cons x xs

behaves the same as cons (?A : Type) (?n : Nat) x xs. The programmer can
also explicitly create new unification variables by underscores, so if the type of cons
did not mention inferability, one could get the same effect by writing cons _ _ x xs.
Finally, there is a way to turn off the automatic insertion of unification variables for a
particular application, in case the inference would not work and the arguments need
to be written out explicitly.

The distinction about whether a function argument is expected to be inferable by
unification is orthogonal to whether it can be erased at runtime, so in the surface
language there are four different arrow types:

(x :A)→ B Ordinary functions
•(x :A)→ B E.g. preconditions,

safediv : (x y : Int)→ •(y 6= 0)→ Int
•(x :A)⇒ B E.g. polymorphism,

map : •(A B : Type)⇒ (A→ B)→ List A→ List B
(x :A)⇒ B E.g. typeclasses,

sort : •(A : Type)⇒ (Ord A)⇒ List A→ List A

On the other hand, inferability does not affect the types in the core language. It is
only used to guide elaboration.

11This is mostly a historical accident: it was easier to extend the parser with arrows than curly
braces.

113

6.1.3 When to solve for unknown terms

The previous subsection explains when to create unification variables. We also need to
explain when to solve them. Because we want to work up-to-congruence, we assume
that we have a solver that takes a goal of the form

Γ � A = B

and is allowed to instantiate any unification variables occurring in Γ, A and B in
order to make the equation provable by congruence closure. (This is not necessarily
easy, see Section 6.2, but we will take it on faith for now.) Then the question is when
the typechecker should call the solver.

In the current implementation of Zombie, this is done in the “mode change” rule
ECinf of the bidirectional system: when an expression synthesizes to a type A but
is checked against the type B. The rule is exactly the same as in Chapter 5, we

just assume that the algorithm implementing Γ A
?
= B ; v1 is generalized to also

instantiate unification variables.

Γ a ⇒ a ′ : A

Γ A
?
= B ; v1

Γ a ⇐ B ; a ′.v1
ECinf

When the typechecker encounters a unification variable, in most cases it does not do
anything special. It trusts the annotation on the unification variable to be the type
of the entire expression, and the elaborated form of the expression is just the variable
itself.

Γ XA ⇒ XA : A
EIunivar

However, we make one exception, for unification variables which are ascribed a type
that is congruent to an equation. In that case, we immediately call the equation
solver, and replace the variable with the corresponding proof.

Γ A =? (a = b) ; v1 Γ a
?
= b ; v

Γ XA ⇒ v.symm v1 : A

This rule generalizes the rule ECrefl from Chapter 5. There we treated the un-
derscore as special syntax to invoke the congruence solver, but in the actual Zombie
implementation underscores always create unification variables, and whether those
variables are instantiated by unification or solved by congruence closure depends
only on the ascribed type.

The mode-change rule combined with the usual bidirectional application rule suf-
fices for most use-cases of inferred arguments. For example, we can typecheck the

114

expression cons (?X : Type) (?Y : Nat) x xs as follows:

1. cons is a variable, so we synthesize its type by looking it up in the context:

cons : (x :Type)→ (y :Nat)→ x → Vec x y → Vec x (Suc y)

2. In order to synthesize a type for cons X, we must check the argument XType

against Type. It is a unification variable, so its type synthesizes to Type by
EIunivar, so the synthesized and checked type trivially match. The type of
the entire expression is

cons X : (y :Nat)→ X → Vec X y → Vec X (Suc y)

3. Similarly, we get

cons X Y : X → Vec X Y → Vec X (Suc Y)

4. Now in order to synthesize cons X Y x we need to check x against X. Term
variables are synthesizable expressions, so we look up x’s type in the context,
and get e.g. Γ ` x ⇒ Nat. In the rule ECinf we then need to solve the goal
Γ � Nat = X , which can be done by instantiating X to Nat.

cons X Y x : Vec Nat Y → Vec Nat (Suc Y)

5. Similarly, the application cons X Y x xs will instantiate the variable Y .

In this way, the inferred type of a subexpression will often contain unification vari-
ables, which may later get instantiated when typechecking a different part of the
program. It is an error if any variables remain uninstantiated after the entire pro-
gram has been elaborated, and this will be detected when the Zombie implementation
typechecks the generated core term.

In our experience unification-based argument inference in Zombie works well in prac-
tice. It is hard to quantify this, since we do not have a benchmark for what expressions
“should” be possible to infer, but subjectively it does not seem that we need more
annotations than, say, Coq or Agda. One exception has to do with our heterogeneous
equality. Often one writes down an equation where one side is the empty list, e.g.
f x = Nil. In this case, Zombie can not infer the type parameter of the constructor,
so in order to not get an uninstantiated unification variable the programmer has to
add an type annotation:

f x = (Nil : List Nat)

This is slightly annoying, but of course it makes sense: because the Zombie equality

115

is heterogeneous, the typechecker can not use the type of f x in order to infer the
type of Nil. (An example of this can be seen with EmptyTree a in Section 2.1).

One limitation of this scheme is that although arguments can be inferred, there is no
facility to infer the type of the applied expression. Zombie will not infer types of λ-
expressions such as λx .b in general, because the elaborator requires that all function
expressions be ascribed a function type which is used to figure out what the type
of the variable x is. This means that variables in the context will usually not have
unification variables in their types.

One could imagine a version of Zombie which instead tried to infer these, by intro-
ducing a binding x : X into the context, and waiting to see what the unification
variable X gets instantiated to. For first-order functions, this will generally work.
However, for higher-order functions, when x may itself be applied to arguments,
this reveals an interesting difference between type inference for simply-typed lan-
guages and dependently typed ones. To see the difference, consider explicitly formal-
izing the unification-constraints generated by typechecking a term a, as a judgement
Γ ` a : A given Φ (where A and Φ are outputs). Such constraint-based systems are a
standard way to develop the theory of type inference [110]. However, the dependent
application rule requires a more powerful constraint language.

For a simply typed language, the application rule may look as follows.

Γ ` a : A given Φ1 Γ ` b : B given Φ2

Γ ` a b : Y given Φ1,Φ2,A = B → Y
ConTapp

In words, this states that to apply a term, it much have a function type, and the
domain of the function type must match the provided argument. When moving
to dependent types, however, there is a complication, because the result type of
the application now involves a substitution. So we can no longer say just that the
function domain is some unknown term Y ; instead it is some unknown expression
involving a bound variable x, such that substituting b for x yields the result type of
the application a b. This is not an ordinary first-order unification constraint. It is a
second order unification problem, where some variables should be instantiated with
types, but some variables should be instantiated with functions from types to types.
In general, second order unification is undecidable.

Languages like Coq and Agda already implement (approximations to) full higher-
order unification for their type inference, so this style of constraint can be easily
accommodated by including a type-level function in the constraint:

Γ ` a : A given Φ1 Γ ` b : B given Φ2

Γ ` a b : (λx .Y) b given Φ1,Φ2,A = (x :B)→ ((λx .Y) x)
ConTdapp

However, the Zombie surface language was specifically designed to not include β-

116

reduction in its definitional equality, so we do not implement higher-order unification
and it is hard to see how to write a fully general application rule. We can see the
problem in the application rule EIdapp as it is currently implemented:

Γ a ⇒ a ′ : A1

Γ A1 =? (x : A)→ B ; v1

Γ v ⇐ A ; v ′

Γ � injrng (x :A)→ B for v ′

Γ a v ⇒ a ′.v1 v ′ : {v ′/x}B
EIdapp

When solving the goal Γ A1 =? (x : A)→ B ; v1, the implementation will look for
an arrow type which is equal to A1, but if A1 happens to be a unification variable we
will not create a new arrow type to instantiate the unification variable with. With
just first-order unification constraints, there is no way to write down an arrow type
that is sufficiently general.12

6.2 Solving equational constraints

After generating equational constraints, we also need to solve them. One of the
lessons from the Zombie implementation is that rather simple syntactic unification
(Section 6.2.1) suffices to typecheck most practical example programs.

However, one worry when doing so is that this would upset the programmer’s mental
model of the system. The type system based on bidirectional typing and congruence
closure described in Chapter 5 has the pleasant property that all types are checked
only up to congruence closure; the exact syntactic form does not matter. In order to
get a theoretically well-behaved type inference system, we would want the constraint
solver to satisfy the same property, i.e. the result of the query to the solver should
only depend on the equivalence class of the inputs.

Therefore we are led to study unification with respect to a context of equality as-
sumptions. That is, given two terms A and B which contain unification variables,
find a substitution σ such that

σΓ � σA = σB

This generalization of the unification problem is called rigid E-unification. It was first
studied by Gallier et al. [53, 54] who proved that it is decidable and NP-complete.

Because the problem is NP-hard it is difficult to find an efficient and complete algo-
rithm. In Zombie we have experimented with two heuristic algorithms. The simplest

12For the same reason, type inference for System F is equivalent to second-order unification, and
hence undecidable [112].

117

is to treat unification and congruence closure completely separately (Section 6.2.1);
the other is a backtracking search that interleaves unification and congruence rea-
soning (Section 6.2.2). Neither algorithm is complete, but they perform well on our
example programs.

6.2.1 Simple syntactic unification

The simplest approach to unification modulo congruence is to completely separate
unification and congruence. Whenever we have to solve a problem Γ � A = B , we
first syntactically unify A and B “as much as possible”, and then check if the resulting
terms σA and σB are in the congruence closure of σΓ.

“As much as possible” means that we proceed as in the usual recursive unification
algorithm, except that we never return “not unifiable”. In cases where were we are
asked to unify two different term constructors, or when the occurs check fails, we
just move on and hope that the two terms will later turn out to be provably equal to
each under the assumptions Γ. In the following pseudocode, X denotes unification
variables, and F ai is a label application in the sense of Section 5.5.1 (i.e. F is a
syntactic constructor in the core language).

unify(X, a) = assignVar(X, a)
when X 6∈ fv(a)

unify(X, a) = return ()
otherwise. //failed occurs check.

unify(F ai, F bi) = zipWithM unify ai bi
unify(F ai, G bi) = return ()

We have implemented this algorithm as an option in Zombie (--cheap-unification),
and we find that it suffices for almost all the uses of unification in our set of test-cases.
There are only four locations in the source code where the cheap unification fails and
the more expensive default algorithm (Section 6.2.2) succeeds. These four cases fail
in essentially the same way, so it suffices to look at one of them, e.g. the following
definition of a function lookup which retrieves an element from a length-indexed list
(Vector). In order to ensure that the index is in range, it is represented as a Fin n,
i.e. a natural number strictly smaller than n. (The declaration of Fin ensures that
n > 0, which forbids lookups into the empty vectors.)

data Fin (n : Nat) : Type where

FZ of [m:Nat] [n = Succ m]

FS of [m:Nat] [n = Succ m] (Fin m)

head : [A : Type] ⇒ [n:Nat] ⇒ Vector A (Succ n) → A

118

head = ...

tail : [A : Type] ⇒ [n:Nat] ⇒ Vector A (Succ n) → Vector A n

tail = ...

lookup : [A: Type] ⇒ [n:Nat] → Fin n → Vector A n → A

lookup = λ [A] .

ind recFin [n] = λ f v .

case f [f_eq] of

FZ [m][m_eq] → head v

FS [m][m_eq] fm → recFin [m] [ord m_eq] fm (tail v)

The function lookup is written in terms of helper functions head and tail. But with
the cheap unification method, Zombie will fail to infer the argument n for the call
(tail v) on the last line. The constraint that we need to solve is

Vector A n = Vector (?X : Type 0) (Succ (?Y : Nat))

Syntactic unification will instantiate X := A. However, both n and Suc Y are headed
by (distinct) constructors, so from only looking at these two terms there is no way to
know how to instantiate Y . In order to typecheck this expression, we need to note
that the context contains the variables

m : Nat
m eq : n = Succ m

and use this to instantiate Y := m. In other words, we need to take equality assump-
tions in the context into account.

6.2.2 Unification on equivalence-classes

To deal with such cases, the default unification algorithm in Zombie does unification
after congruence closure. That is to say, to solve a goal Γ � a = b we begin by
running the congruence closure algorithm described in Section 5.5, which partitions
all subexpressions of Γ, a and b into equivalence classes. If after that, a and b are
not in the same equivalence class, we try to unify them. The unification algorithm
operates on classes, as follows:

• If the equivalence class of a contains a unification variable X, then assign X :=
b′, where b′ is some arbitrary member of the equivalence class of b (chosen to
not contain X, in order to pass the occurs check). The two equivalence classes
can now be merged.

119

• If neither class contains any unification variables, see if a is congruent to some
expression F ai and b is congruent to some expression F bi, where both expres-
sions are headed by the same label F . If so, recursively try to unify ai and bi
for all i.

We can see how this works for the problem

Vector A n = Vector (?X : Type 0) (Succ (?Y : Nat))

that we mentioned above. Neither of the two expressions are provably equal to a
unification variable, but they are headed by the same constructor Vector, so we go on
to recursively unify A with ?X and n with (Succ (?Y : Nat)). The first subproblem
can be solved by assigning ?X. In the second subproblem, we see that the equivalence
class of n contains (Succ m), which is headed by the correct constructor. So we go
on to unify m with ?Y as desired.

This algorithm satisfies the property that whether two terms are unifiable only de-
pends on what equivalence classes they are in, and it can solve all the unification
problems that occur in our testcases. However, one can raise two complaints against
it.

First, the above description does not specify what happens if there is more than
one choice of label applications. For example, if we know a = F ai = F ′ ai

′ and
b = F bi = F ′ bi

′
, then we could choose to recursively try to unify either ai with bi or

a′i with b′i. In this situation, the Zombie implementation will try all possibilities, in a
backtracking search.

In the current set of example programs, this situation with multiple possible decom-
positions only happens a handful of times, which are all easy to resolve. However,
in general there is no guarantee that the search will terminate quickly. In particu-
lar, the usual proof that rigid E-unification is NP-hard works by reducing Boolean
satisfiability to rigid E-unification, as follows. We encode propositional formulas as
syntactic formulas constructed from True, False, ∧, and ¬, and work with respect to
the following context Γ, which contains equations specifying the logical connectives:

Γ ≡ True ∧ True = True,True ∧ False = False,
False ∧ True = False,False ∧ False = False,
¬True = False,¬False = True

Now a Boolean formula such as φ ≡ (X∧¬Y)∧¬(Y ∧X) is satisfiable iff φ = True has
a unifier with respect to Γ. The only way to unify them is to search for an assignment
of True/False to the variables.

If we encode the above satisfaction problem as a Zombie program, the typechecker
will indeed instantiate X := True and Y := False—after doing a backtracking search
over different ways to match True against True∧True or against ¬False and so on. In

120

general, this is a quite inefficient way to enumerate propositional assignments, and
for large formulas it would be very slow.

Second, this is not a complete algorithm for rigid E-unification. Tiwari et al. [136]
give the example of unifying gfffgffX and fffX, given the equations gX = X and
X = a. Picking X := fa is a solution, but one cannot find it just by equating two
function arguments from the input problem, and indeed the Zombie typechecker is
not able to solve this problem instance. To handle cases like this, all known complete
algorithms for rigid E-unification include a rule of last resort, which tries to find a
binding for a unification variable X by exhaustively trying each subexpression of the
input problem in turn.

6.3 Challenges for complete type inference

Although it is now 25 years since rigid E-unification was first proposed, algorithms for
solving the problem have still not been studied very intensely. Early algorithms were
purely theoretical, i.e. they demonstrated that the problem was in NP but would
not be practical to implement. Even more recent algorithms are often only proven
correct, not implemented. Broadly speaking, there seems to be two styles of unifica-
tion algorithms. On one hand, Goubault [63] and Tiwari, Bachmair, and Ruess [136]
extend existing algorithms for congruence closure to also search for unifiers. Nei-
ther of these algorithms seems to have been implemented. On the other hand, there
are algorithms inspired by paramodulation methods in equational/first-order theorem
proving. These algorithms consist of a nondeterministic set of rewriting rules that
search for a unifier, together with a constraint system which tries to cut down the
search space by ensuring that the rewrite rules are only applied in a “decreasing” di-
rection, Algorithms by Becher and Petermann [19] (implemented once by Grieser [64])
and by Degtyarev and Voronov [47] (implemented once by Franssen [52]) fall in this
category.

However, these algorithms all deal with the untyped unification problem, in the con-
text of theorem provers for first-order logic. Just as with congruence closure (Sec-
tion 5.5), integrating rigid E-unification into a dependently typed programming lan-
guage creates additional complications.

6.3.1 Typed rigid E-unification

First, most treatments of unification deal with untyped terms and attempt to find
most general unifiers (which typically contain un-assigned unification variables). When
using unification in a dependent language however, leaving unassigned unification
variables is not acceptable, since they can correspond to unproved lemmas. So in

121

order to accept a program as well-typed, the typechecker needs to find a ground sub-
stitution for every unification variable. This is a source of undecidability, since it is
undecidable whether a given type has inhabitants or not.

Even if we do not require the algorithm to pick ground unifiers, in a typed setting
we still need to me make sure to only produced well-typed unifiers. A priori, having
type information available could either help or hurt. If we can rule out candidate
substitutions because they don’t have the right type, then types are helpful. On the
other hand, if we must consider all the same candidate solutions as for the untyped
problem, and then additionally check that they are well-typed, then the types slow
us down.

Gallier and Isakowitz [55] studied rigid E-unification for a simply-typed system, and
found that type information could be used to prune the search early. In that setting,
when considering candidates for a unification variable XB , we need only consider
expressions of type B .

Unfortunately, with dependent types, we are not so lucky. Consider the context

f : [T:Type] → T → Type

A : Type,

B : Type,

y : A,

X : B,

h1 : A = f [A] y ,

h2 : f [B] X = B

It is not the case that Γ ` y : B . However, {y/X}Γ ` y : B. In other words, it is
not sufficient to consider only expressions which have type B, because the type of
the expression may change after we carry out the instantiation. This context is not
inconsistent, one can inhabit it e.g. by setting A and B to Nat and f to the constant
Nat function. So this style of example seems hard to avoid.

Performance The Zombie implementation is very cavalier about creating well-
typed substitutions. While the elaborator tags each unification variable with an
expected type, the unification code currently ignores those annotations, and it is
possible to construct examples where the equational constraint get satisfied by an
ill-typed term. (Ill-typed unifiers will be detected by the typechecker for the core
language.) One annoying example which sometimes happens in practice is due to
erased type casts: the terms a.v and a are propositionally equal but have different
types, and the unifier can get confused about which one to pick for a given unification
variable.

This limitation is partly due to performance concerns. In general, in order to cor-
rectly check that a has the right type one should take congruence classes into account.

122

(Requiring that types of a and the ascribed type of the unification variable are syn-
tactically identical can rule out correct programs, e.g. if instantiating a unification
variable would make the types equal.) However, since any subexpression in the con-
text might be part of a unifier, checking the types up to congruence closure requires
calculating the CC equivalence class of every subexpression, which can be very ex-
pensive.

The cost of computing the congruence closure of types is also relevant when im-
plementing typeclasses/implicits/instance arguments (Section 6.1.1). This involves
instantiating a unification variable with some expression of the right type, so if we
want to work up to congruence, we need to compute the congruence closure of the
types of all candidate expressions. But the situation here is better, because arbitrary
subexpressions of the typing context are not candidates for instance arguments; only
the variables in the context (Agda) or some special subset of those variables (Haskell
and Scala). Similarly, to implement the assumption-up-to-CC rule (Section 5.2) we
need to compute the congruence closure of types in the context, but not subexpres-
sions of those types.

The following table shows the time it took to run the Zombie test suite with the
typechecker instrumented to process different subsets of the context. While the ab-
solute numbers are arbitrary (they depend on what example programs happened to
be written in November 2013), the relative magnitudes give a rough indication of the
cost of the different options.

Equations only 35.8s
Datatypes in context 36.3s
All types in context 83s
Every subexpression in context 180s

With just the “classic” assumption rule (Section 5.2), the congruence closure algo-
rithm only needs to process equations in the context. To implement a Scala- or
Haskell-style typeclass system up to congruence, we also need to process some other
subset of the assumptions—in this example we processed every variable in the context
that inhabits a datatype. With the full assumption-up-to-CC rule, and to implement
an Agda-style system, we need to process the type of every variable in the context,
since we do not know a priori which types will turn out to be equal to an equation.
Finally, in order to track welltypedness of unifiers, we also want to process all subex-
pressions of types in the context, and the types of the types of the subexpressions,
and so on.

It can be seen that the assumption-up-to-CC rule is quite costly, increasing the time
by more than factor of 2. Tracking every type is worse still, and is not done by the
current implementation.

123

6.3.2 Simultaneous rigid E-unification

There is an important mismatch between the rigid E-unification problem described
above and the unification problems generated by type inference: when generating
equality constraints by typechecking a program, not every constraint will be in the
same context Γ. For example, most unification based type systems will generate at
least a constraint for every application in the program, and not every application will
be in the same typing context.

Thus we are led to consider a slightly generalized problem, namely

Givenm contexts Γ0 . . .Γm andm pairs of terms A1, B1, . . . , Am, Bm which
contain unification variables, find a substitution σ such that

∀i. σΓi � σAi = σBi

This problem is known as simultaneous rigid E-unification. Unfortunately, it turns
out to be undecidable [46].

If we insist that type inference be decidable, and still allow implicit use of congruence
closure anywhere, one way to proceed would be to impose a restriction on the set of
typeable programs. For example, one could insist that all constraints used to solve
for a particular unification variable must be defined in a single typing context, and
make the typechecker signal an error if there are still unsolved unification variables
when a variable goes out of scope. However, any restriction which is strong enough
to ensure decidability would also severely limit the power of type inference.

We can formalize this objection by fixing a minimal set of type rules which we want
the typechecker to be able to handle, and then ask whether it is possible to create
an algorithm which is complete for both those rules and the CC-conversion rule. A
rather modest target may be to ask for a complete inference algorithm for the simply-
typed lambda calculus. Disregarding congruence reasoning, it is very easy to write
a unification based algorithm which decides whether a (Curry-style) λ-expression is
typeable in STLC or not. In a practical programming language we will also want
a way to ascribe specific types to expressions, so we should include a rule for type
annotations. After adding the up-to-congruence rule, we end up with the following
set of five rules. (This language is meant to be a subset of Zombie, so we assume the
judgement Γ � A = B is defined by rules similar to Figure 5.2 in Chapter 5.)

x : A ∈ Γ
Γ ` x : A

Γ, x : A ` b : B

Γ ` λx .b : A→ B
Γ ` a : A→ B Γ ` b : A

Γ ` a b : B

Γ ` a : A
Γ ` aA : A

Γ ` a : A Γ � A = B
Γ ` a : B

124

However, already with just these rules the problem of inferring arguments is un-
decidable. One can create arbitrary typechecking contexts by combining lambdas
and type annotations, and then pose the unification problem Γ � A = B by asking
if there exists some substitution of values for unification variables which makes the
expression (xA)B well typed.

In more detail, the reduction from simultaneous E-unification to type inference is
done as follows. Suppose Γ ≡ x1 : A1, x2 : A2, . . . xn : An. Then we define the term

(Γ � A = B)∗
def
= (λx1 x2 . . . xn y.(yA)B)A1→A2→···→An→A→B

which is typeable under some substitution σ exactly if the corresponding congruence
closure judgement holds. In order to verify that the reduction is correct, we need a
few lemmas:

Lemma 24 (Context conversion). If Γ � A = A′, and Γ,Γ1, x : A,Γ2 ` b : B , then
Γ,Γ1, x : A′,Γ2 ` b : B .

Proof. By induction on the second judgement. In the variable case, if the variable is
x we insert an implicit conversion.

Lemma 25 (Inversion lemmas for typing).

1. Γ ` λx .b : A→ B iff Γ, x : A ` b : B .

2. Γ ` a b : B iff Γ ` a : A→ B and Γ ` b : A for some A.

3. Γ ` aA : A iff Γ ` a : A.

Proof. The proof of (1) is the most interesting. The right-to-left direction just states
the typing rule. In the left-to-right direction we first use induction to prove a weaker
statement: if Γ ` λx .b : A→ B then Γ, x : A′ ` b : B ′ for some A′ and B′ such that
Γ � (A→ B) = (A′ → B ′). Then by injectivity for arrow types, we know Γ � A = A′

and Γ � B = B ′. Conclude by context conversion and an implicit conversion.

Lemma 26. If Γ ` (aA) : B , then Γ � A = B

Proof. Induction, using the fact that congruence closure is transitive.

Lemma 27 (Strengthening for congruence closure). If Γ, x : A � a = b, and it is not
the case that Γ � A = (a1 = b1) for any a1 and b1, then Γ � a = b.

Theorem 28. Let · ` a : A be some arbitrary typeable expression. Suppose that
{(Γi, Ai, Bi) | 1 ≤ i ≤ m} is a problem instance of simultaneous rigid E-unification,
such that it is never the case that Γi � Ai = (a = b) for some equation (a = b).
Then the expression

σ((λx1 . . . xm.a) (Γ1 � A1 = B1)∗ . . . (Γm � Am = Bm)∗)

125

is typeable iff σ is a solution of the unification problem.

Proof. By repeatedly applying the inversion rule for applications (lemma 25 (2)), we
see that the entire expression is typeable iff (σ Γi � σAi = σBi)

∗ is typeable for each
i.

By inversion for λ-expressions, that is true iff σ Γi , x : σAi ` (xσAi)σBi : σBi . By
inversion for type ascription, and lemma 26, that holds iff σ Γi , x : σAi � σAi = σBi .
Finally by weakening and strengthening (lemma 27), that holds iff σ Γi � σAi = σBi ,
as required.

Simultaneous rigid E-unification remains undecidable if all the expressions involved
are known to not equal equations (in the first-order setting that is automatically true,
since equations and terms are in different syntactic categories), so this theorem shows
that the type inference problem is undecidable even for just STLC+congruence.

Another argument that a practical type inference system needs to simultaneously
solve constraints from multiple typing contexts is that these come up in quite pedes-
trian functional programs. For example, consider the function mapM from the Haskell
standard library, which uses nested lambda expressions in order to sequence evalua-
tion using the monadic bind combinator:

mapM :: Monad m ⇒ (a → m b) → [a] → m [b]

mapM f [] = return []

mapM f (x:xs) = f x >>= (λ y →
mapM f xs >>= (λ ys →
return (y : ys)))

In this example, we want the typechecker to be able to infer the type of the variable y.
However, imposing the rule that all constraints must live in the same context makes
that impossible, because the constraint that fixes the type of y is not created until
we check the body of (λ ys → ...), i.e. it comes from a context which was extended
by the variable ys.

6.4 Future work: a type system based on simulta-

neous rigid E-unification?

So far, we have mentioned three obstacles to writing a complete type inference system:
one needs a rich constraint language to write a typing rule for dependent application,
it is difficult to find well-typed unifiers, and in a realistic language we need to solve
constraints simultaneously. It is intriguing to note that designing a type inference al-
gorithm around simultaneous rigid E-unification (SREU), somewhat magically, seems
to address all three problems at once.

126

The problem of finding well-typed substitutions, while still difficult, seems to at
least not make the SREU problem much harder. One crucial part of the construction
that shows that SREU is undecidable is that it is possible to write down equations
which constrain any solution for a unification variable X to be a ground term over a
given signature [46]. (For example, in order to force the solution for X to be a ground
term constructed from the constants a, b, c and the unary function symbols f and
g, one can add the equation a = c, b = c, fc = c, gc = c ` X = c to the problem.)
Thus, it seems that any algorithm for tackling SREU must already be part of the way
towards finding only well-typed ground solutions.

The problem of finding simultaneous unifiers is undecidable, but as undecidable
problem go it is not so bad: it turns out that SREU is equivalent to second order
unification.13 This is a special case of the higher-order unification problem which
existing dependent languages routinely solve, so one can hope that the methods they
use (such as pattern unification [88, 98]) can be adapted and work equally well in this
setting.

Type inference of existing languages like Coq and Agda is typically approached by
this two-step approach, by first defining a type system which generates higher-order
unification problems, and then studying algorithms for decidable subclasses of the
unification problem. We would hope that the same approach would still be effective
when reducing the problem to SREU instead of HOU.

And finally, second order unification is exactly what is needed to state an application
rule for a dependent language. In a language based around SREU, the rule may look
something like

Γ ` a : A given Φ1 Γ ` b : B given Φ2

Γ ` a b : Z given Φ1,Φ2, (Γ ` A = (x :B)→ Y), (Γ, h : x = b ` Y = Z)
ConTdapp2

Here, we record a context Γ with every constraint. The first-order variable Y repre-
sents the codomain part of the type of a, while Z represents the same codomain with
the substitution b/x applied. The relation between Y and Z is encoded by requiring
that Y = Z given the assumption x = b.

Of course this is speculation, because there are no known algorithms for typed simul-
taneous rigid E-unification. But the above observations suggest the possibility that
SREU could serve as a useful organizing principle for dependently typed languages,
much like higher-order unification does in Coq, Agda, and Twelf.

13A reduction from SOU to SREU was found by Degtyarev and Voronkov [46], while one from
SREU to SOU was found by Levy [77]. Veanes [137] additionally showed that the two problems are
logspace-equivalent.

127

Chapter 7

Termination checking

The core calculus described in the previous sections covers all the major features
of the Zombie core language except one: termination checking. In full Zombie, the
programmer can declare certain expressions to be terminating, and the typechecker
will enforce this.

The way the terminating checking is expressed in the type system is novel, and
motivated by our interest in light-weight verification. Previous languages tend to
either offer convenient support for writing total functions while making it inconve-
nient to define and reason about nonterminating functions (e.g. Coq and Agda, see
Section 8.2.4), or they offer convenient general recursion but little or no support for
termination checking and proof (e.g. Cayenne, see Section 8.2.1). We would like
balance between proving and programming, allowing programmers to devote their
verification budget to critical sections. So Zombie should support general recursion
as natively as a functional programming language, yet at the same time should provide
the reasoning capabilities of a constructive logic proof assistant.

To support this goal, we use the type system to track which programs are known
to terminate and which are not, by indexing the typing judgment by an consistency
classifier log/prog. Because the distinction is made through typing, the syntax and
operational semantics of a program is kept the same whether it uses general recursion
or not.

Further, the type system contains several features the which allow interaction between
total and potentially nonterminating parts of the program:

• We define the logical language as a sublanguage of the programmatic language,
so that all logical expressions can be used as programs.

• We allow uniform reasoning for logical and programmatic expressions through
a heterogenous equality type. Two expressions can be shown to be equal based
on their evaluation, which is the same for both fragments.

128

Figure 7.1: The calculi studied in Casinghino’s thesis [30] (left) and in this chapter
(right).

• We internalize the labeled typing judgment as a new type form A@θ. This type
can be used by either the prog or log fragment to manipulate values belonging
to the other.

• We identify a set of “mobile types”—those whose values can freely move between
the fragments.

In first half of this chapter, we present the general considerations that went into the
termination checking design (Sections 7.1 and 7.2), and the detailed typing rules that
they resulted in (Section 7.3). In particular, we aim to provide enough detail to make
the example programs in Chapter 2 understandable.

When writing down typing rules and talking about their metatheory, we encounter
the usual problem of this thesis: the full core language is too large to make proofs
tractable. This is particularly true when it comes to normalization proofs, which are
notoriously difficult. In fact, Casinghino dedicated an entire phd thesis to just the ter-
mination aspects of Zombie [30], and still had restrict attention to a subset (omitting
general datatypes, collapsed syntax, universe hierarchies, erasure of function domains
and function arguments, and large eliminations).

In this chapter we present a very cut-down version of the core language. Because
Casinghino already studied termination checking of Zombie in depth, this thesis does
not need to go into details about how the advanced features of Zombie affect the
metatheoretic normalization proof. So the calculus in this chapter is even smaller
than Casinghino’s: we omit many features, but retain the novel typing rules which
talk about termination. Figure 7.1 shows schematically how these calculi relate to
the full Zombie language. For the most part the calculus in Section 7.3 does not
contain novel findings beyond what was already presented in Casinghino’s thesis, but
additionally we extend it with subtyping (Section 7.3.5) and give a description of how
the core calculus relates to the full Zombie language (Section 7.3.6).

However, this type system (which is implemented in the current version of Zombie)
has two drawbacks, and addressing those is the focus of the second half of the chap-

129

ter. First, the design of the typing rules allow typing derivations at log to contain
subderivations at prog, which makes the normalization proof technically difficult (as
we explain in Section 7.6.1). This in turn prevented us from supporting useful fea-
tures in Zombie: intuitively there should be no issue with allowing Type : Type or
type-level general recursion as long as a program is marked as prog, but we were
not able to integrate those features into our soundness proof for the log fragment
(Section 7.7.2). Second, although the core language is suitably expressive it requires
a lot of annotations, and it seems very difficult to find a complete algorithm to infer
those annotations automatically (Section 7.7.3).

To deal with these two drawbacks, we design a second set of typing rules (Section 7.4),
based on the idea of tracking termination using a standard type-and-effect system.
The new type system looks superficially different from the calculus in Section 7.3,
but we prove that it can type the same programs (Section 7.5). And the new type
system leads to a much simpler metatheory, because termination can now by proved
by a normal logical relations argument (Section 7.6). We hope that in future work
this proof will be easier to extend to handle additional features in the nonterminating
part of the type system, and also that it will support easier type inference.

Along the way we also make an observation about combining general recursion with
reasoning about nonterminating programs. It turns out that one cannot at the same
time allow recursive functions at arbitrary types, reduction at type-checking time, and
“termination inversion” (Section 7.7.1). Zombie makes the novel choice of omitting
the last one of this three features.

Mechanization Unlike the rest of the thesis, the proofs in this chapter have been
mechanized in Coq. The proof scripts can be downloaded from the author’s home-
page. The proofs reuse some of the earlier development by Casinghino et al. [31], e.g.
definitions of typing rules and lemmas about de Bruijn indices could be reused with
only light adaptation.

7.1 Why termination checking?

In previous chapters we described a dependently typed language without any termi-
nation checking at all. This is certainly a respectable point in the design space: other
languages making similar choices include Cayenne [10], Cardelli’s Type:Type lan-
guage [29], and ΠΣ [9]—and even recent versions of Haskell, if you squint a bit [50, 79].
Even so, for the full Zombie type system we believe that support for provably total
functions is essential. There are two separate reasons for this.

130

7.1.1 Precision

The first reason is to better support program verification. Dependent types support
both programming and verification in a single language, but without termination-
checking, there are limitations about which properties are expressible as types. Most
obviously, without termination checking one can prove partial but not total correct-
ness properties. For example, we mentioned previously (Section 3.3) a function to
match regular expressions:

match : (s:String) → (r:Regexp) → Maybe (Matches s r)

The type guarantees that if the function returns Just m then the string matches. On
the other hand, without termination checking there is clearly no way to express the
fact that the function always returns.

Phrasing it differently, a language without termination checking can prove safety but
not liveness properties. For example, if we use dependent types to encode access
control (as in Aura [70] or Aglet [92]), then without termination checking we can be
sure that the read function will not give access to unauthorized users, but it may
still get stuck in an infinite loop.

For lightweight verification, not being able to prove liveness is perhaps OK. In real
applications we want to known not only that a function is terminating but that it
terminates reasonably quickly—a function which uses exponential time or space is as
vulnerable to denial-of-service attacks as one which does not terminate at all. For
most projects, formally proving space/time bounds does not provide enough benefit
to justify the cost, and the same could be said for termination proofs.

Rather, the main reason we are interested in termination checking is to make more
properties and proofs expressible. For example, even putting aside the fact that match
may not terminate, the type given above has another drawback: it leaves open the
possibility that the match incorrectly returns Nothing. In order to ensure that the
function classifies strings correctly we want to give it a more expressive type, such as

match : (s:String) → (r:Regexp) → Either (Matches s r)

(Matches s r → False)

This type forces the programmer to construct a proof either that the string matches
or that it doesn’t match (using the standard definition of negation, ¬P ≡ P → False).
But without termination checking, the type Matches s r → False is uninformative—
it is inhabited by the trivial function λx.loop()—so types can only express properties
which can be witnessed by some first-order datatype, such as Matches.

Without termination checking we could express soundness of match, but not com-
pleteness. The same pattern holds for many examples beyond regular expression
matching. For example, one classic illustration of the power of dependent types is

131

implementing correct-by-construction type checkers [86]. Here again, without ter-
mination checking one can express that the typechecker is sound but not that it is
complete.

A particularly important example is verified SAT-solvers for propositional logic (either
the scaled-down example in Section 2.4, or full-strength solvers like Versat [100]).
Without termination checking we can express that the solver is sound, i.e. that
if it returns a variable assignment then that assignment does satisfy the formula.
But that is a very uninteresting property! The user can easily check that manually,
by just evaluating the formula with the given assignment. The critical question is
completeness: can we trust the solver when it declares a formula to be unsatisfiable
(after a long search using subtle techniques to cut down the search space)? Some
SAT solvers can construct explicit proofs of unsatisfiability (in some given logic), but
such proof terms can be hundreds of megabytes in size and take longer to verify than
to generate in the first place [130]. It is better to prove the SAT-solver itself partially
correct. But the property “the formula φ is unsatisfiable” involves a function space
(we can write it as the dependent implication (σ : Assignment) → eval σ φ = false),
so we need a type of total functions in order to express it.

Apart from stating properties, we also need termination-checking to prove them.
Almost all interesting proofs involve induction. But the computational meaning of
induction is just structural recursion; you are licensed to invoke the induction hy-
pothesis on any structurally smaller term. The checks needed to make sure that an
inductive proof is valid are exactly what is needed to termination-check a function.

To summarize, while having a way to prove programs terminate is nice, having impli-
cations and inductive proofs is crucial. In some language designs these would be two
separate things. For example, in F* [133] types and propositional formulas are two
syntactically separate categories, one of which is inhabited by program terms and the
other automatically proved by an SMT solver. One of the benefits of making Zombie
core a full-spectrum dependent language with unified syntax is that it avoids this
duplication: by adding induction to the logic we get termination-checked programs
for free.

7.1.2 Performance

The other reason to consider termination checking is to enable erasure. In the words
of Randy Pollack, the point of writing a proof in a strongly normalizing calculus is
that you don’t need to normalize it. For example, in Section 3.3 we mentioned that
a function like

safediv : Nat → (y:Nat) → (p: isZero y = false) → Nat

132

is still type safe if we call it with an infinite loop as the proof of the precondition; the
expression safediv 3 0 (loop()) simply diverges. However, that means that we
actually keep the function argument in the compiled code and execute it at runtime.
In the case of safediv this is doubly unsatisfying: first because we know that the
implementation of safediv just throws away that argument, and second because it
is an equation, so it can in any case only evaluate to the uninformative value join.

For function preconditions like these, we only need to know that the expression has
some value, but it doesn’t matter which one. Full Zombie handles this gracefully. We
mark the precondition as an erased argument:

safediv : Nat → (y:Nat) → [p: isZero y = false] → Nat

Now, as long as proof a is known-terminating, Zombie allows it to be used as an
implicit argument safediv 3 0 [a]. In this way, there is no trace of it at runtime.

The function match illustrates the dual property. In the previous subsection we gave
it the type

match : (s:String) → (r:Regexp) → Maybe (Matches s r)

but in the case when it returns Just m, this requires constructing (and allocating
memory for) an explicit witness m. The clients to match never care about the specific
value returned, only that there exists some value witnessing the postcondition. For
regular expression matching the overhead is perhaps tolerable, but as we mentioned
above, explicit witnesses for propositional unsatisfiability can easily be hundreds of
megabytes in size. Again, full Zombie handles this gracefully. We define a different
datatype EMaybe where the argument is erased, and as long as m is known-terminating
match can return EJust [m], which erases to just a unit value at runtime.

Erasability in this sense is necessary for any practical dependently typed language.
The precise design of erasure in Zombie is slightly ambitious because it internalizes
information about erasiblity into the equational theory by making expressions which
only differ in erased positions provably equal; in the terminology of Abel [4] this is
“internal erasure”. This feature is not available in e.g. Coq without axioms (see
Section 8.1). But even Coq provides “external erasure”: when using Coq’s program
extraction feature to compile a function, all proof arguments of sort Prop are erased
from the runtime representation. Even just external erasure requires termination-
checking.

On the other hand, Coq and Agda do not erase expressions when evaluating them
at type-checking time (in order to ensure strong normalization of open terms). And
practical experience with Coq and Agda illustrates how crucial proof erasure is for
performance! For example, it is folklore that any dependently typed formalization
of category theory will grind to a halt about halfway through, when the typechecker
runs out of memory. The most natural way to phrase the definitions involves many

133

type indices and Σ-types, both of which can cause the size of goals and proofs to
blow up. Gross et al. [65] describe how to avoid some of the pitfalls through carefully
designing the definitions and judiciously using abstraction and opaqueness. They also
mention that extending Coq’s definitional equality with irrelevant arguments would
be very helpful, because Coq could then judge types equal without having to process
the (large) proof terms embedded inside the type.

7.2 Design choices

Before moving on to the subsetted calculus, we briefly discuss some of the distinctive
features of the full Zombie language. Every expression in Zombie is classified as ei-
ther known-terminating or possibly nonterminating. Formally, the typing judgement
is indexed by an additional parameter θ, which can be either L (for “logical”, i.e.
terminating) of P (“program”).

Γ `θ a : A

When θ is L the expression a is known to be total, so it is safe to erase, and by the
Curry-Howard correspondence it can be read as a proof of the theorem A. When θ is
P, a may make unrestricted use of nonterminating features. In the concrete syntax,
the programmer marks definitions as either log or prog.

Allowing definitions to be either terminating or not is not so unusual. Both Idris
and recent versions of Agda allows the programmer to write generally recursive func-
tions, and the typechecker tracks which expressions used general recursion so that it
can avoid reducing possibly-nonterminating functions during typechecking. However,
the treatment of termination in Zombie has two features which sets it apart from
mainstream dependently typed languages.

7.2.1 Type-based termination

The first difference is that the θ classifier is specified as part of the typing rules. Coq,
Agda, and Idris (and the paper presentation of Martin-Löf type theory) treat type
checking and termination as two separate processes. In these systems each function is
first type-checked according to a set of typing rules which do not mention termination,
and then there is a separate check that all recursive function calls happen at a smaller
argument.

In Zombie, by contrast, the typing rules themselves enforce that recursion is struc-
tural. We can see this by comparing the typing rules for general recursive functions
rec and structurally recursive functions ind:

134

Γ `L (y :A)→ B : Type
Γ, y :P A, f :P (y :A)→ B `θ a : B

Γ `P rec f y .a : (y :A)→ B
TRec

Γ `L (y :A)→ B : Type
Γ, y :L A, f :L (x :A)→ •(z :x ≺ y)→ {x/y}B `L a : B

Γ `L ind f y .a : (y :A)→ B
TInd

The rule TRec is the ordinary rule for recursive functions, except that it specifies
that the expression lives in P, because general recursion can be used to write infinite
loops.

On the other hand, structurally recursive functions can safely be classified as L (by
subtyping, they can be used at P also). But in order to enforce structural recursion,
the recursive variable f is given a type which expects an extra argument, a proof
that the size of y is smaller than x. Like equality types, a ≺ b is a primitive type in
Zombie. It is introduced by two constructors, ord and ordtrans.

