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1

Basics, Gradient Descent and Its Variants

1.1 Overview

Convex optimization is about minimizing a convex function over a con-

vex set. For a convex set K, and a convex function f whose domain

contains K, the goal is to solve the following problem:

inf
x∈K

f(x).

Convex optimization is a classical area with a long and rich history

and diverse applications. Traditionally, a large fraction of algorithms in

TCS have been obtained by formulating the underlying discrete prob-

lem (for example: Shortest Path; Maximum Flow; Matching,

Graph Partitioning) as a linear (or a semi-definite) program and,

consequently, deploying standard methods such as the ellipsoid method

or the interior point methods from convex programming to solve these

programs. However, with the growth in the sizes of the real-world in-

stances, there has been a pressing need to design faster and faster

algorithms, ideally in almost the same time as it takes to read the

data. In the last decade or so TCS researchers are coming remarkably

close to what would have been considered a pipe-dream a few years
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2 Basics, Gradient Descent and Its Variants

ago. And tools and techniques from convex optimization are playing

a bigger and bigger role in this goal. Since general methods of solv-

ing convex programs have runtimes which are far from linear, often

this goal requires adapting known methods from convex optimization

and, more often than not, coming up with novel problem-specific so-

lutions. Thus, techniques from convex optimization have become an

indispensable tool in the toolkit of any algorithm designer and in these

three lectures, we cover a large ground in this regard. The methods we

present include gradient descent and its many variants, multiplicative

weight update methods and their application to approximately solving

linear programs and semi-definite programs quickly, Newton’s method

and its application to path-following interior point methods. Through

these methods, we will see a very intimate connection between convex

optimization and online convex optimization. With a good understand-

ing of the material covered in these three lectures, a student should be

well-equipped to understand many recent breakthrough works in TCS

and, hopefully, push the state-of-the-art.

1.2 Basic Notions

1.2.1 Notation

We are concerned with functions f : Rn 7→ R. By x, y, . . . we typically

mean vectors in Rn and we use x1, x2, . . . to denote its coordinates.

When the function is smooth enough, we can talk about its gradients

and Hessians. The gradient is denoted by

∇f(x)
def
=

(
∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)
.

The Hessian of f at a point x is a matrix denoted by ∇2f(x) whose

(i, j)-th entry is ∂2f
∂xi∂xj

(x). We say that a symmetric matrix M � lI, if

all its eigenvalues are at least l. When l ≥ 0, the matrix is said to be

positive semi-definite (psd). Similarly, we denote by M � LI the fact

that all eigenvalues ofM are at-most L. 〈x, y〉 denotes the inner product

between x and y. ‖x‖ denotes the `2 norm unless stated otherwise. An

important but easy to prove result is the Cauchy-Schwarz inequality
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which states that

〈x, y〉 ≤ ‖x‖ · ‖y‖.

An important tool from calculus is Taylor expansion of a function f at

y around a point x

f(y) = f(x) + 〈∇f(x), y − x〉+
1

2
(y − x)>∇2f(x)(y − x) + · · ·

when the function is infinitely differentiable. The k-th order Taylor

series approximation is obtained by truncating the above expression

at k. However, if the function has k + 1 derivatives, then one can use

the Mean Value Theorem to truncate the above expression at k by

a suitable modification and know the exact error. For instance, when

k = 1

f(y)− (f(x) + 〈∇f(x), y − x〉) =
1

2
(y − x)>∇2f(ζ)(y − x)

for some ζ in the line segment joining x and y.

1.2.2 Convexity

We start by defining the basic notions of a convex set and a convex

function.

Definition 1.1. A set K ⊆ Rn is convex if, for every two points in

K, the line segment connecting them is contained in K, i.e., for any

x, y ∈ K and λ ∈ [0, 1] we have

λx+ (1− λ)y ∈ K. (1.1)

Definition 1.2. A function f : K → R is convex if it satisfies

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (1.2)

for any x, y ∈ K and λ ∈ [0, 1]. If inequality (1.2) is strict for all x 6= y

and λ ∈ (0, 1), then we say that f is strictly convex.
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x y

Fig. 1.1 A convex function.

Geometrically, this means that for any x, y ∈ K, the segment connect-

ing points (x, f(x)) and (y, f(y)) lies above the graph of f (in the space

Rn × R): see Fig. 1.1.

While this is the most general definition of convexity, but not always

the most useful. When f is smooth enough, we can give other equivalent

definitions:

Proposition 1.3. If f : K → R is differentiable, then it is convex iff

f(y) ≥ f(x) + 〈∇f(x), y − x〉 (1.3)

for any x, y ∈ K.

The geometric interpretation of this condition is that for any x ∈ K,

the tangent space of f at x should lie below the graph of f : see Fig. 1.2.

In other words, the right-hand side of Eq. (1.3), which is the first-order

Taylor approximation of f at x, is an under-estimation for the value of

f at every other point y ∈ K.

Proof. We prove the one-dimensional case first.

Suppose f is convex, and fix any x, y ∈ K. Then for every λ ∈ (0, 1]

we have

(1− λ)f(x) + λf(y) ≥ f(λy + (1− λ)x) = f(x+ λ(y − x)).

Subtracting (1− λ)f(x) and dividing by λ yields

f(y) ≥ f(x) +
f(x+ λ(y − x))− f(x)

λ
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≥ 0

x y

Fig. 1.2 The first-order condition for convexity.

and now it suffices to take the limit λ → 0. (When λ = 0, there is

nothing to prove.)

Conversely, suppose f satisfies Eq. (1.3) and fix x, y ∈ K and λ ∈
[0, 1]. Let z = λx + (1 − λ)y. The first-order approximation of f at z

underestimates both f(x) and f(y); the difference between the linear

approximation of f at z using the values f(x) and f(y) and the actual

value f(z) is a weighted average of these underestimations and thus

also nonnegative. Formally, we have

f(x) ≥ f(z) + f ′(z)(x− z), (1.4)

f(y) ≥ f(z) + f ′(z)(y − z), (1.5)

and multiplying (1.4) by λ and (1.5) by 1− λ yields

λf(x) + (1− λ)f(y) ≥ f(z).

To extend the proof to many dimensions, just note that after fixing

points x, y ∈ K it is enough to restrict our attention to the line segment

connecting them.

If the function has second derivatives, we can provide another charac-

terization of convexity below. We leave the proof as an exercise.

Proposition 1.4. Suppose K is convex and open. If f : K → R is

twice differentiable, then it is convex iff

∇2f(x) � 0
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for any x ∈ K. If the inequality is strict for all x ∈ K, the function is

called strictly convex.

In the rest of this lecture we will most often use the definition of The-

orem 1.3.

1.3 Gradient Descent

We now introduce perhaps the simplest but extremely powerful gradient

descent method to solve a convex program. Actually, it is not a single

method, but a general framework with many possible realizations. We

describe some concrete variants and analyze their performance. The

performance guarantees that we are going to obtain will depend on

assumptions that we make about f .

We describe the core ideas of the gradient descent methods in the

unconstrained setting, i.e., K = Rn. In Section 1.7.7 we discuss the

constrained setting. Also, let us assume for simplicity that f has a

unique minimum x? (this follows if f is strictly convex) and that it is

differentiable.

What does the gradient have to do with optimizing a convex func-

tion? We discuss this informally below. Suppose that we are at a point

x, along with a value f(x) that we want to decrease as much as possible.

We want to accomplish this by moving to a point y at some pre-specified

small distance from x. If we consider points y in a near neighbourhood

of x, we should expect that the first-order Taylor approximation

f(y) ≈ f(x) + 〈∇f(x), y − x〉

will be very tight: essentially an equality. Thus, if we set ∆x
def
= y − x,

then we are tasked with minimizing the scalar product

〈∇f(x), y − x〉 = 〈∇f(x),∆x〉

where x is fixed, and ‖∆x‖ is also given. The optimal solution of this

problem has the form1

∆x = −η · ∇f(x)

1To see this, consider the problem of minimizing 〈v, w〉 over all v with ‖v‖ = 1 for a fixed w.
One cannot do better than −‖w‖, because |〈v, w〉| ≤ ‖v‖·‖w‖ = ‖w‖ by Cauchy-Schwartz.
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and it yields

f(y) ≈ f(x)− η ‖∇f(x)‖2 .