Γ `L b : a = d Ai ai

Γ `L ord b : ai ≺ a
Tord

Γ `L a : a1 ≺ a2

Γ `L b : a2 ≺ a3

Γ `L ordtrans a b : a1 ≺ a3

Tordtrans

The rule Tord says that the direct arguments to a data constructor are smaller
than the entire constructor value. For example we can show that a natural number
is smaller than its successor, ord join : a ≺ Suc a, because join : Suc a = Suc a.
Tordtrans allows chaining together several ≺-judgements, which is useful e.g. for
recursing on a value from a deep pattern match. The rule Tord is written in terms
of an equation in order to take advantage of the equation that the typing rule for case
introduces. For example, we can write a function to add natural numbers as follows:

log add : Nat → Nat → Nat

ind add x y = case x [eq] of

Zero → y -- eq : x = Zero

Suc x’ → add x’ [ord eq] y -- eq : x = Suc x’

This idea of integrating termination checking into the type system is known as type-
based termination, and has been the subject of much research [2, 18, 23, 145]. Most
existing systems employ “size types”, in which each type is annotated by an ordinal-
like size expression, which should decrease in recursive calls. Although they have

135

not yet been adopted in a production language, size-types have been explored in the
(experimental) MiniAgda system [3].

Type-based termination offers two advantages over a separate syntactic check. First,
types are inherently much more resilient to program transformations and refactorings.
Second, because the condition that the termination metric is decreasing is reified as
an explicit proof term, the programmer is provided by an “escape hatch” to write
terminating functions even if the termination proof is too subtle for the typechecker
to find automatically. For example, consider division of natural numbers: to compute
n/m, we make a recursive call on (n−m)/m. The term n−m is not an immediate
subterm of n. In the Zombie test cases we use the fact that a ≺ b is a first-class type
to prove a lemma saying that the subtraction produces structurally smaller terms:

log minus_smaller :

(x:Nat) → (y:Nat) → (eq x Zero = False) → (eq y Zero = False)

→ (minus x y ≺ x)

Coq and Agda satisfy the need to provide explicit proofs by separate libraries for well-
founded induction. Functions written using the wellfounded recursion combinator
look similar to Zombie’s ind-functions—each recursive call takes a proof that the
termination metric decreased—but the operational semantics are more complicated (if
you reduce a function defined by well-founded recursion, you get a more complicated
expression involving helper-functions from the library). So in order to reason about
such recursive functions, the programmer instead uses library lemmas which provide
the recursion equation as a propositional equation [17]. Because Zombie’s version of
structural recursion is a primitive feature, the ordinary features for reasoning about
reduction (join and unfold) work even when the structural ordering proofs use
additional lemmas.

Logical strength

While Zombie is expressive in that it exposes the ordering a ≺ b as a first-class type,
it is quite limited in what ordering relations are actually provable. The ≺-relation
is entirely generated by direct syntactic subarguments of data constructors. For a
given datatype D, we can consider the function size : D → Nat, which recursively
counts the number of constructors in a data value. The function size is monotone
with respect to the ≺-order. So intuitively, the only functions that are definiable
using ind are those that are terminating using a Nat-valued termination metric.

We can convert the intuition to a more formal claim: if we restrict the rule Tind
to only allow A ≡ Nat, the same functions are definable, i.e. there exists a way to
encode programs from the full language into the restricted one. A first try, suggested
by the previous paragraph, would be to first define a size-function for A, and then
use an induction on the size of argument to the function, instead of on the structure

136

of the argument. That does not quite work, because in the restricted system there
is no way to write a terminating size-function. However, there is a simple trick to
get around that: index the datatype itself by its size. For example, we can replace a
function acting on the ordinary list datatype

data List (a : Type) : Type where

Nil

Cons of (x : a) (xs : List a)

map : [a b:Type] → (f:a → b) → List a → List b

map [a] [b] f = ind map xs =

case xs [xs_eq] of

Nil → Nil

Cons x xs’ → Cons (f x) (map xs’ [ord xs_eq])

with a version that explicitly indexes the lists by their length, and recurses on the
size index:

data List (a : Type) (n : Nat) : Type where

Nil

Cons of [m : Nat] [n = Succ m] (x : a) (xs : List a m)

map : [a b:Type] → (f:a → b) → [n:Nat] → List a n → List b n

map [a] [b] f = ind map [n] = λ xs.
case xs [xs_eq] of

Nil → Nil

Cons [m] [pf] x xs’ → Cons [m] [pf] (f x) (map [m] [ord pf] xs’)

Since course-of-values induction is provable from ordinary natural number induction,
we could also without loss of generality omit the rule Tordtrans, and only allow
recursive calls on the immediate predecessor of a natural number.

Compared to other languages, the restriction to nat-valued termination metrics seems
quite severe. For example, ACL2 explicitly uses an ordinal notation for its termination
metrics. And the Coq and Agda termination checkers also use a more liberal notion
of subterm. In Coq we can define the following datatype of infinitely-branching trees:

Inductive tree :=

leaf : tree

| branch : (nat → tree) → tree.

If we squint, we can view this as saying that a tree is either a leaf, or a branch with
countably infinitely many children. Coq will consider e.g. ts 42 to be a subterm
of the tree (branch ts), which allows functions defined by (transfinite) recursion on
such trees even though the trees do not have a finite size. This feature is used in e.g.

137

Werner’s axiomatization of ZFC set theory [143], which defines sets as well-founded
trees, and it is also used by the well-founded recursion libraries.

The inability to do this kind of transfinite recursion in Zombie is a limitation, and
remedying this would be a worthwhile line of future work. Doing so will require some
thought: currently the typing rules are pleasantly simple because there is only a single
type contructor a ≺ b, which (like equality) is allowed to be heterogenously typed.
Adding more proof-theoretically powerful induction principles may require being more
careful about types, and also we would probably want to consider multiple different
orderinga of a given type (e.g. different lexicographic orders of a product type).
Furthermore, powerful induction principles make the metatheory more difficult (see
e.g. Barthe et al. [18]), and our normalization proofs so far have only contemplated
natural-number induction.

That said, the proof-strength of Zombie already goes quite far. In addition to just
plain induction on a size, it is also possible (if somewhat clumsy) to do lexicographic
induction by nesting several ind-expressions. (The same is true in Coq.) For example,
we can define the Ackermann function as follows:

ack : (m:Nat) → (n:Nat) → Nat

ack = ind a m =

case m [meq] of

Zero → λ n. Succ n

Succ m’ → ind am n =

case n [neq] of

Zero → a m’ [ord meq] 1

Succ n’ → a m’ [ord meq] (am n’ [ord neq])

Having to write the function as a nested function definition makes the program
harder to read. Agda’s termination checker is more programmer friendly, because
for multiple-argument functions it automatically searches for a lexicographic order-
ing of the arguments. But replacing such multiple-argument functions with nested
functions is still a fairly benign transformation: it can be done locally, function by
function, and it preserves reduction behavior.14

One way to get a sense of whether the more powerful forms of induction are essential
or not is to look at how Coq’s well-founded induction feature get used in the Coq

14This is in contrast to more heavy-weight encodings of terminating functions. Using higher-
order functions and recursion on natural numbers, one can write functions which require difficult
termination metrics by using a Church-encoding of ordinal numbers. Using only simple types (as in
Gödel’s System T) one can encode any ordinal in in the series ω, ωω, ωωω

, . . . , and using dependent
types one can go much higher still [51]. So with this limited set of features, it is already possible
to write down almost any function imaginable. However, this has the usual drawbacks of Church
encodings: while the functions has the right computational behavior, the function definitions do
not look natural, and lack induction principles [56]. So while these constructions shed light on the
proof-theoretic strength of dependent type theory, they are not useful for practical programming.

138

User Contributions.15 This is a collection of 161 proof developments written in Coq,
comprising 1.7 million lines of code. Out of these developments, 32 make use of
the well_founded_ind recursion combinator to write recursive functions. So those
developments are examples where Coq’s built-in termination checker is too limiting.
However, out of those 32:

23 use wellfounded induction either for strong induction over a nat-valued termina-
tion metric, or induction over a lexicographic product of nat-valued metrics. As
indicated above Zombie directly supports strong induction, and lexicographic
induction is possible in principle (but inconvenient).

2 developments take advantage of the fact that proofs of wellfoundedness in Coq
are first-class objects that can be manipulated. CompCert/lib/UnionFind.v

represents a union-find state as a pair of two elements: the pointer graph, and
a proof that it is well-founded. The union operation has to update the proof
component of the pair when it adds new arcs to the graph. Similarly, ATBR (a
library for Kleene algebras, and an automata-based decision procedure) repre-
sents an automaton with ε-transitions as a transition relation alongside a proof
that all chains of ε-transitions are wellfounded, and the automata constructions
explicitly manipulate the wellfoundedness proofs.

These are elegant software engineering approaches to verifying the respective
algorithms, but it would also be possible to write the same algorithms in a
different way. For example PersistentUnionFind (a different contribution)
shows how to implement Union-Find in terms of a nat-valued “pointer distance”
relation.

1 development, CompCert/common/Smallstep.v, specifies lemmas about simulations
of transition relations in terms of wellfoundedness. I am not certain what order
is used when the lemma is eventually invoked.

4 developments prove theorems where the statement itself refers to wellfounded rela-
tions. HoareTut and Random prove total-correctness rules Hoare-logic rules for
while loops, so the premises of the theorem states “for any termination met-
ric. . . ”. Similarly, WeakUpTo proves the correctness of a proof technique for
weak bisimilarity, under the assumption that the system is terminating (does
not exhibit infinite sequences of silent transitions). And ZornsLemma proves a
characterization of wellfoundedness itself, in terms of minimal elements. So in
these cases, the theorem could not be stated in its general form without a no-
tion of wellfounded order, but the developments do not instantiate the theorems
with any concrete orderings.

3 developments directly make use of well-founded orders which are “bigger” than
finite lexicographic products of ω. CoLoR/HORPO verifies termination of rewrite

15svn://scm.gforge.inria.fr/svn/coq-contribs/branches/v8.4

139

systems that satisfy a “higher-order recursive path-ordering” condition, and the
proofs use the multi-set order. Buchberger implements Buchberger’s algorithm
for constructing Gröbner bases of sets of polynomials. In order to prove termi-
nation it uses the lexicographic exponential order on lists of ordered elements
(in this case, polynomial coefficients). And finally, Cantor implements data
structures for ordinals less than Γ0, using Cantor and Veblen normal forms,
which unsurprisingly needs fancy termination metrics.

From this we can conclude that “big” orderings (beyond ωn for finite n) are used
quite rarely. Even for proofs which would not in principle need a big ordering, it can
be convenient to have a first-class notion of well-founded orders. But most of the
developments either do not need anything except plain structural recursion, or can
be done using just strong induction and lexicographic induction. So although support
for more advanced termination arguments would not hurt, the features in Zombie as
it exists today are not unrealistically weak—they suffice for most proofs.

7.2.2 Internalizing the termination classifier

The second way that Zombie differs from the built-in termination checking of Agda
and Idris is that it reflects the termination of functions in their types.

In Idris, every function is simply classified as either terminating or not, similar to the
classifier θ on the Zombie typing judgement. Arguments to higher-order functions in
Idris are assumed to be terminating, but if a function is applied to a possibly diverging
argument, then the application is considered possibly diverging also. Similarly, values
of record type are considered possibly diverging unless all the components of the record
are known to terminate. So there is no way to abstract over a mix of terminating and
nonterminating components.

Zombie makes more fine-grained distinctions, because termination-classification can
be expressed by a type which we write A@θ. A value belongs to the type A@θ if
it can be typed at type A and classifier θ. This way one can write functions which
abstract over values of a known termination status. For example, we can write a
function composeP, which composes nonterminating functions:

log composeP : [A B C : Type] →
(B→C @prog) → (A→B @prog) → (A→C @prog)

composeP [A] [B] [C] f g = (λ x . f (g x))

Even though the arguments to composeP may not terminate when called, the function
composition operator itself is known to terminate. Similarly we can accept and return
datatypes (e.g. dependent pairs) which mix logical and programmatic values.

Being able to mix terminating and potentially nonterminating code is important for
lightweight verification, because if a programmer elects to not spend effort proving

140

a, b, A, B ::=Type | (x :A)→ B | a = b
| Nat | Σx :A.B | A@θ
| x | λx .a | rec f x .a | ind f x .t | a b
| join | 〈a, b〉 | pcasez a of {(x , y)⇒ b}
| 0 | Suc a | ncasez a of {0⇒ a1; S x ⇒ a2}

v ::=Type | (x :A)→ B | a = b
| Nat | Σx :A.B | A@θ
| x | λx .a | rec f x .a | ind f x .a | join
| 〈v1, v2〉 | 0 | Suc v

Figure 7.2: Expressions and values

termination of some functions, they need a fine-grained way to specify what is and
is not known terminating. A good example of this is again a SAT-solver. As noted
above, it makes sense to not prove that the solver itself always terminates (for ad-
vanced solving algorithms, proving termination is quite subtle). But on the other
hand, we need to be able to trust the proof of unsatisfiability that it returns. In
Zombie we can assign it a type like the following:

prog solver :

(f : Formula) → Either (Σ(v:Assignment). eval f v = true)

((v:Assignment) → eval f v = false @log)

The marker prog expresses that the function solver itself may not return (it is
checked in the P fragment). But if it returns a value Right pf, the marker @log en-
sures that value pf has been checked in the L fragment, and therefore is a trustworthy
proof.

7.3 Core calculus: Non-termination as a possible

world

To make the foregoing ideas precise, we now define a type system for a small subset
of the full Zombie language. The syntax of expressions and values are shown in
Figure 7.2. Compared to the core calculus in Chapter 3 there are few surprises. We
still combine terms and types into a single syntactic category, and use the sort Type
to see which are which. The types include function types (x :A)→ B and equations
a = b, but instead of general datatypes it has only Nat and dependent pair types
Σx : A.B . Also, we omit computational irrelevance. Finally, we add the type A@θ
which internalizes the termination classifier.

141

` Γ

` ·
CNil

` Γ Γ `L A : Type

` Γ, x :θ A
CType

Γ `θ a : A

(x :θ A) ∈ Γ ` Γ
Γ `L A : Type

Γ `θ x : A
TVar

Γ `L A : Type Mobile (A)
Γ, x :L A `L B : Type

Γ `L (x :A)→ B : Type
TArr

Γ `θ b : (x :A)→ B
Γ `θ a : A Γ `L {a/x}B : Type

Γ `θ b a : {a/x}B
TApp

Γ, x :θ A `θ b : B
Γ `L (x :A)→ B : Type

Γ `θ λx .a : (x :A)→ B
TLam

Γ, f :P (x :A)→ B , x :P A `P b : B
Γ `L (x :A)→ B : Type

Γ `P rec f x .a : (x :A)→ B
TRec

Γ, x :L Nat, f :L (y :Nat)→ (z :Suc y = x)→ B `L b : B
Γ `L (x :Nat)→ B : Type

Γ `L ind f x .b : (x :Nat)→ B
TInd

Γ `θ1 a : A Γ `L A : Type
Γ `θ2 b : B Γ `L B : Type

Γ `L a = b : Type
TEq

Γ `L b : b1 = b2

Γ `θ a : {b1/x}A
Γ `L {b2/x}A : Type

Γ `θ a : {b2/x}A
TConv

a ;∗
p c b ;∗

p c
Γ `L (a = b) : Type

Γ `L join : a = b
TJoin

Figure 7.3: Typing: variables, functions, and equations

142

Γ `θ a : A

` Γ

Γ `L 0 : Nat
TZero

Γ `θ a : Nat

Γ `θ Suc a : Nat
TSuc

Γ `θ a : Nat
Γ, z :L 0 = a `θ b1 : B
Γ, x :θ Nat, z :L (Suc x) = a `θ b2 : B
Γ `L B : Type

Γ `θ ncasez a of {0⇒ b1; S x ⇒ b2} : B
TNCase

Γ `L A : Type Mobile (A)
Γ, x :L A `L B : Type

Γ `L Σx :A.B : Type
TSigma

Γ `L Σx :A.B : Type
Γ `θ a : A
Γ `θ b : {a/x}B
Γ `L {a/x}B : Type

Γ `θ 〈a, b〉 : Σx :A.B
TPair

Γ `θ a : Σx :A1.A2 Γ `L B : Type
Γ, x :θ A1, y :θ A2, z :L 〈x , y〉 = a `θ b : B

Γ `θ pcasez a of {(x , y)⇒ b} : B
TPCase

Figure 7.4: Typing: datatypes

Γ `θ a : A

Γ `L a : A

Γ `P a : A
TSub

Γ `L A : Type

Γ `L A@θ : Type
TAt

Γ `θ v : A@θ′

Γ `θ′ v : A
TUnboxVal

Γ `θ a : A
Γ `L A : Type

Γ `P a : A@θ
TBoxP

Γ `L a : A
Γ `L A : Type

Γ `L a : A@θ
TBoxL

Γ `P v : A
Γ `L A : Type

Γ `L v : A@P
TBoxLV

Figure 7.5: Typing: subsumption and internalized consistency classification

143

Mobile (A)

Mobile (Nat)
MobileNat

Mobile (A) Mobile (B)

Mobile (Σx :A.B)
MobileSigma

Mobile (a = b)
MobileEq

Mobile (A@θ)
MobileAt

Γ `θ a : A

Γ `P v : A Γ `L A : Type Mobile (A)

Γ `L v : A
TMobileVal

Γ `θ a : (Σx :A1.A2)@θ′ Γ `L B : Type
Γ, x :θ

′
A1, y :θ

′
A2, z :L 〈x , y〉 = a `θ b : B

Γ `θ pcasez a of {(x , y)⇒ b} : B
TPCase’

Figure 7.6: Typing: Mobile types and cross-fragment case expressions

The expressions are also mostly familiar, except there are now three different forms
of function definitions: nonrecursive functions λx .a, generally recursive functions
rec f x .a, and structurally recursive functions ind f x .a. The remaining forms for
expressions introduce and eliminate equations, pairs, and natural numbers.

Since this chapter is only concerned with type safety and logical soundness, not the
design of the typechecking algorithm, we do not include any annotations in this
language. In other words, this syntax describes erased expressions.

The typing rules for functions and equations are shown in figure 7.3. The typing
judgement has the form Γ `θ a : A, where contexts are lists of assumptions about the
types of variables.

Γ ::= · | Γ, x :θ A

Each variable in the context is tagged with θ to indicate its fragment, and this tag is
checked in the TVar typing rule. (The assumption Γ `L A : Type is redundant, since
it is implied by ` Γ, but it simplied the metatheory slightly).

A type is well-kinded if Γ `L A : Type (the consistency classifier is only interesting
when checking terms; types are always checked at L). The kinding rule for arrows
(TArr) is mostly the usual rule for dependent rule for dependent arrow types. How-
ever, it has an extra premise Mobile (A), which we will discuss in Section 7.3.4.

Next, the typing rules for function definitions track whether the function can diverge
or not. Non-recursive lambda-expressions (TLam) do not themselves introduce non-
termination, they will terminate as long as the function body only calls terminating

144

functions, so the rules works parametrically over any θ. Generally recursive functions
(TRec) may diverge, so the rule specifies P. Finally, the rule TInd is a simplified
version of the rule for structural recursion in full Zombie (which we discussed in Sec-
tion 7.2.1). It is restricted to only define recursion on natural numbers, and instead
of a general structural subterm ordering, the recursive call must be on exactly the
predecessor of x. As we discussed above this simplified version captures most of the
expressivity of the full rule.

The next few rules support equational reasoning. The kinding rule for equations
(TEq) merely requires that the two expressions check at some θ1 and θ2. So just as
in Chapter 3, the introduction rule TJoin can prove two expressions a and b equal
even if they diverge, as long as they have some common reduct c.

In this small calculus we add a restriction that A and B in TEq have to be types, i.e.
equations can only be between terms. This rules out equations between types, such
as ((λx .x → x) Nat) = (Nat → Nat). Similarly there are restrictions on the kinding
rule for arrows (the domain and range has to be types, as opposed to kinds), and on
the rules for case-expressions (they can produce terms but not types), which means
that there are no interesting type-level equations to prove. Full Zombie lifts these
restrictions using a predicative hierachy Type` to allow type-level computation.

Finally, the elimination rule for equations, TConv, shows the payoff for tracking
termination. Whereas the calculus in Chapter 3 required the erased proof b to be a
value, in this version of the rule it is allowed to be any expression as long as it checks
at L.

Figure 7.4 shows the rules for natural numbers and pairs. Except the premise
Mobile (A) in the kinding rule for pair types, there are no surprises: the rules are
exactly the general datatype rules from Chapter 3, specialized to these two types. As
before, the case-rules bind an extra equation z in each branch.

7.3.1 Operational semantics

The operational semantics are almost identical to the semantics for the core language
in Chapter 3 (Figure 3.4), so we do not explicitly show them here. The only new
thing we need to discuss is how the to reduce ind-functions.

The recursive variable f in the rule TInd has a different type than the entire function
(it takes an extra proof that the argument is getting smaller), so unlike the rule for rec-
functions we cannot simply substitute the function definition into the body. Instead
we substitute the function λy .λz .(ind f x .a) y , which takes an extra argument z (the

145

ordering proof), and then discards it:

v ;p v ′ a ;p a ′

(ind f x .a) v ;p {v ′/x}{λy .λz .(ind f x .a ′) y/f }a ′
PInd

7.3.2 Subsumption

The interesting part of termination-tracking in Zombie is that a single program can
mix logical and programmatic expressions.

First, every logical expression can be safely used programmatically. We reflect this
fact into the type system by the rule TSub (in Figure 7.5), which says that if a term
a type checks logically, then it also checks programmatically. For example, a logical
term can always be supplied to a function expecting a programmatic argument. This
rule is useful to avoid code duplication. A function defined in the logical fragment
can be used without penalty in the programmatic fragment.

7.3.3 Internalized termination classifier

To provide a general mechanism for logical expressions to appear in programs and
programmatic values to appear in proofs, we introduce a type that internalizes the
typing judgement, written A@θ. Nonterminating programs can take logical proofs
as preconditions (with functions of type (x : A@L) → B), return them as postcondi-
tions (with functions of type (x : A) → (B@L)), and store them in data structures
(with pairs of type Σx : A.(B@L)). At the same time, logical lemmas can use @ to
manipulate values from the programmatic fragment.

Intuitively, an expression a has type A@θ if it can be given the type A in the θ
fragment. If the expression is a value, this is an exact equivalence:

Γ `θ1 v : A@θ2 iff Γ `θ2 v : A

For non-values we need to be slightly more careful, in order to maintain the prop-
erty that any expression that checks at L normalizes. To ensure this we add value
restrictions to some of the rules.

The introduction and elimination rules are shown in Figure 7.5. When introducing an
@-type, the programmatic fragment can internalize any typing judgement (TBoxP),
but in the logical fragment (TBoxL and TBoxLV) we sometimes need a restriction
to ensure termination. Therefore, rule TBoxLV only applies when the subject of
the typing rule is a value. (The rule TBoxL can introduce A@θ for any θ since
logical terms are also programmatic.) Similarly, we can eliminate boxes freely if the
expression is known to terminate (UnboxL) or if we are in the P fragment (UnboxP),

146

but producing an expression in L from one in P is only allowed when the subject is a
value (UnboxVal).

For example, a recursive function f can require an argument to be a proof by marking
it @L, forcing that argument to be checked in fragment L.

Γ `P f : A@L→ B
Γ `L a : A

Γ `P a : A@L
TBoxP

Γ `P f a : B
TApp

In the body of f the function argument is a variable (hence a syntactic value), so the
rule UnboxVal applies and it can be used freely in the L fragment.

Similarly, a logical lemma g can be applied to a programmatic value by marking it
@P:

Γ `L g : A@P→ B
Γ `P v : A

Γ `L v : A@P
TBoxLV

Γ `L g v : B
TApp

Of course, g can only be defined in the logical fragment if it is careful to not use its
argument in unsafe ways. For example, using TConv we can prove a lemma of type

(n: Nat) → (f: (Nat → Nat)@P) → (f (plus n 0) = f n)

because reasoning about f does not require calling f at runtime.

Both introduction and elimination of @ is unmarked in the erased syntax, so the
reduction behavior of an expression is unaffected by whether the type system deems
it to be provably terminating or not.

7.3.4 Mobile types

The consistency classifier tracks which expressions are known to come from a nor-
malizing language. For some types of values, however, the rules described so far can
be unnecessarily conservative. For example, while a programmatic expression of type
Nat may diverge, a programmatic value of that type is just a number, so we can treat
it as if it were logical. On the other hand, we can not treat a programmatic function
value as logical, since it might cause non-termination when applied.

The rule TMobileVal (Figure 7.6) allows values to be moved from the programmatic
to the logical fragment. It relies on an auxiliary judgement Mobile (A). Intuitively, a
type is mobile if the same set of values inhabit the type when θ = L and when θ = P.
In particular, these types do not include functions (though any type may be made
mobile by tagging its fragment with @).

147

Concretely, the natural number type Nat is mobile, as is the primitive equality type
(which is inhabited by the single value join). Any @-type is mobile, since it fixes a
particular θ independent of the one on the typing judgement. Pair types are mobile
if their component types are.

Even if a pair type is not mobile, it is always safe to do one level of pattern matching
on one of its values, since such a value must start with the pair constructor. We reflect
that in the rule TPCase’, which generalizes TPCase from the previous section. This
rule allows a scrutinee that type checks in one fragment θ′ to be eliminated in another
fragment θ. This lets the logical language reason by case analysis on programmatic
values.

The mobile rule lets the programmer write simpler types, because mobile types never
need to be tagged with logical classifiers. For example, without loss of generality
we can give a function the type (a = b) → B instead of ((a = b)@L) → B , since
when needed, the body of the function can treat the argument as logical through
TMobileVal. Similarly, multiple @’s have no effect beyond the innermost @ in a
type. Values of type A@P@L@P@L@P can be used as if they had type A@P.

In fact, the arguments to functions must always have mobile types. This restriction,
enforced by rule TArr, means that higher-order functions must use @-types to specify
which fragment their arguments belong to. For example, the type (Nat→ Nat)→ A
is not well-formed, so the programmer must choose either ((Nat → Nat)@L) → A or
((Nat→ Nat)@P)→ A.

The reason that function arguments must be mobile is to account for contravariance.
Through subsumption, we can introduce a function in the logical fragment and use
it in the programmatic:

Γ, x :L A `L b : B

Γ `L (λx .b) : (x :A)→ B
TLam

Γ `P (λx .b) : (x :A)→ B
TSub

Here, the definition of b assumed x was logical, yet when the function is called it can
be given a programmatic argument. For this derivation to be sound, we need to know
that A means the same thing in the two fragments, which is exactly what Mobile (A)
checks.

We also enforce the similar-looking condition that the first component of a Σ-type
must be mobile. We do not know an example where this restriction is necessary for
type safety, but it was convenient in the proofs, because this way the statements
and proofs of lemmas about Σx : A.B look similar to corresponding lemmas about
(x : A) → B . More importantly, if we later wanted to extend the language to allow
non-logical types (Section 7.7.2) this restriction would probably be necessary because
A occurs contravariantly in the premise to the kinding rule TSigma. In any case,

148

in full Zombie datatype definitions have a similar restriction for convenience reasons
(Section 7.3.6), so the core calculus matches what the implementation is doing.

7.3.5 Subtyping

A <: A′

θ ≤ θ′ A <: A′

A@θ <: A′@θ′
SubAt

A <: A′

A <: A′@P
SubAtP

A <: A′

A@L <: A′
SubAtL

Mobile (A)

A <: A@θ
SubMobile1

Mobile (A)

A@θ <: A
SubMobile2

A′ <: A B <: B ′

(x :A)→ B <: (x :A′)→ B ′
SubArr

B <: B ′

Σx :A.B <: Σx :A.B
SubSigma

(a = b) <: (a = b)
SubEq

Nat <: Nat
SubNat

A <:L A′

A <: A′

A <:L A′
SubLSubtype

A <:L A′

A <:L A′@L
SubLAtL

A′ <: A
B <:L B ′

(x :A)→ B <:L (x :A′)→ B ′
SubLArr

Γ `θ a : A

Γ `θ a : A
A <: A′ Γ `L A′ : Type

Γ `θ a : A′
TSubtype

Γ `L a : A
A <:L A′ Γ `L A′ : Type

Γ `L a : A′
TSubtypeL

Figure 7.7: Typing: Subtyping

The subsumption rule TSub means that typing judgements at L are strictly better
than at P. Further, the rules for @-types and mobile types mean that certain types
are better than others. For example, any expression that checks at A@L also checks
at A@P:

Γ `L a : A@L
Γ `L a : A

TUnboxL

Γ `L a : A@P
TBoxL

Γ `P a : A@L
Γ `P a : A

TUnboxP

Γ `P a : A@P
TBoxP

However, there are limits to what subsumption and unboxing can do. Given a function

149

a : (x :A)→ (B@L), with the rules presented so far there is no way to give a the type
(x :A)→ (B@P). The best we can do is to η-expand the function definition:

Γ, x :L A `θ a : (x :A)→ (B@L) Γ, x :L A `θ x : A

Γ, x :L A `θ a x : B@L
TApp

Γ, x :L A `θ a x : B@P
Unbox+Box

Γ `θ λx .a x : (x :A)→ (B@P)
TLam

Since the Zombie propositional equality does not include η-laws, modifying a program
in this way could in turn require further adjustments elsewhere to make the types
continue to line up. This is usually not a problem in practice, but it suggests that
the type system is being unnecessarily fussy, by forcing the programmer to write one
expression instead of different one with exactly the same operational behavior.

We remedy this situation by adding a subtyping relation to the language. The rule
TSubtype (in Figure 7.7) allows an expression a to be used at any “worse” type.
It relies on the auxilliary judgement A <: A′ which defines when a type is “better”
than another type. The cases are mostly common-sense: A@L is better than A@P
and better than A; A is better than A@P; adding @-types to a mobile type A has no
effect; and the subtyping rules extend underneath arrows and Σs.

In fact, even with this subtyping relation in place, the type system still makes some
unneccessary distinctions. In particular, while it is possible to go from Γ `L a : A
to Γ `L a : A@L (by TBoxL), there is no rule that goes from Γ `L a : A → B
to Γ `L a : A → (B@L). These two function types are equivalent, but only when
checking a typing judgement at L. We can reflect this fact by adding a separate
subtyping rule, TSubtypeL, which only applies in L contexts, and uses a more
generous subtyping judegment A <:L A′.

These issues are mostly theoretical. The subtype judgements are valid semantically,
and showing them gives a better understanding of what the @-types mean. But
usually the programmer can avoid the need for them with rather small changes to the
program text, e.g. η-expanding functions or adding an extra let-expression in order
to make something a syntactic value. In fact, the Zombie implementation does not
implement subtyping at all, and this has generally not been an issue when developing
the example programs. (With one exception: as we describe in Section 7.7.3, the lack
of something like the TSubMobile1/TSubMobile2 rules is quite annoying.)

7.3.6 Full Zombie: Polymorphism and Datatypes

The core calculus includes the crucial rules dealing with termination-checking, in the
context of a simpler language than full Zombie. Most of the additional features of
Zombie do not interact with the termination-checking rules. The main place where

150

designing the Zombie type system required additional thought was deciding how the
Mobile judgement should interact with the rest of the typing rules.

Polymorphism Unlike this simplified core calculus, full Zombie allows polymorphic
functions. In a dependent calculus like this, polymorphism is particularly easy to add.
One generalizes the sort Type to a hierarchy Type0 : Type1 : Type2 . . . (types, kinds,
superkinds, . . .), and generalizes the arrow rule to allow arrows from kinds as well as
from types:

Γ `L A : Type` Mobile (A)
Γ, x :L A `L B : Type`′

Γ `L (x :A)→ B : Typemax(`,`′)

So what about the mobile judgement? All the kinding rules in Zombie work at L; the
only way to derive Γ `P A : Type` is to check A at L and then use subsumption. So
the sort Type` classifies exactly the same values in L and in P. Accordingly, the sorts
are considered mobile: Mobile(Type`).

On the other hand, type variables (variables x : Type in the context) may eventually
be instantiated to e.g. function types. Then they will classify a different set of values
in L (terminating functions) and in P (any functions). So they are not considered
mobile. Indeed, if they were considered mobile, we could define an obviously unsound
function that coerces any value from P to L:

log bogus : (a : Type) → (a@prog) → (a@log)

bogus a x = x

(Here the body of the function would be checked by TUnboxVal, TMobileVal,
TBoxL.)

The face that type variables are not mobile is a little awkward, because of the require-
ment that domains of arrow types must be mobile. So in the type of a polymorphic
function like map, although the sort Type does not need an @-marker, the kinding
rule forces us to mark not just function arguments, but also type variable arguments,
with an explicit fragment:

map : [a b : Type] → (f : ((x:a@log) → b)@log) →
(xs : List a) → List b

In practice, it does not matter very much that we picked a@log instead a@prog. If
we want, we can apply map to a list of programmatic values by giving it an argu-
ment of type List (T@prog) and instantiating a with T@prog. Then the function
being mapped should have type (T@prog@log) → b, which is essentially equivalent
to (T@prog) → b.

In the Zombie implementation it is possible to hide some of the clutter by using a
declaration usually log or usually prog which causes the implementation to insert

151

a tag like @L whenever a non-mobile type occurs in a position where it is required to
be mobile. For example, the type of composeP given in Section 7.2.2 is only valid if
one implicitly inserts @prog for the function domains.

Datatypes The only datatypes in this small core calculus are natural numbers
and dependent pairs. In prior work [31] we additionally treated sum types and iso-
recursive types, the idea being that all inductive datatypes can be encoded using those
features. In full Zombie, we instead treat datatypes as a primitive feature. Again, we
should decide when a datatype is considered mobile. There are two options.

We could follow the style of Σ-types above, and compute whether a type is mobile or
not based on whether its type arguments are. So for example, given a type definition

data List (a : Type) : Type where

Nil

Cons of (x : a) (xs : List a)

the type List T would be considered mobile exactly when T was mobile. Just like
the second component of a Σ-type does not have to be mobile, there would be no
requirement to tag the argument x to Cos with as P or L. On the other hand, this
choice means that List a, where a is a type variable, would not be mobile. So the
type of map given above would not we well-formed, and the argument would need to
be marked e.g. @log.

Instead, we choose to make all datatypes mobile, by requiring the arguments to data
constructors to be mobile (like the first components of Σ-types above). So in Zombie,
in order to make the datatype declaration well-formed we need to tag the constructor
argument x@log:

data List (a : Type) : Type where

Nil

Cons of (x : a@log) (xs : List a)

In return, the type List a is now mobile. This decision is mostly a matter of taste,
but we found that on balance this style of declaration creates less clutter in the types.
The difference would be more striking if, in future work, we allowed non-logical types
(Section 7.7.2 below).

Type-level computation Finally, full Zombie includes type level computation.
This again highlights a limitation in the Mobile (A) judgement. In Zombie this is
defined completely syntactically, just by examining the form of A. In the examples
that can be expressed in the limited core calculus that works very well. Once one
adds type definitions, however, it can start to feel restrictive.

152

For instance, consider defining a less-than relation on natural numbers, ltT m n. We
could do this in at least two ways. Either as an inductive datatype (similar to the
lt type in the Coq standard library), or as a type definition referring to a boolean
comparison function:

ltT : Nat → Nat → Type

ltT = λ m n . (lt m n = True)

With the latter definition, ltT n m does not count as a mobile type, so it needs to
be annotated with @s when used as a function argument type, even though it would
be mobile if we inlined the definition. In other words, the Mobile (A) judgement does
not respect β-equivalence.

One way to remedy this (in future work) would be to not check mobility syntactically,
but instead track it in the type system. Maybe we should distinguish between sorts
Type and MobileType? This would also provide a way to write polymorphic functions
quantifying over mobile types only, and thereby not have to specify @θ on type
variables.

7.3.7 Previous publications

The calculus we described in this section is a small variation on another one, which
was called λθ in Casinghino et al. [31] and LFθ in Casinghino’s thesis [30]. Compared
to that system, the version in this chapter has been further simplified by removing
some features which are not needed to illustrate the issues that we wanted to highlight.
The changes are as follows:

• This version only has Σ-types, but omits sum- and recursive types. Without
recursive types there is no need for type variables, so the well-formedness judge-
ment ` Γ only allows term variables.

• We add the premises Γ `L A : Type and Γ `L B : Type to the rule TEq which
forbids equations between types (in any case without type-level functions there
are not many interesting type-equalities). Without equations between types we
do not need injectivity rules for type constructors (as in Section 3.9.4) for type
safety.

• Like in the actual Zombie implementations, kinding assumptions have the form
Γ `L A : Type instead of Γ `θ A : Type. (Without type-level computation this
makes no difference.)

• We added a subtyping relation to the language.

Figure 7.8 shows schematically how the two variations of this calculus relate to the
full set of features in Zombie. The calculus includes most of the novel typing rules

153

Figure 7.8: The previously published version of the calculus (dashed line) and the
version in this chapter (solid line).

in Zombie (but not irrelevance), while it omits standard features which make the
proof difficult. The biggest difference between the previous version and the one in
this chapter is datatypes: Σ-, sum-, and recursive types together can encode general
datatypes, while in this chapter we only show how to handle Σ-types.

7.4 Core calculus: Nontermination as an effect

The Zombie typing rules, and the smaller calculus in the previous subsection, were
inspired by constructive versions of modal logic, which reason about statements whose
truth varies in different “possible worlds”.16 In our case the two possible worlds are
L and P. One could consider Zombie as two separate type systems, which happen
to share the same program syntax, have mostly the same typing rules, and provide
features for interoperability.

However, there is another way to think about nontermination. In that conception,
there is a single language, and divergence is considered as an effect that can happen
as a program executes, similar to raising an exception or printing output. This view
is implicit in the long line of work, e.g. by Capretta [28], which treats nontermination
in dependently typed languages as a monad.

If we think of nontermination as an effect, then the most natural way to formalize
it is as a type-and-effect system [57]. By now the programming language community
has arrived at a fairly standardized way to formulate effect systems for functional
languages, parameterized over some abstract lattice of effects. In this section of the
chapter, we instantiate this general approach in a small dependently typed calculus
which tracks nontermination.

16Modal logic has previously been used to design type systems for distributed computation [69, 94].
In particular Zombie was inspired by ML5 [94], in which the typing judgement is indexed by what
“world” (computer in a distributed system) a program is running on, and which includes a type
A@θ internalizing that judgement.

154

T ::=Nat | (x :T)
θ→ T ′ | Σx :T .T ′ | t = t ′

t ::=x | t t ′ | λx .t | 〈t , t ′〉 | pcasez t of {(x , y)⇒ t ′}
| 0 | Suc t | join | rec f x .t | ind f x .t
| ncasez t of {Z ⇒ t1; S x ⇒ t2}

u ::=x | 〈u1, u2〉 | 0 | Suc u
| λx .a | rec f x .a | ind f x .a | join | 〈v1, v2〉 | 0 | Suc v

Figure 7.9: Effect-style calculus: Types, expressions, and values

The syntax of the calculus is shown in Figure 7.9. To keep things simple, we use
separate syntactic categories for terms and types. Types include natural numbers,

dependent functions (x :T)
θ→ T ′, dependent pairs Σx :T .T ′, and equations between

terms. The difference compared to the possible-world-style calculus is that we no
longer have @-types; instead each function type is tagged with a θ which is P if
calling the function may cause nontermination.

The terms t in the system are exactly the same as the terms in the possible-world
calculus, and their operational semantics are also the same. The types we assign them
will be different, but since we are formalizing the erased version of the type system
terms do not contain type annotations.

The typing rules are shown in Figures 7.10 and 7.11. To keep the two systems
visually distinct, we write the effect-style typing judgement Γ `θ t : T , with the θ
as a subscript instead of a superscript, and the names of the effect-style typing rules
include underscores.

The general principle is that the θ in the effect-style system tracks only effects from
evaluating the particular expression in question, whereas the possible-world style
system it also tracks what would happen if a client were to call that expression (when
it is a function). We do not include an explicit subsumption rule in the type system,
but the other rules are formulated so that this is admissible:

Lemma 29 (Subsumption). If Γ `L t : T then Γ `P t : T .

All the important differences between the possible-worlds and the effects calculus can
be seen in the typing rules for variables, functions, and applications.

Variables only range over values, so referencing a variable in the context can never
cause nontermination. So T Var checks at any effect θ. This also means that there
is no need to record an effect with variables in the context, so in this system contexts
are just lists of types of variables:

Γ ::= · | Γ, x : T

155

Γ ` T

Γ ` T
Γ, x : T ` T ′

Γ ` (x :T)
θ→ T ′

k Arr

Γ ` T
Γ, x : T ` T ′

Γ ` Σx :T .T ′
k Sigma

` Γ

Γ ` Nat
k Nat

Γ `θ t : T
Γ `θ′ t ′ : T ′

Γ ` t = t ′
k Eq

Γ `θ t : T

(x : T) ∈ Γ ` Γ
Γ ` T

Γ `θ x : T
T Var

Γ `θ t : (x :T ′)
θ′→ T

Γ `θ t ′ : T ′ θ′ ≤ θ
Γ ` {t ′/x}T
Γ `θ t t ′ : {t ′/x}T

T App

Γ, x : T ′ `θ′ t : T

Γ ` (x :T ′)
θ′→ T

Γ `θ λx .t : (x :T ′)
θ′→ T

T Lam

Γ, f : (x :T ′)
P→ T , x : T ′ `P t : T

Γ ` (x :T ′)
P→ T

Γ `θ rec f x .t : (x :T ′)
P→ T

T Rec

Γ, x : Nat, f : (y :Nat)
L→ (p :x = Suc y)

L→ T `L t : T

Γ ` (x :Nat)
L→ T

Γ `θ ind f x .t : (x :Nat)
L→ T

T Ind

` Γ

Γ `θ 0 : Nat
T Zero

Γ `θ t : Nat

Γ `θ Suc t : Nat
T Suc

Γ `θ t : Nat
Γ, z : 0 = t `θ t1 : T Γ ` T
Γ, x : Nat, z : (Suc x) = t `θ t2 : T

Γ `θ ncasez t of {Z ⇒ t1; S x ⇒ t2} : T
T NCase

Γ ` Σx :T1.T2

Γ `θ t1 : T1

Γ `θ t2 : {t1/x}T2 Γ ` {t1/x}T2

Γ `θ 〈t1, t2〉 : Σx :T1.T2
T Pair

Γ `θ t : Σx :T1.T2

Γ, x : T1, y : T2, z : 〈x , y〉 = t `θ t ′ : T
Γ ` T

Γ `θ pcasez t of {(x , y)⇒ t ′} : T
T PCase

t ;∗
p t0 t ′ ;∗

p t0

Γ `P t : T Γ `P t ′ : T ′

Γ `θ join : t = t ′
T Join

Γ `θ t : {t1/x}T
Γ `L t ′ : t1 = t2

Γ ` {t2/x}T
Γ `θ t : {t2/x}T

T Conv

Figure 7.10: Effect-style kinding and typing

156

Similar reasoning holds for function definitions. A lambda-expression λx .t is already
a value, so evaluating it can never diverge and the rule T Lam can be checked at any
θ. However, the body of the function may diverge when the function is called (it has
effect θ′, which may be P), and we record this information by the θ′ in the function
type. Similar reasoning holds for generally recursive functions (T Rec), where the

function definition itself is terminating but the P in the function type (x : T ′)
P→ T

records that it is dangerous to call. Structually recursive functions (T Ind) are given

the type (x :Nat)
L→ T , with an L.

Function types are eliminated by the application rule TApp, which is the classic
type-and-effect style application rule. It combines three sources of nontermination:
the final effect has to be P if the evaluation of t or t ′ may diverge (θ), or if t may
diverge when called (θ′).

All the other rules in the system follow the corresponding rules in the possible-world-
style calculus quite closely, with the only difference being that variables in the context
are not tagged with a θ.