Thus we see that the norm of the gradient controls the rate at which

we can decrease f . More vividly, the gradient of f at x is the direction

in which f grows the fastest, so if we are looking to minimize f , it

makes the most sense to go in the opposite direction.

Any gradient descent method will work by constructing a sequence

of points x1, x2, . . . , xT with the objective of getting very close to the

optimum x? after a small number of iterations. Usually, it will try to

ensure that f(x0) ≥ · · · ≥ f(xT ) (although the first method that we

will show does not guarantee this). We will not be able to find the exact

optimum; we can only hope to get ε-close to it, for a given accuracy

requirement ε.

The first nice property of convex functions that we can discover in

this context, and a reason why gradient descent does not work for a

general f , is the following: if we keep decreasing the value of f , we will

not get ”stuck” in a local minimum which is not a global minimum.

This is guaranteed by the following fact, which again points out the

role of the gradient in optimizing f .

Proposition 1.5. For a differentiable convex function f : Rn → R
and a point x, the following conditions are equivalent:

(a) x is a global minimum of f ,

(b) x is a local minimum of f ,

(c) ∇f(x) = 0.

Proof. The direction (a)–(b) is trivial, and (b)–(c) holds for all f . For

(c)–(a), just note that for any y ∈ K,

f(y) ≥ f(x) + 〈∇f(x), y − x〉 = f(x).
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Remark 1.6. The above proposition generalizes to the case K ⊆ Rn

as follows: for a closed convex set K and a convex function f : K → R,

a point x ∈ K minimizes f iff

〈∇f(x), y − x〉 ≥ 0

for all y ∈ K. In other words, when there is no direction in K where

the gradient decreases.

Let us proceed to the description of a general variant of gradient de-

scent.

The algorithm will construct a sequence of points x1, x2, . . . , xT , for

a value T which will depend on the assumptions we make about the

structure of f and will be specified later. At the t-th iteration, knowing

xt, the algorithm takes xt+1 to be

xt+1
def
= xt − ηt∇f(xt)

where ηt is the step size (which will also depend on f and will be

determined as per the setting.). For a given ε, our objective is to get

ε-close to the optimum f(x?) in as less iterations as possible. We want

to understand what values of ηt will enable us to do achieve this goal.

1.4 Convex Functions, Oracles and their Properties

Till now we have ignored a very important detail: how is f given to the

algorithm. In particular, to use the gradient algorithmically, one must

be able to compute it. Here we will assume that the algorithm has access

to an oracle which returns values of f(x) and ∇f(x) for a query point

x ∈ K. Such methods, which work in this oracle setting are referred

to as first-order methods. Later, we will consider the setting where we

would need access to a second-order oracle for f : given x, y output

(∇2f(x))−1y. Such methods are referred to as second order methods.

We also assume that we have a bound on the distance between the

starting point and the optimum:

‖x1 − x?‖ ≤ D.
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If K were a bounded set, then D = diam(K) would be a valid choice;

in the unconstrained setting, we must assume something about how far

from the optimum we are starting.

Unfortunately, in general, it is still difficult to optimize f if we have

no control at all over the magnitude of its gradient. We have to impose

additional conditions on f .

We propose three such conditions. In each of these settings, we will

obtain a guarantee on the convergence rate of our method, as well as

a way to set the step lengths ηt.

1.4.1 Bounded gradient (Lipschitz f)

The simplest condition that we can propose is that the gradient be

bounded from above: there should exist a G > 0 such that for all

x ∈ K,

‖∇f(x)‖ ≤ G.

Why is this useful? Intuitively, a large gradient means that the function

decreases very fast in the direction in which we are moving, which

should be desirable. However, as we will see, this would make us unable

to control the step size well enough.

Remark 1.7. This condition is equivalent to saying that f is G-

Lipschitz, that is,

‖f(y)− f(x)‖ ≤ G · ‖y − x‖

for all x, y ∈ K. We will use this term in the sequel.