7.4.1 Mixing L and P expressions in a program

The possible-world system used @-types (the Box/Unbox rules) and mobile types
(the TMobileVal rule) to mix expressions with different θs. In the effect-style
calculus we have neither of these features, so the same use-cases are expressed slightly
differently.

For example, we saw in Section 7.3.3 how a possibly nonterminating function f could
require its argument to be a proof, by the type f : A@L → B . In the effect-style
system the meaning of a type is always completely specified by the classifiers on the
arrows inside it, so we instead express f ’s requirements in the type A itself. For
example, suppose f wants a logical proof that some variable x is nonzero:

Γ `P f : ((x = 0→ False)@L)→ B

In the effect-style system we write this by making f expect a terminating function:

Γ `P f : (x = 0
L→ False)

P→ T

Conversely, we saw that a logical function g can be applied to a value in P, if it has
the type g : A@P → B . In the effect style system this use-case is also supported,
because if a value is typeable at all, it is typeable at L:

Lemma 30 (Values have logical effect). If Γ `θ u : T , then Γ `L u : T .

157

So if a function t can be checked at L, and the function is logical (i.e. the latent effect
in t’s type is L), then the application to any value t u can be checked at L also.

We also saw how Zombie allows generally recursive functions to return proofs, e.g.
the function solver in Section 7.2.2. These examples also fit well into the effect-style
system. We could give the SAT-solver a type like the following:

solver : (f : Formula)
P→ Either (Σ(v:Assignment). eval f v = true)

((v:Assignment)
L→ eval f v = false)

Here the termination behaviour can be read off the classifiers on the arrows: a call to
solve might not terminate (

P→), but if it does terminate, then the function it returns

is total (
L→).

Finally, the TMobileVal rule in the possible-world-style system expresses the payoff
of CBV evaluation: no matter which fragment it came from, once you have evaluated
it a number is a number (and an equality proof is an equality proof, etc). This part
of the story works even better in the effect language. If we have

foo : (x : Nat)
P→ (2 = 2)

bar : (2 = 2)
L→ Nat

we are allowed to directly form the application bar (foo 3) (which will be given the
effect P). On the other hand, if foo was in P and we wanted to use the rule TMo-
bileVal this would have to be explicitly sequenced as let x = foo 3 in bar x in
order to create a syntactic value x.

As illustrated by the above example, we do not need to include an explicit rule for
mobile values in the effect system. In some sense this is because every type is mobile:
the meaning of function types is determined by the annotation on the arrow, rather
than by the θ on the judgement, so types in the effect system always classify the same
values in L as in P contexts.

This property seems promising if we consider (in future work) extending the system
to include polymorphism. With just the typing rules presented in this section, the
effect style system is a little more heavy on annotations than the possible-world-style
system: here every function needs to be marked with a θ, whereas in the possible-
world system, only functions with a non-mobile argument (i.e. higher-order functions)
need an @θ annotation. But in the effect system every type is mobile, so we would not
need to add annotations to type variables, and that should make types considerably
less cluttered.

158

T <: T ′

θ ≤ θ′

T ′1 <: T1 T2 <: T ′2

(x :T1)
θ→ T2 <: (x :T ′1)

θ′→ T ′2

Sub Arr
T2 <: T ′2

Σx :T1.T2 <: Σx :T1.T ′2
Sub Sigma

Nat <: Nat
Sub Nat

(t1 = t2) <: (t1 = t2)
Sub Eq

Γ `θ t : T
Γ `θ t : T
T <: T ′ Γ ` T ′

Γ `θ t : T ′
T Subtype

Figure 7.11: Effect-style typing: subtyping

7.4.2 Subtyping

Just like in the possible-world style system, we may wish to go further than just

subsumption. A function (x :T)
L→ T ′ is strictly better than (x :T)

P→ T ′, even when
it appears inside a larger type. In order to reflect this, we add a subtyping relation to
the language (Figure 7.11). The rule Sub Arr states that a function type is better
if it has a better θ (i.e. if θ ≤ θ′). The rules also extend the subtyping relation
underneath arrow types and Σ-types.

Compared to the subtyping relation for the possible-world language (Figure 7.7),
the effect-style subtyping relation can be simpler, because there are fewer features
(@-types, mobile types) to take into account.

7.5 Translating between the two systems

As we saw in Section 7.4.1 the ways to express certain programming idioms are quite
different in the two calculi, so it is not immediately obvious whether the two systems
are equally expressive. But they are in fact equivalent, and in a rather strong sense:
exactly the same terms are typeable in both systems (but at different types).

The statement “exactly the same” needs some qualification, because the syntax of t-
expressions and a-expressions are different; the latter also includes types and the sort
Type. So we define functions d·e and b·c which inject expressions from one language
into the expression syntax of the other. They leave terms unchanged but map all
other expressions to 0 (to pick an arbitrary term):

159

dxe = x
dλx .te = λx .dte
drec f x .te = rec f x .dte
dind f x .te = ind f x .dte
dt t ′e = dte dt ′e
. . . etc . . .

bxc = x
bλx .ac = λx .bac
brec f x .ac = rec f x .bac
bind f x .ac = ind f x .bac
ba bc = bac bbc
. . . etc . . .
bTypec = 0
b(x :A)→ Bc = 0
ba = bc = 0
bNatc = 0
bΣx :A.Bc = 0
bA@θc = 0

The formal statement then is that for any expressions a and t, bac is typeable if a is,
and dte is typeable if t is. Of course, the interesting question is how to translate a
type A into some suitable type T and vice versa, in particular how to handle arrow
types.

7.5.1 Translating from possible-world to effectful

First, consider translating possible-world style types to the effect-style system. The
meaning of an arrow type (x :A)→ B (whether it ranges over terminating or general
functions) depends on whether it occurs in an L or a P context. So the type translation
function bAcθ is parameterized by a θ, which is changed by @-types:

bNatcθ = Nat

b(x :A)→ Bcθ = (x :bAcL)
θ→ bBcθ

bΣx :A.Bcθ = Σx :bAcθ.bBcθ
bA@θ′cθ = bAcθ′
ba = bcθ = bac = bbc

It is easy to check that this translation is compatible with the mobile and subtyping
judgements:

Lemma 31. If Mobile (A), then bAcL = bAcP.

Lemma 32. If A <: B and θ1 ≤ θ2, then bAcθ1 <: bBcθ2 .

Lemma 33. If A <:L B , then bAcL <: bBcL.

Because the kinding rule for arrows (x : A) → B requires Mobile (A), by lemma 31
it does not much matter at what θ we translate the domain A. In the definition of

160

the translation function we use bAcL because it makes the statement of lemma 32
simpler—this way the lemma holds for all types, not just well-kinded ones.

We extend the translation of types to contexts, bΓc, by mapping each binding x :θ A
pointwise to x : bAcθ.

Then we prove that the translation preserves typing by induction on the Γ `θ a : A
judgement. The proof is not difficult, but the two type systems were carefully crafted
to make it go through—in particular, the proof uses subtyping in several places. Also,
in order to have suitable induction hypotheses available, we go via an intermediate,
equivalent definition of the type system which adds more kinding assumptions.

Lemma 34 (Typing rules with more kinding assumptions). For any Γ, θ, a, and A,
the typing judgement Γ `θ a : A holds iff the same typing holds in a system where
the rules TUnbox*, TConv, and TSub have been modified by adding extra kinding
assumptions as follows:

Γ `θ v : A@θ′

Γ `L A : Type

Γ `θ′ v : A
TUnboxVal’

Γ `L a : A
Γ `L A : Type ∨ A ≡ Type

Γ `P a : A
TSub’

Γ `θ1 b1 : B1 Γ `L B1 : Type
Γ `θ2 b2 : B2 Γ `L B2 : Type
Γ `L b : b1 = b2

Γ `θ a : {b1/x}A
Γ `L {b2/x}A : Type

Γ `θ a : {b2/x}A
TConv’

Theorem 35 (Translation of typing).

1. If Γ `θ a : A, then bΓc `θ bac : bAcθ
2. If Γ `θ A : Type, then bΓc ` bAcθ′ for all θ′.

3. If ` Γ, then ` bΓc.

Proof. By mutual induction on the three judgements. The two most interesting cases
are:

TSub This case illustrates why we need subtyping in the system. The given deriva-
tion looks like

Γ `L a : A
Γ `L A : Type ∨ A ≡ Type

Γ `P a : A
TSub’

For example, if the type A is a function type (x : A1) → A2, then we need to

show bΓc `P bac : (x : bA1cL)
P→ bA2cP, and the IH says bΓc `L bac : (x :

161

bA1cL)
L→ bA2cL. So just the rule T Sub is not enough; we must also change

the θs on the arrow and inside A2.

So we use subtyping (T Subtype and lemma 32). In order to apply T Subtype
we need to know bΓc ` bAcP. This follows by the mutual IH, using the extra
kinding premise from lemma 34.

TMobileVal This illustrates how the benefits of mobile types can be emulated in
the effect system. The given derivation looks like

Γ `P v : A Γ `L A : Type Mobile (A)

Γ `L v : A
TMobileVal

The IH states bΓc `P bvc : bAcP. Because v is a value we have bΓc `L bvc :
bAcP (lemma 30), and then because A is mobile we have bΓc `L bvc : bAcL
(lemma 31).

7.5.2 Translating from effectful to possible-world

To translate types in the other direction, we use the following translation function
dT e. The interesting case is the one for function types: in order to encode the
termination classification θ on the function we wrap the type in an @θ.

dNate = Nat

d(x :T1)
θ→ T2e = ((x :dT1e)→ dT2e)@θ

dΣx :T1.T2e = Σx :dT1e.dT2e
dt1 = t2e = dt1e = dt2e

We translate contexts, dΓe, by mapping each binding x : T pointwise to x :L dT e.

Again, it is easy to verify that the type translation is compatible with the mobile and
subtyping judgements:

Lemma 36. For any T , we have Mobile (dT e).

Lemma 37. For any T1 and T2, if T1 <: T2 then dT1e <: dT2e.

The translation of arrow types nicely illustrates how @θ-types in the “possible world”
system work. The @θ-tag does not affect dT1e or dT2e (because these are mobile
types), it but controls the interpretation on the function arrow. By contrast, if we
were translating the effectful calculus into a type system based around monads, the
monadic constructor would be applied to the codomain of the function, rather than
to the entire function type.

Sometimes the type translation will create a type which contains “too many” @-tags,

162

so we need to know that one can modify a typing derivation to use different, but
equivalent, type assumptions. Note that the type context is contravariant:

Lemma 38 (Strengthening types in the context). Suppose that Γ `θ x : A implies
Γ `θ′ x : A′ for all Γ. Then Γ1, x :θ

′
A′,Γ2 `θ1 b : B implies Γ1, x :θ A,Γ2 `θ1 b : B .

Theorem 39 (Translation of typing).

1. If Γ `θ t : T , then dΓe `θ dte : dT e.

2. If Γ ` T , then dΓe `L dT e : Type.

3. If ` Γ, then ` dΓe.

Proof. Mutual induction on the judgements. The most interesting case is:

TInd This is the case which motivates including the A <:L A′ relation. The given
typing derivation looks like

Γ, x : Nat, f : (y :Nat)
L→ (p :x = Suc y)

L→ T `L t : T

Γ ` (x :Nat)
L→ T

Γ `θ ind f x .t : (x :Nat)
L→ T

T Ind

The induction hypothesis for the first premise gives

dΓe, x :L Nat, f :L ((y :Nat)→ ((p :y = Suc x)→ dT ′e)@L)@L `L dte : dT e

whereas in order order to apply TInd we need

dΓe, x :L Nat, f :L (y :Nat)→ (p :y = Suc x)→ dT ′e `L dte : dT e.

So we need to know that (y :Nat)→ (p :y = Suc x)→ dT ′e is a better type than
((y : Nat) → ((p : y = Suc x) → dT ′e)@L)@L in order to apply strengthening
(lemma 38). This is not true in general, but it holds here because the binding
for f is tagged as L. So we use the rule TSubtypeL.

7.6 Normalization

To make sure that we defined the system correctly, we prove that every closed expres-
sion that checks at L terminates. By the translation theorems in the previous section,
it equivalent to prove this for either the “possible world” calculus or the effect-style
one. We choose the effect-style system, because the proofs are easier that way.

163

JNatK = {u | u is of the form Sucn 0}

J(x :T1)
L→ T2K = {u | fv u = ∅ and ∀u1. if u1 ∈ JT1K then (u u1) ∈ CJ{u1/x}T ′K}

J(x :T)
P→ T ′K = {u | fv u = ∅}

JΣx :T1.T2K = {〈u1, u2〉 | fv 〈u1, u2〉 = ∅ and u1 ∈ JT1K and u2 ∈ J{u1/x}T2K}
Jt1 = t2K = {join | t1 . t2}

CJT K = {t | ∃u.t ;∗ u ∈ JT K}

Figure 7.12: Type interpretation

We use the standard proof method, logical relations, which was first introduced by
Tait [134] to prove strong normalization for Gödel’s System T (i.e. the simply-typed
lambda calculus extended with recursion over natural numbers). The crux of this
method is to define a “type interpretation”: for each type T we define a set of terms
JT K which can be used at that type without causing divergence. The main theorem
then states that the interpretation is “sound”, i.e. that any well-typed term is a
member of its type’s interpretation.

The proof method is well known (see e.g. Girard’s textbook [60]). We adapt it to
our language in two ways. First, instead of proving strong normalization (i.e. that
any order of reduction terminates) we only prove that closed terms terminate under
CBV-order. This simplifies the proof because one only needs to consider values, not
open “neutral” expressions. Proving CBV-normalization is enough to establish type
safety and logical consistency, and in the full Zombie language open expressions may
in any case diverge (because of irrelevant type casts, Section 3.6). Accordingly, the
sets JT K in our definition (Figure 7.12) contain only values. We mutually define the
set CJT K as the set of all expressions that evaluate to values in JT K.

Second, our calculus differs from System T because it includes dependent types and
propositional equality. So we need to pick an interpretation for the equality type.
Just as we did in the type safety proof in Chapter 3, we interpret equations by
joinability under parallel reduction: the set Jt1 = t2K contains the single value join if
t1 . t2, and is empty otherwise. The interpretations for arrow- and Σ-types also differ
from the simply-typed system because the codomain type is closed by a substitution,
{u1/x}T2.

Apart from these two points, this is a standard logical relation for normalizations.
The interpretation function JT K is defined by recursion on the depth of the type T ,
where any terms occurring inside the type are considered to have depth zero. So
substituting a term into a type does not change the depth of the type—this is one

164

way in which having syntactically separate terms and types is more convenient for
the proof than having collapsed syntax.

The soundness theorem relies on a few key lemmas. First, we need the same facts
about joinability as for the type safety proof, as well a lemma stating that joinability
of natural number values coincides with syntactic equality.

Lemma 40 (Properties of .).

1. . is an equivalence relation.

2. If t1 ;cbv t2, then t1 . t2.

3. If t1 . t2 then {t1/x}t . {t2/x}t .

4. If t1 . t2 and {t1/x}t . {t1/x}t ′, then {t2/x}t . {t2/x}t ′.

Lemma 41 (Joinable natural number constants are equal). If u1 . u2 and both u1

and u2 are of the form Sucn 0, then u1 = u2.

Then we need some lemmas about the type interpretation.

Lemma 42 (Type interpretation respects joinability). If t . t ′ then J{t/x}T K =
J{t ′/x}T K.

Proof. Induction on T . The only interesting case is for equality types, which uses
lemma 40 part (4).

Lemma 43 (Type interpretation respects subtyping). If T <: T ′, then JT K ⊆ JT ′K.

Finally, although we are ultimately only interested in closed expressions, for the
induction to go through we need to generalize the soundness theorem to also talk
about open expressions. So the theorem is stated in terms of multi-substitutions ρ,
and we define the judgement Γ |= ρ saying that ρ maps every variable in the context
Γ to a value in the appropriate interpretation:

· |= ∅
ENil

Γ |= ρ u ∈ JT K
Γ, x : T |= ρ[x 7→ u]

ECons

We maintain the invariant that all the values occurring in the above definitions are
closed:

• If u ∈ JT K then fv u = ∅.

• If (x : T) ∈ Γ and Γ |= ρ then fv (ρ x) = ∅.

• If Γ `θ t : T and Γ |= ρ then fv (ρ t) = ∅.

This is to make it easy to manipulate expressions involving substitutions. For example
we always have ρ ({t1/x}t2) = {ρ t1/x}ρ t2, because x is not free in ρ.

165

We can now prove soundness. Normalization and logical consistency are immediate
corollaries.

Theorem 44 (Soundness). If Γ `L t : T and Γ |= ρ, then ρ t ∈ CJρT K.

Proof. Induction on Γ `θ t : T . The two most interesting cases are:

TApp This case illustrates the extra complication that come from working with a
dependent language instead of a simply-typed one.

We are given Γ `L t1 t2 : {t2/x}T . From the IHs we know ρ t1 ;∗ u1 ∈ Jρ (x :

T ′)
L→ T K and ρ t2 ;∗ u2 ∈ JρT ′K. So by the definition for Jρ (x :T ′)

L→ T K we
know that t1 t2 ;∗ u1 u2 ;∗ u ∈ Jρ {u2/x}T K.

But we actually need to show u ∈ Jρ {t2/x}T K. At this point, note that
ρ {t2/x}T = {ρ t2/x}ρT and ρ {u2/x}T = {u2/x}ρT . We know ρ t2 ;∗ u2,
so by lemma 40 we have ρ t2 . u2, and hence by lemma 42 J{ρ t2/x}ρT K =
J{u2/x}ρT K.

TInd This is Tait’s trick: we use an inner induction to handle the natural number
recursor. Because of the way we formulated the rule TInd using type-based
termination, this involves reasoning about equations.

We are given Γ `θ ind f x .t : (x : Nat)
L→ T , and we need to show that

(ind f x .ρ t) u ∈ CJ{u/x}T K for any u ∈ JNatK. So consider such a u; by the
definition of JNatK we know u = Sucn 0 for some n. We now show

∀n.u = Sucn 0 =⇒ (ind f x .ρ t) u ∈ CJ{u/x}ρT K

by an inner induction on n. The inductive case and the base case are both quite
similar. The reduction rule for ind states

(ind f x .ρ t) u ; {u/x}{λy .λz .(ind f x .ρ t) y/f }ρ t
≡ ρ[x 7→ u][f 7→ λy .λz .(ind f x .ρ t) y] t .

So by the IH for t it suffices to show that

Γ, x : Nat, f : (y :Nat)
L→ (p :x = Suc y)

L→ T |= ρ[x 7→ u][f 7→ λy .λz .(ind f x .ρ t) y],

which amounts to proving

λy .λz .(ind f x .ρ t) y ∈ J(y :Nat)
L→ (p :u = Suc y)

L→ {y/x}ρT K

which in turn is equivalent to

∀u1 ∈ JNatK.∀u2 ∈ Ju = Suc u1K.(ind f x .ρ t) u1 ∈ CJ{u1/x}ρT K.

166

Now, from the assumption u2 ∈ Ju = Suc u1K and lemma 41 we know that
u = Suc u1. So in the base case of the inner induction (when u = 0) the
implication is vacuously true. And in the step case, when u = Sucn

′+1 0, we
know that u1 = Sucn

′
0, so we apply the inner IH.

Corollary 45 (Normalization). If · `L t : T , then there exists some u such that
ρ t ;∗

c u.

Proof. Instantiate the soundness theorem with ρ := ∅.

Corollary 46 (Consistency). There is no term t such that · `L t : Suc 0 = 0.

Proof. Suppose there was such a t. From the soundness theorem instantiated with
ρ := ∅ we know that JSuc 0 = 0K is nonempty, so Suc 0 . 0. But then by lemma 41
we would have Suc 0 = 0, which is absurd.

7.6.1 Normalization for the possible-world style calculus

Thanks to the translation in Section 7.5, Theorem 44 also implies that the “possible
world”-style calculus enjoys normalization and consistency. Previously, we published
a direct proof of normalization for a very close variation of that calculus [31]. However,
the proof in this chapter, which goes via the effect style calculus, is simpler and more
flexible.

The key point is that in the proof of Theorem 44 above, we only had to consider
cases where the typing derivation checks at L. In every case where we have to prove
an informative statement, the interesting premises of the rule also check at L. For
example, the case for T Rec is completely trivial: because the label on the arrow is
P we only need show that ρ (rec f x .t) is a closed value.

In the “possible world” system, we could hope to proceed similarly, by defining a type
interpretation JAK, and proving the theorem

If Γ `L a : A and Γ |= ρ, then ρ a ;∗ v ∈ JρAK.

However, if we try to prove this by induction on the typing derivation, we get stuck in
the rules TUnboxVal and TMobileVal. For instance, one can use TUnboxVal
to unpack a logical theorem from a programmatic value:

Γ `P v : A@L

Γ `L v : A
TUnboxVal

With the above theorem statement these is no way to make progress here; we need
to show v ∈ JAK but the premise to the rule does not give any induction hypothesis,
because it checks at P.

167

The proof for the “possible world” system [30, 31] instead defines two different type
interpretations JAKL and JAKP, which coincide for mobile types A. The theorem
statement for typing judgements in P is a partial correctness statement: if ρ a ;∗ v
then v ∈ JAKP.

Unfortunately, this approach means that we need to define an interpretation which is
sound for all programs in P! Defining a sound logical relation for generally recursive
functions is already quite tricky (the reduction rule for (rec f x .b) v substitutes the
same function into the body b, so when proving soundness there is no induction
hypothesis for it). But in addition the programmatic fragment of the language should
have enough features to support ordinary functional programming, e.g. in Casinghino
et al. [31] it included general recursive µ-types. Because JAKP must account for
recursive functions and recursive types it cannot be defined by recursion on A, so
instead that work used a quite sophisticated definition with combines a step-indexed
logical relation for P with a ordinary logical relation for L.

The hybrid step-indexing idea is interesting in itself, but the proofs are more difficult
to set up than the “vanilla” logical relation above. Also, the step-indexed proof
is less easily extensible, because every new feature in the P fragment needs to be
reflected in the JAKP interpretation. There are several programming features beyond
recursive types which we considered, but did not include because handling them in
the normalization proof was too difficult (Section 7.7.2). By contrast, in the effect-
style calculus, we can add any typing rule which concludes at effect P to the system
without changing the normalization proof at all.

7.7 Limitations and future work

The termination-checking in Zombie is fairly sophisticated, and is sufficient for a wide
selection of different use-cases (Chapter 2). Even so, there are features we would like
but do not yet know how to include in a sound way.

7.7.1 Termination inversion and Fixpoint induction

First, Zombie is currently somewhat weak when it comes to external proofs about non-
terminating functions. The basic reasoning principle is Tjoin: evaluate an expression
a fixed finite number of steps according to the operational semantics. Together with
the ability to define structurally recursive functions, this is all that is needed to write
proofs about functions in L. However, for functions in P it is not always enough.

168

Termination inversion

As the simplest example, define natural number addition by general recursion and
try to prove that addition is commutative. Of course, in full Zombie it is very easy
to define addition in L by structural recursion, and then the proof of commutativity
is also easy. However, more complicated programs may not be so easy to write in a
manifestly terminating way, and we use addition as a toy example.

prog plus : Nat → Nat → Nat

rec plus n m =

case n of

Zero → m

Succ n’ → Succ (plus n’ m)

log plusAssoc : (i j k : Nat) → plus i (plus j k) = plus (plus i j) k

plusAssoc = ???

We would like to proceed by induction on i. However, the proof does not go through.
In the step case (when i = Succ i’) we need to prove

plus (Succ i’) (plus j k) = plus (plus (Succ i’) j) k

The expression (plus (Succ i’ j) reduces to Succ (plus i’ j), so we can sim-
plify the right-hand side. But then we are stuck: as we discussed in Section 4.1.4,
the left-hand side cannot CBV-reduce because (plus j k) is not a value, and sim-
ilarly the expression (plus (Succ (plus i’ j)) k) cannot CBV-reduce because
plus i’ j is not a value.

The problem is that some reasoning principles are only sound for terminating terms.
Proving equations by CBV-reduction is one of them; another is proof by induction
over the structure of values. In order to keep track of when such reasoning is valid,
many languages (e.g. Nuprl and Sep3 [74]) add a predicate Terminates a, stating that
the expression a is known to terminate. Because Zombie uses call-by-value evaluation,
where variables range over values, we do not have to add this as a primitive predicate.
We define

Terminates a := Σx :A.x = a

which can be read as “there exists some value x which is equal to a”.

However, having just a way to state that expressions terminate does not go very far,
because the language does not have enough ways to prove that something terminates.
For example, we can try to save the above theorem by weakening it to only talk about
terminating computations:17

17This idea was investigated by Nathan Collins.

169

log plusAssoc’ :

(i j k : Nat) → Terminates (plus i j) → Terminates (plus j k)

→ plus i (plus j k) = plus (plus i j) k

The adjusted statement allows the base case of the induction to go through, but not
the step case. We know that Terminates (plus (Succ i’) j), and hence (by just
substituting equals for equals) that Terminates (Succ (plus i’ j)). But the Zom-
bie language does not provide a way to go from that to Terminates (plus i’ j).

Of course, it is in fact true that plus i’ j terminates whenever Succ (plus i’ j)

does, because the data constructor Succ forces its argument. Some languages, such
as Nuprl, include a typing rule reflecting this fact. It applies to any strict evaluation
context C:

Γ `L b : Terminates C[a]

Γ `L b : Terminates a
TCtxTerm

With this rule in place, we can prove the weakened version of the theorem.

Termination case

The weakened version plusAssoc’ is a bit disappointing, because plus would be
associative even if it did sometimes diverge. For example, if plus 0 n diverges, then
both sides of the equation are diverging terms, which means that they are contextually
equivalent. So we may wish for a stronger reasoning principle which can prove the
associativity theorem outright.

In previous work we proposed termination-case [74], which expresses the idea “for
all expressions a, either a terminates or it is equivalent to the diverging expression
abort”. Formally we add a new expression abort to the syntax, with the reduction
rule C[abort] ;cbv abort for any evaluation context C. Then for all expressions a we
add the statement (Terminates a) ∨ (a = abort) as an axiom.

For example, in the base case of the proof of plusAssoc we do a case on whether
plus 0 j is a value or diverges—in either case the equation is provable by just re-
duction (join).

Another idea, which we already described in Section 4.1.4, is to make the propositional
equality coarser, by allowing unrestricted β-reduction instead of just CBV-reductions
(even though this makes it equate some terms which are not contextually equivalent).
In fact, for functions which use their arguments strictly in the function body—e.g.
plus above—termination-case is as good as unrestricted β-reduction. To see this,
consider how we could prove an equation (λx .a) b = {b/x}a. Using termination-
case, it suffices consider two cases, when b is a value and when b diverges.

• In the first case we must prove (λx .a) v = {v/x}a. This is just ordinary CBV
reduction.

170

• In the second case we must prove (λx .a) abort = {abort/x}a. In a CBV lan-
guage we always have (λx .a) abort = abort. So we are left with the proof
obligation {abort/x}a = abort which states that the function body is strict in
x. Note that, happily, this obligation will not be provable for the problem-
atic example safediv 3 0 (loop()) = div 3 0, where the two sides are not
contextually equivalent.

The termination-case rule is strictly stronger than termination-inversion. We prove
the implication (termination-case) =⇒ (termination-inversion) in two steps. First
note that the reduction rule for abort lets us prove that abort = v is a contradiction
(i.e. given a proof that abort is equal to a value we may conclude anything), using the
same trick as in Section 4.1.5. Write a function which takes ((λx.0) v) = ((λx.1) v) as
a precondition and returns False, then satisfy the precondition by changing its type
to ((λx.0) abort) = ((λx.1) abort). Then we can prove termination-inversion: given a
proof of Terminates C[a], we use termination-case to consider two cases,:

• If a is a value, we are done.

• If a is abort, then by reduction we know C[a] is equal to abort, which is a
contradiction.

Induction principles for programs

During the Trellys project we have thought a lot about reasoning about termination
because, as we have seen, in a CBV language termination assertions are needed even
for simple equational reasoning. However, in order to prove more complicated prop-
erties about nonterminating programs one needs even stronger reasoning principles:
some form of induction.

A good example which demonstrates the issue is trying to use Zombie to formalize
some calculus, say untyped λ-calculus. There are two natural ways to represent
reduction behaviour. We could use the same approach as one would in Coq or Agda,
and define a big-step evaluation relation as an inductive datatype:

data Eval (t : Tm) (t’ : Tm) : Type where

...

But since Zombie supports general recursion, we can also directly define a function
to evaluate terms to normal form:

prog eval : Tm → Tm

It is then natural to ask how these two formalizations are related. In one direction,
we can show that Eval t v implies eval t = v by an induction on the derivation
Eval t v. However, in the current version of Zombie, there is no way to show the

171

other direction. We would need to do an induction on something, but what? In the
case of plusAssoc the argument i was decreasing in every call, but the same is not
true for t.

Here is an intuition for why the theorem should be provable. If eval t = v holds,
then the call to eval t did not diverge. So it evaluated to a value by some number
of steps, and each recursive call inside it evaluated by some smaller number of steps.
So an induction “on the number of steps of evaluation” would give us an IH for
each recursive call. In the literature, there are at least two proposals for making this
intuition precise.

Fixpoint induction First, many systems inspired by Scott-style denotational se-
mantics (e.g. LCF) provide a principle called fixpoint induction, also known as Scott
induction. It is motivated by the following fact about domains:

Let D be a domain, F : D → D a continuous function, and P ⊆ D an ad-
missible predicate. Then P (fix(F)) whenever P (⊥) and ∀x ∈ D.P (x) =⇒
P (Fx).

In the most common case the fixpoint is defining a function, so F : (A→ B)→ (A→
B) and fix(F) :A→ B, and the predicate has the form P (f) = ∀x ∈ A.Q(f x). Then
the conditions to prove are Q(⊥) and

∀f ∈ (A→ B).(∀x ∈ A.Q(f x)) =⇒ (∀x ∈ A.Q(F f x).

Stating this in words, to prove that the predicate Q holds about a function, one may
assume it as an induction hypothesis for the recursive calls f x.

Fixpoint induction only applies to properties P that hold for the completely undefined
computation ⊥. In practice this can be worked around by instead proving the weaker
claim x 6= ⊥ =⇒ P (x). In fact one often has to qualify statements in this way
anyway, because properties like disjointness of data constructors do not hold when
the constructor argument may diverge (see e.g. Paulson’s verification of unification
in LCF [104]).

Also, it only applies to admissible properties P . In denotational semantics, a set
P ⊆ D is admissible if ∀n.P (xn) implies P (tnxn), for all increasing sequences
x0 v x1 v Crary [40] defines a similar notion of admissibility using opera-
tional semantics—if we write F n for the expression F (F (F . . . F (diverge))), then a
predicate P is admissible if for all a and F , P ({fix(F)/x}a) holds whenever ∃k.∀n >
k.P ({F n/x}a) holds.

In either case, it is undecidable whether an arbitrary property is admissible or not.
Instead, one can define a grammar of logical formulas, such that any property defined
by a formula in that grammar is admissible. Some examples of admissible properties

172

of functions are “wherever the function is defined it is equal to an even number”, or
“is more defined than some other function”. An example of a nonadmissible property
is “is undefined for some argument”.

Computational induction Smith [122] proposed a different induction principle,
which even more directly captures the intuition of gettting an induction hypothesis
for each terminating recursive call. Given a big-step operational semantics, he defines
b induces a to mean that whenever b is evaluated, a is necessarily evaluated also. As a
simple example, C[a] induces a for any evaluation context C. Because this is a semantic
notion one can also come up with more involved examples, e.g. if e1 then f(x) else f(x)
induces f(x).

Now, the computational induction principle states that in order to prove “if a termi-
nates, then P (a)”, one can soundly assume an induction hypothesis for any subex-
pression induced by a. Or, stated more formally:

If ∀b.Terminates b =⇒ (∀b′.b induces b′ =⇒ P (b′)) =⇒ P (b),
then ∀a.Terminates a =⇒ P (a)

This can seen as a general recipe for coming up with induction principles to add to
a language: whenever we can find a syntactic criterion which implies the “induces”
relation, we can add a corresponding version of the computational induction principle
to the language. In particular, the termination-inversion rule (Section 7.7.1) is one
such instance, with “induces” specialized to “is in an evaluation context” and P
specialized to Terminates. Nuprl also includes a version which proves statements
about general recursive functions [123].

Smith’s paradox

Termination-inversion, fixpoint induction, and computational induction make perfect
sense when reasoning about simply typed programs. However, rather suprisingly, in
a dependently typed language they can lead to inconsistency!

The problem is related to admissibility in the fixpoint induction sense. Suppose we
try to define the meaning of a recursive function of type (x : T)→ T ′ as the limit of
longer and longer unfoldings. If the type T ′ is not sufficiently wellbehaved, it may be
the case that the result of any finite unfolding is in T ′, but the finished unfolding is
not.

Smith [123] used this intuition to construct a logical contradiction. (Interesting rea-
soning steps are underlined.) Define a Σ-type T of functions which are not total, and

173

recursively define a pair p which inhabits T .

Total (f : N→ N)
def
= (n : N)→ Terminates (f n)

T
def
= Σ(f : N→ N).Total f → False

(p : T)
def
= fix (λp.〈λx.if x = 0 then 0 else π1(p)(x− 1), λh.—〉)

The type N → N is Nuprl’s type of possibly-nonterminating functions. The first
component of the pair p is just a complicated way to write a constant-zero recursive
function:

g
def
= λx.if x = 0 then 0 else g(x− 1)

The dash in the second component of the pair is an (elided) proof which sneakily
derives a contradiction using π2(p) and the hypothesis h that g is total. In more
detail we reason as follows. We are given the assumptions

prog p : T
log h : Total(λx.if x = 0 then 0 else π1(p)(x− 1))

By instantiating h at (e.g.) x := 1, we get Terminates π1(p)(0). So by termination-in-
version, Terminates p. This means that we are licensed to use p as a logical assumption.
So by π2(p), to get a contradiction it suffices to show that π1(p) terminates for all
arguments y, which is easy by instantiating h at x := Suc y.

On the other hand, once we have defined p we can give a separate proof that π1(p) is
total and that π1(p)(x) = 0 for all x. We reason by induction on x. In the step case,
we use typechecking-time reduction with the definition of p to show

π1(p)(Suc x′) = π1(p)(x′)

and then appeal to the IH. Now π1(p) is both total and not total, which is a contra-
diction.

Zombie has almost all the ingredients needed for this paradox. Instead of a recur-
sively defined pair we can use a recursive function Unit → T , and we can encode
Terminates a as Σ(y : A).a = y. The only thing lacking is termination-inversion:
using our encoding, a function (Terminates π1(p)) → (Terminates p) would have to
magically guess the second component of a pair knowing only the first component.
If we assume such a function as an axiom, we can encode the paradox and derive
inconsistency.18

The paradox uses several different features: general recursion at arbitrary types (in-
cluding Σ-types), typechecking-time reduction, and termination-inversion. Since we
derived false, it is clear that we cannot support all three at the same time. Since

18This is Admiss2.trellys in the test suite.

174

Figure 7.13: Pick any two.

termination-case and computational induction both imply termination-inversion, we
know that they also lead to inconsistency in the same way.

A priori it is not obvious whether removing some of these features will result in a
consistent logic, but previous work on Nuprl [40, 123] and Hoare Type Theory [132]
shows that one can get a consistent language by omitting either of the first two. Zom-
bie completes the triple by showing that omitting termination-inversion also works.
So the situation is as depicted in Figure 7.13.

Recursion at arbitrary types Nuprl’s take on the problem is that the type of p
is bad. The property “is not a total function” is not admissible, so one should not
be allowed to form the fixpoint. The general recursion operator in Nuprl can only be
used when the type of the function is deemed admissible, according to a conservative
syntactic criterion. Notably, the problem only arises with Σ-types—all the other type
constructors preserve admissibility. Crary [40] provides an expressive axiomatization
of admissible types, but these conditions can lead to significant proof obligations.

From the perspective of lightweight verification, the biggest weakness of this approach
is that it restricts recursion even in the programmatic fragment of the language, e.g.
the pair p above was defined in P. So even a programmer who does not care about
logical consistency still needs to be aware of the admissibility condition.

Compile-time reduction Hoare Type Theory instead restricts type-checking time
reduction. There is a fixpoint combinator which can be used at any type, but in the
Coq implementation it is implemented as an axiom, without any reduction rule. This
is sufficient to ensure consistency [132].

Omitting reduction blocks the above paradox because p has to be treated opaquely,
so there no way to prove that π1(p)(x) evaluates to 0. In general, this means that

175

one can not write “external style” proofs about programmatic functions. Instead, the
programmer must use Hoare-style “internal” reasoning, where the function is made
to return a Σ-type stating the desired postcondition.

Termination-inversion The consistency proof in Section 7.6 (and Casinghino’s
proof for a larger fragment of Zombie) shows a third alternative: we can support both
unrestricted recursion and compile-time reduction by not providing the termination-
inversion principle.

Without termination inversion there are limitations on the external proofs we can
write, as we saw in previous subsections. The rule Tjoin lets us write proofs as long
as they can be proved by a finite number of unfoldings. If this is not enough, we
can take the same approach as Hoare Type Theory, and make the function return a
Σ-type. For example, we could change the type of eval from Section 7.7.1 to return
a proof as well as the value:

prog eval : (t:Tm) → Σ (t’:Tm). Eval t t’

The lack of termination-inversion and fixpoint induction is sometimes limiting. How-
ever, this choice of features seems appealing particularly for a language targeting
lightweight verification, where we do not expect very heavy proofs, but want to make
sure that working in the programmatic fragment is easy.

Of course, if a function is defined in log we can reason about it by induction without
any restrictions. The same is true if it is defined in prog but could be defined in log

(i.e. there exists a suitable termination metric, which we can do induction over). So
in this sense Zombie is strictly better than Coq and Agda, where only terminating
function definitions can be written down.

7.7.2 “Non-logical” types

The current type system for Zombie is also limited in the set of features it supports
for dependently typed programming (as opposed to theorem-proving). Currently it
handles general recursive function definitions while safeguarding against logical incon-
sistency. But there are two other features which would be useful for the programmer
but which also jepardize consistency.

Type:Type Like Coq and Agda, the current Zombie language uses a predicative
hierarchy of types, indexed by levels ` = 0, 1, 2, We include typing rules stating
that Type` : Type`+1, and that Type` is a subtype of Type`′ for ` ≤ `′. Simply
dispensing with the levels and allowing Type : Type leads to inconsistency via Girard’s
paradox [37, 59].

176

However, allowing Type : Type is easier for the programmer than keeping track of the
levels, particularly when doing type-generic programming. For example, Weirich and
Casinghino [142] describe a generalization of the ordinary zipWith function which
takes an argument a vector of types, e.g. < Nat, Nat, Bool >, and then expects a
corresponding number of arguments, e.g.

(Nat → Nat → Bool) → List Nat → List Nat → List Bool

They note that Type : Type would let the programmer use the ordinary vector
type (which is polymorphic, parameterized over Type0) to package this list of types,
whereas Zombie would require a duplicate version of vectors parameterized over Type1.

So for programs in the P fragment of Zombie, which is in any case not logically
consistent, we would like to collapse all the type levels.

Type-level computation with general recursion Second, although the full
Zombie language allows types to be defined using recursive functions and large elimi-
nations, it only allows doing this via terminating structural recursion. At least when
working in the programmatic fragment, this seems like a needless restriction: if we do
not spend effort proving that the term-level definitions terminate, why should we do
so for the type-level definitions? On the other hand, using generally recursive type
definitions one can encode generally recursive types (including negative occurrences),
so it is a source of logical inconsistency.

In both cases, the inconsistency comes from “bad types”. That is, although the type
looks plausible it can be used to write nonterminating expressions, so for soundness
it needs to be rejected as not well-formed. On the other hand, it does not affect type
safety—we know this because the core language in Chapter 3 imposes none of these
restrictions and is still type safe.

Now, Zombie uses collapsed syntax, so type well-formedness is expressed by the typing
judgement Γ `θ A : Type. In the current type system, all kinding rules provide and
require θ ≡ L. A rather natural extension would be to add rules which admits the
above forms of types as well-kinded, but at θ ≡ P. For example, Type : Type can be
added by a rule

` Γ

Γ `P Type` : Type0

Similarly, while all typing rules with kinding assumptions currently require kinding
at L, we would selectively relax that restriction as appropriate.

177

Non-logical types for non-logical programs

When considering adding non-logical types to the language, we can imagine two levels
of support.The first, more tractable one, is to allow programs in P to have types in P.

For an example of how this could be useful, we need to look no further than the
standard example of dependently typed programming with large eliminations: type-
generic programming. Suppose we want to implement a type generic decision proce-
dure for equality comparisons (i.e. what deriving Eq provides in Haskell). The steps
to do this are standard: define a datatype (here, code) which represents the types
the generic function should be able to handle (e.g. booleans and product types); pro-
vide a function (decode) which uses large eliminations to translates from the codes
to the actual types they represent; write a type-level function (eqdecT) which com-
putes the type our generic function should have when instantiated for a particular
concrete type; and finally write the generic function itself (eqdec). Using Haskell-like
syntax, and omitting unfold statements for eqdecT, the function definition may look
as follows:

data code = cBool | cPair of code code | ...

prog decode : code → Type

decode cBool = Bool

decode (cProd c1 c2) = (decode c1) × (decode c2)

...

prog eqdecT : code → Type

eqdecT c = (decode c) → (decode c) → Bool

prog eqdec : (c:code) → eqdecT c

eqdec cBool = λ b1 b2 . eqdecBool b1 b2

eqdec (cProd c1 c2) = λ (a1, b1) (a2, b2) .

eqdec c2 a1 a2 && eqdec c2 b1 b2

This would be a valid function in the core language defined in Chapter 3. However,
the current Zombie implementation rejects it, because the type-level function eqdecT

is tagged as P, and the current kinding rule for arrow types require both sides of the
arrow to be well-kinded at L. (In this case it is easy to make the program acceptable
to Zombie by declaring the functions decode and eqdecT as log. But the question is
whether we can allow type-level functions in prog in general.)

Extending the typing rules to allow this kind of program is easy in both the “possible
world” and the “effect” setup. For example, in the possible-world system, we would

178

generalize the rules for arrow types and recursive functions:

Γ `θ A : Type Mobile (A)
Γ, x :θ A `θ B : Type

Γ `θ (x :A)→ B : Type
TArr’

Γ, f :P (x :A)→ B , x :P A `P b : B
Γ `P (x :A)→ B : Type

Γ `P rec f x .a : (x :A)→ B
TRec’

By changing the kinding premise in Trec to be at P, we allow the type of the function
to make use of non-logical features. (In addition, compared to the core calculus in
this chapter we also have to adapt the rules for equality to permit equations between
types (for eqdecT), as we do in full Zombie).

We conjecture that this extension would be sound, and in an effect-style system it
should not make the metatheory much more difficult. This is because the effect-
style system maintains the property that if a judgement concludes at L, then its
subderivations are at L also, so the added kindings should not interact much with the
normalization proofs.

On the other hand, in an possible-world style system it is more complicated to ac-
comodate non-logical types. The problem is that, as we mentioned in Section 7.6.1,
our proof requires a type interpretation for types of both logical and programmatic
expressions. Defining a logical interpretation for, e.g., types defined by general re-
cursion is nontrivial. So we omitted non-programmatic types from our metatheoretic
proofs, and therefore also from the implementation.