In this case we can get the following bound, which we prove in Sec-

tion 1.5.1:

Theorem 1.8. There is a gradient-descent method which, given an ε,

a starting point x1 satisfying ‖x1 − x?‖ ≤ D, and a function f which

is G-Lipschitz, produces a sequence of points x1, . . . , xT such that

f

(
1

T

T∑
t=1

xt

)
− f(x?) ≤ ε
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where

T =

(
DG

ε

)2

.

We mostly focus on the dependence of T on ε, and in this case it is

T = O
(
ε−2
)
, ε = O

(
1√
T

)
.

Note that we did not get any guarantee for the points x1, . . . , xT – just

for their running averages.

Remark 1.9. We are using the Euclidean norm here and assuming

that ‖∇f‖2 = O(1). But sometimes we might find ourselves in a setting

where ‖∇f‖∞ = O(1), and a naive bound would give us just ‖∇f‖2 =

O(
√
n). We will see in later lectures how to deal with such situations

(see also Section 1.7.6).

1.4.2 Lipschitz gradient (smooth f)

We could also demand that the gradient be Lipschitz continuous.

Definition 1.10. We say that a function f is L-smooth (with a con-

stant L > 0) if for all x, y ∈ K,

‖∇f(x)−∇f(y)‖ ≤ L · ‖x− y‖ .

Remark 1.11. L is the Lipschitz constant of ∇f . We can equivalently

say that ∇2f(x) � LI for all x ∈ K.

To understand the usefulness of this condition, note that it implies the

following crucial property:
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∈ [0, L · ‖x− y‖2]

x y

Fig. 1.3 The Bregman divergence.

Lemma 1.12. If f is L-smooth, then for any x, y ∈ K we have

0 ≤ f(y)− f(x)− 〈∇f(x), y − x〉 ≤ L · ‖x− y‖2 .

This means that the distance of f(y) from its first-order Taylor approx-

imation at x is between 0 and L · ‖x− y‖2 , which is to be thought of

as small; see Fig. 1.3. This distance is called the Bregman divergence

with respect to the `2-norm.

Proof. We begin from the definition of convexity: f(x) ≥ f(y) +

〈∇f(y), x− y〉, and use Cauchy-Schwarz along the way:

f(y)− f(x) ≤ 〈∇f(y), y − x〉
= 〈∇f(x), y − x〉+ 〈∇f(y)−∇f(x), y − x〉
≤ 〈∇f(x), y − x〉+ ‖∇f(y)−∇f(x)‖ · ‖y − x‖
≤ 〈∇f(x), y − x〉+ L · ‖x− y‖2 .

On the other hand we have (again from convexity)

f(y)− f(x) ≥ 〈∇f(x), y − x〉 .

This will enable us to obtain a better dependence of T on ε. The fol-

lowing bound is proved in Section 1.5.2:
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Theorem 1.13. There is a gradient-descent method which, given an

ε, a starting point x1 and an L-smooth function f , produces a sequence

of points x1, . . . , xT such that

f(xT )− f(x?) ≤ ε

and

T = O

(
LD2

ε

)
,

where D = ‖x1 − x?‖.

Again suppressing the constants, we see the improved dependence

T = O
(
ε−1
)
, ε = O

(
1

T

)
.

Moreover, this time we can show that we are really getting closer and

closer to the optimum (not just on average).

While we will not cover it in the lectures, it is possible to at-

tain a quadratic improvement using the important accelerated gradient

method of Nesterov:

Theorem 1.14. There is an algorithm which, given an ε, a starting

point x1 satisfying ‖x1 − x?‖ ≤ D, and an L-smooth function f , pro-

duces a sequence of points x1, . . . , xT such that

f(xT )− f(x?) ≤ ε

and

T = O

(√
LD√
ε

)
.

1.4.3 Strong convexity

Another natural restriction would be to strongly convex functions, i.e.,

those that have all eigenvalues of the Hessian bounded below by a

constant ` > 0. In other words:
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Definition 1.15 (strong convexity). We say that f is `-strongly

convex (with ` > 0) if for all x ∈ K we have

∇2f(x) � `I.

Remark 1.16. This is equivalent to saying that

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
`

2
‖x− y‖2 (1.6)

for all x, y ∈ K. In other words, the corresponding Bregman divergence

is lower bounded by `
2 ‖x− y‖

2 .