Logical theorems quantifying over non-logical types

One of the nice things about Zombie is that it allows both programs returning proofs
and proofs about programs. So if we extend the type system to allow functions like
eqdec, it is natural to ask whether we can also write proofs about it. Is it possible
to prove a theorem stating that the decision procedure is sound?

log thm : (c : code) → (a1 a2 : decode c)

→ (eqdec c a1 a2 = True) → a1=a2

So far we have not been able to define a type system which allows this, because the
metatheory gets challenging. However, the question is interesting because it shows
one way in which the “possible world”-style system seems preferable to the effect-style
system.

In order to avoid all the paradoxes from non-logical types, we need to enforce that
functions which check at L can only be classified by types that are well-formed at L.

179

This already rules out the type of thm above, because the kinding rule for arrow types
at L require the domain and codomain to be well-formed at L, but decode c appears
in the domain.

In an effect-style system, that is the end of the story—there is not any obvious way
to fit a function like thm into the type system. However, in the possible-world-style
system, there is an intriguing possibility. The @-types internalize a shift to a separate
type system; so why not make the well-formedness judgement track that also?

Γ `θ A : Type

Γ `L A@θ : Type
TAt’

Now we can write down a type for thm, as long as we place the arguments a1 and a2

in P.

log thm : (c : code) → (a1 a2 : decode c @prog)

→ (eqdec c a1 a2 = True) → a1=a2

Although the type of the theorem is now well-formed, it is not immediately obvious
that it is provable. Such a proof has to follow the structure of the definition of
eqdec—first do a case split on c, and then in the case when it codes a pair, destruct
a1 and a2, and check whether their first and second components are equal. The latter
step requires a logical expression to look at the contents of a programmatic pair.

Fortunately, this is exactly what the typing rule TMobileVal allows, at least if we
pick a suitable definition of the pair type:

A×B ≡ Σx : (A@P).(B@P)

We add the @P to ensure that A×B is a mobile type (as mentioned in Section 7.3.6
above, full Zombie already treats general datatypes in general this way).

Now, in the branch where c = (cPair c1 c2) we can use Tcast to change the type
of a1 in the context from decode (cProd c1 c2) to (decode c1) × (decode c2)

At this point we can use TMobileVal for Σ-types to treat the P variable a1 as an L
variable, which allows a case-expression scrutinizing it even in an L expression. The
key thing that makes this possible is that a1 is a variable, and therefore a value, so
value-restricted rules like TMobileVal apply.

In summary, a natural extension of the “possible world”-style system provides a way
to write logical expressions quantifying over programmatic types. This is intriguing,
and in fact this was one of the main reasons we chose to pursue “possible worlds”
rather than effect-style for the full Zombie language. However, we do not yet have a
proof of logical consistency for the extended system.

180

7.7.3 Surface language concerns

We have presented two different styles of type systems, one inspired by modal logic,
and one formulated as a type-and-effect system. Considered as core languages, there
is no big difference between them: they can express the same programs (Section 7.5),
although perhaps the modal one is more promising for future extensions (reasoning
about terms of non-logical type, Section 7.7.2).

On the other hand, when designing a surface language elaborating into the current
core language, we noticed several points where the system with @-types does not work
smoothly, and these trouble-spots could be avoided by using an effect-style system
instead.

@-types everywhere Because domains of function types and arguments to data
constructors are required to be mobile, almost every type in the context is mobile.
(The main exception in the current Zombie implementation is top-level definitions.)
Some types (e.g. datatypes) are automatically mobile, but because of the handling
of type variables, argument to polymorphic functions and parameterized types need
to be tagged with an @θ.

In practice, this means that variable references more often than not need to use the
rule TUnboxVal to eliminate the @-qualifier. Similarly, arguments to polymorphic
functions need to be checked using TBox*. So these rules can create a lot of syn-
tactic clutter. If they were only used occasionally we could use explicit (erasable)
annotations, e.g. unbox x, but to make programs readable it is important to be able
to infer these.

Failure of local completeness Given a bidirectional type system like the one in
Chapter 5, the most obvious way to infer uses of TBox* is to make them checking
rules. For example, the surface-language rule corresponding to TBoxP would be:

Γ `θ a⇐ A
Γ `L A⇐ Type

Γ `P a⇐ A@θ
CBoxP

Since this is a checking (⇐) rule, we do not need an explicit box-annotation on a.

However, after implementing the above rule and experimenting with writing pro-
grams using it becomes clear that it does not always work. The problem is that our
Box/Unbox rules do not satisfy local completeness.

A deduction system is locally complete [108] if the elimination-rules are “strong
enough” in the following sense: whenever there exists a derivation of a formula A,
there exists a derivation ending in an introduction rule for that formula’s connective.

181

The rules for @-types satisfy this as long as the subject is a value, but it fails in
general. Suppose Γ `P a : A@L. The only @-introduction rule that could prove that
formula is TBoxP, and to apply that we need to prove the premise Γ `L a : A. But
if a is a non-value, then TUnboxVal does not apply, and there is no way to derive
that.

The failure of local completeness complicates typechecking, because one can not al-
ways eagerly apply the box rule. For example, given Γ `P f : Nat → (A@L) and
Γ `P g : (A@L) → Nat, the expression g (f 0) should be typeable. However, naively
using the above checking rule gets stuck:

Γ `P g ⇒ (A@L)→ Nat

???
Γ `L (f 0)⇐ A

Γ `P (f 0)⇐ A@L
CBoxP

Γ `P g (f 0)⇒ Nat
IApp

Things are still more complicated when working up-to-congruence. For example,
suppose that in the above example f instead had the type Nat → B . Then it is not
clear whether the implementation should search for a proof that Γ � B = (A@L), or
if it should first apply TBoxP and then search for a proof that Γ � B = A.

The current Zombie implementation uses a rather poorly motivated hack. When
checking an expression a against an @-type A@θ, we look at the syntactic form of
a; if it is a variable or an application, we do not apply the box rule, but instead
synthesize a type for a and try to prove that the type is CC-equivalent to either A@θ
or A. The intuition is that applications and variables do not have checking rules, so
there is no value in pushing the type A in and we instead synthesize straight away.
This heuristic can fail in at least two ways: there may be other expression forms that
would also benefit from being synthesized rather than checked; and when checking
against a nested type A@θ1@θ2 even applications or variables really should be checked
by peeling off one θ at a time.

This syntactic condition also interacts with the other typechecking rules. For example,
when checking a case-expression against an @-type, we should first apply the case-
rule and check each branch against the @-type, as opposed to eagerly applying the
box-rule, because the branches could consist of applications/variables. On the other
hand, the rules CBox should fire before ECrec, because we do not want to try to
prove an @-type is equal to a function type.

To summarize, it is hard to make the box/unbox rules completely invisible in a
bidirectional type system, and harder still when adding congruence closure. One
appealing thing about the effect-style system is that these rules are not necessary
there.

182

Mobile types and higher-order functions Another issue with @-types which
becomes apparent when writing programs is an interaction between mobile types and
higher-order functions. Consider a polymorphic higher-order function such as map.
In order make its type well-formed, type variables must specify some θ, e.g. L:

map : [a b : Type] ⇒ (f : (x:a@log) → b @log) →
(xs : List a) → List b

On the other hand, functions which operate on mobile types do not have to tag their
arguments with @-types, which would in any case not matter. For example, the Nat

type is mobile, so natural number addition can be given simply the type

plus : Nat → Nat → Nat

While this makes the type of plus less cluttered, it has an unwelcome consequence:
plus can no longer be used as an argument to map. That is, in the application

map (plus 1) lst

the expression (plus 1) has type Nat → Nat, while map expects (A@log) → B for
some A and B. The types do not match.

We saw an example of this problem in the DPLL-solver in Section 2.4. There, the
functions interp_lit and interp_clause were used as arguments to the higher-
order functions any and all, and there types had a spurious @log qualifying the
mobile type List.

Semantically, this is not a big problem. As we did above, we can include subtyping
rules (SubMobile1 and SubMobile2 in Figure 7.7) which express that Nat and
Nat@θ are equivalent types. One could also contemplate adding a rule stating that
these two types are propositionally equal, rather than just equivalent.

However, writing a typechecker for a surface language including such rules is a harder
problem. In general, including subtyping in a language tends to make type checking
complicated. And even the equational version is not straightforward when combined
with unification-based inference. In the above example the implicit type arguments of
map generates two unification variables X and Y , and we try to match Nat→ Nat with
(X@L)→ Y . Just syntactic unification cannot solve this goal, because it will match
Nat againstX@L and the two expressions have different top-level constructors. On the
other hand, the rule for @-qualified mobile types can only fire after the variable X has
been instantiated. So the typechecker would have to interleave ordinary unification
with operations which depend on the semantics of the language.

Subtyping constraints versus equality constraints In the future, one may
consider moving from the current bidirectional type system (i.e. local typechecking)
to a general constraint-based system (Section 6.4). Usually such systems are easier

183

to design if they can be phrased in terms of equality constraints, because those con-
straints can be solved by unification. On the other hand, asymmetric rules that state
that one type should subsume another require more ingenuity. In particular, naively
adapting the unification technique to inequality constraints creates semi-unification
problems [67], which are undecidable [73].

When creating a constraint-based type system, all the issues about inferring uses of
TBox/TUnbox/SubMobile that we mentioned above would become relevant, be-
cause these features all involve “asymmetric” constraints (e.g. if the surface language
includes implicit unboxing, then A@L is a “better” type than A). Since the effect-style
system does not include these rules, it may be an easier target for elaboration.

Of course, somewhat tempering this optimism is the fact that the effect-style calculus
includes a subtyping relation, which also creates asymmetrical constraints. However,
these may be more tractable, for two reasons. First, it may be that subtyping is
not necessary in practice. The current Zombie implementation does not implement
subtyping, and it can still check our example programs. In the translation of a
possible-world program that does not use subtyping, the only use of subtyping is
when the subsumption rule TSub is applied to a function type, e.g.

Γ `L f : Nat→ Nat→ Nat

Γ `P f : Nat→ Nat→ Nat
TSub

In the corresponding effect-style derivation we use subtyping to say that a function

of type Nat
L→ Nat

L→ Nat can also be used at type Nat
P→ Nat

P→ Nat. But in the
typical case this is more than is needed; even if the function has the original L type,
the application rule T App still lets it be applied in a P context. Similarly, if f was
used as an argument to a higher-order function, the programmer could work around
the need for subtyping by instead η-expanding f .

Second, even if we want subtyping in the langauge, the effect-style subtyping relation
T <: T ′ is easier to handle than the possible-world style relation A <: A′. The
difference is that while the possible-world relation includes A@L <: A, the effect-
style relation never changes the top-level constructor of a type expression, only the
θ-annotations on arrows. So it should still be possible to use unification to determine
the shape of type arguments, leaving only residual constraints about the values of the
θs.

7.8 What was gained by the effect-style system?

To summarize, in this chapter we showed that it is possible to reformulate the existing
Zombie type system to treat nontermination as an effect instead of as a modal-logic-
like world, without losing any expressivity. In doing so, we gained several things.

184

First, the metatheory became simpler. Because typing derivations in the effect-style
system do not change back and forth between L and P, we can use a simpler logical
relation to show normalization (Section 7.6).

Second, the effect-style types are simpler and less cluttered. In the effect-style system,
every type contains L/P annotations to fully specify its meaning. In the possible-
world system the meaning of a function arrow changes when it is used in an L or a
P context, and the programmer disambiguates by using @-types in the places which
require fully-annotated (“mobile”) types. In the small calculus in this chapter, this
is a win for the possible-world system—the @-types are only needed for higher-order
functions, which are comparatively rare. However, as we described in Section 7.3.6,
in the full language the tradeoff changes, because for polymorphic functions all uses
of type variables need to be disambiguated. Then it is more economical to place the
annotation on the function arrow rather than in the surrounding context.

The possible-world calculus also has the drawback some syntactically different types
describe the same sets of values, e.g. (Σx : A.B)@L vs Σx : (A@L).(B@L) or (in
a larger calculus with sum types) (A + B)@L versus (A@L) + (B@L). The trans-
lation in Section 7.5.1 maps these to the same type, which in turn makes rest of
the type system simpler (we can use the simpler case-rule TPCase instead of the
“cross-fragment” rule TPCase’). And most importantly it eliminates the distinc-
tion between Nat@θ and Nat, which is an annoyance in our current system (as we
described in Section 7.7.3).

Finally, perhaps the biggest advantage is that in the effect-style system, there is
no need for the elaborator to infer where to use the TBox/TUnbox rules. As we
described in Section 7.7.3, these are difficult to handle in a principled way, and in the
effect-style system they can be completely avoided.

With all these advantages, one may ask why we designed Zombie in the possible-
world style in the first place. The answer, as explained in Section 7.7.2, is that the
possible-world style provides a natural syntax for writing theorems that quantify over
non-logical types. So far we have been unable to extend our logical consistency proof
to that feature, however, so for now nothing is lost in the effect-style system.

185

Chapter 8

Related work

The key features of the Zombie core language are erasure, nontermination, and het-
erogeneuous “operational-semantics based” equality, while in the surface language
the main innovation is the use of congruence closure. None of these features are
completely new, but they have never before been combined in a dependently typed
language. In Sections 8.1 to 8.4 of this chapter we consider related work for each of
these four features in turn.

8.1 Computational irrelevance

Zombie’s irrelevant arguments solve an important problem in dependently typed pro-
gramming, namely how to deal with all the extra expressions needed to verify (rather
than just execute) a program. Other languages use different features to address the
same problem, and the differences between them can be quite subtle. This section
compares the style of irrelevant arguments adopted by Zombie to the corresponding
features in other languages.

8.1.1 Prop and Set in Coq

In Coq, the distinction between Prop and Set plays a similar role to irrelevant argu-
ments. The Coq program extraction mechanism will replace any expressions whose
type has kind Prop with an uninformative unit value, just like the erasure operation
deals with implicit arguments in Zombie. Furthermore, by assuming the standard
proof irrelevance axiom (“if A is a proposition, any two terms of type A are equal”),
Coq users get a coarsened term equivalence at typechecking time, similar to what is
provided by the use of erasure in Zombie’s Tjoin rule. For example, if a, b : A : Prop,
then the equality fa = fb is propositionally true by the proof irrelevance axiom.

186

In order to support erasure and proof irrelevance, Coq restricts pattern matches on
proofs of propositions to occur only inside other proofs of propositions, exactly like
pattern matches on erased terms in Zombie are only allowed inside other erased terms.

On the other hand, unlike Zombie, the proof irrelevance axiom does not help with
coarsening the definitional equality. Adding proof irrelevance to Coq’s definitional
equality would break strong normalization of open terms. For example, in order to
define functions by well-founded recursion, Coq programmers will encode a function
f : A→ B by adding an extra argument f : (x : A)→ Acc x→ B, a proof that there
is no infinite descending chain starting at x. The Coq typechecker will only unfold
a call to f if the accessibility proof has the right syntactic form. Definitional proof
irrelevance would equate all accessibility proofs, so f would unfold infinitely.

Irrelevant arguments in the style used by Zombie were partly invented as a reaction
to limitations of Coq’s Prop/Set distinction [90]. By tying erasability to the type of
an expression, the Coq design assumes that expressions of the same type will either
always be used relevantly or irrelevantly. But that is not the case; a common example
is natural numbers. Obviously many programs use natural numbers in a relevant way,
e.g. adding them and returning the result, but equally many programs use numbers
specificationally, e.g. as indices to data structures like Vec. We would like to recognize
this distinction, but with just a single Nat datatype we are forced to classify it as Set
and never erase any numbers. This phenomenon pushes the Coq programmer towards
duplicating datatypes. For example, in Coq the datatypes for conjunctions A ∧ B
and products A × B are identical except that the first is marked erasable and the
second is not. Irrelevant arguments avoid this issue by leaving the relevant/irrelevant
distinction to the consumer of an expression rather than the producer.

8.1.2 Irrelevant arguments in Ynot

One interesting case study, which illustrates both the extra convenience that irrel-
evant arguments offer beyond Coq’s Prop/Set system, and also how they make the
metatheory tricky, is the Ynot project. Ynot embeds a program logic into Coq by
postulating appropriately typed primitives for loops and memory references. Side
effects are represented by an indexed monad Cmd P Q, “a computation which can be
run in a heap satisfying precondition P , and returns a value while leaving the heap
satisfying postcondition Q”. For example [80], a function to insert a value into a B+
tree can be given a the following type:

insert : forall (h : handle) (k : key) (v : value) (m : AssocList),

Cmd (rep h m)

(fun res : option value ⇒
rep h (specInsert v m) * [res = specLookup k m]).

187

Here rep h m is a predicate stating “the handle h points to an in-memory tree rep-
resenting the same key-value mapping as the association list m”, and the postcondi-
tion states that the tree has been updated to instead represent the association list
(specInsert v m).

However, giving the function the above type does not quite work. If we use Coq’s
program extraction to compile insert, then m will be treated as computationally
relevant and kept around at runtime—in a database system implemented using B+
trees, we would be carrying around an extra copy of the entire database represented
as a linked list. But the intention is that m should only be part of the specification,
by expression the relation between the pre- and postcondition (in other words, m is a
“ghost variable”).

So some method is required to make specificational variables erasable. Ideally we
would like to mark m as an irrelevant argument, but Coq does not offer that feature.
Early versions of Ynot [95] worked around the problem by changing the type of
the postcondition Q, so that instead of a unary predicate over heaps it was a binary
relation between the heap before and after the function call. This way ghost variables
can be replaced with existential quantification in the postcondition. However, in the
experience of the Ynot implementers this led to clumsy proofs [33], and they instead
decided to use unary postconditions while encoding irrelevant arguments using a new
type and an axiom:

Inductive inhabited (A:Type) : Prop :=

inhabits : A → inhabited A.

Axiom pack_injective : forall (T : Set) (x y : T),

inhabits x = inhabits y → x = y.

The idea is that the constructor inhabits can inject any value into inhabited A.
Since this type has sort Prop, the argument to inhabits will be erased by program ex-
traction. So we can make m irrelevant by giving it the type m : inhabited AssocList.
In the proof of the postcondition we need to use the axiom to “project out” m again.

Unfortunately, this axiom was eventually found to be inconsistent! If we pick A :=
Prop, then inhabits provides an injection from Prop to the type inhabited Prop,
which itself is in Prop. This is as good as having Prop : Prop, so Girard’s paradox
applies.19

Recent versions of Ynot continue to use the axiom, but the user is admonished to
be careful when using it. Since the intended effect of inhabited is only to guide
extraction, rather than to lower the universe levels, it is possible to check that a
development is sound by temporarily changing the definition of inhabited to the

19For details, see e.g. the message “Re: [Coq-Club] problem with tactic-generated terms” sent by
Robert Dockins to the mailing list coq-club@inria.fr on September 12, 2014.

188

identity function (so pack_injective becomes trivially provable), and make sure
that the development still compiles.

8.1.3 The Implicit Calculus of Constructions

Our treatment of implicit arguments is based on Miquel’s ICC [89], with the anno-
tation regime following ICC* [15] and EPTS [91]. However, there is one difference
between ICC and Zombie, which is that we leave a placeholder to mark the site of an
implicit lambda or application. That is, we have |λ•x :A.b| = λ•.|b| and |a •b | = |a| •,
while ICC* defines |λ•x :A.b| = |b| and |a •b | = |a|.

The reason we leave placeholders is to ensure that syntactic values get erased to
syntactic values. Since we make type casts irrelevant this invariant is needed for
type-safety [119]. For example, using a hypothetical equality h we can type the term

λ•h:Bool=Nat.1 + true.h : •(h :Bool = Nat)→ Nat.

In Zombie this term erases to the value λ•.1 + true. On the other hand, if it erased
to the stuck expression 1 + true then progress would fail.

We also conjecture that retaining these placeholders may simplify the metatheory. In
ICC, a constant like 42 can be given not only the type Nat, but also function types
like ∀P.∀Q.Nat, and one of the challenges in proving consistency and normalization
is to find a semantics which can handle this. Although we have not developed a
normalization proof, it possible that the added information in the term would help
with this.

8.1.4 Pfenning-style irrelevance

A slightly different version of irrelevance was studied by Pfenning [107] and Reed [111].
They add the restriction that the bound variable x in an irrelevant arrow type •(x :
A) → B is only allowed to occur in erased positions in B . This restriction forbids
types like

•(x :Bool)→ if x then Unit else Nat

which are well-formed in our language.20

Agda’s implementation of irrelevance adopts the same restriction. The reason is
that this works better with Agda’s definitional equality. Agda uses a type-directed
algorithm [4] to decide βη-equivalence (with η-laws for functions, records, unit types,

20ICC did not include large eliminations, and the language we studied for termination-checking
[31] does not include irrelevance, so there is still no normalization proof which handles this form of
types. On the other hand, in Chapter 3 we at least proved that they will not break type safety.

189

etc). It takes goals of the form Γ ` a : A ≡ Γ′ ` a′ : A′ containing two typed terms to
be checked for equivalence, and breaks them down into smaller subgoals using rules
like

Γ ` a : A→ B ≡ Γ′ ` a′ : A′ → B′ Γ ` b : A ≡ Γ′ ` b′ : A′
Γ ` a b : B ≡ Γ′ ` a′ b′ : B′

Γ ` a : Unit ≡ Γ′ ` a′ : Unit

Γ, x : A ` a : B ≡ Γ′, x : A′ ` a′ : B′
Γ ` λx.a : A→ B ≡ Γ′ ` λx.a′ : A′ → B′

However, this algorithm interacts poorly with types defined by irrelevant arguments
and large eliminations. Abel [4] gives the following example. Define a type constructor

A x
def
= if x then Unit else Nat, and suppose we are in a context containing B : •(x :

Bool)→ (A x → A x)→ Type. Then we may expect

Γ ` B •false (λxNat.x) : Type ≡ Γ ` B •true (λxUnit.tt) : Type

to be provable up to η and erasure—after all, the two λ-abstractions are both identity
functions, on Nat and Unit respectively. However, if we apply the algorithm rules
above we get first the subgoal

Γ ` (λxNat.x) : Nat→ Nat ≡ Γ ` λxUnit.tt : Unit→ Unit

and from there
Γ, x : Nat ` x : Nat ≡ Γ, x : Unit ` tt : Unit

This last goal (comparing an arbitrary natural number x against the unit value)
should certainly not be provable, or by transitivity all natural numbers would be
equal. So the usual algorithm is not complete.

To summarize, it is not clear how to create an algorithm that decides η-equivalence
in the presence of irrelevant arguments and large eliminations. In the usual type-
directed algorithm, the types on the left and right sides of the ≡ get “out of sync”.
Zombie does not run into this problem, because it does not support η-laws in the first
place (section 3.6).

8.1.5 Intersection and union types

Intuitively, irrelevant arguments appear quite similar to intersection and union types.
If we consider only runtime representation, we have the equivalences

A ∧B ≈ •(x :Bool)→ if x then A else B

A ∨B ≈ Σ •x:Bool .if x then A else B .

190

However, the typing rules for irrelevant arguments are less general than the ones for
intersection/union types. In particular, consider the introduction rule for intersec-
tions:

Γ ` a : A Γ ` a : B
Γ ` a : A ∧B

This rule can not be emulated using the corresponding irrelevant arrow type. If we
start by using an irrelevant abstraction, we end up trying to prove Γ, x : Bool ` a :
if x then A else B . The only way to make progress is to make a case-split on x, which
is forbidden, since that would be a computationally relevant use of x.

The fact that irrelevant arguments are more restrictive seems very helpful in practice.
Type inference for intersection types is difficult. Depending on what formulation one
considers, union types can have problems with type preservation [13]. But irrelevant
arguments are easy to implement and use, and cause no problems in the type safety
proof.

8.1.6 Truncation in HoTT

Homotopy Type Theory [135] includes a truncation operator ‖A‖, which builds a
type where all inhabitants of A are considered (propositionally) equal. So the type
(x : ‖A‖)→ B in HoTT is similar to an irrelevant arrow type •(x : A)→ B , in that
all function arguments are considered equal.

To support this there is a restriction on pattern matches on terms belonging to trun-
cated types. However, the rule is more generous than the rule for irrelevant arguments.
An irrelevant function can only pattern match on its argument x in irrelevant posi-
tions; this is a syntactic restriction. In HoTT, a variable x belonging to a truncated
type can be pattern-matched on anywhere, but the programmer needs to supply a
proof that the result of the match-expression is the same no matter what x is.

This more semantic treatment allows more programs, but unlike irrelevant arguments
there is no direct connection with erasure and program extraction. One example which
illustrates the difference is that in HoTT it is possible to write a function g which
inhabits the type

‖Σx : Nat.fx = 0‖ → (Σy : Nat.fy = 0).

The trick is that g first destructs the provided proof that f has a zero, then tries every
number 0 ≤ y ≤ x and returns the smallest one that works. Since the returned y is
always the least zero of f it does not depend on x, so the pattern match is allowed.
But the compiled code makes use of x at runtime, so g’s input argument can not be
erased.

191

x ∈ term variables
α ∈ type variables
γ ∈ coercion variables

types A,B ::= α | A = B | A→ B | A B | ∀α.A | ∀γ.A | . . .
terms a, b, ::= x | λx.b | a b

| λα.b | a A
| λγ.b | a p
| a.p | . . .

coercions p ::= γ | refl | p−1 | p; q | inji p | cong A p1 .. pi | . . .

Figure 8.1: Part of the GHC core language [139]

8.1.7 GHC Core

As mainstream programming languages add verification features to their type sys-
tems, they will likely have to pay more attentions to issues of erasure. One interesting
example can be seen in how the core language of the Glasgow Haskell Compiler has
evolved.

Early versions of GHC compiled into a core language inspired by System F. This
has two syntactic categories, terms and types, which directly control erasure: term
expressions have runtime representation after compilation, while type expressions do
not. This is similar to e.g. Standard ML.

Adding type-level functions (“type families” in Haskell terminology) and indexed
datatypes (“generalized algebraic datatypes”, GADTs) required extending the core
language, because these features introduce equations between syntactically different
type expressions. The new core language FC (for “System F with Coercions”) now
has three syntactic classes: terms, types, and coercions (i.e. equality proofs).

Adapting the figures from Vytiniotis et al. [139] to use a more Zombie-like syntax,
the system is as shown in Figure 8.1. The language of coercions is quite similar to the
language of congruence proofs that the Zombie elaborator generates. In particular, it
involves no computation: the elaborator is responsible for generating coercion values
justifying any required type equations. This way, one never has to worry about
nontermination in equality proofs, and the FC cast rule works exactly as the Zombie
one, with the coercion being computationally irrelevant. So in this system it is still
apparent from the syntax which parts of an expression are erased, namely types and
coercions but not terms.

While the coercion language can be seen as a class of particularly tame equality proofs,
Haskell also provides ways to manipulate equations as first-class objects. First, in the
core language constructors of GADTs take equations are arguments (just like the

192

parameters-only formulation of datatypes in Zombie). Second, recent versions of
GHC feature “constraint kinds” [24], which lets functions return equations directly.
These two features form a link between the coercion language and the term language;
pattern matching on a term of GADT type will bring a coercion variable into scope.
The programmer can use this to write recursive functions that compute proofs (albeit
somewhat clumsily, and without termination checking) [79].

First-class equations bring up the issue that we described in Section 3.3: nontermi-
nation, laziness and erasure do not mix well. So although Haskell in general is lazy, it
needs to ensure that any computation of equations gets evaluated strictly. However,
adding first-class equations was not as big a change as one might think, because ear-
lier versions of GHC already included suitable machinery in order to handle so-called
unboxed integers. Unlike ordinary values of the ordinary integer types, which are
always represented as pointers into the heap (pointing either to a number or to a lazy
thunk), values of the of the unboxed integer type are stored directly in registers, which
necessitates evaluating them strictly. The same trick is used for equations: there is a
type of first-class equations, which is implemented as a wrapper around the type of
unboxed equations. Coercion variables can only range over unboxed equations, so a
core term which wants to use a first-class equation must first unbox it, which forces
the computation [139].

8.2 Nontermination and dependent types

Throughout the design of Zombie, we have assumed that any expression may fail
to terminate anywhere. Other dependent language designs make more fine-grained
distinctions than this, because they distinguish between termination of (closed, com-
piled) terms at runtime, and of (open) terms at type-checking time. These two
conditions fill quite different purposes. We need compiled expressions to terminate in
order to read them as constructive proofs, for liveness guarantees, and for erasure to
be a sound optimization (Section 7.1). On the other hand, we need open expressions
to be strongly normalizing if we want the typechecker to reduce them in order to
decide βη-convertibility (Chapter 5). Zombie is unusual in not enforcing termination
at type-checking time. Most dependently typed languages offer facilities for writ-
ing programs that will compile into general recursion, but they limit the ways the
typechecker can observe their reduction behavior.

193

8.2.1 Potential nontermination both at typecheck- and run-
time

Like Zombie, Augustsson’s language Cayenne [10] also allows nontermination every-
where. The typechecker will automatically reduce expressions in types up to some
maximum number of steps (which can be specified as a global option to the type
checker). Augustsson reports that this works well in practice.

Cardelli’s Type:Type language [29] and ΠΣ [9] are core calculi comparable to the
type system in Chapter 3. They allow Type : Type and general recursion, but have no
support for erasure or optional termination checking. Cardelli’s language (like Zom-
bie Core) does not specify what reduction strategy the typechecker should use. ΠΣ
includes a novel system of “boxed expressions” classified by “boxed types”, which
delay reduction. By carefully using these, the programmer can e.g. encode recur-
sive datatypes as recursive large eliminations while preventing the typechecker from
getting trapped in a loop forever unfolding them.

Nuprl [35, 40, 123] has very complete support for generally recursive functions, mixing
terminating and nonterminating code, and erasure. As described in Section 7.7.1,
the way Nuprl handles general recursion makes slightly different tradeoffs compared
to Zombie, with a more powerful induction principle but more restricted function
definitions.

All the above languages are call-by-name. Zombie is call-by-value, so we adopt slightly
different rules for reduction and recursion. Another difference is the techniques we use
for our metatheoretic proofs. The proof of type safety for the Type:Type language
uses denotational semantics, however the proof can not handle case-expressions and
dependent elimination. The type safety and consistency proof for Nuprl uses a logical
interpretation into PERs [66]. The Nuprl proof is in some ways more powerful than
the methods we use (in Sections 3.9 and 7.6) because it also justifies η-laws and
functional extensionality, but it is more difficult to set up. As far as we know, no
results have been proven about Cayenne, ΠΣ, and Idris.

8.2.2 Terminating both at typecheck- and runtime

The default expectation in mainstream dependently typed languages like Coq and
Agda is that all functions terminate. This is enforced by a built-in termination
checker, which checks that all recursive calls are made at a structurally smaller argu-
ment [1, 58]. One drawback is that because the check is completely automatic there
is no way for the programmer to provide hints to it, so over the years it tends to
grow more and more complicated in order to cover as many interesting programs as
possible.

194

As we mentioned in Section 7.2.1, for terminating functions which go beyond the
kinds of structurally recursion the termination-checker can recognize, these languages
also provide standard-library support for wellfounded recursion, although this is not
as convenient as ordinary function definitions.

8.2.3 Terminating at runtime only

Even if the programmer is ultimately only interested in writing total functions, the
requirement that all expressions normalize at typechecking time still comes at a cost.
This is because some language features can create nontermination in expressions with
free variables, even though every closed program would terminate.

For example, in Section 3.6 we noted that Coq and Agda treat type casts as com-
putationally relevant for reductions in order to ensure normalizations in inconsistent
contexts. However, the only closed proofs of equations are the uninformative equal-
ity proof eq refl, so when compiling the program into ML or Haskell one can omit
equality proofs and replace all type casts with Obj.magic/unsafeCoerce. In Zombie
we drop the requirement that all open expression normalize, so this computational
irrelevance can be reflected in the type system.

Another example is Coq’s treatment of coinduction. Coq’s typechecker will only re-
duce an expression that has a coinductive type if it is the scrutinee of a case expression.
This limitation is annoying for the programmer, and also causes type preservation to
fail. In the metatheory this is handled by dropping the restriction on reduction and
allowing any expression to reduce, and then noting that the resulting “idealized”
language enjoys type safety and logical consistency (but not normalization) [58].

8.2.4 Terminating at typechecking-time only

Many dependent languages allow writing nonterminating programs, but impose re-
strictions to ensure that types remain terminating during type-checking. One inter-
esting question then is how much of the operational semantics of the programs is
made available as equational reasoning principles for the programmer to use.

At one end of the scale, many languages forbid potentially nonterminating expres-
sions from occurring inside types at all. They do this either by making the type lan-
guage completely separate from the expression language (e.g. DML [147], ATS [146],
Sep3 [74], Ωmega [116], Haskell with GADTs [106]), or by restricting dependent appli-
cation to values or “pure” expressions (e.g. DML [78], F* [133], Aura [70], Deputy [34],
and Ou et al.’s language [103]).

One step up are languages where expressions from the nonterminating fragment may
appear in types, but are treated opaquely by the typechecker (i.e. there are no

195

typechecking-time reduction rules). Idris [27] permits non-total definitions, but func-
tions that do not pass a conservative structural recursion criterion are flagged as
potentially nonterminating, and will not be reduced by the typechecker. Similarly,
Hoare Type Theory (implemented in the Ynot system) [95, 132] provides combinators
for general recursion and for mutating memory, but no reduction rules.

In both cases, this means that the one cannot write external proofs about functions
that were defined using general recursion. Programs in this system rely on the “in-
ternal” style, where an effectful function returns a Σ-type stating a postcondition.
Sometimes the best way to accomplish this is to define an auxiliary pure function
(which can be reasoned about externally), and use that to state the postcondition.
For example, in Section 8.1.2 the effectful function insert was specified in terms of
specInsert.

On the other end of the scale are systems that provide both a way to define recursive
function and accompanying equational reasoning principles for them. For example,
Bertot and Komendantsky [21] describe a way to embed general recursive functions
into Coq by defining a datatype partial A that is isomorphic to the usual Maybe A but
is understood as representing a lifted CPO A⊥, and then use classical logic axioms
to provide a fixpoint combinator fixp. When defining a recursive function the user
must prove continuity side-conditions. Since the recursive functions are defined non-
constructively they can not be reduced directly (the evaluation gets stuck on the
axiom), but it is possible to prove a a fix-point equation as a propositional equality.

One of the most popular approaches to embedding generally recursive programs into
total dependent languages is by corecursion. Capretta [28] defined a coinductive type
for computations:21

CoInductive Computation (A:Set) : Type :=

| return : A → Computation A

| step : Computation A → Computation A.

Values of type Computation A are either finite computations (step (step ...step

(return a))), or the infinitely stepping term (step (step ...)). Capretta showed
that it is possible to implement a CBV-style fixpoint operator and a monadic bind:

Y : (A→ Computation B)→ A→ Computation B
bind : (A→ Computation B)→ Computation A→ Computation B

In practice, programmers do not typically use Y to construct recursive programs;
instead they are directly written as Coq/Agda functions returning Computation A,
and the productivity rules for corecursive functions allow recursive calls as long as
they are guarded by enough step constructors (e.g. Danielsson [41]). To ensure that

21For uniformity, all the code examples in this subsection have been re-written in Coq, although
some were originally in Agda.

196

functions are deemed productive even if they make non-tail recursive calls, it can be
better to make bind one of the constructors of the datatype instead of step [87].

Using the intuition that expressions of coinductive type are like processes that respond
to observations, the above encoding can be read as transforming a potentially infinite
computation into an interactive object: each time you prod it, it promptly responds
either “I’m done” (return) or “I need more time” (step). So this use of coinduction
fits well with the usual uses of coinduction to model reactive systems like web servers
or operating systems. The pattern matching rules for coinductive expressions in
Coq and Agda allow any finite observation, but do not support induction. This is
similar to the reasoning principles provided by Zombie—a Zombie program in P can
be unfolded a finite number of steps using join, but there is no support for fixpoint
induction/computational induction.

The coinductive approach also scales to more effects than just nontermination. Setzer
and Hancock [114] and Setzer [113] propose to parameterize the monad by a set of
commands and responses:

CoInductive IO (C : Set) (R: C → Set) (A : Set) : Type :=

| do : (c : C) → (f : R c → IO C R A) → IO C R A

| return : (a : A) → IO C R A.

Inductive ConsoleCommands : Set :=

| putStrLn : String → ConsoleCommands

| getLn : ConsoleCommands.

Definition ConsoleResponses (c : ConsoleCommand) : Set :=

match c with

| puStrLn s ⇒ Unit

| getLn ⇒ String

end.

Definition IOConsole : Set → Set :=

IO ConsoleCommands ConsoleResponses.

Just like in Haskell, this conception of IO can be viewed from two perspectives. A
function of type A → IO B can be viewed both as an effectful function from A to
B, or as a pure function computing a value of type IO B. In this case one can
even write some external proofs about programs by pattern-matching on values of
the IO type, e.g. to see what the first issued command is. Of course, the values
of type Computation/IO that are manipulated at type-checking time are only to be
considered a mathematical model of program behavior. When compiling the program,
they should be replaced with native facilities which do not allocate memory for step
and which actually print to the console.

197

Compared to Zombie’s direct support of general recursion, the coinductive approach
favors total functions and treats nontermination less conveniently. Nonterminating
programs must be written using monadic combinators (and are therefore never syn-
tactically equal to pure programs). The use of combinators is even more inconvenient
in a dependent language than in a simply-typed one. For simple types, monads and
type-and-effect systems are exactly equivalent [141], with the bind combinator cor-
responding to applying an effectful function, but in a dependent system there is no
direct way to “apply” a dependent function to a monadic value. So theorems about
effectful programs instead need to explictly propagate the type dependency using a
predicate transformer like Lift [41]:

CoInductive Lift (P : A → Prop) : Computation A → Prop :=

...

Lemma bindCong : Lift P x → (forall (x:A), P x → Lift Q (f x))

→ Lift Q (x >>= f).

The Computation monad provides recursive function definitions but not general re-
cursive types. Our modal-style type system [31] can support general µ-types in the
P fragment.

Finally, the coinductive approach requires a separate notion of equivalence to reason
about partial programs. In, e.g., Coq, one would compare pure expressions according
to the standard operational semantics, but define a coarser equivalence relation for
partial terms that ignores the number of steps they take to normalize. Equations
like ((rec f x .b) v) = {v/x} {rec f x .b/f } b do not hold with the usual Coq equality
because the step counts differ. Conveniently programming with equivalence relations
like this, which are not directly justified by the reduction behavior of expressions, is
an active area of research involving topics such as setoids [16], extensional equality
for coinductive types [85], quotient types, and the univalence axiom [135].

8.3 Propositional equality

The usual equality type in Coq and Agda’s standard libraries is homogenous and
has a computationally relevant elimination rule. These languages also provide the
heterogenous JMeq [84], which we discussed in Section 3.6.

Extensional Type Theory, which is the basis for Nuprl [35], is similar to our language
in that conversion is computationally irrelevant and completely erased. ETT terms
are similar to our unannotated terms, while our annotated terms correspond to ETT
typing derivations. (Unlike the usual presentation of ETT, however, our join;cbvi j :a=b

term contains step-counts, so derivations can involve many steps of computation with-
out the annotated term growing very big. This is important to be able to efficiently

198

implement so-called proof by reflection.) On the other hand, the equational theory
of ETT is different from our language, in particular it can prove extensionality while
our equality cannot.

Guru [128], like our language, is “very heterogeneous” (one can eliminate equalities
where the two sides have different types), and equalities are proved by joinability
without any type-directed rules. However, unlike our language the equality formation
rule does not require that the equated expressions are even well-typed. This can be
annoying in practice, because simple programmer errors are not caught by the type
system. Guru does not have our n-ary congruence rule Tjsubst.

GHC Core [131, 139] is similar to our core language in not having a separate notion of
definitional and propositional equality. Instead, all type equivalences—which are im-
plicit in Haskell source—must be justified by the typechecker by explicit proof terms.
The Haskell type checker builds these proofs by constraint-solving rules which auto-
matically use assumptions in the context, similar to our automatic use of congruence
closure.

8.3.1 Propositional equality and congruence closure

The idea of using congruence closure is not limited to this particular version of propo-
sitional equality. Below, we discuss how the nonstandard features of Zombie’s equality
interact with congruence closure and suggest how the algorithm could be adapted to
other settings.

Our equality is heterogeneous, but congruence closure will work just as well with
a conventional homogeneous equality. In fact, in one way a conventionally typed
equality would work better, because if would allow a more expressive congruence
rule. In first-order logic, a term is either an atom or an application, so there is
just a single congruence rule, the one for applications. One might expect that our
relation would have one congruence rule for each syntactic form (i.e. for a = b and
(x : A) → B and rec f x .a etc). However, we do not do that, because it would lead
to problems for terms with variable-binding structure. For those, one would expect
the congruence rules to go under binders, e.g.:

Γ, x : A � b = b ′

Γ � (λxA.b) = (λxA.b
′)

However, adding this rule is equivalent to adding functional extensionality, which is
not compatible with our “very heterogeneous” treatment of equality (Section 3.6.1).
Instead we adopt the rule TCCcongruence, which is phrased in terms of substitu-
tion. This rule in particular subsumes the usual congruence rule for application, but
it additionally allows changing subterms under binders, as long as the subterms do
not mention the bound variables.

199

Second, we use an n-ary congruence rule, while most theories only allow eliminating
one equation at a time. For congruence closure to work equality must be a congruence,
e.g. given a = a′ and b = b′ we should be able to conclude f a b = f a′ b′. Our
n-ary rule supports this in the most straightforward way possible. An alternative
(used in some versions of ETT [40]) would be to use separate n-ary congruence rules
for each syntactic form. Systems that only allow rewriting by one equation at a time
require some tricks to avoid ill-typed intermediate terms (e.g. Bertot and Castéran
[20] Section 8.2.7).

Finally, because elimination of propositional equality is erased, equations like a.b = a
are considered trivially true. Having such equations available is important, because
the elaborator inserts casts automatically, without detailed control by the program-
mer. In Coq that would be problematic, because an inserted cast could prevent two
terms from being equal. However, making the cast erasable is not the only possible
approach. For example, in Observational Type Theory [8] the casts are computa-
tionally relevant but the theory includes a.b = a as an axiom. In that system one
can imagine the elaborator would use the axiom to make the elaborated program
type-check.

8.3.2 Stronger equational theories

The theory of congruence closure is one among a number of related theories. One can
strengthen it in various ways by adding more reasoning rules, in order to get a more
expressive programming language. However, doing so may endanger type inference,
or even the decidability of type checking.

One obvious question is whether we could extend the relation Γ � a = b to do both
congruence reasoning and β-reduction at the same time. Unfortunately, this extension
causes the relation to become undecidable.

This is clearly the case in our language, which directly includes general recursive func-
tion definitions. But even if we allowed only terminating functions, the combination
of equality assumption and lambdas can be used to encode general recursion. For
example, reasoning in a context containing

f : Nat → Nat

h : f = (λ x. if (even x) then f (n/2) else f (3*n+1))

is equivalent to having available a direct recursive definition

f x = if (even x) then f (n/2) else f (3*n+1)

There may exist restricted versions of the problem that are still decidable. For ex-
ample, Altenkirch [7] conjectured that the equational theory of β+congruence is de-

200

cidable as long as all assumed equations are between first-order values (formed from
pairs and constants).

Another natural generalization of the equality relation is to allow rewriting by ax-
iom schemes, i.e. instead of only using ground equations a = b from the context,
also instantiate and use quantified formulas like ∀xyz.a = b. In general this gener-
alization (the “word problem”) is also not decidable, e.g. it is easy to write down
an axiom scheme for the equational theory of SKI-combinators. However, there are
semi-decision procedures such as unfailing completion [12] which form the basis of
many automated theorem provers. Such provers can achieve completeness by sys-
tematically deriving all consequences of a theory in a saturating way. They therefore
tend be good at “small but deep” problems.