If we also assume that f is G-Lipschitz, then we are able to get the

following bound, whose proof appears in Section 1.5.3.

Theorem 1.17. There is an algorithm which, given an ε, a starting

point x1, and a function f which is both G-Lipschitz and `-strongly

convex, produces a sequence of points x1, . . . , xT such that

f(xT )− f(x?) ≤ ε

and

T = O

(
G2

`ε

)
.

1.5 Proofs of Convergence Rates

Now we prove the first two theorems stated in the previous section.

1.5.1 Lipschitz functions – proof of Theorem 1.8

Recall that we are guaranteed that f is G-Lipschitz. We will fix our

step size η to be constant (independent of t).
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We will be interested in understanding the quantity f(xt) − f(x?)

– in particular, how fast it decreases with t. We begin by applying

convexity and get

f(xt)− f(x?) ≤ 〈∇f(xt), xt − x?〉

=
1

η
〈xt − xt+1, xt − x?〉

=
1

2η

(
‖xt − xt+1‖2 + ‖xt − x?‖2 − ‖xt+1 − x?‖2

)
,

(1.7)

where we used the well-known equality 2 〈a, b〉 = ‖a‖2+‖b‖2−‖a− b‖2.

We can now take advantage of our assumption about f and write

‖xt − xt+1‖2 = η2 ‖∇f(x)‖2 ≤ η2G2. (1.8)

From (1.7) and (1.8) we get

f(xt)− f(x?) ≤ 1

2η

(
η2G2 + ‖xt − x?‖2 − ‖xt+1 − x?‖2

)
for every t = 1, . . . , T . Notice that if we add all these inequalities, we

will get a telescoping sum:

T∑
t=1

(f(xt)− f(x?)) ≤ 1

2η

(
Tη2G2 + ‖x1 − x?‖2 − ‖xT+1 − x?‖2

)
.

We may bound the last term by simply zero. For the middle one, recall

that we have introduced D which bounds the distance from the starting

point to the optimum. Thus, using ‖x1 − x?‖2 ≤ D2, we obtain

T∑
t=1

(f(xt)− f(x?)) ≤ 1

2η

(
Tη2G2 +D2

)
=

1

2

(
TηG2 +

D2

η

)
.

The minimizing choice of η here is the one which satisfies TηG2 = D2

η ,

so that

η =
D

G
√
T
.
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We have bounded the quantity 1
T

∑T
t=1 f(xt) − f(x?). But from con-

vexity of f we have2 that f
(

1
T

∑T
t=1 xt

)
≤ 1

T

∑T
t=1 f(xt). Thus we

get

f

(
1

T

T∑
t=1

xt

)
− f(x?) ≤ 1

2T

(
TηG2 +

D2

η

)
=
DG√
T
.

In order to get DG√
T
≤ ε we need to set T ≥

(
DG
ε

)2
.

1.5.2 Smooth functions – proof of Theorem 1.13

Recall that we are assuming that f is L-smooth, i.e., that ∇f is L-

Lipschitz. This implies Theorem 1.12 (a bound on the Bregman diver-

gence).

We prove this theorem for D = max{‖x− x?‖ : f(x) ≤ f(x1)}. To

prove the above theorem with D = ‖x1 − x?‖ one needs to show that

in all the subsequent steps ‖xt − x?‖ ≤ ‖x1 − x?‖. This requires us to

prove the following inequality which follows from lower bounding the

Bregman divergence. We omit its proof.

‖∇f(x)−∇f(y)‖2 ≤ L · 〈x− y,∇f(x)−∇f(y)〉.

Once again, we will keep the step length η constant and take

xt+1 − xt = −η · ∇f(xt).

Let us see how the value of f changes as we iterate. Use Theorem 1.12

to get

f(xt+1)− f(xt) ≤ 〈∇f(xt), xt+1 − xt〉+ L · ‖xt+1 − xt‖2

= −η ‖∇f(xt)‖2 + Lη2 ‖∇f(xt)‖2 .