Other automatic theorem provers give up completeness and instead treat axiom
schemes heuristically. In particular, SMT solvers such as Z3 [44] manage the in-
stantiation of formulas through triggers. A trigger is a set of patterns, i.e. first-order
terms with free variables, associated with a particular quantified formula. When a
new fact is added, the solver checks whether it matches a trigger pattern, and when
all patterns are matched the corresponding formula is instantiated and added as a
fact. Because the reduction behavior of functions can be axiomatized, such systems
can to some extent also be used to reason up to β-equivalence; for example the Dafny
programming language [76] uses an SMT-solver backend for verification, and compiles
functions into first-order axiom schemes.

However, choosing what parts of a formula should be its trigger can be subtle. For
example (taken from [93]), consider the following typical axiomatization of a pair
constructor and its two selector functions:

∀xy.fst(pair(x, y)) = x ∧ snd(pair(x, y)) = y

If we consider this as a general reasoning principle about pairs, we might add the
trigger {pair(x, y)}. In that case, an assumption like pair(0, a) = pair(1, a) will trigger
it, eventually yielding 0 = 1 through congruence closure. On the other hand, if
we consider the formula as the definition of the function fst it is natural to use the
trigger {fst(pair(x, y))}, in which case the trigger would not fire. Overly general
triggers hurts performance by filling up the database with useless facts, while overly
specific triggers miss useful reasoning. Modern SMT solvers typically supports both
automatically guessing a suitable trigger, or allowing the user to specify the triggers
of an axiom explicitly. Axiomatizing a theory in a way that allows the most effective
triggers is something of an art [93], with a similar flavor to logic programming.

Even when preserving decidability and completeness one can still extend congruence
closure to know about specific axioms schemes, such as for natural numbers with
successor and predecessor [97] or lists [96] or injective data constructors [39].

201

Clearly one could design a programming language around a more ambitious theory
than just congruence closure. Many languages, such as Dafny [76] and Dminor [22]
call out to an off-the-shelf theorem prover in order to take advantage of all the theories
that the prover implements. One reason we focus on a simple theory is that it makes
unification easier, which seems to offer promising avenues for future work on type
inference. As we describe in Chapter 6, unification modulo congruence closure (rigid
E-unification) is NP-complete and algorithms for it have been studied. Unification
modulo other equational theories (E-unification) must be handled on a theory-by-
theory basis, and it is not an operation exposed by most provers.

8.4 Congruence closure

There is a large literature about the theory and applications of congruence closure.
Two topics in particular are related to its use in Zombie.

8.4.1 Simplifying congruence proofs

Our evidence simplification rules are quite natural, and in fact the same rules has
been studied before for a different reason. For efficiency, users of congruence closure
want to make proofs as small as possible by taking advantage of simplifications like
refl; p 7→ p or p−1; p 7→ refl.

Stump and Tan [127] already described the first 11 simplification rules in Figure 5.9
(the ones to do with just reflexivity, symmetry, and transitivity). They go further than
we do and also prove that these rules form a convergent rewrite system, so applying
them in any order will produce a normal-form evidence term. By contrast, we only
proved that the particular simplification strategy that the Zombie implementation
uses produces normal-form terms.

The CongTrans simplification rule, which is key to producing well-typed equality
proofs, has also been studied in the context of optimizing proofs for size. There,
the issue is that uses of cong can block the other simplification rules. De Moura et
al. define the same CongTrans rule and give the following example [45]. Given
assumptions h1 : a = b, h2 : b = d, h3 : c = b, consider the proof term

(cong f (h1; h3
−1)); (cong f (h3; h2)) : fa = fd

We can get rid of the assumption h3 by doing the rewrite

(cong f (h1; h3
−1)); (cong f (h3; h2)) 7→ cong f (h1; h3

−1; h3; h2).

202

They note that it is always beneficial to apply the rule if one of the sub-proofs of cong
uses strictly fewer assumptions than the other.

8.4.2 Dependent programming with congruence closure

CoqMT [126] aims to make Coq’s definitional equality stronger by including addi-
tional equational theories, such as Presburger arithmetic, so that for example the
types Vec 0 and Vec (n× 0) can be used interchangeably. The prototype implemen-
tation only looks at the types themselves, but the metatheory also considers using
assumptions from the context. This is complicated because CoqMT still wants to
consider types modulo β-convertibility, and in contexts with inconsistent assump-
tions like true = false one could write nonterminating expressions. Therefore CoqMT
imposes restrictions on where an assumption can be used. Unfortunately, the restric-
tions also rule out interesting programs, for example using reduction modulo when
evaluating types defined by type-level computation.

VeriML makes the definitional equality user-programmable [124], and as an example
builds a “stack” combining congruence closure, β-reduction, and potentially other
theorem proving.

Neither CoqMT or VeriML prove that their implementation is complete with respect
to a declarative specification. For example, the VeriML application rule requires that
the applied function has the type T → T ′ and then checks that T is definitionally
equal to the type of the argument, but there is no attempt to also handle declarative
derivations which require definitional equality to create an arrow type.

The Guru language includes a tactic hypjoin [105] similar to our smartjoin and
unfold. However, instead of using equations from the context, the programmer
has to write an explicit list of equations, and unlike unfold it normalizes the given
equations.

203

Chapter 9

Conclusion and future work

We set out to develop a dependently typed language for lightweight verification. That
goal led us into some previously unexplored territory, and we found several new and
interesting things:

• We proved type safety for a dependently typed language with both nontermi-
nation and erasure (Chapter 3). Combining the two shows the places where
assurances of termination are needed to ensure type safety, including a rather
subtle interaction between erasure and error-effects (Section 4.1.5).

• One of the most novel parts of the core language is the treatment of propo-
sitional equality, which is erasure-based, weakly typed, and heterogeneous.
This makes quite different tradeoffs from other dependently typed languages:
it omits type-directed reasoning such as functional extensionality, but in re-
turn it makes it much easier for the programmer to use equations (Section 3.6).
Another benefit is that this formulation makes the metatheory simple, since
equality types can be interpreted as just parallel-reduction-joinability of closed
expressions (Sections 3.9 and 7.6). And because we have irrelevant elimination
and n-ary elimination, our equality works well with automatic theorem proving
algorithms such as congruence closure (Section 8.3.1).

• We showed how to design a dependent type system around congruence closure
instead of βη-equivalence (Chapter 5). This is a quite unconventional setup,
particularly suitable for programs that make heavy use of general recursion and
comparatively light use of equational reasoning. Adapting congruence closure
from untyped first-order logic to dependently typed terms required several new
ideas, both for the specification of the congruence relation (Section 5.2) and for
the algorithm to implement it (Section 5.5).

• And finally, we studied several ways to combine optional termination check-
ing with the nonterminating language, without treating nonterminating as a

204

second-class citizen (Chapter 7). The particular formulation used in Zombie
makes a novel tradeoff which omits termination-inversion in order to support
both typechecking-time reduction and general recursion without side conditions
(Section 7.7.1).

9.1 How close are we to a language for lightweight

verification?

The ideal we aspire to is that a programmer should be able to start out programming
just as in a conventional functional programming language, and then gradually evolve
the program to include more formal verification where appropriate. So we should
compare Zombie to both existing functional and existing dependent languages.

When compared to functional languages, Zombie comes close. It has essentially all the
features in the Haskell98 core language Of course, the Haskell surface language has
various other features (e.g. typeclasses), but supporting those require no theoretical
advances, only implementation effort.

Compared to Standard ML the gap is slightly bigger, because Zombie does not have
mutable references or catchable exceptions. Other languages such as F∗ and Deputy
are able to support those by only providing “value dependent” or “purely dependent”
types (Section 4.2). Similar ideas could probably be used to design a dialect of Zombie
with memory effects.

On the other hand, if we compare program verification in Zombie to similar devel-
opments in Coq or Agda (Chapter 2), the developments in Zombie are more tedious.
Our decision to omit β-reduction completely from the surface language (Chapter 5)
is well-behaved theoretically, but results in verbose programs. In order to make veri-
fication more pleasant, it would probably be worthwhile to introduce some automatic
β-reductions also. The experience with Cayenne [10] was that even a simple scheme
with a global cut-off for how many steps the typechecker takes was enough to type-
check many practical programs. The drawback of such a system would be that there
is no simple declarative specification of which programs are well-typed.

9.2 Future work and future impact

As we have seen throughout the thesis, there are various loose ends and unanswered
questions which could be tidied up. For example: Can we find a different declarative
presentation of the surface language which gets rid of the injrng restriction (Sec-
tion 5.4)? Can we define unification-based type inference as a constraint problem

205

(Section 6.4)? Can we integrate stronger forms of induction (Section 7.2.1)? Can we
support non-logical types in the programmatic fragment, and can we provide ways
to externally reason about such programs (Section 7.7.2)? Would elaboration work
better with an effect-style type system (Section 7.7.3)?

Further in the future, it would be interesting to incorporate more ambitious automatic
theorem proving. Congruence closure is perhaps the simplest equational theory, so
it is interesting to what it is like to program using it alone. But as we describe in
Section 8.3.2 there are stronger theories. It would be particularly interesting to see if
one could add restricted versions of β-convertibility which would preserve decidability
while still convering the most used cases. Existing languages like Coq sometimes do
“too much” β-reduction, and provide various features to prevent expressions from
reducing (both for performance, and because proof-construction tactics like auto do
not respect β), so having more detailed control over reduction could be welcome.
Similarly, unification modulo congruence (Chapter 6) could useful not only for type
inference, but also for automatic proof search.

We also hope that this research will be useful as a building block for programming
language designers in the future. This could be both when adding more support
for functional programming to dependent languages, or more support for dependent
types to functional languages.

In the first direction, for example Idris [27] is a dependently typed language which
aims to be useful for practical programming. Like Zombie, Idris allows the program-
mer to write general recursive programs directly. However, unlike Zombie the Idris
typechecker will never reduce non-total functions. This choice is mainly because the
implications of nontermination were poorly understood, and treating these expres-
sions opaquely is the conservative choice.22 The metatheoretic proofs for Zombie
(Sections 3.9 and 7.6) show that typechecking-time reduction can be added the a
language without endangering desirable properties like type safety and consistency,
and could embolden future language designers.

For an example in the other direction, the last decade has seen more and more fea-
tures inspired by dependent type systems added to Haskell, and that trend seems set
to continue. The Haskell typechecker automatically makes use of equality assump-
tions from the context to typecheck programs. Although as far as we know nobody
has characterized exactly how the Haskell constraint solving rules compare to the
congruence closure problem, the two problems seem quite similar. As Haskell adds
more and more dependently typed features (such as first-class equations), we expect
that our adaption of congruence closure to a dependently-typed setting (Chapter 5)
will become more relevant.

22Edwin Brady, personal communication.

206

Appendix A

Proofs related to Chapter 5

A.1 Assumptions

A.1.1 Assumptions about the annotated core language

The following properties of the core language were proved in our prior work [120], so
in this paper we assume them without proof.

Assumption 47 (Weakening for annotated language). If Γ ` a : A and Γ ⊆ Γ′,
then Γ′ ` a : A.

Assumption 48 (Strengthening for annotated language). If Γ,Γ′ ` b : B and
FV (b) ⊆ dom (Γ), then Γ ` b : B .

Assumption 49 (Inversion for type well-formedness). 1. If Γ ` a = b : C , then
Γ ` a = b : Type and there exists A and B such that Γ ` a : A and Γ ` b : B .

2. If Γ ` (x : A) → B : C , then Γ ` (x : A) → B : Type and Γ ` A : Type and
Γ, x : A ` B : Type.

3. If Γ ` •(x : A) → B : C , then Γ ` •(x : A) → B : Type and Γ ` A : Type and
Γ, x : A ` B : Type.

Assumption 50 (Substitution for fully-annotated language). If Γ, x : A ` b : B and
Γ ` v : A, then Γ ` {v/x} b : {v/x}B .

Assumption 51 (Regularity for fully-annotated language).

If ` Γ and x : A ∈ Γ, then Γ ` A : Type.

If Γ ` a : A then ` Γ and Γ ` A : Type

207

A.1.2 Algorithmic congruence closure relations

Next we specify what assumptions we make about the congruence closure algorithm.
Calls to it are represented as judgements:

• Γ A =? (x : A′)→ B ′ ; v

• Γ A =? [x : A′]→ B ′ ; v

• Γ A =? (A′ = B ′) ; v

• Γ A
?
= B ; v

Here, A and B are inputs, while A′, B ′ and v are outputs. For example, Γ A =? (x :
A′)→ B ′ ; v means “find A′ and B′ such that Γ � A = (x :A′)→ B ′, and a v such
that Γ ` v : A = ((x : A′)→ B ′)”. Note that the judgement Γ A =? A′ → B ′ ; v
is syntactic sugar for the dependently-typed version, Γ A =? (x : A′)→ B ′ ; v .

By using the congruence closure algorithm presented in Section 5.5 these relations
can be straightforwardly implemented: one constructs the congruence closure of all
equations in the context, and then checks whether the equivalence class of A contains
any members with the right form (and return the first one found if there are several).
Note that this algorithm will give the same answer for two inputs which are in the
same equivalence class (but with a different proof v). We formalize that observation
as the following assumption.

Assumption 52. (Respects CC) If Γ � A = B

• Γ B
?
= C ; v1 then Γ A

?
= C ; v2.

• Γ B =? (x : C1)→ C2 ; v1 then Γ A =? (x : C1)→ C2 ; v2.

• other forms of types

Furthermore, the algorithm can also generate terms in the core language that prove
that the required equation holds. We write this as Γ A =? (x : B1)→ B2 ; v , etc.
It is also convenient to specify that the inferred proof always erases to just join. That
is, we assume the following interface.

Assumption 53. (CC soundness for function types) If Γ A =? (x : B1)→ B2 ; v ,
then Γ ` v : A = ((x :B1)→ B2) and |v | = join and Γ � A = ((x :B1)→ B2).

Similar assumptions are required for the other versions of the relation.

Finally we use the elaborating relation Γ A
?
= B ; v , which decides whether

Γ � A = B (both A and B are inputs), and if so produces a core proof term v for the
equation.

208

Assumption 54. (CC soundness) If Γ A
?
= B ; v , then Γ ` v : A = B and

|v | = join and Γ � A = B .

Assumption 55. (CC completeness) If Γ � A = (x : B1) → B2 then there exists a
(x :B ′1)→ B ′2 and v such that Γ A =? (x : B1)→ B2 ; v succeeds.

Similar assumptions are required for the other versions of the relation.

A.2 Proofs about the congruence closure relation

A.2.1 Properties of typed congruence closure relation

|a| = |b|
Γ ` a = b

CCrefl
Γ ` a = b

Γ ` b = a
CCsym

Γ ` a = b Γ ` b = c

Γ ` a = c
CCtrans

x : A ∈ Γ
Γ ` A = (a = b)

Γ ` a = b
CCassumption

Γ ` a = b

Γ ` {a/x} c = {b/x} c
CCcongruence

Γ ` (A1 → B1) = (A2 → B2)

Γ ` A1 = B1

CCinjdom
Γ ` (A1 → B1) = (A2 → B2)

Γ ` A2 = B2

CCinjrng

Γ ` (•A1 → B1) = (•A2 → B2)

Γ ` A1 = B1

CCiinjdom
Γ ` (a1 = a2) = (b1 = b2)

Γ ` ak = bk
CCinjeq

Γ ` (•A1 → B1) = (•A2 → B2)

Γ ` A2 = B2

CCiinjrng

Figure A.1: Untyped congruence closure

This subsection gives the proofs for the results described in Sections 5.5.1 and 5.5.3.
The main result is a theorem relating the typed congruence closure relation Γ � a = b
with an untyped variation Γ ` a = b. The latter is defined in Figure A.1.

Definition 56 (Injective labels). We define the judgement F injective to mean that
F is one of –→ – or •–→ – or – = – .

Lemma 57 (Weakening for congruence closure). If Γ � a = b and ` Γ,Γ′, then
Γ,Γ′ � a = b.

209

Proof. Easy induction on Γ � a = b. All cases except TCCassumption are direct
by the IH.

Lemma 58 (Regularity for congruence closure).
If Γ � a = b then Γ ` a = b : Type.

Proof. Induction on Γ � a = b. The cases are:

TCCrefl, TCCcongruence, TCCerasure These rules have a typing assumption
which proves Γ ` a = b : Type.

TCCsym,TCCtrans Direct by IH.

TCCinjrng By the IH, we get that Γ ` (A1 → B1) = (A2 → B2). Applying kinding
inversion (lemma 49) twice we find Γ ` A1 : Type and Γ, x : A1 ` B1 : Type,
and similarly for A2 and B2. Since x is not free in B1 (this is a simple type), by
strengthening (lemma 48) we know Γ ` B1 : Type. Similarly, Γ ` B2 : Type. So
we have Γ ` B1 = B2 : Type as required.

TCCinjdom,TCCiinjdom,TCCiinjrng,TCCinjeq Similar to the previous case.

We define the judgement Γ `L p : a = b (“p is evidence that Γ ` a = b”) in the
obvious way, by adding evidence terms to each inference rule in the definition in
Γ `L a = b. The resulting rules are shown in Figure A.2. The grammar of evidence
terms (which was also shown in the main paper) is as follows

p, q ::= x.p | refl | p−1 | p; q | inji p | cong A p1 .. pi

Note that the notation −1 (symmetry) and ; (transitivity) are simply syntactic con-
structors of evidence terms, as opposed to functions operating on evidence terms.

Lemma 59 (Γ `L p : a = b is deterministic). If Γ `L p : a = b and Γ `L p : a ′ = b ′,
then a = a′ and b = b′.

Proof. Simple induction on p. We implicitly assume that Γ only has one binding for
any given variable.

The evidence simplification relation p 7→ q was already shown in Figure 5.9, but we
repeat it in Figure A.3 in order to give names to the rules so we can conveniently
refer to them. We write 7→∗ for the transitive closure of 7→.

Lemma 60. If Γ `L p : a = b and p 7→ q, then Γ `L q : a = b.

Proof. Induction on on p 7→ q , then do inversion on the assumption Γ `L p : a = b.

210

Γ `L refl : a = a
CCPrefl m

Γ `L p : a = b

Γ `L p−1 : b = a
CCPsym m

Γ `L p : a = b
Γ `L q : b = c

Γ `L p; q : a = c
CCPtrans

x : A ∈ Γ
Γ `L p : A = ((– = –) a b)

Γ `L x.p : a = b
CCPassumption

∀k . Γ `L pk : ak = bk

Γ `L congF pk
k : F ai = F bi

CCPcong

Γ `L p : F ai = F bi
F injective

Γ `L inji p : ai = bi
CCPinj

Figure A.2: (Untyped, labelled) congruence closure, tracking the evidence terms

In InvTrans1 and InvTrans2, we use lemma 59 to know that the two occurrences
of p prove the same equation.

Next, we define a syntactic class of of fully simplified evidence term, as follows.We
define grammars for synthesizable term pS , checkable terms pC , and chained terms p∗

(containing zero or more ps—an empty chain denotes the term refl, and a nonempty
chain denotes a sequence of right-associated uses of transitivity p1; (p2; (. . . ; pn))).
The metavariable p∗LR ranges over chains that begin and end with a synthesizable
term (as opposed to an empty chain or a chain with a pC at the beginning or end),
and p∗R over chains that end with a pS (but may have a pC at the beginning). Finally,
x o is an abbreviation for x o

.refl.

o ::= 1 | − 1
pS ::= x o | x o

.p∗R
| inj i pS | p∗LR

pC ::= cong A p
∗
1 .. p

∗
i

p∗ ::= (pS | pC)∗

p∗R ::= (p∗; pS)
p∗LR ::= pS | (pS ; p∗; pS)

There is one additional condition which is not shown in the grammar: there must
never be two check-terms adjacent to each other in a chain.

Lemma 61. If Γ `L p : a = b, then there exists some p∗ such that p 7→∗ p∗.

Proof. As a first step, we use the Inv∗ rules to push uses of symmetry to the leaves of
the evidence term. That is, the symmetry rule is only applied the uses of assumptions
from the contexts. So without loss of generality we can assume that the evidence term

211

p 7→ p null
refl−1 7→ refl InvRefl
refl; p 7→ p ReflTrans1
p; refl 7→ p ReflTrans2
(p; q); r 7→ p; (q ; r) TransTrans
p; p−1 7→ refl InvTrans1
p−1; p 7→ refl InvTrans2
p; (p−1; r) 7→ r InvCTrans1
p−1; (p; r) 7→ r InvCTrans2

p−1−1 7→ p InvInv

(p; q)−1 7→ q−1; p−1 InvTrans

(cong A p1 .. pi)
−1 7→ cong A p1

−1 .. pi
−1 InvCong

(inji p)−1 7→ inji (p−1) InvInj

(cong A p1 ... pi); (cong A q1 ... qi) 7→ cong A (p1; q1) .. (pi ; qi) CongTrans

injk (cong A p1 ... pi) 7→ pk InjCong1
injk ((cong A p1 .. pi); r) 7→ pk ; (injk r) InjCong2
injk (r ; (cong A p1 ... pi)) 7→ (injk r); pk InjCong3
x.(r ;cong = p q) 7→ p−1; (x.r); q AssumCong

p 7→ p ′

x.p 7→ x.p′
assumption

p 7→ p ′

q 7→ q ′

p; q 7→ p ′; q ′
trans

∀k . pk 7→ p ′k
cong A p1 .. pi 7→ cong A p ′1 .. p

′
i

cong
p 7→ p ′

injk p 7→ injk p ′
inj

Figure A.3: Simplification rules for evidence terms (with names for rules)

212

p belongs to the following subgrammar.

p ::= x o
.p | refl | p; q | inji p | cong A p1 .. pi

Next, we proceed by induction on the structure of p. In each case, we must show
there exists some evidence chain p∗ such that p 7→∗ p∗.

• The term is x o
.p . By IH, we know p 7→∗ p∗.

If p∗ is empty (refl) or ends with a synthesizable term, then the term x o
.p∗ is a

valid chain and we are done.

Otherwise, p∗ ends with a use of cong, i.e. p∗ is r∗; cong A q1 .. qi . However, by
the assumption we know that Γ `L x o

.(r∗;cong A q1 ... qi)
: a = b. Assuming (wlog)

that o = 1, this means that Γ `L (r∗; cong A q1 ... qi) : A = (a = b). By inversion
we know that the label A is = and there are exactly two subterms q1 and q2, so
we can simplify using AssumCong:

x.(r∗;cong = q1 q2) 7→ q1
−1; (x.r∗); q2

which is a valid chain. Similarly, in the case o = −1 we can simplify using
AssumCong and InvTrans:

x−.(r∗;cong = q1 q2)1 7→ q2
−1; (x.r∗)

−1; q1

• The term is refl. This is already a valid (empty) chain.

• The term is p; q . By the IHs for p and q we know that there are chains p∗ and
q∗. We must now show that p∗; q∗ can be simplified into a valid chain r∗.

If p∗ is the empty chain refl, then by ReflTrans1 we can just return q∗.
Similarly if q∗ is empty, then by ReflTrans2 we can return p∗.

If both p∗ and q∗ are nonempty, we use TransTrans to reassociate p∗; q∗ into
a right-associated chain. However, we must also ensure that the resulting chain
does not contain two adjacent pC s. That would happen if p∗ ends with a use of
cong and q∗ begins with cong. In that case, after reassociation we end up with
a subproof of the form

(cong A p1 .. pi); (cong B q1 .. qj)

By assumption we know this is evidence for some equation a = b. By inversion
on the judgement

Γ `L (cong A p1 .. pi); (cong B q1 .. qj) : a = b

213

we see that we must have A = B and i = j, and a = b must be A ai =A bi.
Then we can use CongTrans to simplify to a single use of cong.

• The term is inji p. By IH we know p 7→∗ p∗.

Now, inj i p∗ may not be a valid normalized evidence term, because it may
violate the condition that p∗ begins and ends with a pS . Let p∗ = q∗1; q∗2; q∗3,
such that q∗1 and q∗3 consists only of checkable terms and q∗2 begins and ends
with a synthesizable term. Now apply InjCong2 and InjCong3 repeatedly
to simplify q∗1 and q∗3. We get

inj i p∗ 7→∗ r∗1; (inj i q∗2); r∗3

where r∗1 consists of subterms from the cong-expressions in q∗1, and similarly for
q∗3.

Finally, at this point r∗1 and r∗3 may contain adjacent cong-terms, so we need to
simplify them using CongTrans as in the previous case.

• The term is cong A p1 .. pi . By the IHs, we know pk 7→∗ p∗k . Then

cong A p1 .. pi 7→∗ cong A p
∗
1 .. p

∗
i

which is a valid chain.

Intuitively, the label function recursively decomposes a term a into a first-ordered
“labelled” expression F (a1, . . . , ak), where F is the least nontrival linear multi-hole
context that agrees with a. The label function takes an expression a, and returns a
label F together with a list of subexpressions ak. We write this as

label a = F ai

The function label is defined in turns of a helper function labelS a, which takes as
argument a set of variables S and an expression a and also returns A ai, with the
additional constraint that labelS tries to select the smallest label F such that FV (ak)∩
S = ∅. The two functions are quite similar (in the Haskell implementation there is
just one function which takes an extra boolean argument); the difference is that labelS
can return the trivial context which is just a single hole, whereas label always chooses

214

a label that contains at least one syntactic constructor.

label Type = (Type)
label x = (x)
label (rec fA x .a) = (rec f x.F) ai

where label{f ,x} a = F ai
label (rec fA •x .a) = (rec f • .F) ai

where label{f ,x} a = F ai
label (a b) = (– –) (label a) (label b)
label (a •b) = (– •) (label a)
label ((x :A)→ B) = (x : –)→ F) (label A) Bi

where label{x} B = F Bi

label (•(x :A)→ B) = •(x : –)→ F) (label A) Bi

where label{x} B = F Bi

label (a = b) = (– = –) (label a) (label b)
label joinΣ = (join)
label (a.b) = label a

labelS a = (–) (label a)
when FV (a) ∩ S = ∅

Otherwise:
labelS x = (x)
labelS (rec fA x .a) = (rec f x.F) ai

where labelS∪{f ,x} a = F ai
labelS (rec fA •x .a) = (rec f • .F) ai

where labelS∪{f ,x} a = F ai
labelS (a b) = (F G) ai bi

where labelS a = F ai
and labelS b = Gbi

labelS (a •b) = (F •) ai
where labelS a = F ai

labelS ((x :A)→ B) = ((x : F)→ G) Ai Bi

where labelS A = F Ai
and labelS∪{x} B = GBi

labelS (•(x :A)→ B) = (•(x : F)→ G) Ai Bi

where labelS A = F Ai
and labelS∪{x} B = GBi

labelS (a = b) = (F G) ai bi
where labelS a = F ai
and labelS b = Gbi

labelS joinΣ = (join)
labelS (a.b) = labelS a

215

We also define the “inverse” function unlabel, which simply substitutes away all the
label applications. The function unlabel is defined by recursion on the labelled term:

unlabel (F ai) = {unlabel a1/x1} ... {unlabel aj/xj}F

when the holes in F are named x1 through xj.

Lemmas 62–65 are all proved by inductions on the term a.

Lemma 62 (unlabel-label). For any a, we have unlabel (label a) = |a|.

Lemma 63 (Substituting into a label). Suppose label a ′ = F ai where the holes in
F are named x1 . . . xi . Then |a ′| = |{unlabel a1/x1} ... {unlabel aj/xk}F |.

Lemma 64 (label does not let bound variables escape).

• If label a = F ai, then for every k we have FV (ak) ⊆ FV (a).

• If labelS a = F ai, then for every k we have FV (ak) ⊆ (FV (a) \ S).

Lemma 65 (label decides erasure). For any expressions a and b, we have |a| = |b|
iff (label a) = (label b)

Lemma 66. For all a, b and c such that FV (a) ∩ S = ∅ and FV (b) ∩ S = ∅, if
labelS {a/x} c = F ai and labelS {b/x} c = Gbi, then F = G, and there exists ci such
that for all k, ak = label {a/x} ck and bk = label {b/x} ck .a

Proof. Induction on the structure of c.

c is x Then since we assumed that a and b have no free variables in S, labelS {a/x} c =
(–) (label a) and labelS {b/x} c = (–) (label b), so the labels are equal and we
can take the list to be just c0 = x.

c is Type Then labelS {a/x} c = labelS {b/x} c = (Type), so the labels are indeed
equal, and we can take the empty list for ci.

c is some variable y 6= x Similar to the previous case.

c is joinΣ Similar to the previous case.

c is rec fA y .c0 Let labelS {a/x} c0 = F ai and labelS {b/x} c0 = Gbi. By the IH we
know F = G, and there is a list ci.

Now, labelS {a/x} c = (rec f y .F) ai and labelS {b/x} c = (rec f y .G) bi. So the
labels are indeed equal, and the list of expressions is just ci.

c is rec fA •y .c0 Similar to the previous case.

216

c is (y :C1)→ C2 Let
labelS {a/x}C1 = F ai
labelS {b/x}C1 = Gbi
labelS∪{y} {a/x}C2 = F ′ ai

′

labelS∪{y} {b/x}C2 = G′ bi
′

Since we can choose the bound variable y fresh, the disjointness condition on
S is still satisfied. So by the IHs we get that F = G and F ′ = G′, and also
suitable lists ci and ci.

Now, labelS {a/x} ((y :C1)→ C2) = ((y : F)→ F ′) ai ai
′ and labelS {b/x} ((y :

C1) → C2) = ((y : F) → F ′) bi bi
′
. So the label is indeed the same for both

applications, and ci ci
′ is a suitable list.

c is •(y :C1)→ C2 or c1 c2 or c1 = c2 Similar to the previous case.

c is c1 •c2 Let
labelS {a/x} c1 = F ai
labelS {b/x} c1 = Gbi

The IH gives F = G and a list ci. The label we return is (F •), and the
argument list is ci.

c is c1.c2 Similar to the previous case.

Lemma 67 (CC implies LCC, the congruence case). For all c, if Γ `L label a = label b
then Γ `L label {a/x} c = label {b/x} c

Proof. Simultaneous induction on the structure of c. Most of the cases are similar,
so we show only some representative ones.

c is x we must show Γ `L label a = label b, which we have as an assumption.

c is Type . Then both label {a/x} c and label {b/x} c are just (Type), so LCCrefl
proves the required equation.

c is a variable y 6= x Similar to previous case.

c is some variable joinΣ Similar to the previous case.

c is rec fA y .c0 By lemma 66, there is some F and ci such that label{f ,y} {a/x} c0 =

F ai and label{f ,y} {b/x} c0 = F bi, and furthermore ak = label {a/x} ck and
bk = label {b/x} ck .

By the IH, we know that ∀k . Γ `L ak = bk . Note that label {a/x} (rec fA y .c0)
is (rec f y .F) ai, and label {b/x} (rec fA y .c0) is (rec f y .F) bi. So by LCCcong
using the label (rec f y .F) we have Γ `L {a/x} c = {b/x} c as required.

217

c is rec fA •y .c0 Similar to the previous case.

c is (y :C1)→ C2 By lemma 66, there is some F and ci such that labelS {a/x}C2 =
F ai and labelS {b/x}C2 = F bi, and furthermore ak = label {a/x} ck and bk =
label {b/x} ck .

Now label {a/x} c = ((y : –)→ F) (label {a/x}C1)ai. and
label {b/x} c = ((y : –)→ F) (label {b/x}C1)bi.

By the IHs we get Γ `L label {a/x}C1 = label {b/x}C1 and also ∀k . Γ `L ak =
bk . So we conclude by LCCcong using the label ((y : –)→ F).

c is •(y :C1)→ C2 or c1 c2 or c1 = c2 Similar to the previous case.

c is c1 •c2 Then label {a/x} c is (– •) (label {a/x} c1) and
label {b/x} c is (– •) (label {b/x} c1). By the IH we have Γ `L label {a/x} c1 =
label {b/x} b1. So we conclude by LCCcong using the label (– •).

c is c1.c2 Similar to the previous case.

Lemma 68 (label preserves CC). If Γ ` a = b, then label Γ `L label a = label b.

Proof. Induction on Γ ` a = b. The cases are

CCrefl We are given
|a| = |b|

Γ ` a = b
CCrefl

From |a| = |b| and lemma 65 we know label a = label b. So apply LCCrefl.

CCsym,CCtrans These follow directly by IH.

CCassumption We are given

x : A ∈ Γ
Γ ` A = (a = b)

Γ ` a = b
CCassumption

Since x : A ∈ Γ we know x : label A ∈ label Γ. And by the IH we have label Γ `
label A = label (a = b). Since label (a = b) is the same as label a = label b, we
conclude by LCCassumption.

CCcongruence We are given

Γ ` a = b

Γ ` {a/x} c = {b/x} c
CCcongruence

Apply lemma 67.

218

CCinjdom We are given

Γ ` (A1 → B1) = (A2 → B2)

Γ ` A1 = B1

CCinjdom

The IH gives label Γ ` label (A1 → B1) = label (A2 → B2), which is the same
as label Γ ` (– → –) (label A1) (label B1) = (– → –) (label A2) (label B2). And
(–→ –) is an injective label, so we conclude by CCinjectivity.

CCinjrng,CCiinjdom,CCiinjrng,CCinjeq These cases are similar to the previ-
ous one.

Lemma 69 (Label arguments arise from well-typed subexpressions).

• If Γ ` a ′ : A, and label a ′ = F ai, then for every ak there exists a ′k such that
Γ ` a ′k : Ak and ak = label a ′k .

• If Γ ` a ′ : A, and labelS a ′ = F ai, then for every ak there exists a ′k such that
Γ ` a ′k : Ak and ak = label a ′k .

Proof. (Strong) induction on the structure of a ′. Most of the cases of the induction
are similar, so we do not show all of them. A few representative cases for label are:

a ′ is Type or some variable x Then label a ′ is a nullary label-application, so ai is
empty and the lemma is vacuously true.

a ′ is rec fA x .b ′ There is only one typing rule for rec-expressions, so from the judge-
ment Γ ` a ′ : A, we know that

Γ, f : (x :A1)→ A2, x : A1 ` b ′ : A2

From the definition of label we know that label a ′ is (rec f:A x.F) ai, where
label{f ,x} b = F ai. So by the IH for a ′ we know that there exists a ′k such that
ak = label a ′k and Γ, f : (x : A1) → A2, x : A1 ` a ′k : A′. By lemma 64 we
know that f and x are not free in a ′k , so by strengthening (lemma 48) we have
Γ ` a ′k : A′ as required.

a ′ is b ′ c ′ Then label a ′ is (– –) bi ci. The expression ak must belong to one of the
lists bi or ci, so by the IH for b ′ or c′ we get a corresponding b ′k or c ′k .

A few representative cases for labelS are:

a ′ has no free variables in S Then labelS a ′ = (–) (label a ′). So there is only a
single ak, which must be (label a ′). Thus we can take a ′k = a ′.

219

a ′ is Type or some variable x Similar to the corresponding case for label: labelS a ′

is a nullary label-application and the lemma is vacuously true.

a ′ is rec fA x .b ′ As in the case for label, we know that

Γ, f : (x :A1)→ A2, x : A1 ` b ′ : A2

and labelS a ′ is (rec f:A x.F) ai, where labelS∪{f ,x} b = F ai. Conclude by IH
and strengthening as in the above case.

a ′ is b ′ c ′ Then labelS a ′ is (F G) bi ci. The expression ak must belong to one of the
lists bi or ci, so by the IH for b ′ or c′ we get a corresponding b ′k or c ′k .

Lemma 70 (Inversion for label).

• If (label A′) = (– = –) a b, then there exists a ′ and b ′ such that A′ = (a′ = b′)
and (label a ′) = a and (label b ′) = b.

• If label A′ = (–→ –) a1 a2, then there exists a ′1 and a ′2 such that A′ = (a ′1 → a ′2),
and (label a ′1) = a1 and (label a ′2) = a2.

• Similar for •a ′1 → a ′2

• Similar fpr a ′1 = a ′2.

Proof. Immediate from considering cases for A′ and examining the definition of label.

Lemma 71 (Normalized untyped CC implies typed CC).

• If label Γ′ `L pS : a = b, then there exists annotated core expressions a′, b′ such
that a = label a ′ and b = label b ′ and Γ′ � a ′ = b ′.

• If label Γ′ `L pC : label a ′ = label b ′ and Γ′ ` a ′ = b ′ : Type, then Γ′ � a ′ = b ′.

• If label Γ′ `L p∗ : label a ′ = label b ′ and Γ′ ` a ′ = b ′ : Type, then Γ′ � a ′ = b ′.

• If label Γ′ `L p∗R : label a ′ = b and Γ′ ` a ′ : A, then there exists an b ′ such that
b = label b ′ and Γ′ � a ′ = b ′.

Proof. We proceed by mutual induction on the sizes of pS and p∗. The cases for pS
are:

The evidence is x.p∗R By examining the definition of Γ `L p : a = b, we see that
the only rule that applies is CCPassumption, so we know we have

x : A ∈ (label Γ′)
label Γ′ `L p∗R : A = ((– = –) a b)

220

From x : A ∈ (label Γ′) we know that A = label A′ for some x : A′ ∈ Γ′.

Then from the mutual IH for p∗R we known that there exists some B ′ such that
((– = –) a b) = label B ′ and Γ′ � A′ = B ′.

Further, by lemma 70 we know that B ′ = label (a ′ = b ′) for some expressions
a ′ and b ′ such that a = label a ′ and b = label b ′. So we have shown Γ′ � A′ =
(a ′ = b ′). Now apply TCCassumption to conclude Γ′ � a ′ = b ′ as required.

The evidence is (x.p∗R)−1 By reasoning as in the previous case we get some a′ and
b′ such that a = label a ′ and b = label b ′ and Γ′ � a ′ = b ′. Then apply TCCsym
to conclude Γ′ � b ′ = b ′ as required.

The evidence is inj i pS By examining the definition of the Γ `L p : a = b judge-
ment we see that the only rule that applies is CCPinj. So we must have

label Γ′ `L pS : F ai = F bi
F injective

Recall that F injective means that F is either –→ –, – = –, or •–→ –.

We consider the case when it is – → – and i is 1; the other cases are similar.
That is, the assumed derivation looks like

label Γ′ ` pS : (–→ –) a1 a2 = (–→ –) b1 b2

label Γ′ `L inj i pS : a1 = b1

From the IH we get expressions A′ and B ′ such that (– → –) a1 a2 = label A′

and (– → –) b1 b2 = label B ′, and Γ′ � A′ = B ′. By lemma 70 we then know
A′ = (a ′1 → a ′2) and B ′ = (b ′1 → b ′2) Then apply TCCinjdom to conclude
Γ′ � a ′1 = b ′1 as required.

The evidence is a chain p∗LR From the grammar for p∗LR that means that it is ei-
ther a single terms pS (which we dealt with in the above cases), or it is a chain
starting and ending with a synthesizable term, that is p∗LR is pS ; q∗; rS .

In the latter case, by the IH for pS and rS we get terms c ′1 and c ′2 such that
Γ � label a ′ = label c′1 and Γ � label c ′1 = b ′.

Now we can apply the mutual induction hypothesis for the chain r∗, to get
Γ′ � c ′1 = c ′2.

Finally, apply transitivity (CCPtrans) twice to conclude Γ′ � a ′ = b ′ as
required.

The only case for pC is when the evidence term is a use of congruence,
congF p1 .. pi . The only rule that applies is CCPcong, so the assumed derivation

221

is
∀k . label Γ′ `L pk : ak = bk

label Γ′ `L congF p1 .. pi : F ai = F bi

By assumption we know that (F ai) = (label a ′) and (F bi) = (label b ′).

From the assumption Γ ` a ′ = b ′ : Type we know a ′ and b ′ are well typed, so by
lemma 69 we know that for every ak there exists a well typed a ′k such that ak = label a ′k ,
and similarly for bk .

So from IH for pk we know ∀k . Γ′ � a ′k = b ′k .

By lemma 63 we know that |a ′| = |{unlabel a1/x1} ... {unlabel ai/xi}F |. Since unlabel
is inverse to label (lemma 62) this means |a ′| = |{a ′1/x1} ... {a ′i/xi}F |. Similarly,
|b ′| = |{b ′1/x1} ... {b ′i/xi}F |. Finally, we know that Γ′ ` a ′ = b ′ : Type by the
assumption to the theorem.

So by TCCcongruence, Γ′ � a ′ = b ′ as required.

The cases for p∗ are:

The empty chain (refl) The only rule that can apply is CCPrefl, so we know
that (label a ′) = (label b ′). By lemma 65 this implies that |a ′| = |b ′|. We know
as an assumption to the lemma that Γ′ ` a ′ = b ′, apply TCCerasure to
conclude Γ′ � a ′ = b ′ as required.

A chain consisting of a single term, p The evidence term p must be either a
checkable are a synthesizable term. In the case when it is a pC we directly
appeal to the mutual IH.

In the case when it is a pS , by the mutual IH we know that there are a ′′ and
b ′′ such that a = label a ′′ and b = label b ′′ and label Γ′ � a ′′ = b ′′.

Since label a ′ = label a ′′, by lemma 65 we know |a ′| = |a ′′|, and similarly |b ′′| =
|b ′|. So by two uses each of TCCerasure and TCCtrans we get label Γ′ �
a ′ = b ′, as required.

A chain of length > 1, starting with synthesizable term, pS ; q∗ The only rule
that applies is CCPtrans, so we must have

label Γ′ `L p : a = c
label Γ′ `L q∗ : c = b

From the mutual IH for pS we know that there is some a ′′ and c ′′ such that
a = label a ′′, c = label c ′′, and label Γ′ � a ′′ = c ′′. By reasoning as in the
previous case we also know that label Γ′ � a ′ = a ′′.

Now by the IH for q∗ we know label Γ′ � c ′′ = b ′.

So by transitivity (TCCtrans) we get label Γ′ � a ′ = b ′′ as required.

222

A chain of length > 1, starting with a checkable term, pC ; qS ; r∗ The defini-
tion of chains stipulates that there must never be two adjacent pC s, so we know
that the second evidence term in the chain, qS , is synthesizable.

The only rule that applies is CCPtrans, so we must have

label Γ′ `L pC : a = c1

label Γ′ `L qS : c1 = c2

label Γ′ `L r∗ : c2 = b

By the mutual IH for qS we get suitable c ′1 and c ′2. Then apply the IHs for pC
and r∗.

The cases for p∗R are similar to the reasoning for general chains p∗.

Lemma 72 (Core proof terms for Γ � a = b). If Γ � a = b, then there exists some
value v in the annotated core language such that Γ ` v : a = b.

Proof. Induction on the judgement Γ � a = b.

TCCerasure The assumed derivation looks like

|a| = |b|
Γ ` a : A Γ ` b : B

Γ � a = b
TCCerasure

From the regularity assumptions Γ ` a : A and Γ ` b : B we know Γ ` a = b :
Type. So the equation follows from a use of join:

|a|;0
cbv |a| |b|;0

cbv |a| Γ′ ` a = b : Type

Γ′ ` join;cbv00:a=b : a = b

TCCrefl Similar to the previous case.

TCCsym By IH we get Γ ` v : a = b. From regularity (lemma 58) we know that
a is typeable, so Γ ` a = a : Type. then we can prove b = b using Tcast,
Tsubst and Tjoinc, as follows:

Γ ` v : a = b
Γ ` join∼v=a : (a = a) = (b = a)

Γ ` a = a : Type
Γ ` join;cbv00:a=a : a = a

Γ ` join;cbv00:a=a.join∼v=a
: b = a

TCCtrans The assumed derivation looks like

Γ � a = b Γ � b = c

Γ � a = c
TCCtrans

223

The IHs are Γ ` v1 : a = b and Γ ` v2 : b = c. We can then prove a = c using
Tjcast and Tjsubst:

Γ ` v1 : a = b

Γ ` v2 : b = c

Γ ` joina=∼v2 : (a = b) = (a = c)

Γ ` v.joina=∼v2
: a = c

TCCassumption The assumed derivation looks like

x : A ∈ Γ
Γ � A = (a = b)

Γ � a = b
TCCassumption

The IH gives Γ ` v : A = (a = b), so Γ ` x.v : a = b.

TCCcongruence The assumed derivation looks like

Γ ` A = B : Type ∀k . Γ � ak = bk
|A = B | = |{a1/x1} ... {aj/xj} c = {b1/x1} ... {bj/xj} c|

Γ � A = B
TCCcongruence

The IH gives vi such that ∀k . Γ ` vk : ak = bk . By the regularity assumption
to the rule we know that the equation is well-typed. So by Tjsubst we have

Γ ` join{∼v1/x1} ... {∼vj /xj }c:A=B : A = B

as required.

TCCinjdom From the IH we have Γ ` v : ((x : A1) → B1) = ((x : A2) → B2). So
apply Tjinjdom to get Γ ` joininjdom v : A1 = A2 as required.

TCCinjrng, TCCiinjdom, TCCiinjrange, TCCinjeq Similar to the TCCinj-
dom case.

Theorem 73 (Typed CC from untyped CC). Suppose Γ ` a = b and Γ ` a = b :
Type. Then Γ � a = b, and furthermore Γ ` v : a = b for some v .

Proof. From Γ ` a = b, by lemma 68 we get Γ ` label a = label b. By evidence
simplification (lemma 61) we get Γ `L p∗ : label a = label b. From this, and the fact
that Γ ` a = b : Type, by lemma 71 we get Γ � a = b as required. Finally, by
lemma 72 there is some v such that Γ ` v : a = b.

Lemma 74. If Γ � a = b then Γ ` a = b.

Proof. Induction on Γ � a = b.

224

TCCrefl,TCCerasure By CCrefl.

TCCsym,TCCtrans,TCCassumption By IH, then using CCsym, or CCtrans
CCassumption.

TCCcongruence The given derivation looks like

Γ ` A = B : Type ∀k . Γ � ak = bk
|A = B | = |{a1/x1} ... {aj/xj} c = {b1/x1} ... {bj/xj} c|

Γ � A = B
TCCcongruence

From the IHs we know ∀k . Γ ` ak = bk , so by applying CCcongruence j
times we get

Γ ` {a1/x1} ... {aj/xj} c = {b1/x1} ... {bj/xj} c

Then use CCrefl and CCtrans to get Γ ` a = B .

TCCinjrng The IH gives Γ ` (A1 → B1) = (A2 → B2). Then apply CCinjrng.

TCCinjdom,TCCiinjdom,TCCiinjrng,TCCinjeq Similar to previous case.

Putting together two lemmas we get this version which is quoted in the paper:

Corollary 75 (TCC implies LCC). If Γ � a = b then label Γ `L label a = label b.

Proof. By lemma 74 we have Γ ` a = b, then by lemma 68 we get label Γ `L label a =
label b.

Lemma 76 (Untyped CC ignores annotations in Γ). If Γ ` a = b and |Γ| = |Γ′|
then Γ′ ` a = b.

Proof. By induction on Γ ` a = b. All the cases are immediate by IH except CCas-
sumption, were we are given

x : A ∈ Γ
Γ ` A = (a = b)

Γ ` a = b
CCassumption

By the IH we know Γ′ ` A = (a = b). From the assumption |Γ| = |Γ′| we know that
there is some x : A′ ∈ Γ′ with |A′| = |A|. By CCrefl we have Γ′ ` A′ = A, so by
CCtrans we know Γ ` A′ = (a = b). Then conclude by CCassumption.

Lemma 77 (Untyped CC ignores annotations). If Γ ` a = b and |Γ| = |Γ′| and
|a| = |a ′| and |b| = |b ′|, then Γ′ ` a ′ = b ′.

225

Proof. By lemma 76 we know Γ′ ` a = b, and by CCrefl we know Γ′ ` a ′ = a and
Γ′ ` b = b ′. Then conclude by CCtrans.

Lemma 78 (CC doesn’t look at type annotations). Suppose Γ � a = b, and |Γ′| =
|Γ|, |a ′| = |a| and |b ′| = |b|, and Γ′ ` a ′ : A′ and Γ′ ` b ′ : B ′. Then Γ′ � a ′ = b ′.

Proof. From Γ � a = b by lemma 74, we get Γ ` a = b. By lemma 77 we get
Γ′ ` a ′ = b ′. Then by theorem 73 we get Γ′ � a ′ = b ′.

A.3 The untyped congruence closure algorithm and

its correctness

The following section gives a precise mathematical definition of our algorithm to
decide the Γ `L a = b relation, and a correctness proof. The algorithm was described
informally in Section 5.5.2.

A.3.1 Flattening

Developing the main rewriting algorithm is easier if the input problem is in a simple,
restricted form. So following Nieuwenhuis and Oliveras [97] we first “flatten” the
problem by introducing a fresh name for each subterm that occurs in it. We assume
that we have an infinite set of atomic constants ci available. The basic idea is that
for any context Γ, we can construct an equivalent context with named subterms, e.g.
a given assumption h : f(g a) = b can be replaced with the set of assumptions

h1 : f = c1

h2 : g = c2

h3 : a = c3

h4 : c2 c3 = c4

h5 : c1 c4 = c5

h6 : b = c6

h : c5 = c6

In the Zombie implementation, the flattening pass works directly on core language
expressions. Constants are just integers, and the output of the flattening pass consists
of a list of equations in the following Haskell datatype:

data EqConstConst = EqConstConst Constant Constant

data EqBranchConst = EqBranchConst Label [Constant] Constant

type Equation = Either EqConstConst EqBranchConst

226

In addition, there is a table keeping track of additional information about each
constant—in particular, whether that constant represents a type which is inhab-
ited by a variable in the context. This is needed to handle the “assumption up to
congruence” rule.

In order to reason about the correctness of this process, we need to formalize the
input and output of the flattening. We aim to verify the algorithm, not the imple-
mentation, so we abstract away from the exact datastructures and instead represent
the flattening stage as a transformation from contexts to context. The input is a
context where each member is a labelled term (as defined in section A.2.1). The
output is a context containing all the equations (the hs above), and also variable dec-
larations encoding the information about being inhabited. For simplicitly, whenever
a constant is marked as inhabited we assume that there is an inhabitant for both the
constant and the expression that it names. (When generating core language proofs
all constants are replaced with the original core language expressions they named).
For a more complete example, the labelled context

x : F a b
y : F a b = G

will be transformed into the flat context

h1 : a = c1

h2 : b = c2

h3 : F c1 c2 = c3

h4 : G = c4

h5 : (c3 = c4) = c5

x1 : c3

x2 : F c1 c2

y1 : c5

y2 : (c3 = c4)

where the hi represent the list of equations that the algorithm outputs, and the xi
and yi represent the information that c3 and c5 are inhabited.

The treatment of flattening is a bit more subtle than in previous work about first-order
logic. In first-order systems, terms and equations are syntactically distinct categories,
and one can maintain the invariant that every non-atomic subterm appearing in the
flat context has a name. But in our setting there are two sources of equations in the
flat context and only some of them have names; in the above example the equation x
from the input context has been given the name c5, but the flat context also contains
the new assumptions hi, and we do not allocate constants naming them (which would
lead to infinite regress).

To be precise, the output of the flattening phase is a flat context, in the sense of the

227

following definiton.

Definition 79 (Flat term). A term is flat if it is either an atom a, or a label
application F ai such that each ai is an atom.

Definition 80 (Flat term over Γ). Let Γ be a context. We say that a term a is flat
over Γ if a is either an atom, or it is a label applied to a list of atoms F ai which is
the left-hand-side of an equation in Γ.

Definition 81 (Flat context). A context Γ is flat if each variable binding in it is
either:

• x : a where a is a flat term over Γ.

• x : a = b where a and b are atoms.

• x : F ai = b, where ai and b are atoms, and satisfying the following property:
there exists a variable y : F ai ∈ Γ iff there exists a variable z : b ∈ Γ.

In the above example, the first bullet point corresponds to the xi and yi, and the
second two bullet points correspond to the hi.

Given any context Γ we can create an equivalent flat context Γ′ by repeatedly picking
a subexpression b which is is not yet a left-hand-side of an equation, picking a fresh
name x for it, and replacing b with x throughout the context and goal. This procedure
is exactly the same as the one by Nieuwenhuis and Oliveras.

However, the proof of its correctness is slightly more complicated. The following
lemmas show that this this operation does not change what equations are provable.
But in addition, we sharpen the result slightly to specify what the proofs look like:
the new equations (the hi in the above example) can be used as-is as assumptions,
there is no need to for the more general assumption-up-to-CC rule. We need the
sharpened result to justify that the flattening algorithm is complete even though it
only works on the original input context, and does not go on to recursively flatten
the new equations that it introduced.

Lemma 82. For any labelled context Γ, and any labelled terms a and b, we have
Γ, h : x = b `L p : a = {b/x} a. Furthermore, every use of h in the evidence term p
is of the form h.refl.

Proof. Induction on the structure of a.

• It is the variable x (a nullary label application). By CCPassumption we have
Γ, h : x = b `L h.refl : x = b, as required.

• It is some other application F ai. Then {b/x} (F ai) = F {b/x} ai . By IH
we get Γ, h : x = b `L pi : ai = {b/x} ai and hence by congruence we have
Γ, h : x = b `L congF pi

i : F ai = {b/x} (F ai).

228

Lemma 83 (Naming subterms). Suppose that x does not occur in b, and h is com-
pletely fresh. Then there exists p such that {b/x}Γ `L p : {b/x} a1 = {b/x} a2 iff
there exists p′ such that Γ, h : x = b `L p ′ : a1 = a2. Futhermore, any use of h in p′ is
of the form h.refl.

Proof. We prove the two directions by separate inductions. For the the “⇒” direction,
the cases are:

CCPrefl We know that {b/x} a1 ≡ {b/x} a2. Apply lemma 82 to get Γ, h : x = b `L
p1 : a1 = {b/x} a1 and Γ, h : x = b `L p2 : {b/x} a2 = a2, then conclude by
transitivity.

CCPsym, CCPtrans Directly by IH.

CCPassumption We are given the derivation

y : {b/x}A ∈ {b/x}Γ {b/x}Γ `L q : {b/x}A = ({b/x} a1 = {b/x} a2)

{b/x}Γ `L y.q : {b/x} a1 = {b/x} a2

(Where y : A ∈ Γ). By the IH, we have Γ, h : x = b `L q ′ : A = (a1 = a2). Then
apply CCPassumption again.

CCPcong We are given derivation {b/x}Γ `L congF pk
k : {b/x} (F ai) = {b/x} (F bi).

Note that {b/x} (F ai) ≡ F{b/x}ai, then apply the IHs for the pk .

CCPinj Similar to the previous case.

The cases for the “⇐” direction are:

CCPrefl Directly by CCPrefl.

CCPsymm, CCPtrans Immediate from IH.

CCPassumption We are given the the derivation

y : A ∈ (Γ, h : x = b) Γ, h : x = b `L q : A = (a1 = a2)

Γ, h : x = b `L y.q : a1 = a2

There are two cases. If x ≡ h, we know Γ, h : x = b `L q : (x = b) = (a1 = a2).
By the IH we have {b/x}Γ `L q ′ : (b = b) = ({b/x} a1 = {b/x} a2) By CCPinj
we get {b/x}Γ `L q1 : b = {b/x} a1 and {b/x}Γ `L q2 : b = {b/x} a2. Then
conclude by symmetry and transitivity.

Otherwise, y : A ∈ Γ. By the IH we have {b/x}Γ `L q ′ : {b/x}A = ({b/x} a1 =
{b/x} a2), so {b/x}Γ `L y.q ′ : {b/x} a1 = {b/x} a2, as required.

CCPcong,CCPinj From IH, using the fact that {b/x} (F ai) ≡ F{b/x}ai.

229

In the assumption case for the, we are given that a1 = a2 ∈ (Γ, h : x = b). If the
equation used was h itself we must prove {b/x} x = {b/x} b which is certainly true.

Otherwise, we have (a1 = a2) ∈ Γ, and we must prove {b/x}Γ ` {b/x} a1 = {b/x} a2;
this follows directly by the assumption rule.

Lemma 84 (Redundant equal assumptions). If Γ `L b1 = b2, then Γ, x1 : b1 ` a1 =
b2 iff Γ, x1 : b1, x2 : b2 ` a1 = a2

Proof. The “⇐” direction is a trivial induction. The “⇒” direction is by induction
on Γ, x1 : b1 ` a1 = b2. The only interesting case is the assumption case, in the case
when x2 is the used assumption. Then we are given the derivation

Γ, x1 : b1, x2 : b2 ` b2 = (a1 = a2)

Γ, x1 : b1, x2 : b2 ` a1 = a2

By IH we get Γ, x1 : b1 ` b2 = (a1 = a2). Then by transitivity we have Γ, x1 : b1 `
b1 = (a1 = a2), and conclude by using assumption x1.

Lemma 85 (Flattening contexts). For any triple (Γ, a1, a2), we can find a triple
(Γ′, a ′1, a

′
2), where Γ′ contains two sets of assumptions xi and hi, which satisfies the

following:

1. For all xi : A ∈ Γ′, the expression A is a flat term over Γ′.

2. For all hi : A ∈ Γ′, A is an equation of the form mentioned in one of the second
two bullet points of definition 81.

3. There exists some p such that Γ `L p : a1 = a2 if and only if there exists some
p′ such that Γ′ `L p ′ : a ′1 = a ′2. Furthermore, every use in p ′ of an assumption
from the set hi has the form hi.refl (i.e. the conversion is just refl).

In particular, (1) and (2) implies that Γ′ is a flat context.

Proof. We begin with the context Γ, and let the assumptions in it be the original set
of assumptions x. Then we repeatedly use lemma 83 to add additional equations h
until properties (1) is satisfied, while maintaining (2) and (3) as invariants. We write
Γ0, Γ1, . . . for the intermediate contexts.

The original context Γ0 ≡ Γ trivially satisfies (2) and (3), since the set of assumptions
hi is empty.

Now let Γk be some intermediate context. If all the assumptions xi : A ∈ Γk are
already over flat terms over Γk then we are done. Otherwise, A is a labelled term,
so we pick a subterm of it of the form b ≡ F ai with ai atomic, pick a fresh atom c,
and replace all occurances of b with c everywhere in Γk , a1 and a2. Call the resulting
context Γ′k , so that Γk ≡ {b/c}Γ′k . The next context is then Γk+1 ≡ Γ′k , h : b = c, x ′ : b
if b occured as an assumption in Γk , and bΓk+1 ≡ Γ′k , h : b = c otherwise. We check

230

that Γk+1 still satisfies the invariants. For (1), x′ is indeed a flat term over the
context (thanks to h). For (2), the new equation is of the application-constant form,
and either neither side is inhabited, or x and x′ inhabit the two sides.

For (3), we consider the case where Γk+1 ≡ Γ′k , h : b = c, x ′ : b (the case when there
is no assumption x′ is simpler). We need to show

There exists some p such that Γk `L p : a1 = a2 if and only if there exists
some p′ such that Γ′k , h : b = c, x ′ : b `L p ′ : a ′1 = a ′2 (with uses of hs
restricted).

Lemma 83 gives us that Γk `L p : a1 = a2 iff Γ′k , h : b = c `L p ′ : a ′1 = a ′2. And
lemma 84 gives Γ′k , h : b = c `L p ′ : a ′1 = a ′2 iff Γ′k , h : b = c, x ′ : b `L p ′ : a ′1 = a ′2,
because x : c ∈ Γ′k .

A.3.2 Main Algorithm

The state of the algorithm consists of:

• A list E of pending equations to be processed.

• A representatives table, which maps each constant c to its Union-Find represen-
tative c′ = r(c). Along which each representative, we store information about
that equivalence class:

– The equality list, Q(c). The set of pairs of constants (a, b) such that a = b
is in this equivalence class of c′.

– The injectivity list, I(c). The set of tuples (Ax1, . . . xn) such that A is
injective and A x1 . . . xn is in the equivalence class of c′.

– The use list, U(c): the set of input equations y = A x1 . . . xn such that c′

is the representative of one of the xi.

– The assumption flag, A(c). A Boolean tracking any member of the equiv-
alence class that was inhabited by a variable in the context.

We will overload notation slightly to let Q(a) mean Q(r(a)) when a is not the
representative of its class, and similar for I, U , and A.

• The lookup table (a.k.a signature table), S: maps tuples (A, x1, . . . xn) to an
input equation y = A x1 . . . xn, if such an equation exists, or to the undefined
value ⊥ otherwise.

Of these, I(c), Q(c), and A(c) are additions which were not in the Nieuwenhuis-
Oliveras algorithm.

231

The algorithm is initialized as follows:

E0 = All the given equations in Γ
r0(c) = c for all constants c in the problem
Q0(c) = ∅ for all constants c
I0(c) = ∅ for all constants c
U0(c) = ∅ for all constants c
A0(c) = true iff x : c ∈ Γ
S0(F, a1, . . . , an) = ⊥ for all labels and constants

The algorithm then proceeds by considering the pending equations one by one, up-
dating the state and sometimes adding additional pending equations. We can show
it symbolically as a transition system between tuples containing the state. (In the
“merge” rule, we show the case where a rather than b is picked as the representative
by the union operation, but this choice does not affect correctness, and in practice the
implementation will choose one or the other depending on the size of the equivalence
classes).

Trivial (E ∪ {a = b}, r, Q, I, U,A, S)
=⇒ (E, r,Q, I, U,A, S)

when r(a) = r(b) already

Merge (E ∪ {a = b}, r, Q, I, U,A, S)
=⇒ (E ∪ {ai = bi | (F a1 . . . an) ∈ I(a) and (F b1 . . . bn) ∈ I(b)}

∪U(b)
∪{c = c′ | (c, c′) ∈ Q(a) ∧ A(b) ∧ ¬A(a))}
∪{c = c′ | (c, c′) ∈ Q(b) ∧ A(a) ∧ ¬A(b))},

r′, Q′, I ′, U, A′, S)
where r′(b) = r(a), Q′(a) = Q(a) ∪Q(b), I ′(a) = I(a) ∪ I(b),

and A′(a) = A(a) ∨ A(b)

Update1 E ∪ {F a1 . . . an = a}, r, Q, I, U,A, S)
=⇒ (E ′, r, Q′, I ′, U ′, A, S ′)

where S ′(F, a1, . . . , an) = (F a1 . . . an = a)
when S(F, a1, . . . , an) = ⊥

Update2 (E ∪ {F a1 . . . an = a}, r, Q, I, U,A, S)
=⇒ (E ′ ∪ {a = b}, r, Q′, I ′, U ′, A, S)

when S(F, a1, . . . , an) = (F b1 . . . bn = b)

232

Where in the Update1 and Update2 rules,

E ′ = E ∪ {ai = bi | (F b1 . . . bn) ∈ I(a)} ∪ {c = c′ | if F a1 . . . an is c = c′ and A(a) }
Q′(a) = Q(a) ∪ {c = c′ | if F a1 . . . an is c = c′}
I ′(a) = I(a) ∪ {F a1 . . . an | if F is injective}
U ′(ai) = U(ai) ∪ (F a1 . . . an = a) for 1 ≤ i ≤ n

A.3.3 Soundness

Lemma 86 (Invariants for soundness). Suppose (E0, r0, Q0, I0, U0, A0, S0) is the
initial state correponding to a flat context Γ, and (E0, r0, Q0, I0, U0, A0, S0) =⇒∗
(E, r,Q, I, U,A, S). Then

1. If (a = b) ∈ E, then Γ `L a = b.

2. If r(a) = b, then Γ `L a = b.

3. If (a = b) ∈ Q(c), then Γ `L c = (a = b).

4. If F ai ∈ I(c), then Γ `L c = (F ai) and F is injective.

5. If U(c) = (F ai = a), then Γ `L F ai = a.

6. If S(F, a1, . . . , an) = (F bi = b), then Γ `L F bi = b and Γ `L F ai = b.

7. If A(c) = true, then there exists some x : A ∈ Γ such that Γ `L c = A.

Proof. First, all invariants hold in the initial state (E0, r0, Q0, I0, U0, A0, S0). (1) is
true because each equation in E0 is a hypothesis from Γ. (2) is true because r0 is
just the reflective relation. (3–6) are vacuously true since the sets Q,I,U and S are
all empty. And (7) holds because of how A was initialized.

Next, we check that all the transitions of the algorithm preserves the invariants.
In the Trivial transition the only component of the state that changes is E, and
E ′ ⊂ E gets smaller so the invariant is trivially preserved. Merge and Update1/2
add additional equations, but it is easy to see that they are justified by the Γ ` a = b
relation.

(In the implementation, the datastructures for E,r and S store not only the terms
a and b, but also proof terms Γ `L p : a = b. Each transition constructs new proof
terms from the old).

A.3.4 Completeness

The completeness proof follows the same strategy as the proof by Corbineau [38].
We prove that at the end of a run of the algorithm, the union-find structure r has

233

a ≈E a
EQrefl

a ≈E b
b ≈E c

a ≈E c
EQtrans

a = b ∈ E

a ≈E b
EQassumption

a ≈E b

b ≈E a
EQsymm

Figure A.4: The equivalence relation generated by a set of equations E

enough links to validate all the proof rules of the Γ `L a = b relation—in particular
the assumption, congruence, and injectivity rules.

The invariant properties of the relation are stated in terms of the equivalence relations
generated by a sets of equations. We let the letters E and R range over lists of
equations,

E,R ::= · | E , a = b

and write a ≈E b for the equivalence relation generated by such a list. In other words,
the relation defined by the rules in Figure A.4.

The equivalence relations satisfies some simple properties:

Lemma 87. If b ≈(E ,a=a ′) b ′, then either b ≈E b ′, or b ≈E a and a ′ ≈E b, or b ≈E a ′

and a ≈E b.

Proof. Induction on the judgement b ≈(E ,a=a ′) b ′.

Lemma 88. If a ≈E a ′, then b ≈(E ,a=a ′) b ′ iff b ≈E b ′.

Proof. The “⇐” direction is an easy induction. For the “⇒” direction, by lemma 87
either we have b ≈E b ′ (and we are done), or else the equation was used. If the
equation was used we have either b ≈E a and a ′ ≈E b, or b ≈E a ′ and a ≈E b. Either
way, the conclusion follows by transitivity and symmetry.

Lemma 89. If a ≈E b or b ≈E a, and the is is not an instance of reflexivity (i.e.
a 6≡ b), then E contains some equation of the form a = c or c = a.

Proof. Easy induction.

In a given a state (E, r,Q, I, U,A, S) of the algorithm, we write E for the set of
equations occuring in the first component, and we write R to denote the content of r
and S interpreted as a a set of equations according to the following scheme:

• One equation equation c = c′ whenever r(c) = c′.

• One equation equation F ai = b whenever ∀k.r(ak) = a′k and S(F, a′1, . . . , a
′
n) =

(F bi = b).

234

Note that R is finite, because both r and S have finite domains. We use the notation
E \ E ′ to denote set-difference.

In all the following we assume that the list E has no duplicates, so we can equivocate
between treating it as a set and as a list. This makes it easier to state the invari-
ants of the algorithm (in particular invariant 2 below). In practice, if the list does
contain duplicates they will eventually be discarded by the rule Trivial, so when
implementing the algorithm there is no need to preprocess the list to remove them.

Lemma 90 (Monotonicity of≈E ,R). If (E, r,Q, I, U,A, S) =⇒ (E ′, r′, Q′, I ′, U ′, A′, S ′)
and c1 ≈E ,R c2, then c1 ≈E ′,R′ c2.

Proof. We consider each of the transitions in turn.

Trivial We already had the equation a = b ∈ R, so E ∪R ≡ E ′ ∪R′.

Merge We deleted the equation a = b from E, and added the equation r(a) = r(b) to
R. By transitivity we can derive a ≈ r(a) ≈ r(b) ≈ b. Then appeal to lemma 88.

Update1 We deleted the equation F ai = a from E and added it to R, so E ∪ R ≡
E ′ ∪R′.

Update2 By the definition of R, we already had F ai = b ∈ R. Now we deleted
F ai = a from E, and instead added a = b. By transitivity we can derive
F ai ≈ b ≈ a. Then appeal to lemma 88.

We can now state the invariants of the algorithm.

Lemma 91 (Invariants for completeness of CC algorithm).
Suppose (E0, r0, Q0, I0, U0, A0, S0) is the initial state correponding to a flat context Γ,
and (E0, r0, Q0, I0, U0, A0, S0) =⇒∗ (E, r,Q, I, U,A, S). Then

1. If x : A ∈ Γ then for all a, b, if A ≈R (a = b) then a ≈E ,R b.

2. If for all 0 ≤ i < n we have ai ≈R bi , and both F ai and F bi are left-hand-sides
of equations in E0 \ E , then F ai ≈E ,R F bi.

3. For all ai and bi, if F ai ≈R F bi and F is injective, then ∀k.ak ≈E ,R bk .

4. If F ai = b ∈ (E0 \ E), then for all 0 ≤ i < n we have (F ai = b) ∈ U(ai).

5. If F ai = a ∈ (E0 \ E) and r(ak) = a′k, then S(F ai
′) = (F bi = b) for some

equation such that b ≈E ,R a and bk ≈R ak . And conversely, if S(F ai
′) =

(F bi = b) , then the equation F ai = a ∈ (E0 \E) and b ≈E ,R a and bk ≈R ak .

6. If c ≈R (a = b), then (a′ = b′) ∈ Q(c), for some constants a′ and b′ such that
a ≈R a ′ and b ≈R b ′.

235

7. if c ≈R F ai for some injective label F , then F ai ∈ I(c).

8. A(c) iff c ≈R A for some A such that x : A ∈ Γ.

9. All equations in E, S and U are between flat terms. Also, if an equation has
the form the form F ai = a (label application vs atomic constant), then that
equation was present in E0, and there exists a variable x : F ai ∈ Γ iff there
exists a variable y : a ∈ Γ

Proof. First, these invariants hold for the initial state (E0, r0, Q0, I0, U0, A0, S0).

1. In the initial state R is just the reflexive relation, so the statement simplifies to
“if x : a = b ∈ Γ then a ≈E ,R b”. In the initial state corresponding to Γ, we
have (a = b) ∈ E0, so this is true.

2. E0 \ E is empty, so vacuously true.

3. R is the reflexive relation, so the only case we worry about is a reflexive equation
F ai ≈R F ai. Then we certainly also have ak ≈E ,R ak .

4. E0 \ E is empty, so vacuously true.

5. Both E0 \ E and S are empty, so both directions are vacuously true.

6. R is the reflexive relation, so we can never have an atom ≈ a label application.

7. Similar to invariant 6.

8. R is the reflexive relation, so A(c) should be inhabited if the constant c itself is
inhabited by a variable. This is exactly how A is initialized.

9. S0 and U0 are empty, so we only need to consider the equations in E0. For these,
the invariant is just restating part of the assumption that Γ is a flat context
(definition 81).

Next, we check that the invariants are preserved by each transition

(E, r,Q, I, U,A, S) =⇒ (E ′, r′, Q′, I ′, U ′, A′, S ′).

The cases are:

Trivial Here E = E ′, a = b and R = R′. By the precondition to the rule we
know a ≈R b, so by lemma 88 the relations ≈E,R and ≈E′,R′ coincide. And
since R = R′ the relations ≈R and ≈R′ coincide trivially. Finally, the set of
expressions F ai which appear as left-hand sides in E0 \ E and E0 \ E ′ are the
same (since the only equation that changed was an atom-atom equation). It is
then easy to see that all the invariants are preserved.

Merge In this transition, S is unchanged and we added one link to r. So R′ =
(R, b = a′), where we write a′ = r(a).

236

1. We are given some A, c1, c2 such that A ≈R′ (c1 = c2), and we must show
c1 ≈E ′,R′ c2.

By lemma 87, there are two cases. Either the new equation was not used,
i.e. A ≈R (c1 = c2). Then by the IH for the previous step we have
c1 ≈E ,R c2. By monotonicity (lemma 90) c1 ≈E ′,R′ c2 as required.

Otherwise the new equation was used, so we have A ≈R b and a ′ ≈R (c1 =
c2) (or the symmetric A ≈R a ′ and b ≈R (c1 = c2); we show the first case
w.l.o.g.). By invariant 8 we know that A(b) = true, and by invariant 6 we
know that (c ′1 = c ′2) ∈ Q(a′) for c ′1 ≈R c1 and c ′2 ≈R c2.

Now proceed by cases on the value of A(a′). If A(a′) = true, then by
invariant 8 we know that there is some y : A′ ∈ Γ such that A′ ≈R a ′. So by
invariant 1 we have c1 ≈E ,R c2. By monotonicity (lemma 90) c1 ≈E ′,R′ c2

as required.

Otherwise, A(a′) = false. We have A ≈R b, so by invariant 8 we known
A(b) = true. In other words, we have A(b) ∧¬A(a). So the transition rule
merge will add the equation c ′1 = c′2 to E ′. Then c1 ≈E ′,R′ c2 using that
new equation.

2. We are given some F ci and F ci
′ ∈ E0 \E ′, such that ∀i.ci ≈R′ c ′i , and we

need to show F ci ≈E ′,R′ F ci
′.

Apply lemma 87 to each of the ci ≈R′ c ′i . Suppose that all of them fall
in the first the first case, so the new equation was not used and we have
ci ≈R c ′i . Then by invariant 2 we have F ci ≈E ,R F ci

′. By monotonicity
(lemma 90) F ci ≈E ′,R′ F ci

′ as required.

Otherwise, there is at least one k such that the new equation b = a′ was
used. That is, we have ck ≈R b and a ′ ≈R c ′k (or the symmetric case
ck ≈R a ′ and b ≈R c ′k ; we show the first case w.l.o.g.). So in particular ck
and b have the same representative. Now E0\E ⊇ E0\E ′, so F ci ∈ E0\E .
Then by invariant 4 we have (F ci = c0) ∈ U(b). So by the transition
rule merge we have (F ci = c0) ∈ E ′, contradicting the assumption that
F ci ∈ E0 \ E ′.

3. We are given F ci ≈R′ F ci
′ and must show ck ≈E ′,R′ c ′k . By lemma 87 we

must consider two cases.

Either F ci ≈R F ci
′. Then by invariant 3 we have F ci ≈E ,R F ci

′, and by
monotonicity (lemma 90) F ci ≈E ′,R′ F ci

′ as required.

Otherwise we have F ci ≈R b and a ′ ≈R F ci
′ (or the symmetric case). So

by invariant 7 we have F ci ∈ I(b) and F ci
′ ∈ I(a). So by the transition

rule merge the equation ck = c ′k is explicitly added to E ′, and we have

237

ck ≈E ′,R′ c ′k as required.

4. F ai = a ∈ (E0 \E ′). The only equation which changed was an atom-atom
equation, so we also have F ai = a ∈ (E0 \E). Then appeal to invariant 4
for the previous state.

5. For the first direction, suppose F ai = a ∈ (E0 \ E ′). The only equation
which changed was an atom-atom equation, so we also have F ai = a ∈
(E0 \ E). Then by invariant 5 for the previous state, we have S(F ai) =
(F bi = b) which are suitably ≈E,R. By monotonicity they are still ≈E′,R.

For the converse direction, suppose that (F bi = b) is in the range of S.
Since the transition rule did not change S, it must still be in the range of
S in the previous state. So by the invariant F bi = b ∈ (E0 \ E), and the
subterms are suitably ≈E,R. Similar to the previous paragraph, it must
also be in (E0 \ E ′), and by monotonicity the subterms are still ≈E′,R′ .

6. We are given some atoms c, c1, c2 such that c ≈R′ (c1 = c2), and we must
show c ′1 = c ′2 ∈ Q′(c).

By lemma 87, there are two cases. Either the new equation was not used,
i.e. c ≈R (c1 = c2). Then by the IH for the previous step we have
(c ′1 = c ′2) ∈ Q(c) and hence in Q′(c).

Otherwise the new equation was used, so we have c ≈R b and a ′ ≈R (c1 =
c2) (or the symmetric A ≈R a ′ and b ≈R (c1 = c2); we show the first
case w.l.o.g.). By invariant 6 we have (c1′ = c2′) ∈ Q(a), and hence in
Q′(c) ≡ Q′(a′) ≡ Q(a) ∪Q(b).

7. Similar to invariant 6.

8. Similar to invariant 6.

9. The transition leaves S and U unchanged. The equations added to E are
either atom-atom, or they came from U and therefore have the required
form by invariant 9 for the previous state.

Update1 In this case

E ′ = (E \ (F ai = a)) ∪ {c = c′ | if F a1 . . . an is c = c′ and A(a) }
R′ = R,F ai = a

1. We are given some A, c1, c2 such that A ≈R′ (c1 = c2), and we must show
c1 ≈E ′,R′ c2.

By lemma 87, there are two cases. Either the new equation was not used,
i.e. A ≈R (c1 = c2). Then by invariant 1 we have c1 ≈E ,R c2. By
monotonicity (lemma 90) c1 ≈E ′,R′ c2 as required.

238

Otherwise the new equation was used, which can happen in two ways.

• We have A ≈R F ai and a ≈R (c1 = c2).

By lemma 89, unless A ≡ F ai that means that R must contain some
equation mentioning F ai. However, this is impossible: each equation
in R comes either from r (but this only relates constants, not label
applications) or from S (but we know as a premise to the rule that
S(F ai) = ⊥).

On the other hand, if A ≡ F ai, then the assumption says that x :
(F ai) ∈ Γ, so by invariant 9 we know that x : a ∈ Γ. So by invariant 1
we know c1 ≈E ,R c2, and hence by monotonicity c1 ≈E ′,R′ c2.

• We have A ≈R a and F ai ≈R (c1 = c2).

By invariant 8 we then have A(a) = true. So by the transition rule
Update1 the equation c1 = c2 is explicitly added to E ′, and we have
c1 ≈E ′,R′ c2 as required.

2. We are given some Gci and Gci
′ ∈ E0 \E ′, such that ∀i.ci ≈R′ c ′i , and we

need to show Gci ≈E ′,R′ Gci
′.

Apply lemma 87 to all the ci ≈R′ c ′i . If the new equation was not used for
any of them, we have ∀i.ci ≈R c ′i . Using the assumption Gci ∈ E0 \ E ′,
invariant 5, and the fact that S(F ai) = ⊥ we know that Gci 6≡ F ai.
This means that we must also have Gci ∈ E0 \ E , and similar for Gci

′.
Hence by invariant 2 for the previous state and monontonicity we get
Gci ≈E ′,R′ Gci

′.

Otherwise, the new equation F ai = a was used for at least one ck , which
can happen in two ways.

• We have ck ≈R F ai and a ≈R c ′k .

By lemma 89, unless A ≡ F ai that means that R must contain some
equation mentioning F ai. However, this is impossible: each equation
in R comes either from r (but this only relates constants, not label
applications) or from S (but we know as a premise to the rule that
S(F ai) = ⊥).

So we must have ck ≡ (F ai). That means that Gci has the form
G c1 . . . (F ai) . . . cn. However, according to invariant 9, Gci should be
a flat term, so this also cannot happen.

• We have ck ≈R a and F ai ≈R c ′k .

The reasoning in this case is similar, using c ′k instead of ck .

239

3. We are given some injective G such that Gci ≈R′ Gci
′, and we must show

ck ≈E ′,R′ c ′k .

By lemma 87, the new equation is either used or not. If not, we have
Gci ≈R Gci

′, so by invariant 3 we get ck ≈E ,R c ′k and hence by mono-
tonicity (lemma 90) ck ≈E ′,R′ c ′k as required.

Otherwise the equation is used and we have either Gci ≈R F ai and a ≈R

Gci
′, or the symmetric situation. W.l.o.g. we consider the first case.

By lemma 89, unless Gci ≡ F ai, there must be some equation in R in-
volving F ai. But that is impossible by invariant 5, since by the premise
to the rule update1 we know that S(F ai) = ⊥.

On the other hand, if Gci ≡ F ai, then we are given a new equation
F ci = a and we know a ≈R F ci

′. So by invariant 7 we know F ci ∈ I(a).
So the transition rule Update1 adds the equation ck = ck′ to E ′, and we
have ck ≈E ′,R′ c ′k .

4. Supposed (Gci = c) ∈ (E0 \ E ′). The set E0 \ E contains all equations
in E0 \ E ′ except for F ai = a. So there are two cases. If (Gci = c) 6≡
(F ai = a), then we also have (Gci = c) ∈ (E0 \ E), and can appeal
to invariant 4 for the previous state. Merge transition. Otherwise, if
(Gci = c) ≡ (F ai = a), then the transition rule explicitly adds the
equation to U ′.

5. For the first direction, suppose Gci = c ∈ (E0\E ′). The set E0\E contains
all equations in E0 \ E ′ except for F ai = a. So there are two cases. If
(Gci = c) 6≡ (F ai = a), then we also have (Gci = c) ∈ (E0 \ E). So
we can use similar reasoning as in the corresponding case for the Merge
transition. Otherwise, if (Gci = c) ≡ (F ai = a), then in the new state we
have S ′(F, a1, . . . , an) = (F ai = a). Certainly ak ≈R′ ak and a ≈E ′,R′ a,
as required.

For the converse direction, suppose that (Gci = c) is in the range of S ′.
Again there are two cases. If is was already in the range of S, we reason
similarly to the corresponding case for the Merge transition. Otherwise,
if it is the new equation, then by invariant 9 that equation is in E0, and
by the transition rule it is no longer in E ′, so it is in (E0 \E ′) as required.

6. We are given some c ≈R′ (c1 = c2), and must show that some suitable
(c ′1 = c ′2) ∈ Q′(c).

By lemma 87, the new equation from S ′ is either used or not. If not, we
have c ≈R (c1 = c2), and get (c1 = c2) ∈ Q(c) by invariant 6 for the
previous state. Otherwise the equation was used, which can happen in
two ways:

240

• c ≈R F ai and a ≈R (c1 = c2). But we know that c and F ai are
different (one is an atom and one is a label application), so by lemma 89
that would mean that R contains an equation mentioning F ai, which
is impossible since S(F ai = ⊥.

• c ≈R a and F ai ≈R (c1 = c2). By reasoning similar to the previous
paragraph this can only happen if F ai ≡ (c1 = c2). In that case we
have (c1 = c2) ∈ Q′(c) ≡ Q′(a), since it was explicitly added by the
transition rule Update1.

7. Similar to invariant 6.

8. Similar to invariant 6.

9. We modify S and U by adding the equation F ai = a; this equation comes
from E so by the invariant from the previous state it is good. And all the
new equations in E ′ are atom-atom.

Update2 In this transition R′ = R.

1. We are given som A, c1, c2 such that A ≈R′ (c1 = c2). So A ≈R (c1 = c2).
Then by invariant 1 and monotonicity (lemma 90) we have c1 ≈E ′,R′ c2 as
required.

2. We are given some Gci and Gci
′ ∈ E0\E ′, and we need to show Gci ≈E ′,R′

Gci
′.

By assumption we have ∀i.ci ≈R′ c ′i . So ∀i.ci ≈R c ′i .

If Gci 6≡ F ai, then we must also have Gci ∈ (E0\E) (since only one equa-
tion was removed from E), and similarly for Gci

′. So then by invariant 2
and monotonicity we have Gci ≈E ′,R′ Gci

′ as required.

Otherwise, we are given ∀i.ai ≈R c ′i , and we need to prove F ai ≈E ′,R′

F ci
′. From the premise to the rule we know S(F, r(a1), . . . , r(an)) =

(F b1, . . . , bn = b), so by invariant 5 we know that there is some equa-
tion F bi = b ∈ (E0 \ E) where bk ≈R ak . So by transitivity we have
bk ≈R ak . Then by invariant 2 we have F bi ≈E ,R F ci

′, and by mono-
tonicity (lemma 90) F bi ≈E ,R F ci

′. By the definition of R we have
F ai = b ∈ R. So by transitivity F ai ≈ b ≈ F bi ≈ F ci

′ as required.

3. We are given some injective G such that Gci ≈R′ Gci
′ and we must show

ck ≈E ′,R′ c ′k . By invariant 3 we know ck ≈E ,R c′k . Then apply monotonicity
(lemma 90).

4. Similar to the case for Update1

5. For the first direction, suppose Gci = c ∈ (E0\E ′). The set E0\E contains
all equations in E0 \ E ′ except for F ai = a. So there are two cases. If

241

(Gci = c) 6≡ (F ai = a), then we also have (Gci = c) ∈ (E0 \ E). So
we can use similar reasoning as in the corresponding case for the Merge
transition. Otherwise, if (Gci = c) ≡ (F ai = a), then in the new state we
have S ′(F, a1, . . . , an) = (F bi = b), and we need to prove ak ≈R′ bk and
b ≈E ′,R′ a. We get ak ≈R′ bk from invariant 5 for the previous state, and
we get a ≈E ′,R′ b from the equation that this transition added.

For the converse direction, suppose that (Gci = c) is in the range of S ′.
Since S = S ′ it is was already in the range of S, we reason similarly to the
corresponding case for the Merge transition.

6. We are given some c ≈R′ (c1 = c2), and must show that some suitable
(c ′1 = c ′2) ∈ Q′(c).

By lemma 87, the new equation from S ′ is either used or not. If not, we
have c ≈R (c1 = c2), and get (c1 = c2) ∈ Q(c) by invariant 6 for the
previous state. Otherwise the equation was used, which can happen in
two ways:

• c ≈R F ai and a = (c1 = c2). Then by invariant 6 for the previous
state we have (c1 = c2) ∈ Q(a), and hence in Q′(c).

• c ≈R a and F ai ≈R (c1 = c2). The only equations mentioning F ai in
R are those arising from S(F, a1, . . . , an), so this can only happen in
two ways. Either (F ai) ≡ (c1 = c2), in which case the transition rule
explicitly adds (c1 = c2) to Q′(a). Or else the transition was via b, i.e.
we had F ai ≈R b ≈R (c1 = c2). In this case we know (c ′1 = c ′2) ∈ Q(b)
from invariant 6 for the previous state, and hence it is also in Q′(c).

7. Similar to invariant 6.

8. Similar to invariant 6.

9. Similar to the corresponding case for the Update1 transition.

The invariants in lemma 91 shows that the equivalence relation ≈R constructed by
the algorithm is “locally” complete: it satifies the congruence rule as long as the
conclusion of the rule only contains subterms from the context E0. In order to show
that it is “globally” complete, we need to know that all provable equations are provable
using only subterms of the problem. One way to do that is to use the notion of
normal-form evidence terms which we introduced previously.

Lemma 92 (Completeness for normal-form evidence terms). Suppose Γ is a context
of the form described in lemma 85, and let (E0, r0, Q0, I0, U0, A0, S0) be the initial state
of the algorithm for Γ, and suppose (E0, r0, Q0, I0, U0, A0, S0) =⇒∗ (·, r, Q, I, U,A, S).
Then:

242

• If Γ `L pS : A = B , then A and B are flat terms over Γ and A ≈R B .

• If Γ `L pC : A = B and A and B are flat terms over Γ, then A ≈R B .

• If Γ `L p∗ : A = B and A and B are flat terms over Γ, then A ≈R B .

• If Γ `L p∗R : A = B and A is a flat term over Γ, then B is a flat term over Γ and
A ≈R B .

provided that every use of assumptions h in the proofs pS ,pC , p∗ and p∗R either refer
to an assumption h : A ∈ Γ where A is a flat term over Γ, or are of the form h.refl.