The minimizing value of η is 1
2L . By substituting it, we get

f(xt+1)− f(xt) ≤ −
1

4L
‖∇f(xt)‖2 . (1.9)

Intuitively, this means that, at every step, either the gradient is large

and we are making good progress, or it is small, which means that we

2Extend Eq. (1.2) to T points.
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are already close to the optimum. Indeed, if we are at a distance θ from

the optimum value:

f(xt)− f(x?) ≥ θ,

then by convexity and Cauchy-Schwarz,

θ ≤ f(xt)− f(x?) ≤ 〈∇f(xt), xt − x?〉 ≤ ‖∇f(xt)‖ · ‖xt − x?‖

and if we bound ‖xt − x?‖ by D (this follows since f(xt) ≤ f(x1)), then

we get

‖∇f(xt)‖ ≥
θ

D
and, by (1.9),

f(xt+1)− f(xt) ≤ −
θ2

4LD2
.

Until our distance from the optimum goes down below θ
2 , we will make

a progress of Ω
(

θ2

LD2

)
at every step, so we will take at most O

(
LD2

θ

)
steps before this happens. Then this process of halving is repeated,

and so on, until we reach the required distance ε. Bringing the distance

down from θ
2i

to θ
2i+1 requires O

(
LD22i

θ

)
steps, so we get

log θ
ε∑

i=0

O

(
LD22i

θ

)
= O

(
LD22log θ

ε

θ

)
= O

(
LD2

ε

)
steps before we are ε-close to the optimum.

1.5.3 Strongly convex functions – proof of Theorem 1.17

Recall that f is `-strongly convex and G-Lipschitz. As a start, we will

try to mimic the proof from Section 1.5.1. However, we will not fix

the step size ηt to be constant, and we use the first-order condition for

convexity in the strong form (Eq. (1.6)). We easily get

f(xt)−f(x?) ≤ 1

2ηt

(
η2
tG

2 + ‖xt − x?‖2 − ‖xt+1 − x?‖2
)
− `

2
‖xt − x?‖2

(1.10)

for every t = 1, . . . , T . Now, to obtain a better bound than previously,

we must make good use of the new term (the last one). Intuitively, if

‖xt − x?‖ is large, then it is very helpful, but as t grows and ‖xt − x?‖
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decreases, its importance is diminished. We will try to prevent this

from happening by multiplying our inequality by t. And we will still

aim to obtain a telescoping sum. So let us sum all the t-multiples of

Eq. (1.10):

T∑
t=1

t (f(xt)− f(x?)) ≤ G2

2

T∑
t=1

tηt +

T∑
t=2

‖xt − x?‖2 ·
(

t

2ηt
− `t

2
− t− 1

2ηt−1

)
+ ‖x1 − x?‖2 ·

(
1

2η1
− `

2

)
− ‖xT+1 − x?‖2 ·

T

2ηT
.

As before, we bound the last term by just zero. Now, to make the

sum telescoping, we would like to get t
2ηt
− `t

2 −
t−1

2ηt−1
= 0 for every

t = 2, . . . , T . As for the term 1
2η1
− `

2 , we would also prefer to remove

it, so as not to have any dependence on ‖x1 − x?‖. Solving this system

of equations (beginning with 1
2η1
− `

2 = 0) yields the following setting

of ηts:

ηt =
2

`(t+ 1)
.

We are thus left with:

T∑
t=1

t (f(xt)− f(x?)) ≤ G2

2

T∑
t=1

tηt =
T∑
t=1

G2t

`(t+ 1)
≤

T∑
t=1

G2

`
=
G2T

`
.

The rest is straightforward: we normalize by (1 + · · · + T ) = T (T+1)
2

and use convexity of f to get

f

(
2

T (T + 1)

T∑
t=1

t · xt

)
− f(x?) ≤ 2G2

`(T + 1)
,

and bringing this down to ε requires setting

T = O

(
G2

`ε

)
.

1.6 Strong Convexity - Solving PSD linear systems

Suppose we have a linear system with a positive definite constraint

matrix, i.e. we want to find a vector x satisfying Ax = b, where A � 0.
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Let us formulate it as a convex problem. Define

f(x) =
1

2
x>Ax− x>b.