Proof. We proceed by induction on the structure of the given evidence term. The
cases for pS are:

The evidence is x.p∗R From the premises to the rule we know we have x : A ∈ Γ
and Γ `L p∗R : A = (a = b). By the assumptions to there are two possibilities
for A

Either A is a flat term over that context Then by the mutual IH for p∗R, a = b
is flat as well (as required), and A ≈R (a = b). By invariant 1 we have a ≈R b
as required.

Or else, p∗R ≡ refl, so A ≡ (a = b). By the definition of flat context (definition 81)
A can one of three things: either a flat term (so this is a label application of
the label “=”, and a and b are atoms), or an equation between atoms (so a
and b are atoms), or a application-atom equation (so a is a label application,
and by virtue of this precise equation it is a flat term over Γ). In either of the
three cases a and b are flat terms over Γ as required, and by invariant 1 we have
a ≈R b as required.

The evidence is (x.p∗R)−1 Similar to the above case we get a ≈R b, and therefore
b ≈R a by symmetry.

The evidence is inj i pS By the IH for pS , we know pS proves an equation between
flat terms. Since the injectivity rule applies, they must be two label applications,
Γ `L pS : F ai = F bi. So the conclusion of the rule is an equation ak = bk
between two atoms, and atoms are flat over any context.

By the IH we also know F ai ≈R F bi, so by invariant 3 we get ak ≈R bk .

The evidence is a chain p∗LR In other words, it is either a single term pS , which
we dealt with in the previous cases, or it is is a chain starting and ending with a
synthesizable term, that is p∗LR is pS ; q∗; rS . In the latter case we use the IHs for
pS and rS to see that two two sides of the equation q∗ are flat terms, appeal to
the mutual IH for q∗, and use transitivity to chain together the three equations.

The only case for pC is when the evidence term is a use of congruence,
congF p1 .. pi . The only rule that applies is CCPcong, so the equation in the

243

conclusion must be between two label applications, F ai = F bi. By assumption we
know that they are flat terms over Γ, i.e. both label applications appear as left-hand
sides of equations in Γ and all the ai and bi are atoms.

Since ai and bi are atoms they are per definition flat over Γ, so the IHs apply and
give ai ≈R bi .

The initial context E0 contains all equations in Γ, in particular it contains the defining
equations for F ai and F bi. So by invariant 2 we get F ai ≈R F bi as required.

The cases for p∗ are:

The empty chain (refl) We then have a ≈R a by reflexivity of ≈.

A chain consisting of a single term, p The evidence term p must be either a
checkable are a synthesizable term, so we appeal to the corresponding mutual
IH.

In the case when it is a pS ,

A chain of length > 1 The definition of chains stipulates that there must never be
two adjacent pC s, so we know that the either the first or the second evidence
term in the chain is a pS . This is similar to the case for p∗LR above.

The cases for p∗R are similar to the case for p∗LR above.

Lemma 93 (Termination of the CC algorithm). If (E0, r0, Q0, I0, U0, A0, S0) is the
initial state corresponding to some (flat) context Γ, there exists some final state
with an empty list of pending equations such that (E0, r0, Q0, I0, U0, A0, S0) =⇒∗
(·, r, Q, I, U,A, S).

Proof. Consider the (finite) set X of all flat terms occuring in Γ. The termination
metric is the lexicographic order on (Number of equivalence classes on X induced by
R)×(Number of application-atom equations in E)×(Number of atom-atom equations
in E).

None of the rules can increase the number of equivalence classes. Trivial leaves num-
ber of app-atom equations unchanged and decreases atom-atom equations. Merge
adds all kinds of equations, but reduces the number of equivalence classes. Up-
date1/2 adds atom-atom equations but decrease the number of app-atom equa-
tions.

Theorem 94 (Correctness of the CC algorithm). Suppose Γ is any context, Γ′ is the
flattened version of Γ, and (E0, r0, Q0, I0, U0, A0, S0) is the initial state of the algorithm
corresponding to Γ′. Then (E0, r0, Q0, I0, U0, A0, S0) =⇒∗ (·, r, Q, I, U,A, S), and for
any atomic a and b, we have Γ ` a = b iff a ≈R b.

244

� ∅ : Γ = Γ
EEsame

� σ : Γ = Γ′

Γ ` A : Type
Γ′ � A′ = σA
Γ′ ` v : A′ = σA

� σ {x.v/x} : Γ, x : A = Γ′, x : A′
EEcons

Figure A.5: Context equivalence

Proof. By lemma 93 we know the algorithm will terminate in a state with E empty.
In that state, if a and b have the same r-representative then by lemma 86 invariants 2
and 6 we know Γ ` a = b.

Conversely, suppose that Γ ` a = b, so Γ `L p : a = b for some p. By lemma 85
we know that Γ′ `L p ′ : a = b for some proof p′ where every assumption is either
a flat term or plain assumption h.refl. (We know that a and b are not changed by
the flattening step since they were assumed to be atoms). By lemma 61 we have
Γ′ `L p∗ : a = b for some p∗, and inspecting the proof of that lemma we see that p∗

still obeys the restricton on assumptions. Then by lemma 92 we have a ≈R b.

Requiring a and b to be atoms is not a serious restriction: if we want to check some
non-atomic terms a ′ and b ′ for equality we can pick fresh constants a and b, and add
the equations a = a′ and b = b′ to the context. Also, checking whether a ≈R b is a
cheap operation. Since they are both atoms, the wanted equation is true iff in the
final state of the algorithm a and b are in the same union-find class (have the same
r-representative).

A.4 Proofs about the core language

A.4.1 Equivalent contexts

The next properties concern a new relation � σ : Γ = Γ′, defined in Figure A.5, which
uses a substitution σ as the witness to the equivalence of two contexts.

Lemma 95 (Regularity for context equivalence). If � σ : Γ = Γ′, then ` Γ and ` Γ′.

Proof. Induction on � σ : Γ = Γ′. In the EEsame case we have this as a premise. In
the EEcons case, we have Γ ` A : Type as a premise, and get Γ′ ` A′ : Type from
regularity of the congruence closure relation (lemma 58).

Lemma 96 (Variables in equivalent contexts). If y : C ∈ Γ, and � σ : Γ = Γ′, then
there exists C ′ such that y : C ′ ∈ Γ′ and Γ � C ′ = σC .

245

Proof. Induction on � σ : Γ = Γ′. The EEsame case is trivial.

In the EEcons case, the rule looks like

� σ : Γ = Γ′

Γ ` A : Type
Γ′ � A′ = σA
Γ′ ` v : A′ = σA

� σ {x.v/x} : Γ, x : A = Γ′, x : A′
EEcons

There are two cases. If x = y, so A = C, then we can pick C ′ := A′, and we have
Γ′ � C ′ = σC as a premise. By weakening (lemma 57) we have Γ′, x : A′ � C ′ = σC
as required.

If x 6= y, then y : C ∈ Γ, so by IH we have y : C ′ ∈ Γ′ with Γ′ � C ′ = σC . Again,
use weakening to get Γ′, x : A′ � C ′ = σC .

Lemma 97 (Context conversion preserves erasure). If � σ : Γ = Γ′, then for any
expression a we have |σ a| = |a|.

Proof. Examining the definition of � σ : Γ = Γ′ we see that the substitution only
adds type casts, which are erased.

Lemma 98 (Context conversion for annotated language, var case).
If x : A ∈ Γ and � σ : Γ = Γ′, then Γ′ ` σ x : σA.

Proof. Induction on the length of Γ.

Γ is empty This contradicts the assumption that x ∈ Γ.

Γ is Γ0, y : B for some y 6= x Then by considering the possible derivations of � σ :
Γ = Γ′ we know we have � σ0 : Γ0 = Γ′0 (and so on). By the IH we have
Γ′0 ` σ0 x : σ0 A. So by weakening (lemma 47) we have Γ′ ` σ0 x : σ0 A. Since
x is a bound variable we can pick it to not be in the domain of σ0, and since
Γ0 ` A : Type we know x /∈ FV (A) . So the is equivalent to Γ′ ` σ x : σA.

Γ is Γ0, x : A By considering the possible derivations of � σ : Γ = Γ′ we know that
we must have

� σ : Γ = Γ′

Γ ` A : Type
Γ′ � A′ = σA
Γ′ ` v : A′ = σA

� σ {x.v/x} : Γ, x : A = Γ′, x : A′
EEcons

So in particular we know σ x is x.v , which by Tcast has the type σA.

246

Lemma 99 (Context conversion for annotated language).
If Γ ` a : A and � σ : Γ = Γ′, then Γ′ ` σ a : σA.

Proof. Induction on Γ ` a : A.

Tvar By lemma 98.

Ttype Trivial.

Tpi The IH for A gives Γ′ ` σA : Type.

By TCCrefl we have Γ′ � σA = σA, and it is easy to pick some identify
proof v such that Γ′ ` v : σA = σA. Then by EEcons, � σ {x.v/x} : Γ, x :
σA = Γ′, x : σA.

So by the IH, we get Γ′, x : σA ` σB : Type.

Now apply Tpi to get Γ′ ` (x :σA)→ σB : Type as required.

Tipi Similar to the previous case.

Trec By the IH we get Γ′ ` (x :σA1)→ σA2 : Type.

By reasoning similar to the Tpi case we get

� σ {f.v1/f } {x.v2/x} : Γ, f : (x :σA1)→ σA2, x : σA1

= Γ′, f : (x :σA1)→ σA2, x : σA1

and hence by IH we get Γ′, f : (x :σA1)→ σA2, x : σA1 ` σ a : σA2.

Now apply Trec to get Γ′ ` rec f(x:σA1)→σA2 x .σ a : (x : σA1) → σA2 as
required.

Tirec Similar to the previous case.

Tdapp By the IHs for a and v we get Γ′ ` σ a : σ (x : A) → B and Γ′ ` σ v : σA.
Then apply Tdapp.

Tapp,Tidapp, Teq Similar to the previous case.

Tjoinc By the IH we get Γ′ ` σ a = σ b : Type. Context equivalences preserve
erasure (lemma 97), so |σ a| = |a|, and therefore we still have |σ a| ;i

cbv c.
Similarly, |σ b|;i

cbv c. Then apply Tjoinc.

Tjoinp Similar to the previous case.

Tjinjdom By the IH we have Γ′ ` σ v : ((x : σA1) → σB1) = ((x : σA2) → σB2).
Then by Tjinjdom we do indeed have Γ′ ` joininjdomσ v : σA1 = σA2

Tjinjrng,Tjiinjdom,Tjiinjrng. Tinjeq Similar to the previous case.

247

Tjsubst The IHs give ∀k . Γ′ ` σ vk : σ ak = σ bk and Γ′ ` σB : Type. Since context
equivalence preserves erasure (lemma 97) the premise |B | = |({a1/x1} ... {aj/xj} c =
{b1/x1} ... {bj/xj} c)| is unchanged. Then apply Tjsubst.

Tcast The IHs give Γ′ ` σ a : σA and Γ′ ` σ v : σA = σB and Γ′ ` σB : Type.
Then by Tcast we have Γ′ ` (σ a).σ v : σB as required.

Lemma 100 (Context conversion for congruence closure).
If � σ : Γ = Γ′, then Γ � a = b implies Γ′ � σ a = σ b.

Proof. By induction on Γ � a = b. The cases are

TCCrefl By context conversion for the annotated language (lemma 99), we have
Γ′ ` σ a : σA. Then apply TCCrefl again.

TCCerasure By context conversion for the annotated language (lemma 99), σ a and
σ b are well-typed in Γ′. And applying a context equivalence σ does not affect
the erasure of a term (lemma 100). Then apply TCCerasure again.

TCCsym Direct by IH.

TCCtrans Direct by IH.

TCCassumption The rule looks like

Γ � C = (a = b) y : C ∈ Γ

Γ � a = b

By the IH we know Γ′ � σC = σ (a = b).

By lemma 96 there exists y : C ′ ∈ Γ′ with Γ′ � C ′ = σC . So by transitivity
(TCCtrans) we have Γ′ � C = σ (a = b). Note that σ (a = b) ≡ (σ a = σ b)
Apply TCCassumption.

TCCcongruence The given rule looks like

Γ ` A = B : Type ∀k . Γ � ak = bk
|A = B | = |{a1/x1} ... {aj/xj} c = {b1/x1} ... {bj/xj} c|

Γ � A = B
TCCcongruence

By IH we know ∀k . Γ′ � σ ak = σ bk .

By context conversion for the annotated language (lemma 99) we know Γ′ `
σA = σB : Type. And since context equivalences do not affect the erasure of
terms (lemma 97) we still have

|σA = σB | = {σ a1/x1} ... {σ aj/xj} c = {σ b1/x1} ... {σ bj/xj} c.

248

Now apply TCCcongruence.

TCCinjdom, TCCinjrng, TCCiinjdom, TCCiinjrng,TCCinjeq Direct by IH.

Lemma 101 (Symmetry of context equivalence).
If � σ : Γ = Γ′, then there exists ρ such that � ρ : Γ′ = Γ.

Proof. By induction on the judgement � σ : Γ = Γ′. The EEsame case is trivial.

In the EEcons case we are given

� σ : Γ = Γ′

Γ ` A : Type
Γ′ � A′ = σA
Γ′ ` v : A′ = σA

� σ {x.v/x} : Γ, x : A = Γ′, x : A′
EEcons

By IH we have � ρ : Γ′ = Γ.

Using that ρ to apply context conversion (lemma 100) to the premise Γ′ � A′ = σA,
we get Γ � ρA′ = ρ (σA).

By regularity of the context equivalence relation (lemma 95) we know Γ ` A : Type,
and since context equivalence preserves erasure (lemma 97) we know |ρ (σA)| = |A|.
So by TCCerasure, we have Γ � ρA′ = A. By TCCsym we get Γ � A = ρA′.

Furthermore, by lemma 72 this equation is witnessed by some value Γ ` v : A = ρA′.
Now pick ρ {x.v/x} as the witnessing substitution.

Lemma 102 (Context equivalence symmetry is an inverse).
If � σ : Γ = Γ′ and � ρ : Γ′ = Γ and Γ ` a : A, then Γ � ρ σ a = a.

Proof. Since the substitutions only change erased parts of the term (lemma 97),
|ρ σ a| = |a|. And by applying context conversion (lemma 99) twice we have Γ `
ρ σ a : ρ σA. So by TCCerasure, Γ � ρ σ a = a.

Lemma 103 (Contexts are equivalent if they are equal up to erasure).
If ` Γ and ` Γ′ and |Γ| = |Γ′|, then there exists σ such that � σ : Γ = Γ′.

Proof. Induction of the length of the contexts. (We know that Γ and Γ′ have the
same length since they erase to the same thing).

• Two empty contexts are trivially equivalent.

• Suppose the contexts are Γ, x : A and Γ′, x : A′. By inversion on ` Γ, x : A we
get ` Γ and Γ ` A : Type, and similarly we get ` Γ′ and Γ′ ` A′ : Type. And
we know |Γ| = |Γ′| and |A| = |A′|.

249

By the IH we know that there exists some σ such that � σ : Γ = Γ′. By
context conversion (lemma 99) we have Γ′ ` σA : Type. And since context
equivalences do not affect erasure, the |σA| = |A|. Thus, A′ and σA are two
well-typed terms which are equal up to erasure, so by TCCerasure we have
Γ′ � A′ = σA.

Finally, picking the term v = join;cbv00:A′=σA, we have Γ′ ` v : A′ = σA.

So applying EEcons we have

� σ {x.v/x} : Γ, x : A = Γ′, x : A′

as we wanted to prove.

Lemma 104 (Context conversion for injrng).
If Γ � injrng A for v and � σ : Γ = Γ′, then Γ′ � injrng σA for σ v .

Proof. We only show the case when A is (x : A1) → A2; the case when A is •(x :
A1)→ A2 is similar.

We are given that for all B1,B2, if Γ � ((x : A1) → A2) = ((x : B1) → B2) and
Γ ` v0 : A1 = B1 is the corresponding proof term, then Γ � {v/x}A2 = {v.v0/x}B2.
We must show that for all B ′1,B

′
2, if Γ′ � ((x :σA1) → σA2) = ((x : B ′1) → B ′2) and

Γ′ ` v ′0 : σA1 = B ′1, then Γ � {σ v/x}σA2 = {(σ v).v ′0
/x}B2.

So consider some B ′1,B
′
2, v
′
0 satisfying the hypothesis.

Let ρ be such that � ρ : Γ′ = Γ (using lemma 101).

Then by context conversion (lemma 100) we have Γ � ((x : ρ σA1) → ρ σA2) =
((x : ρB ′1) → ρB ′2). By lemma 102 and transitivity this equation is equivalent to
Γ � ((x :A1)→ A2) = (x :ρB ′1)→ ρB ′2. Suppose the proof term for this equation is
Γ ` v00 : A1 = ρB ′1. By assumption we have Γ � {v/x}A2 = {(ρ v).v00/x} ρB ′2. Now
by context conversion again, Γ′ � σ {v/x}A2 = σ {v.v00/x} ρB ′2.

Since x was a bound variable, we can pick it so it is not in the domain of σ or ρ,
so the above equation is equivalent to Γ′ � {σ v/x}σA2 = {σ ((ρ v).v00)/x}σ ρB ′2.
Since σ and ρ cancel (lemma 102), this equation is equivalent to Γ′ � {σ v/x}σA2 =
{(σ v).σ v00

/x}B ′2.

By inversion on Γ � ((x :A1)→ A2) = ((x :B ′1)→ B ′2) (lemmas 58 and 49) we know
Γ, x : B ′1 ` B ′2 : Type, so by substitution (lemma 50) we have Γ ` {(σ v).v ′0

/x}B2 :

Type. Then since |{(σ v).σ v00
/x}B ′2| = |{(σ v).v ′0

/x}B ′2|, by TCCerasure and TC-

Ctrans we have Γ′ � {σ v/x}σA2 = {(σ v).v ′0
/x}B ′2 as required.

250

A.5 Properties of injrng

Lemma 105 (injrng respects CC).
If Γ � injrng A for v and Γ � A = B , then Γ � injrng B for v .

Proof. By transitivity, any type which is equal to B is also equal to A.

Lemma 106 (injrng up to erasure of the value). If Γ � injrng (x : A) → B for v and
Γ ` v ′ : A and |v ′| = |v |, then Γ � injrng (x :A)→ B for v ′

Proof. Let A1, B1 such that Γ � (x : A) → B = (x : A1) → B1 with the proof
term Γ ` v0 : ((x : A) → B) = ((x : A1) → B1). We need to show Γ � {v ′/x}B =
{v ′.v0/x}B1.

By the injrng assumption we have Γ � {v/x}B = {v.v0/x}B1. So by regularity
(lemma 58) we have Γ ` {v/x}B : Type and Γ ` {v.v0/x}B1 : Type.

Also, by inversion on Γ � ((x : A1) → A2) = ((x : B ′1) → B ′2) (lemmas 58 and 49) we
know Γ, x : A1 ` A2 : Type and Γ, x : B ′1 ` B ′2 : Type, so by substitution (lemma 50)
we have Γ ` {v ′/x}A2 : Type Γ ` {v ′.v0/x}B ′2 : Type. So by TCCerasure Γ �
{v/x}A2 = {v ′/x}A2 and {v ′.v0/x}B ′2 = {v ′/x}B ′2. Conclude by TCCtrans.

Lemma 107 (Instantiating injrng with a different value on the right). If Γ � injrng (x :
A) → B for v and Γ � (x : A) → B = (x : A′) → B ′ and Γ ` v ′ : A′ and |v ′| = |v |,
then Γ � {v/x}B = {v ′/x}B ′.

Proof. By the assumption Γ � injrng (x : A) → B for v we know that Γ � {v/x}B =
{v.v0/x}B ′.

By inversion on Γ � ((x : A) → B) = ((x : A′) → B ′) (lemmas 58 and 49) we know
Γ, x : A′ ` B ′ : Type, so by substitution (lemma 50) we have Γ ` {v ′/x}B ′ : Type. We
also know |{v.v0/x}B ′| = |{v ′/x}B ′|, so by TCCerasure we have Γ � {v.v0/x}B ′ =
{v ′/x}B ′.

Then by TCCtrans, Γ � {v/x}B = {v ′/x}B ′ as required.

A.6 Proofs about elaboration

In general, in the following we will use primed metavariables for fully-elaborated core
language environments and terms.

This lemma states that the elaboration algorithm produces output that type checks
according to the core language and differs from the input only in the erasable parts
of the term.

251

Lemma 108 (Soundness w.r.t. fully annotated typing).

1. If ` Γ′ and Γ′ a ⇒ a ′ : A′, then Γ′ ` a ′ : A′ and |a| = |a ′|.

2. If ` Γ′ and Γ′ ` A′ : Type and Γ′ a ⇐ A′ ; a ′, then Γ′ ` a ′ : A′ and |a| = |a ′|.

3. If Γ ; Γ′, then ` Γ′ and |Γ| = |Γ′|

Proof. Induction on the assumed typing derivations. The cases for Γ b ⇒ b ′ : B
are:

EItype Trivial.

EIvar Trivial.

EIpi By ih. Γ′ ` A′ : Type and |A| = |A′|. Γ′, x : A′ ` B ′ : Type and |B | = |B ′|.
Thus Γ′ ` (x :A′)→ B ′ : Type and |(x :A)→ B | = |(x :A′)→ B ′|.

EIipi Similar to EIipi.

EIdapp
Γ a ⇒ a ′ : A1

Γ A1 =? (x : A)→ B ; v1

Γ v ⇐ A ; v ′

Γ � injrng (x :A)→ B for v ′

Γ a v ⇒ a ′.v1 v ′ : {v ′/x}B
EIdapp

By ih we have Γ′ ` a ′ : A1 where |a| = |a ′|. By assumption 53 we have Γ′ ` v1 :
A1 = ((x : A) → B). By several inversions (lemma 49) of this judgement, we
can conclude Γ′ ` (x : A) → B : Type and Γ′ ` A : Type. Therefore by casting,
Γ′ ` a ′.v1 : (x : A) → B . Also by induction we have Γ′ ` v ′ : A and |v | = |v ′|.
Therefore Γ′ ` a ′.v1 v ′ : {v ′/x}B and |a ′.v1 v ′| = |a v |.

EIapp and EIdiapp Similar to EIdapp.

EIeq Directly by induction.

EIjjoinc By induction |a = b| = |a ′ = b ′| and Γ′ ` a ′ = b ′ : Type. Therefore, we
know that the terms have the same erasure (i.e. |a| = |a ′| and |b| = |b ′|) so the
same premises can used in rule Tjoinc.

EIjoinp Similar to EIjoinc.

EIannot By induction.

The cases for Γ a ⇐ A ; a ′ are:

ECrec By assumption 53 we have Γ′ ` v1 : A = ((x : A1) → A2). By inversions of
this judgement (lemma 49), Γ′ ` (x :A1)→ A2 : Type and Γ′, x : A1 ` A2 : Type.
By core language weakening Γ′, f : (x : A1) → A2, x : A1 ` A2 : Type, so the
induction hypothesis applies. Therefore Γ′, f : (x : A1) → A2, x : A1 ` a ′ : A2

252

and |a| = |a ′|. By Trec, we have Γ′ ` rec f(x:A1)→A x .a ′ : (x :A1)→ A, and by
Tcast, we have Γ′ ` (rec f(x:A1)→A2 x .a ′)

.symm v1
: A. Furthermore the erasures

are equal.

ECirec Similar to ECrec.

ECrefl By assumption (analogous to 53) we have Γ′ ` v1 : A = (a = b). By
inversion, Γ′ ` a = b : Type. By assumption 54, we also have Γ′ ` v : a = b,
and that |v | = join. Therefore by Tcast we conclude that Γ′ ` v.symm v1 : A
and that |v.symm v1| = |join•|.

ECinf We know that Γ′ ` B : Type. By induction we have that Γ′ ` a ′ : A where
|a| = |a ′|. That means |a ′.v1| = |a| By assumption 54, we have Γ′ ` v1 : A = B ,
therefore we can use Tcast to conclude Γ′ ` a ′.v1 : B .

The cases for Γ ; Γ′ are:

EGnil Trivial.

EGvar By the IH we know ` Γ′. So by the mutual IH for Γ′ A ⇐ Type ; A′ we
know Γ′ ` A′ : Type, and therefore ` Γ′, x : A′. Similarly, |Γ, x : A| = |Γ′, x : A′|.

A.6.1 Checking is closed under CC

This next lemma says that the input type of the elaboration judgement can be re-
placed with an equivalent type (according to congruence closure) and elaboration will
still succeed, producing a result that differs only in typing annotations.

Lemma 109 (Admissibility of Ccast in elaboration).
If Γ′ a ⇐ A′ ; a ′ and Γ′ � A′ = B ′, then Γ′ a ⇐ B ′ ; a ′′ for some a ′′ such that
|a ′′| = |a ′|.

Proof. Case analysis on Γ′ a ⇐ A′ ; a ′. Cases ECrec, ECirec, ECrefl,
ECsubst, ECdcon, and ECcase are all very similar, so we show just ECrec in
detail.

Here, the assumed typing derivation looks like

Γ A =? (x : A1)→ A2 ; v1

Γ, f : (x :A1)→ A2, x : A1 a ⇐ A2 ; a ′

Γ, f : (x :A1)→ A2, x : A1 � injrng (x :A1)→ A2 for x
Γ, f : (x :A1)→ A2 (x :A1)→ A2 ⇐ Type ; A0

Γ rec f x .a ⇐ A ; (rec f(x:A1)→A2 x .a ′)
.symm v1

ECrec

253

By assumption 52 we have Γ B =? (x :A1)→ A2. Then apply ECrec again. The
elaborated term only differs in the proof used by the cast, symm v1, and this difference
gets erased.

The rule ECinf instead relies on transitivity of �. We have Γ′ A
?
= B ; v1 as a

premise of the rule and Γ′ � A′ = A as an assumption, so Γ′ � A′ = B , and hence

Γ′ A′
?
= B ; v2 for some v2. Then apply ECinf again; again the elaborated term

only differs by the proof of the cast.

A.6.2 Context conversion for elaboration

Lemma 110 (Context conversion for elaboration). Suppose � σ : Γ = Γ′. Then,

1. Γ a ⇒ a ′ : A implies Γ′ a ⇒ a ′′ : A′ for some A′ such that Γ′ � A′ = σA
and some a ′′ such that |a ′′| = |a ′|.

2. Γ ` A : Type and Γ a ⇐ A ; a ′ implies Γ′ a ⇐ σA ; a ′′ for some a ′′ such
that |a ′′| = |a ′|.

Proof. Induction on the assumed derivations. The cases for Γ b ⇒ b ′ : B are:

EItype Pick A′ := Type.

EIvar By the variable lookup lemma (lemma 96) we have x : A′ ∈ Γ with Γ′ � A′ =
σA, as required. The elaborated term is still x, so it is equal up to erasure as
required.

EIpi By the mutual IHs we have Γ′ A ⇐ Type ; A′′ and Γ′ B ⇐ Type ; B ′′.
Then re-apply EIpi. By IH the subterms of the elaborated term are equal up
to erasure, so the entire elaborated term is also equal up to erasure.

EIipi Similar to EIipi.

EIapp By the IH for the first premise we know Γ′ a ⇒ a ′′ : A′1 for some type A′1
such that Γ′ � A′1 = σA1.

From the premise Γ A1 =? (x : A) → B ; v1 and context conversion
(lemma 100) we get Γ′ � σA1 = (x :σA)→ σB . So by transitivity, Γ′ � A′1 =
(x :σA) → σB . So the search Γ′ A′1 =? (x : A′) → B ′ ; v ′1 will succeed for
some arrow type (x :A′)→ B ′ and proof v ′1, since these exists at least one such
arrow type.

Now note that by TCCtrans and TCCinjdom, we have Γ′ � A′ = σA. From
the IH for b we know Γ′ b ⇐ σA ; b ′′. So by casting the return type
(lemma 109) we get Γ′ b ⇐ A′ ; b ′′′.

254

Now apply EIapp to get Γ′ a b ⇒ a ′′ b ′′′ : B ′. By TCCinjrng we have
Γ′ � B ′ = σB as required.

EIdapp By the IH for the first premise, we know Γ′ a ⇒ a ′′ : A′1 for some type A′1
such that Γ′ � A′1 = σA1.

From the premise Γ A1 =? (x : A) → B ; v1 and context conversion
(lemma 100) we get Γ′ � σA1 = (x :σA)→ σB . So by transitivity, Γ′ � A′1 =
(x :σA) → σB . So the search Γ′ A′1 =? (x : A′) → B ′ ; v ′1 will succeed for
some arrow type (x :A′)→ B ′ and proof v ′1, since these exists at least one such
arrow type.

Now note that by TCCtrans and TCCinjdom, we have Γ′ � A′ = σA. From
the IH for v we know Γ′ v ⇐ σA ; v ′′. So by casting the return type
(lemma 109) we get Γ′ v ⇐ A′ ; v ′′′.

By context conversion for injrng (lemma 104) we get Γ′ � injrng (x : σA) →
σB for σ v ′. Now by correctness of elaboration (lemma 108) we know Γ′ `
v ′′′ : A′ and also |v | = |v ′′′|. The latter also implies |v ′′′| = |σ v ′|, so since
injrng respects type equality and erasure (lemmas 105, 106) we then have Γ′ �
injrng (x :A′)→ B ′ for v ′′′

Then apply EIdapp again, to get Γ′ a v ⇒ a ′.v ′1 v ′′′ : {v ′′′/x}B ′ .

From Γ′ � injrng (x : A′) → B ′ for v ′′′ we get Γ′ � {v ′′′/x}B ′ = {σ v ′/x}σB .
Since we can pick the bound variable so that x /∈ FV (B) , that is the same as
Γ′ � {v ′′′/x}B ′ = σ {v ′/x}B , as required. Also as required, |a ′ v ′| = |a ′′ v ′′′|
since the subterms are equal up to erasure.

ottdrulenameEIdiapp Similar to EIdapp.

EIeq By the IHs we get Γ′ a ⇒ a ′′ : A0 and Γ′ b ⇒ b ′′ : B0, then apply EIeq
again.

EIjjoinc By the mutual IH we get Γ′ a = b ⇐ Type ; a ′′ = b ′′. Since a′ and a′′

erase to the same thing we know |a|;i
cbv c (and similarly for b ′′), so applying

EIjoinc again we get Γ′ join;cbvi j :a=b ⇒ join;cbvi j :a ′′=b′′ : a ′′ = b ′′.

By soundness (lemma 108) and regularity (lemma 51) we know a ′′ = b ′′ is well-
typed, so by TCCerasure we have Γ′ � (a ′ = b ′) = (a ′′ = b ′′) as required.

EIjoinp Similar to EIjoinc.

EIannot By the mutual IH we get Γ′ A⇐ Type ; A′′ and Γ′ � A′′ = σA′. Again
by mutual IH we have Γ′ a ⇐ σA′ ; a ′′. So by casting (lemma 109) we have
Γ a ⇐ A′′ ; a ′′′.

Then apply EIannot again, to get Γ aA ⇒ a ′′′ : A′′. We have |a ′′′| = |a ′′| =
|a ′| as required.

255

The cases for Γ a ⇐ A ; a ′ are:

ECrec By context conversion for CC (lemma 100) we know Γ′ � σA = (x :σA1)→
σA2. So the search Γ′ A =? (x : A′1)→ A′2 ; v ′1 will succeed for some arrow
type (x :A′1)→ A′2 and proof v ′1, since there exists at least one such arrow type.

By regularity of CC (lemma 58) and inversion for type well-formedness we know
Γ, x : A1 ` A2 : Type, and so by weakening (lemma 47) Γ, f : (x :A1)→ A2, x :
A1 ` A2 : Type. So the induction hypothesis for the a premise is available.

By TCCtrans and TCCinjdom, we have Γ′ � (x : A′1) → A′2 = (x :σA1) →
σA2 and Γ′ � A′1 = σA1. So � σ′ : Γ, f : (x : A1) → A2, x : A1 = Γ′, f : (x :
A′1) → A′2, x : A′1, where σ′ is the substitution σ suitably extended. So by IH,
Γ′, f : (x :A′1)→ A2, x : A′1 a ⇐ σ′A2 ; a ′′.

Because injrng respects context conversion (Lemma 104) we have Γ′, f : (x :
σA1) → σA2, x : σA1 � injrng (x : σA1) → σA2 for σ x . Since it respects CC
(lemma 105) that implies Γ′, f : (x :σA1) → σA2, x : σA1 � injrng (x : A′1) →
A′2 for σ x . Also, using the CC judgements we proved above, we can construct a ρ
such that � ρ : Γ′, f : (x :σA1) → σA2, x : σA1 = Γ′, f : (x : A′1) → A′2, x : A′1.
So by lemma 104 again, we have Γ′, f : (x :A′1)→ A′2, x : A′1 � injrng (x :ρA′1)→
ρA′2 for ρ σ x . The variables f and x were bound, so we can pick them to not
appear in the arrow type, so this is the same as Γ′, f : (x : A′1) → A′2, x : A′1 �
injrng (x :A′1)→ A′2 for ρ σ x . Finally, since injrng respects erasure (lemma 106)
we can conclude that Γ′, f : (x :A′1)→ A′2, x : A′1 � injrng (x :A′1)→ A′2 for x .

By weakening of CC (lemma 57) we have Γ′, f : (x : A′1) → A′2, x : A′1 � (x :
A′1) → A′2 = (x : σA1) → σA2. So by the injrng assumption we know that
Γ′, f : (x :A′1)→ A′2, x : A′1 � A′2 = σA2.

So by casting (lemma 109) we have Γ′, f : (x :A′1)→ A′2, x : A′1 a ⇐ A′2 ; a ′′′.

Now apply ECrec to get Γ′ rec f x .a ⇐ σA ; (rec f x .a ′′′).symm v ′1
as

required.

ECirec Similar to ECrec.

ECrefl By context conversion for CC (lemma 100) we know Γ′ � σA = σ (a = b).
Therefore, Γ′ σA =? (a1 = b1) ; v ′1 will succeed for some a1 = b1 such that
Γ′ � σ (a = b) = (a1 = b1). By TCCinjeq, that implies Γ′ � σ a = a1 and
Γ′ � σ b = b1.

We know Γ′ � (σ a) = (σ b) by context conversion for CC.

So by transitivity (TCCtrans) we have Γ′ � a1 = b1.So Γ′ a1
?
= b1 ; v ′ will

also succeed.

Then apply ECrefl again. By assumption 52 we know |v.symm v1| = |v ′.symm v ′1
| =

256

join, so the elaborated terms are equal up to erasure as required.

ECinf By the mutual IH we have Γ′ a ⇒ a ′′ : A′ with Γ′ � σA = A′. And by
context conversion for CC (lemma 100) we have Γ′ � σA = σB . By transitivity,

Γ′ � A′ = σB , so Γ′ A′
?
= σB ; v ′1 succeeds for some v ′1. Then apply ECinf

again.

A.6.3 Completeness of elaboration

Note: in the following lemma statement and proof we use the convention that metavari-
ables with primes (A′, B′. . .) are expressions in the fully annotated language, and
metavariables without primes are in the surface language.

The first completeness lemma says that if the surface language CC judgement is
derivable, then the target CC judgement is also derivable after elaborating the context
and terms.

Lemma 111 (Completeness of CC). If Γ �∃ a = b and Γ ; Γ′ and Γ′ a ⇒ a ′ : A′

and Γ′ b ⇒ b ′ : B ′ then Γ′ � a ′ = b ′

Proof. The proof follows from the fact that typing annotations don’t matter to con-
gruence closure (Lemma 78). By inversion of Γ �∃ a = b we have some Γ′1, a ′1 and b ′1
such that Γ′1 � a ′ = b ′ and |Γ′1| = |Γ|, |a ′1| = |a|, and |b ′1| = |b|. By translation sound-
ness (Lemma 108), we also have |Γ′| = |Γ|, |a ′| = |a|, and |b ′| = |b|, with Γ′ ` a ′ : A′

and Γ′ ` b ′ : B ′. This is all that we need to use the lemma.

Likewise, we need to know that the surface language injrng judgement also describes
when the corresponding fully annotated version is derivable.

Lemma 112 (Completeness of injrng).
If Γ �∃ injrng (x : A) → B for v and Γ ; Γ′ and Γ′ (x : A) → B ⇐ Type ; (x :

A′)→ B ′ and Γ′ v ⇐ A′ ; v ′ then Γ′ � injrng (x :A′)→ B ′ for v ′.

Proof. Consider A1, B1 such that Γ′ � (x : A′) → B ′ = (x : A1) → B2 with the proof
term Γ′ ` v0 : ((x : A′) → B ′) = ((x : A1) → B2). We must show Γ′ � {v ′/x}B ′ =
{v ′.v0/x}B1.

By inversion and substitution, we know that Γ′ ` {v ′/x}B ′ : Type and Γ′ ` {v ′.v0/x}B1 :
Type.

Now instantiation the assumption Γ �∃ injrng (x : A) → B for v with A1 and B1. We
have Γ �∃ {vA/x}B = {vA1/x}B1. That is, there are some Γ′′, a ′′ and b ′′ such that
|Γ′′| = |Γ| and |a ′′| = |{vA/x}B | and |b ′′| = |{vA1/x}B1| and Γ′′ � a ′′ = b ′′.

257

Since elaboration produced terms which are equal up to erasure, we also have |Γ′′| =
|Γ′| and |a ′′| = |{v/x}B ′| and |b ′′| = |{v.v0/x}B1|. So since CC doesn’t care about
annotations (lemma 78) we have Γ′ � {v ′/x}B ′ = {v ′.v0/x}B1 as required.

We next prove the completeness of the entire system using mutual induction on the
three judgements of the surface language. For convenience, we use an alternative
(“regularized”) version of the typing rules, written Γ `reg a ⇒ A, that adds additional
regularity assumptions to the typing judgement. For example, in the RIdapp rule
we add the premise Γ ` (x : A) → B ⇐ Type. The typing rules for that system are
shown in Figures A.6 and A.7.

To justify the addition of these premises, we show the following regularity lemma
about the inference judgement.

Lemma 113. If Γ ` a ⇒ A then Γ ` A⇐ Type.

Proof. Proof is by case analysis of Γ ` a ⇒ A.

Itype Holds by Itype and Cinf.

Ivar Holds by premise of the rule.

Ipi Holds by Itype and Cinf.

Idapp Holds by premise of the rule.

Iidapp Holds by premise of the rule.

Iapp Holds by premise of the rule.

Ieq Holds by Itype and Cinf.

Ijoinc Holds by premise of the rule.

Ijoinp Holds by premise of the rule.

Iannot Holds by premise of the rule.

Icast Holds by premise of the rule.

Lemma 114 (Completeness, with strengthened invariants).

1. If `reg Γ⇐ then Γ ; Γ′.

2. If Γ `reg a ⇒ A and `reg Γ ⇐ and Γ ; Γ′ and Γ′ A ⇐ Type ; A′, then
Γ′ a ⇒ a ′ : A′′ and Γ′ � A′ = A′′

3. If Γ `reg a ⇐ A and `reg Γ ⇐ and Γ ; Γ′ and Γ′ A ⇐ Type ; A′, then
Γ′ a ⇐ A′ ; a ′.

258

Γ `reg a ⇒ A

Γ `reg Type⇒ Type
RItype

`reg Γ⇐ x : A ∈ Γ Γ `reg A⇐ Type

Γ `reg x ⇒ A
RIvar

Γ `reg A⇐ Type
Γ, x : A `reg B ⇐ Type

Γ `reg (x :A)→ B ⇒ Type
RIpi

Γ `reg (x :A)→ B ⇐ Type
Γ `reg a ⇒ (x :A)→ B
Γ `reg v ⇐ A
Γ �∃ injrng (x :A)→ B for v
Γ `reg {vA/x}B ⇐ Type

Γ `reg a v ⇒ {vA/x}B
RIdapp

Γ `reg B ⇐ Type
Γ `reg A→ B ⇐ Type
Γ `reg a ⇒ A→ B
Γ `reg b ⇐ A

Γ `reg a b ⇒ B
RIapp

Γ `reg A⇐ Type
Γ, x : A `reg B ⇐ Type

Γ `reg •(x :A)→ B ⇒ Type
RIipi

Γ `reg •(x :A)→ B ⇐ Type
Γ `reg a ⇒ •(x :A)→ B
Γ `reg v ⇐ A
Γ �∃ injrng • (x :A)→ B for v
Γ `reg {vA/x}B ⇐ Type

Γ `reg a •v ⇒ {vA/x}B
RIidapp

Γ `reg a ⇐ A

Γ, f : (x :A1)→ A2, x : A1 `reg a ⇐ A2

Γ, f : (x :A1)→ A2 `reg A1 ⇐ Type
Γ, f : (x :A1)→ A2, x : A1 `reg A2 ⇐ Type
Γ, f : (x :A1)→ A2, x : A1 �∃ injrng (x :A1)→ A2 for x

Γ `reg rec f x .a ⇐ (x :A1)→ A2

RCrec

Γ, f : •(x :A1)→ A2, x : A1 `reg a ⇐ A2

Γ, f : (x :A1)→ A2 `reg A1 ⇐ Type
Γ, f : (x :A1)→ A2, x : A1 `reg A2 ⇐ Type
x /∈ FV (|a|)
Γ, f : (x :A1)→ A2, x : A1 �∃ injrng (x :A1)→ A2 for x

Γ `reg rec f •.a ⇐ •(x :A1)→ A2

RCirec

Figure A.6: Typing rules for surface language, with added extra regularity premises:
functions and variables

259

Γ `reg a ⇒ A Γ `reg a ⇐ A

Γ `reg A⇐ Type
Γ `reg B ⇐ Type
Γ `reg a ⇒ A
Γ `reg b ⇒ B

Γ `reg a = b ⇒ Type
RIeq

Γ `reg A⇐ Type
Γ `reg a ⇐ A

Γ `reg aA ⇒ A
RIannot

Γ `reg a ⇒ A

Γ `reg a ⇐ A
RCinf

Γ `reg a1 = a2 ⇐ Type

|a1|;i
cbv b |a2|;j

cbv b

Γ `reg join;cbvi j :a1=a2 ⇒ a1 = a2

RIjoinc
Γ �∃ a = b

Γ `reg join⇐ a = b
RCrefl

Γ `reg a1 = a2 ⇐ Type
|a1|;i

p b |a2|;j
p b

Γ `reg join;pi j :a1=a2 ⇒ a1 = a2

RIjoinp

Γ `reg a ⇒ A Γ �∃ A = B
Γ `reg A⇐ Type
Γ `reg B ⇐ Type

Γ `reg a ⇒ B
RIcast

Γ `reg a ⇐ A
Γ � A = B
Γ `reg B ⇐ Type

Γ `reg a ⇐ B
RCcast

Figure A.7: Typing rules for surface language, with added extra regularity premises:
equality

260

Proof. Mutual induction on the derivations. The cases for Γ `reg a ⇒ A are:

Itype Pick A′ := Type.

Ivar By soundness of elaboration (lemma 108) applied to the assumption Γ ; Γ′,
there is some x : A′′ ∈ Γ′ with |A′′| = |A| and Γ′ ` A′′ : Type. By soundness
of elaboration applied to the assumption Γ′ A ⇐ Type ; A′, we know
Γ′ ` A′ : Type.

Now by EIvar we have Γ′ x ⇒ x : A′′, and by TCCerasure Γ′ � A′ = A′′

as required.

Ipi We know Γ′ Type ⇐ Type ; Type. So by the mutual IH for the A premise,
Γ′ A⇐ Type ; A′.