Then f is strongly convex:

∇2f(x) = A � 0

and one can verify that

∇f(x) = Ax− b

so that x? minimizes f iff it is a solution to the linear system Ax = b. So

solving the system amounts to minimizing f , and we will do this using

gradient descent. We will construct a sequence of points x1, . . . , xT
using the formula

xt+1 = xt − ηt · ∇f(xt)

as previously. However, this time we will not use the same step length

ηt for every iteration, but instead (exercise) analytically find a closed-

form expression for the best ηt, i.e.

ηt = argminη f (xt − η · ∇f(xt)) .

So at each step we will decrease f as much as possible by going in the

direction opposite to the gradient. This is called the steepest descent

method.

If we do this, then one can show (exercise) that the convergence

rate of this method (to a predefined accuracy ε: f(xT )− f(x?) ≤ ε) is

given by

T = O

(
κ(A) · log

1

ε

)
,

where κ(A) = L
` , the ratio between the largest and the smallest eigen-

value of A, is the condition number of the matrix A.3

3For more information on this and the related Conjugate Gradient method, see Chapter 15
of the monograph [Vis13].
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1.7 Discussion

1.7.1 Gradient vs. Sub-gradient

Throughout this lecture we assumed the function f to be differen-

tiable or twice differentiable as and when we needed. However, in

many applications (practical and theoretical), f is not differentiable

everywhere. Could any of the methods presented in this section work

in this non-differentiable setting? Start by noting that if f is convex

then it is continuous. Hence, we need to only consider the issue of non-

differentiable f. Non-differentiability poses the problem that there may

be some points at which the gradient is not unique. In general, at a

non-differentiable point x, the set of gradients forms a set which which

we denote by ∂f(x) and an element of it is referred to as a sub-gradient.

First we note that the convexity of f implies that for any x, y

f(y) ≥ f(x) + 〈g, y − x〉

for all g ∈ ∂f(x). Thus, we could modify the gradient descent in a

natural manner:

xt+1 = xt − ηtg

for any g ∈ ∂f(xt) given to us by the first order oracle for f. Further, it

can be easily checked that the guarantee claimed in Theorem 1.8 and

its corollaries carry over with the following parameter:

G
def
= sup

x
sup

g∈∂f(x)
‖g‖.

1.7.2 Dependence on ε

We have seen in Theorems 1.8, 1.13, 1.14 and 1.17 that our methods

converge to the ε-approximate solution in a number of iterations which

is O
(
poly

(
1
ε

))
, with the exponent equal to 2, 1 or 1

2 . However, a poly-

nomial dependence on ε does not look very good if we hope to use these

methods in computer science. For such applications, the right answer

should be O
(
poly

(
log 1

ε

))
. And, if the function is both strongly convex

and smooth, it is possible to obtain a convergence rate similar to the

one in Section 1.6: see e.g. Section 3.4.2 of [Bub14].
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1.7.3 Dependence on n

Note that n does not appear anywhere in the oracle complexity4 of

the presented algorithms. This is an important feature of first-order

methods. (Of course, the time complexity of a single iteration will still

depend on n.)

1.7.4 Coordinate Descent

Instead of moving in the exact direction in which f decreases the fastest,

we may limit ourselves only to moving along the standard basis vectors,

i.e. to changing only one coordinate of x at a time.

For example, rather than computing the whole gradient

∇f(xt) =
∂f

∂x1
(xt) · e1 + · · ·+ ∂f

∂xn
(xt) · en

(where e1, . . . , en are standard basis vectors), we can only pick one

random coordinate i and update

xt+1 = xt − ηt ·
∂f

∂xi
(xt) · ei.

We can analyze this random coordinate descent by examining the ex-

pected decrease in the function value. One can prove the following

theorem. We omit its simple proof.

Theorem 1.18. There is an algorithm which, given an ε, a starting

point x1 satisfying ‖x1 − x?‖ ≤ D, and a function f which is G-

Lipschitz, produces a sequence of (random) points x1, . . . , xT such that

E

[
f

(
1

T

T∑
t=1

xt

)]
− f(x?) ≤ ε

and

T = O

((
DG

ε

)2

· n

)
.