Then by Gvar we have ` Γ, x : A ⇐, and by GFvar we have Γ, x : A ;
Γ′, x : A′. So by the mutual IH for the B premise, Γ′, x : A′ B ⇐ Type ; B ′.

Now apply EIpi to get Γ′ (x :A)→ B ⇒ (x :A′)→ B ′ : Type.

Iipi Similar to Ipi.

Idapp The given typing derivation looks like

Γ `reg (x :A)→ B ⇐ Type
Γ `reg a ⇒ (x :A)→ B
Γ `reg v ⇐ A
Γ �∃ injrng (x :A)→ B for v
Γ `reg {vA/x}B ⇐ Type

Γ `reg a v ⇒ {vA/x}B
RIdapp

In the regularized type system, we have Γ ` (x : A) → B ⇐ Type as a premise
to the given rule. So by IH, Γ′ (x : A) → B ⇐ Type ; B ′1 for some type B ′1,
where Γ′ � (x : A) → B = B ′1. In fact there is only one rule for elaborating
arrow types, so by inversion of that judgement, we get Γ′ (x : A) → B ⇐
Type ; (x :A′)→ B ′, where B ′1 is (x :A′)→ B ′ and Γ′ A⇐ Type ; A′ and
Γ′, x : A′ B ⇐ Type ; B ′. By soundness, this also means that |(x : A) →
B | = |(x :A′)→ B ′|.

From the IH for the a premise we know Γ′ a ⇒ a ′ : A′0 with Γ′ � A′0 = (x :
A′)→ B ′.

So, by Assumption 55 the search Γ′ A′0 =? (x : A′′) → B ′′ ; v1 through
the equivalence class of A′0 will terminate successfully with some arrow type
(x :A′′)→ B ′′ and proof v1, since there exists at least one such arrow type, and
by Assumption 53 we know that Γ′ ` v1 : (A′0 = ((x :A′′)→ B ′′)).

261

As a result, we have Γ′ � (x : A′) → B ′ = (x : A′′) → B ′′, By TCCinjdom we
know Γ′ � A′ = A′′.

Now by the IH for the v premise, we get Γ′ v ⇐ A′ ; v ′ and, by lemma 108,
that |v | = |v ′|. By casting (lemma 109) this implies Γ′ v ⇐ A′′ ; v ′′. Again
by soundness (lemma 108), we have Γ′ ` v ′′ : A′′ and |v | = |v ′′|.

The algorithmic injrng premise of EIdapp, namely Γ′ � injrng (x : A′′) →
B ′′ for v ′′ is satisfied by Lemma 112.

Now apply EIdapp, to get Γ′ a v ⇒ a ′ v ′′ : {v ′′/x}B ′′.

We know by assumption that Γ′ {vA/x}B ⇐ Type ; B0. The lemma also
requires showing Γ′ � B0 = {v ′′/x}B ′′. By instantiating the injrng premise at
v ′ (lemma 107), it suffices to show that Γ′ � B0 = {v ′/x}B ′. We derive this
equality via TCCerasure, as Γ′ ` B0 : Type (via soundness), Γ′ ` {v ′/x}B ′ :
Type (via substation for annotated language), and |B0| = |{v ′/x}B ′|. This
last equality holds because, by |B | = |B ′| and |vA| = |v ′| and the fact that
substitution commutes with erasure we know that |{vA/x}B | = |{v ′/x}B ′|.
Furthermore by soundness, we have |{vA/x}B | = |B0|.

Iiapp, Iapp Similar to the previous case.

Ieq By the IHs for the (added) premises Γ `reg A⇐ Type and Γ `reg B ⇐ Type, we
know Γ′ A⇐ Type ; A′ and Γ′ B ⇐ Type ; B ′.

Then by the IHs for the premises for a and b we know Γ′ a ⇒ a ′ : A′′ and
Γ′ b ⇒ b ′ : B ′′. Now apply EIeq to get Γ′ a = b ⇒ a ′ = b ′ : Type.

Ijoinc,Ijoinp By the IH for the premise Γ ` a1 = a2 ⇐ Type we know Γ′ a1 =
a2 ⇐ Type ; A0. There is only one rule for elaborating equality types, so by
inversion on that judgement we in fact have Γ′ a1 = a2 ⇐ Type ; a ′1 = a ′2
and Γ′ a1 ⇒ a ′1 : A′1 and Γ′ a2 ⇒ a ′2 : A′2.

By soundness of elaboration 108 we know |ai | = |a ′i |, so the the reduction behav-
ior is the same. So apply EIjoinc to get Γ′ join;cbvi j :a1=a2 ⇒ join;cbvi j :a

′
1=a ′2

:
a ′1 = a ′2. Also by soundness of elaboration we know a ′1 = a ′2 is well-typed, so by
TCCrefl Γ′ � (a ′1 = a ′2) = (a ′1 = a ′2) as required.

Iannot By the IH for the premise Γ ` A ⇐ Type we get Γ′ A ⇐ Type ; A′.
Then by the IH for Γ ` a ⇐ A, we get Γ′ a ⇐ A′ ; a ′. Now by EIannot,
Γ′ aA ⇒ a ′ : A′.

By soundness of elaboration 108 we know A′ is well-typed, so Γ′ � A′ = A′ as
required.

Icast By the IH for the (added) premise Γ `reg A⇐ Type, we have Γ′ A⇐ Type ;
A′ (and |A| = |A′| by soundness). Then by the IH for Γ ` a ⇒ A, we know

262

Γ′ a ⇒ a ′ : A′′ with Γ′ � A′ = A′′. Likewise, by the IH for the (added)
premise Γ `reg B ⇐ Type, we have Γ′ B ⇐ Type ; B ′ (and |B | = |B ′| by
soundness).

By the definition of �∃ we know there are Γ1, A1,B1 such that Γ1 � A1 = B1

where |Γ1| = |Γ|,|A1| = |A| and |B1| = |B |, so by lemma 78 we have Γ′ � A′ =
B ′. So by TCCtrans Γ′ � A′′ = B ′, as required.

The cases for Γ ` a ⇐ A are:

Crec The rule is

Γ, f : (x :A1)→ A2, x : A1 `reg a ⇐ A2

Γ, f : (x :A1)→ A2 `reg A1 ⇐ Type
Γ, f : (x :A1)→ A2, x : A1 `reg A2 ⇐ Type
Γ, f : (x :A1)→ A2, x : A1 �∃ injrng (x :A1)→ A2 for x

Γ `reg rec f x .a ⇐ (x :A1)→ A2

RCrec

To apply the induction hypothesis to the first premise, we need to know how
the type A2 elaborates in both the context Γ′ and in that context extended with
f .

There is only one rule for elaborating arrow types. So by inversion on the
hypothesis Γ′ (x : A1) → A2 ⇐ Type ; A, we in fact have Γ′ (x : A1) →
A2 ⇐ Type ; (x : A′1) → A′2 and Γ′ A1 ⇐ Type ; A′1 and Γ′, x : A′1
A2 ⇐ Type ; A′2 for some A′1 and A′2 such that Γ′ A1 ⇐ Type ; A′1 and
Γ′, x : A′1 A2 ⇐ Type ; A′2.

Using the fact that (x : A1) → A2 elaborates to (x : A′1) → A′2, we know
Γ, f : (x : A1) → A2 ; Γ′, f : (x : A′1) → A′2. So by the IH for the first

regularity premise we have Γ, f : (x : A′1) → A′2 A1 ⇐ Type ; A′′1 for some
A′′1.

Similarly, using that A1 elaborates to A′′1 we know Γ, f : (x : A1) → A2, x :
A1 ; Γ′, f : (x : A′1) → A′2, x : A′′1. So by the IH for the second regularity
premise we have Γ, f : (x :A′1)→ A′2, x : A′′1 A2 ⇐ Type ; A′′2 for some A′′2.

Now by the IH for the first premise of the rule, we get Γ, f : (x : A′1) → A′2, x :
A′′1 a ⇐ A′′2 ; a ′ for some a ′.

By soundness of elaboration we know (x : A′1) → A′2 is a well-formed type, so
Γ′ � (x : A′1) → A′2 = (x : A′1) → A′2. So the search Γ′ (x : A′1) → A′2 =? (x :
A′′′1) → A′′′2 ; v1 will succeed for some arrow type (x : A′′′1) → A′′′2 , since there
exists at least one.

By TCCinjdom, we also know Γ′ � A′1 = A′′′1 . Furthermore, by soundness of
elaboration (lemma 108) we know that both A′1 and A′′1 are well-formed types

263

in the context Γ′, f : (x : A′1) → A′2, and that they erase to the same thing.
So we have Γ′, f : (x : A′1) → A′2 � A′1 = A′′1. By symmetry and transitivity,
Γ′, f : (x : A′1) → A′2 � A′′′1 = A′′1. Let v2 be a proof of that fact. Then using
these two proofs, we can produce a proof of equivalence of the contexts.

� {f.v1/f } {x.v2/x} : Γ′, f : (x :A′1)→ A′2, x : A′′1 = Γ′, f : (x :A′′′1)→ A′′′2 , x : A′′′1 .

So by context conversion (lemma 110) we know Γ′, f : (x :A′′′1)→ A′′′2 , x : A′′′1
a ⇐ {f.v1/f } {x.v2/x}A′2 ; a ′′. By soundness of elaboration Γ′, x : A′1 ` A′2 :
Type, so f /∈ FV (A′2) and the above statement simplifies to Γ′, f : (x : A′′′1) →
A′′′2 , x : A′′′1 a ⇐ {x.v2/x}A′2 ; a ′′.

By completeness of injrng (lemma 112), we know that Γ′, f : (x :A′1)→ A′2, x :
A′1 � injrng (x : A′1) → A′2 for x . By weakening the judgement Γ′ � (x : A′1) →
A′2 = (x :A′′′1)→ A′′′2 (lemma 57), and because injrng respects CC (lemma 105),
we get Γ′, f : (x : A′1) → A′2, x : A′1 � injrng (x : A′′′1) → A′′′2 for x . By the
CC-equivalences proved above we can find a context equivalence � ρ : Γ′, f :
(x : A′1) → A′2, x : A′1 = Γ′, f : (x : A′′′1) → A′′′2 , x : A′′′1 . So since injrng respects
context conversion (lemma 104) we have Γ′, f : (x : A′′′1) → A′′′2 , x : A′′′1 �
injrng ρ (x : A′′′1) → A′′′2 for ρ x . We can pick the bound variables f and x to not
be free in (x : A′1) → A′2, so this is the same as Γ′, f : (x : A′′′1) → A′′′2 , x : A′′′1 �
injrng (x : A′′′1) → A′′′2 for ρ x . And because injrng respects erasure (lemma 106),
we have Γ′, f : (x : A′′′1) → A′′′2 , x : A′′′1 � injrng (x : A′′′1) → A′′′2 for x , which is
what we need as a premise to ECrec.

By TCCerasure we know Γ′, x : A′′′1 � {x.v2/x}A′2 = A′′′2 . By weakening
(lemma 57) thus Γ′, f : (x : A′′′1) → A′′′2 , x : A′′′1 � {x.v2/x}A′2 = A′′′2 . So by
casting (lemma 109), we have Γ′, f : (x :A′′1)→ A′′2, x : A′′1 a ⇐ A′′2 ; a ′′′.

Now apply ECrec to get
Γ rec f x .a ⇐ (x :A1)→ A2 ; (rec f(x:A′′1)→A′′2

x .a ′′′)
.symm v1

.

Cirec Similar to Crec.

Crefl There is only one rule for elaborating equality types, so by inversion on the
hypothesis Γ′ a = b ⇐ Type ; A′ we know that in fact Γ′ a = b ⇐
Type ; a ′ = b ′ and Γ′ a ⇒ a ′ : a ′0 and Γ′ b ⇒ b ′ : b ′0. So by soundness of
elaboration (lemma 108) we know a ′ and b ′ are well-typed terms, and therefore
by lemma 78 and the premise Γ �∃ a = b, we have Γ′ � a ′ = b ′.

So the search Γ (a ′ = b ′) =? (a ′′ = b ′′) ; v1 will terminate successfully with

some equality type a ′′ = b ′′ such that Γ′ a ′′
?
= b ′′ ; v , since there exists at

least one such type.

Then apply ECrefl to get Γ join⇐ a ′ = b ′ ; v.symm v1 as required.

Cinf By the mutual IH we have Γ a ⇒ a ′ : A′ for some A′ such that Γ � A′ = A.

264

By transitivity, Γ � A′ = B . Now apply ECinf.

265

Bibliography

[1] Andreas Abel. foetus – termination checker for simple functional programs,
1998.

[2] Andreas Abel. Semi-continuous sized types and termination. Logical Methods
in Computer Science, 4(2), 2008.

[3] Andreas Abel. MiniAgda: Integrating sized and dependent types. In Ana Bove,
Ekaterina Komendantskaya, and Milad Niqui, editors, Workshop on Partiality
And Recursion in Interative Theorem Provers (PAR 2010), Satellite Workshop
of ITP’10 at FLoC 2010, 2010.

[4] Andreas Abel. Irrelevance in type theory with a heterogeneous equality judge-
ment. In 14th international conference on Foundations of Software Science
and Computational Structures (FOSSACS 2011), volume 6604 of LNCS, pages
57–71. Springer, 2011. doi: 10.1007/978-3-642-19805-2\ 5.

[5] Andreas Abel and Thorsten Altenkirch. A partial type checking algorithm for
Type:Type. In Workshop on Mathematically Structured Functional Program-
ming, MSFP 2008, 2008.

[6] Andrei Alexandrescu. Modern C++ design: generic programming and design
patterns applied. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2001.

[7] Thorsten Altenkirch. The case for smart case: How to implement conditional
convertibility? Presentation at NII Shonan seminar 007, Japan, September
2011. Slides available at http://www.cs.nott.ac.uk/~txa/talks/.

[8] Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. Observational
equality, now! In PLPV ’07: Proceedings of the 2007 workshop on Programming
Languages meets Program Verification, pages 57–68. ACM, 2007.

[9] Thorsten Altenkirch, Nils Anders Danielsson, Andres Löh, and Nicolas Oury.
ΠΣ: Dependent types without the sugar. Functional and Logic Programming,
pages 40–55, 2010. doi: 10.1007/978-3-642-12251-4\ 5.

266

[10] Lennart Augustsson. Cayenne – a language with dependent types. In ICFP ’98:
International Conference on Functional Programming, pages 239–250. ACM,
1998.

[11] Leo Bachmair and Ashish Tiwari. Abstract congruence closure and specializa-
tions. In David McAllester, editor, Automated Deduction — CADE-17, volume
1831 of Lecture Notes in Artificial Intelligence, pages 64–78. Springer-Verlag,
jun 2000.

[12] Leo Bachmair, Nachum Dershowitz, and David A. Plaisted. Completion with-
out failure. In Aı̈t H. Kaci and M. Nivat, editors, Resolution of Equations in
Algebraic Structures, volume 2: Rewriting Techniques, pages 1–30. Academic
Press, 1989.

[13] Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo De’Liguoro. Inter-
section and union types: Syntax and semantics. Information and Computation,
119(2):202–230, June 1995.

[14] Henk P. Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbay,
and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, pages
117–309. Oxford University Press, 1992.

[15] Bruno Barras and Bruno Bernardo. The implicit calculus of constructions as a
programming language with dependent types. In 11th international conference
on Foundations of Software Science and Computational Structures (FOSSACS
2008), volume 4962 of LNCS, pages 365–379. Springer, 2008.

[16] Gilles Barthe, Venanzio Capretta, and Olivier Pons. Setoids in type theory.
Journal of Functional Programming, 13(2):261–293, 2003.

[17] Gilles Barthe, Julien Forest, David Pichardie, and Vlad Rusu. Defining and rea-
soning about recursive functions: A practical tool for the coq proof assistant.
In Proceedings of 8th International Symposium on Functional and Logic Pro-
gramming (FLOPS’06), volume 3945 of LNCS, pages 114–129. Springer-Verlag,
2006.

[18] Gilles Barthe, Benjamin Grégoire, and Fernando Pastawski. Cicˆ: Type-based
termination of recursive definitions in the calculus of inductive constructions.
In LPAR, pages 257–271, 2006.

[19] Gérard Becher and Uwe Petermann. Rigid unification by completion and rigid
paramodulation. In Bernhard Nebel and Leonie Dreschler-Fischer, editors, KI-
94: Advances in Artificial Intelligence, volume 861 of LNCS, pages 319–330.
Springer Berlin Heidelberg, 1994.

267

[20] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program De-
velopment, Coq’Art:the Calculus of Inductive Constructions. Springer-Verlag,
2004.

[21] Yves Bertot and Vladimir Komendantsky. Fixed point semantics and partial
recursion in Coq. In PPDP ’08: Principles and practice of declarative program-
ming, pages 89–96. ACM, 2008.

[22] Gavin M. Bierman, Andrew D. Gordon, Catalin Hritcu, and David E. Lang-
worthy. Semantic subtyping with an SMT solver. In ICFP ’10: International
Conference on Functional Programming, pages 105–116, 2010.

[23] Frédéric Blanqui. A type-based termination criterion for dependently-typed
higher-order rewrite systems. In 15th International Conference on Rewriting
Techniques and Applications - RTA’04, 2004.

[24] Max Bolingbroke. Contraint kinds for GHC. Blog post http://blog.

omega-prime.co.uk/?p=127, September 2011.

[25] Edwin Brady. Idris, a general-purpose dependently typed programming lan-
guage: Design and implementation. Journal of Functional Programmming, 23
(5):552–593, 2013.

[26] Edwin Brady, Conor McBride, and James McKinna. Inductive families need not
store their indices. In Stefano Berardi, Mario Coppo, and Ferruccio Damiani,
editors, Types for Proofs and Programs, volume 3085 of LNCS, pages 115–129.
Springer Berlin Heidelberg, 2004. doi: 10.1007/978-3-540-24849-1 8.

[27] Edwin C. Brady. Idris—systems programming meets full dependent types. In
PLPV’11: Programming languages meets program verification, pages 43–54.
ACM, 2011.

[28] Venanzio Capretta. General recursion via coinductive types. Logical Methods
in Computer Science, 1(2):1–18, 2005.

[29] Luca Cardelli. A polymorphic lambda-calculus with Type:Type. Technical re-
port, DEC SRC, 130 Lytton Avenue, Palo Alto, CA 94301. May. SRC Research
Report, 1986.

[30] Chris Casinghino. Combining Proofs and Programs. PhD thesis, University of
Pennsylvania, 2014.

[31] Chris Casinghino, Vilhelm Sjöberg, and Stephanie Weirich. Combining proofs
and programs in a dependently typed language. In POPL ’14: 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
2014.

268

[32] Adam Chlipala. Certified programming with dependent types, 2011. URL
http://adam.chlipala.net/cpdt.

[33] Adam Chlipala, J. Gregory Malecha, Greg Morrisett, Avraham Shinnar, and
Ryan Wisnesky. Effective interactive proofs for higher-order imperative pro-
grams. In ICFP’09, pages 79–90. ACM, 2009.

[34] Jeremy Condit, Matthew Harren, Zachary Anderson, David Gay, and George C.
Necula. Dependent types for low-level programming. In European Symposium
on Programming, 2007.

[35] Robert Constable and the PRL group. Implementing Mathematics with the
Nuprl Proof Development System. Prentice-Hall, 1986.

[36] Robert L. Constable and Scott Fraser Smith. Partial objects in constructive
type theory. In Logic in Computer Science (LICS’87), pages 183–193. IEEE,
1987.

[37] Thierry Coquand. An analysis of Girard’s paradox. In In Symposium on Logic
in Computer Science, pages 227–236. IEEE Computer Society Press, 1986.

[38] Pierre Corbineau. Démonstration automatique en Théorie des Types. PhD
thesis, University Paris 11, September 2005.

[39] Pierre Corbineau. Deciding equality in the constructor theory. In Thorsten
Altenkirch and Conor McBride, editors, Types for Proofs and Programs, volume
4502 of LNCS, pages 78–92. Springer Berlin Heidelberg, 2007.

[40] Karl Crary. Type-Theoretic Methodology for Practical Programming Languages.
PhD thesis, Cornell University, 1998.

[41] Nils Anders Danielsson. Operational semantics using the partiality monad. In
Proceedings of the 17th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’12, pages 127–138. ACM, 2012. doi: 10.1145/2364527.
2364546.

[42] Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. Journal of the ACM, 7(3):201–215, July 1960. doi: 10.1145/321033.
321034.

[43] Martin Davis, George Logemann, and Donald Loveland. A machine program
for theorem-proving. Communications of the ACM, 5(7):394–397, July 1962.
doi: 10.1145/368273.368557.

269

[44] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In
Proceedings of the Theory and Practice of Software, 14th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Sys-
tems, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg, 2008. Springer-
Verlag.

[45] Leonardo de Moura, Harald Rueß, and Natarajan Shankar. Justifying equality.
Electronic Notes in Theoretical Computer Science (ENTCS), 125(3):69–85, July
2005.

[46] Anatoli Degtyarev and Andrei Voronkov. The undecidability of simultaneous
rigid E-unification. Theoretical Computer Science, 166(1&2):291–300, 1996.

[47] Anatoli Degtyarev and Andrei Voronkov. What you always wanted to know
about rigid E-unification. In Logics in Artificial Intelligence, volume 1126 of
LNCS, pages 50–69. Springer Berlin Heidelberg, 1996.

[48] Dominique Devriese and Frank Piessens. On the bright side of type classes:
Instance arguments in Agda. In Proceedings of the 16th ACM SIGPLAN In-
ternational Conference on Functional Programming, ICFP ’11, pages 143–155.
ACM, 2011. ISBN 978-1-4503-0865-6. doi: 10.1145/2034773.2034796.

[49] Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on the
common subexpression problem. Journal of the ACM, 27(4):758–771, October
1980.

[50] Richard A. Eisenberg and Stephanie Weirich. Dependently typed programming
with singletons. In Proceedings of the 2012 Haskell Symposium, Haskell ’12,
pages 117–130. ACM, 2012. doi: 10.1145/2364506.2364522.

[51] Mart́ın Escardó. Ordinals in Goedel’s system T and in Martin-Loef type
theory, 2011. Unpublished note, http://www.cs.bham.ac.uk/~mhe/papers/
ordinals/ordinals.html.

[52] Michael Franssen. Implementing rigid E-unification, 2009.

[53] Jean Gallier, Wayne Snyder, Paliath Narendran, and David Plaisted. Rigid
E-unification is NP-complete. In Proceedings of the Third Annual Symposium
on Logic in Computer Science (LICS ’88), pages 218–227, 1988.

[54] Jean Gallier, Paliath Narendran, David A. Plaisted, and Wayne Snyder. Rigid
E-unification: NP-completeness and applications to equational matings. Infor-
mation and Computation, 87(1-2):129–195, July 1990.

[55] Jean H. Gallier and Tomás Isakowitz. Order-sorted rigid E-unification. Tech-
nical Report STERN IS-91-40, Information Systems Department, Leonard N.
Stern School of Business, New York University, December 1991.

270

[56] Herman Geuvers. Induction is not derivable in second order dependent type
theory. In Samson Abramsky, editor, Typed Lambda Calculi and Applications,
volume 2044 of LNCS, pages 166–181. Springer Berlin Heidelberg, 2001.

[57] David K. Gifford and John M. Lucassen. Integrating functional and impera-
tive programming. In Proceedings of the 1986 ACM Conference on LISP and
Functional Programming, LFP ’86, pages 28–38. ACM, 1986.

[58] Eduarde Giménez. Codifying guarded definitions with recursive schemes. In
Peter Dybjer, Bengt Nordström, and Jan Smith, editors, Types for Proofs and
Programs, volume 996 of LNCS, pages 39–59. Springer Berlin Heidelberg, 1995.

[59] Jean-Yves Girard. Interprétation fonctionelle et élimination des coupures de
l’arithmétique d’ordre supérieur. PhD thesis, Université Paris VII, 1972.

[60] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Cambridge
University Press, 1989.

[61] Georges Gonthier, Beta Ziliani, Aleksandar Nanevski, and Derek Dreyer. How
to make ad hoc proof automation less ad hoc. In Proceedings of the 16th ACM
SIGPLAN International Conference on Functional Programming, ICFP ’11,
pages 163–175. ACM, 2011. ISBN 978-1-4503-0865-6. doi: 10.1145/2034773.
2034798.

[62] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Co-
hen, François Garillot, Stéphane Le Roux, Assia Mahboubi, Russell O’Connor,
Sidi Ould Biha, Ioana Pasca, Laurence Rideau, Alexey Solovyev, Enrico Tassi,
and Laurent Théry. A machine-checked proof of the odd order theorem. In
Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie, editors, In-
teractive Theorem Proving - 4th International Conference, ITP 2013, Rennes,
France, July 22-26, 2013. Proceedings, volume 7998 of LNCS, pages 163–179.
Springer, 2013. doi: 10.1007/978-3-642-39634-2 14.

[63] Jean Goubault. A rule-based algorithm for rigid E-unification. In Georg Gott-
lob, Alexander Leitsch, and Daniele Mundici, editors, Computational Logic and
Proof Theory, volume 713 of LNCS, pages 202–210. Springer Berlin Heidelberg,
1993.

[64] Gunter Grieser. An implementation of rigid E-unification using completion and
rigid paramodulation. Research Report FITL–96–4, FIT Leipzig, June 1996.

[65] Jason Gross, Adam Chlipala, and David I. Spivak. Experience implementing a
performant category-theory library in coq. In Gerwin Klein and Ruben Gamboa,
editors, Interactive Theorem Proving, volume 8558 of LNCS, pages 275–291.
Springer International Publishing, 2014.

271

[66] Robert Harper. Constructing type systems over an operational semantics. Jour-
nal of Symbolic Computation, 14(1):71 – 84, 1992.

[67] Fritz Henglein. Polymorphic Type Inference and Semi-Unification. PhD thesis,
Rutgers, the State University of New Jersey, 1989.

[68] Ralf Hinze and Johan Jeuring. Generic Haskell: Practice and theory. In
Roland Backhouse and Jeremy Gibbons, editors, Generic Programming, vol-
ume 2793 of LNCS, pages 1–56. Springer Berlin Heidelberg, 2003. doi:
10.1007/978-3-540-45191-4 1.

[69] Limin Jia and David Walker. Modal proofs as distributed programs (extended
abstract). In ESOP’04: European Symposium on Programming, volume 2986
of LNCS, pages 219–233. Springer, 2004.

[70] Limin Jia, Jeffrey A. Vaughan, Karl Mazurak, Jianzhou Zhao, Luke Zarko,
Joseph Schorr, and Steve Zdancewic. AURA: A programming language for
authorization and audit. In ICFP ’08: International Conference on Functional
Programming), pages 27–38, 2008.

[71] Limin Jia, Jianzhou Zhao, Vilhelm Sjöberg, and Stephanie Weirich. Depen-
dent types and program equivalence. In POPL ’10: Proceedings of the 37th
annual ACM SIGPLAN-SIGACT symposium on Principles of Programming
Languages, pages 275–286, 2010. doi: 10.1145/1706299.1706333.

[72] Matt Kaufmann, J. Strother Moore, and Panagiotis Manolios. Computer-Aided
Reasoning: An Approach. Kluwer Academic Publishers, Norwell, MA, USA,
2000.

[73] Assaf J. Kfoury, Jerzy Tiuryn, and Pawel Urzyczyn. The undecidability of the
semi-unification problem. In Proceedings of the Twenty-second Annual ACM
Symposium on Theory of Computing, STOC ’90, pages 468–476, New York,
NY, USA, 1990. ACM. doi: 10.1145/100216.100279.

[74] Garrin Kimmell, Aaron Stump, Harley D. Eades III, Peng Fu, Tim Sheard,
Stephanie Weirich, Chris Casinghino, Vilhelm Sjöberg, Nathan Collins, and
Ki Yung Ahn. Equational reasoning about programs with general recursion
and call-by-value semantics. In PLPV ’12: Proceedings of the sixth workshop
on Programming languages meets program verification, 2012. doi: 10.1145/
2103776.2103780.

[75] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: A practical
design pattern for generic programming. In Proceedings of the 2003 ACM SIG-
PLAN International Workshop on Types in Languages Design and Implemen-
tation, TLDI ’03, pages 26–37. ACM, 2003. doi: 10.1145/604174.604179.

272

[76] K. Rustan M. Leino. Dafny: an automatic program verifier for functional
correctness. In Proceedings of the 16th international conference on Logic for
programming, artificial intelligence, and reasoning, LPAR’10, pages 348–370.
Springer-Verlag, 2010.

[77] Jordi Levy. Decidable and undecidable second-order unification problems. In
In Proceedings of the 9th Int. Conf. on Rewriting Techniques and Applications
(RTA98), volume 1379 of LNCS, pages 47–60, 1998.

[78] Daniel R. Licata and Robert Harper. A formulation of Dependent ML with
explicit equality proofs. Technical Report CMU-CS-05-178, Carnegie Mellon
University Department of Computer Science, 2005.

[79] Sam Lindley and Conor McBride. Hasochism: The pleasure and pain of depen-
dently typed Haskell programming. In Proceedings of the 2013 ACM SIG-
PLAN Symposium on Haskell, Haskell ’13, pages 81–92. ACM, 2013. doi:
10.1145/2503778.2503786.

[80] Gregory Malecha, Greg Morrisett, Avraham Shinnar, and Ryan Wisnesky. To-
ward a verified relational database management system. In Proceedings of the
37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’10, pages 237–248. ACM, 2010. doi: 10.1145/1706299.
1706329.

[81] Ian A. Mason and Carolyn L. Talcott. Equivalence in functional languages with
effects. Journal of Functional Programming, 1(3):287–327, 1991.

[82] Conor McBride. Dependently Typed Functional Programs and their Proofs. PhD
thesis, University of Edinburgh, 1999.

[83] Conor McBride. First-order unification by structural recursion, 2001.

[84] Conor McBride. Elimination with a Motive. In Types for Proofs and Programs:
International Workshop (TYPES 2000), volume 2277 of LNCS, pages 197–216.
Springer, 2002. doi: 10.1007/3-540-45842-5\ 13.

[85] Conor McBride. Lets see how things unfold: Reconciling the infinite with
the intensional (extended abstract). In Alexander Kurz, Marina Lenisa, and
Andrzej Tarlecki, editors, Algebra and Coalgebra in Computer Science, volume
5728 of LNCS, pages 113–126. Springer Berlin Heidelberg, 2009. doi: 10.1007/
978-3-642-03741-2 9.

[86] Conor McBride and James McKinna. The view from the left. Journal
of Functional Programming, 14(1):69–111, January 2004. doi: 10.1017/
S0956796803004829.

273

[87] Adam Megacz. A coinductive monad for prop-bounded recursion. In Proceedings
of the 2007 Workshop on Programming Languages Meets Program Verification,
PLPV ’07, pages 11–20. ACM, 2007. doi: 10.1145/1292597.1292601.

[88] Dale Miller. Unification under a mixed prefix. Journal of Symbolic Computation,
14:321–358, 1992.

[89] Alexandre Miquel. The implicit calculus of constructions - extending pure
type systems with an intersection type binder and subtyping. In TLCA
’01: Proceeding of 5th international conference on Typed Lambda Calculi and
Applications, volume 2044 of LNCS, pages 344–359. Springer, 2001. doi:
10.1007/3-540-45413-6\ 27.

[90] Nathan Mishra-Linger. Irrelevance, Polymorphism, and Erasure in Type The-
ory. PhD thesis, Portland State University, 2008.

[91] Nathan Mishra-Linger and Tim Sheard. Erasure and Polymorphism in Pure
Type Systems. In 11th international conference on Foundations of Software
Science and Computational Structures (FOSSACS 2008), volume 4962 of LNCS,
pages 350–364. Springer, 2008. doi: 10.1007/978-3-540-78499-9\ 25.

[92] Jamie Morgenstern and Daniel R. Licata. Security-typed programming within
dependently typed programming. In Proceedings of the 15th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’10, pages 169–
180. ACM, 2010. doi: 10.1145/1863543.1863569.

[93] Micha l Moskal. Programming with triggers. In SMT ’09: Proceedings of the 7th
International Workshop on Satisfiability Modulo Theories, pages 20–29, 2009.

[94] Tom Murphy VII, Karl Crary, and Robert Harper. Type-safe distributed pro-
gramming with ML5. In Trustworthy Global Computing 2007, 2007.

[95] Aleksandar Nanevski, Greg Morrisett, Avi Shinnar, Paul Govereau, and Lars
Birkedal. Ynot: Reasoning with the awkward squad. In In ACM SIGPLAN
International Conference on Functional Programming, 2008.

[96] Greg Nelson and Derek C. Oppen. Fast decision procedures based on congruence
closure. Journal of the ACM, 27(2):356–364, April 1980.

[97] Robert Nieuwenhuis and Albert Oliveras. Fast congruence closure and exten-
sions. Information and Computation, 205(4):557–580, April 2007.

[98] Tobias Nipkow. Functional unification of higher-order patterns. In LICS ’93:
Proceedings of Eighth Annual IEEE Symposium onLogic in Computer Science,
pages 64–74, 1993.

274

[99] Ulf Norell and James Chapman. Dependently typed programming in Agda.
http://www.cse.chalmers.se/~ulfn/papers/afp08/tutorial.pdf.

[100] Duckki Oe, Aaron Stump, Corey Oliver, and Kevin Clancy. versat: A ver-
ified modern sat solver. In Viktor Kuncak and Andrey Rybalchenko, edi-
tors, Verification, Model Checking, and Abstract Interpretation, volume 7148
of LNCS, pages 363–378. Springer Berlin Heidelberg, 2012. doi: 10.1007/
978-3-642-27940-9 24.

[101] Bruno C.d.S. Oliveira, Adriaan Moors, and Martin Odersky. Type classes as
objects and implicits. In Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and Applications, OOPSLA
’10, pages 341–360. ACM, 2010. ISBN 978-1-4503-0203-6. doi: 10.1145/1869459.
1869489.

[102] Peter-Michael Osera, Vilhelm Sjöberg, and Steve Zdancewic. Dependent inter-
operability. In PLPV ’12: Proceedings of the sixth workshop on Programming
languages meets program verification, 2012. doi: 10.1145/2103776.2103779.

[103] Xinming Ou, Gang Tan, Yitzhak Mandelbaum, and David Walker. Dynamic
typing with dependent types. In IFIP International Conference on Theoretical
Computer Science, pages 437–450, 2004. doi: 10.1007/1-4020-8141-3\ 34.

[104] Lawrence C. Paulson. Verifying the unification algorithm in LCF. Science
of Computer Programming, 5(2):143–169, 1985. doi: 10.1016/0167-6423(85)
90009-7.

[105] Adam Petcher and Aaron Stump. Deciding joinability modulo ground equations
in Operational Type Theory. In S. Lengrand and D. Miller, editors, Proof Search
in Type Theories (PSTT), 2009.

[106] Simon Peyton-Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey
Washburn. Simple unification-based type inference for GADTs. In ICFP ’06:
International Conference on Functional Programming, pages 50–61. ACM, 2006.

[107] Frank Pfenning. Intensionality, extensionality, and proof irrelevance in modal
type theory. In Proceedings of the 16th IEEE Symposium on Logic in Computer
Science (LICS), pages 221–230, 2001. doi: 10.1109/LICS.2001.932499.

[108] Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic.
Mathematical Structures in Computer Science, 11(4):511–540, August 2001. doi:
10.1017/S0960129501003322.

[109] Benjamin C. Pierce and David N. Turner. Local type inference. ACM Trans-
actions on Programming Languages and Systems, 22(1):1–44, January 2000.

275

[110] François Pottier and Didier Rémy. The essence of ML type inference. In Ben-
jamin C. Pierce, editor, Advanced Topics in Types and Programming Languages,
chapter 10, pages 389–489. MIT Press, 2005.

[111] Jason Reed. Proof irrelevance and strict definitions in a logical framework.
Technical report, Carnegie-Mellon University, 2002. Senior Thesis, published
as technical report CMU-CS-02-153.

[112] Aleksy Schubert. Second-order unification and type inference for Church-style
polymorphism. In POPL ’98: The 25TH ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 279–288. ACM Press, 1998.

[113] Anton Setzer. Interactive programs in Agda, 2009. URL http://www.cs.swan.

ac.uk/~csetzer/slides/. Talk presented at Agda Intensive Meeting AIMX,
slides available.

[114] Anton Setzer and Peter Hancock. Interactive programs and weakly final coal-
gebras (extended version). In Dependently typed programming, number 04381
in Dagstuhl Seminar Proceedings, 2004.

[115] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas
Ridge, Susmit Sarkar, and Rok Strnǐsa. Ott: Effective tool support for the
working semanticist. In Proceedings of the 12th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’07, pages 1–12, New York, NY,
USA, 2007. ACM. doi: 10.1145/1291151.1291155.

[116] Tim Sheard and Nathan Linger. Programming in Ωmega. In Zoltán Horváth,
Rinus Plasmeijer, Anna Soós, and Viktória Zsók, editors, 2nd Central European
Functional Programming School (CEFP), volume 5161 of LNCS, pages 158–227.
Springer, 2007.

[117] Tim Sheard, Aaron Stump, and Stephanie Weirich. Language-based verification
will change the world. In Proceedings of the FSE/SDP Workshop on Future of
Software Engineering Research, FoSER ’10, pages 343–348. ACM, 2010. doi:
10.1145/1882362.1882432.

[118] Robert E. Shostak. An algorithm for reasoning about equality. Communications
of the ACM, 21(7):583–585, July 1978.

[119] Vilhelm Sjöberg and Aaron Stump. Equality, quasi-implicit products, and large
eliminations. In ITRS 2010: Proceedings of the 5th workshop on Intersection
Types and Related Systems, 2010. doi: 10.4204/EPTCS.45.7.

[120] Vilhelm Sjöberg, Chris Casinghino, Ki Yung Ahn, Nathan Collins, Harley D.
Eades III, Peng Fu, Garrin Kimmell, Tim Sheard, Aaron Stump, and Stephanie
Weirich. Irrelevance, heterogeneous equality, and call-by-value dependent type

276

systems. In James Chapman and Paul Blain Levy, editors, MSFP ’12: Pro-
ceedings of the Fourth Workshop on Mathematically Structured Functional Pro-
gramming, volume 76 of EPTCS, pages 112–162. Open Publishing Association,
2012.

[121] Vilhem Sjöberg and Stephanie Weirich. Programming up to congruence. In
POPL ’15: 42nd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, 2015. doi: 10.1145/2676726.2676974.

[122] Scott Smith. A computational induction principle, 1991. Unpublished note.

[123] Scott Fraser Smith. Partial Objects in Type Theory. PhD thesis, Cornell Uni-
versity, 1988.

[124] Antonis Stampoulis and Zhong Shao. Static and user-extensible proof checking.
In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’12, pages 273–284. ACM, 2012.

[125] Thomas Streicher. Investigations into intensional type theory, 1993. Habilita-
tion Thesis, Ludwig Maximilian Universität.

[126] Pierre-Yves Strub. Coq modulo theory. In CSL, pages 529–543, 2010.

[127] Aaron Stump and Li-yang Tan. The algebra of equality proofs. In 16th Interna-
tional Conference on Rewriting Techniques and Applications (RTA’05), pages
469–483. Springer, 2005.

[128] Aaron Stump, Morgan Deters, Adam Petcher, Todd Schiller, and Timothy
Simpson. Verified programming in Guru. In PLPV ’09: Proceedings of the
3rd workshop on Programming Languages meets Program Verification, pages
49–58, 2009. doi: 10.1145/1481848.1481856.

[129] Aaron Stump, Vilhelm Sjöberg, and Stephanie Weirich. Termination casts:
A flexible approach to termination with general recursion. In PAR ’10: Pro-
ceedings of the Workshop on Partiality and Recursion in Interactive Theorem
Provers, 2010. doi: 10.4204/EPTCS.43.6.

[130] Aaron Stump, Duckki Oe, Andrew Reynolds, Liana Hadarean, and Cesare
Tinelli. SMT proof checking using a logical framework. Formal Methods in
System Design, 42(1):91–118, 2013. doi: 10.1007/s10703-012-0163-3.

[131] Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton-Jones, and Kevin
Donnelly. System F with type equality coercions. In TLDI 07: Proceedings of
the 2007 ACM SIGPLAN international workshop on Types in Languages Design
and Implementation, pages 53–66. ACM, 2007.

277

[132] Kasper Svendsen, Lars Birkedal, and Aleksandar Nanevski. Partiality, state and
dependent types. In Luke Ong, editor, Typed Lambda Calculi and Applications,
volume 6690 of LNCS, pages 198–212. Springer Berlin Heidelberg, 2011. doi:
10.1007/978-3-642-21691-6 17.

[133] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan
Bhargavan, and Jean Yang. Secure distributed programming with value-
dependent types. In ICFP ’11: International Conference on Functional Pro-
gramming, pages 285–296. ACM, 2011.

[134] William W. Tait. Intensional interpretations of functionals of finite type I. The
Journal of Symbolic Logic, 32(2):pp. 198–212, 1967.

[135] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foun-
dations of Mathematics. 2013. URL http://arxiv.org/abs/1308.0729.

[136] Ashish Tiwari, Leo Bachmair, and Harald Ruess. Rigid E-unification revisited.
In David McAllester, editor, Automated Deduction - CADE-17, volume 1831 of
LNCS, pages 220–234. Springer Berlin Heidelberg, 2000.

[137] Margus Veanes. The relation between second-order unification and simultane-
ous rigid E-unification. Research Report MPI-I-98-2-005, Max-Planck-Institut
für Informatik, Im Stadtwald, D-66123 Saarbrücken, Germany, February 1998.
Extended version of a paper accepted for LICS’98.

[138] Wendy Verbruggen. Formal Polytypic Programs and Proofs. PhD thesis, Trinity
College Dublin, 2010.

[139] Dimitrios Vytiniotis, Simon Peyton Jones, and José Pedro Magalhães. Equality
proofs and deferred type errors: A compiler pearl. In Proceedings of the 17th
ACM SIGPLAN International Conference on Functional Programming, ICFP
’12, pages 341–352. ACM, 2012. doi: 10.1145/2364527.2364554.

[140] Philip Wadler. Propositions as types, 2014. Unpublished draft.

[141] Philip Wadler and Peter Thiemann. The marriage of effects and monads. ACM
Transactions on Computational Logic, 4(1):1–32, 2003.

[142] Stephanie Weirich and Chris Casinghino. Arity-generic datatype-generic pro-
gramming. In PLPV ’10: Proceedings of the 4th Workshop on Programming
Languages Meets Program Verification, 2010.

[143] Benjamin Werner. Sets in types, types in sets. In Proceedings of TACS’97,
pages 530–546. Springer-Verlag, 1997.

[144] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type sound-
ness. Information and Computation, 115(1):38–94, 1994.

278

[145] Hongwei Xi. Dependent types for program termination verification. In Proceed-
ings of 16th IEEE Symposium on Logic in Computer Science, pages 231–242,
Boston, June 2001.

[146] Hongwei Xi. Applied type system. In Types for Proofs and Programs: In-
ternational Workshop (TYPES 2003), volume 3085 of LNCS, pages 394–408.
Springer, 2004. doi: 10.1007/978-3-540-24849-1\ 25.

[147] Hongwei Xi and Frank Pfenning. Dependent types in practical programming.
In POPL ’99: Proceedings of the 26th ACM SIGPLAN-SIGACT symposium
on Principles of Programming Languages, pages 214–227, 1999. doi: 10.1145/
292540.292560.

[148] Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz, and Sharad Malik.
Efficient conflict driven learning in a boolean satisfiability solver. In Proceedings
of the 2001 IEEE/ACM International Conference on Computer-aided Design,
ICCAD ’01, pages 279–285. IEEE Press, 2001.

279