4The number of queries for f(x), ∇f(x) etc.
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As we would expect, changing only one coordinate at a time comes at

a cost of an n-fold increase in the number of iterations (compared to

our first method of Theorem 1.8).

1.7.5 Online Convex Optimization

Consider the following game against an adversary. Given are: a convex

set of strategies K, and a family of convex functions F (for example, all

convex functions which are G-Lipschitz). The game proceeds in rounds.

In the t-th round, the player picks a point xt ∈ K, and then the adver-

sary picks a function ft ∈ F . The value ft(xt) is considered to be the

player’s loss at time t. The objective of the game is to minimize the

regret of the player up to a time T :

Definition 1.19. For a sequence of points x1, . . . , xT and functions

f1, . . . , fT , the regret up to time T is defined as

RegretT =
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x).

I.e., we compare the player’s loss to the minimum loss which could be

achieved if one knew all the functions ft beforehand, but were only

allowed to pick a single argument x for all of them.5 The player is

trying to minimize the regret, and the adversary is trying to maximize

it. This model has many practical applications, such as stock pricing

and portfolio selection, see [Haz14].

One can describe a strategy for the player which uses gradient de-

scent:

xt+1 = xt − ηt · ∇ft(xt)
for a suitable choice of ηt. Even though the functions ft change from

iteration to iteration, one can still obtain a similar guarantee to the

one from our first analysis. Namely, we are able to make the average

regret go to 0 at a rate inversely proportional to the square root of T :

RegretT
T

= O

(
1√
T

)
.

5For some choices of x1, . . . , xt, f1, . . . , ft, regret can be negative.
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Indeed, note that in the proof of Section 1.5.1 we never used the fact

that the function f remains the same between iterations. We actually

proved the following:

Corollary 1.20. There is an algorithm which, given a starting point

x1, parameters ε and D, and a family f1, . . . , fT of convex functions

which are G-Lipschitz, produces a sequence of points x1, . . . , xT such

that

1

T

T∑
t=1

(ft(xt)− ft(x?)) ≤
DG√
T

for any x? satisfying ‖x1 − x?‖ ≤ D, and T being

T =

(
DG

ε

)2

.

Moreover, it produces each point xt+1 knowing only the functions

f1, . . . , ft.

However, we will see in the next lecture that multiplicative weight

update methods are often able to perform much better in the online

learning setting.

There are also other optimization scenarios where access to infor-

mation is even more limited (and such models are thus closer to real

life applications). For example, we might be only given oracle access to

the function (i.e., we do not see any ”formula” for f). In particular, we

cannot compute the gradient directly. (This is called the bandit setting.)

Even then, methods based on gradient descent are very competitive.

1.7.6 Non-Euclidean Norms

Our algorithm for the L-smooth case can be easily adapted to work with

functions which are smooth with respect to any pair of dual norms.6

6Let ‖·‖ be any norm. We define the dual norm ‖·‖? as follows:

‖y‖? = sup
x∈Rn:‖x‖=1

|〈x, y〉| .

Then we say that a function f is L-smooth with respect to ‖·‖ if for any x, y ∈ K,
‖∇f(x)−∇f(y)‖? ≤ L · ‖x− y‖ .
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Now, moving in the direction of the gradient makes progress which we

can measure using the Euclidean norm, because then

〈∇f(xt), xt+1 − xt〉 = 〈∇f(xt),−η∇f(xt)〉 = −η ‖∇f(xt)‖22 .

If we want to utilize a different pair of dual norms, we must adapt our

direction of descent to the geometry that they induce. To this end, we

move instead in the direction

xt+1 = xt − η (∇f(xt))
# ,

where for any x ∈ Rn we define x# to be the minimizer of

1

2

∥∥∥x#
∥∥∥2
−
〈
x#, x

〉
. (1.11)

(Note that for ‖·‖ = ‖·‖2 we have x# = x.) Theorem 1.12 still holds in

the new setting, and one can show that a step size of η = 1
L allows us

to get

f(xt+1)− f(xt) ≤ −
1

2L
‖∇f(xt)‖2? .

Then the analysis proceeds as in Section 1.5.2, giving us the following

generalization of Theorem 1.13:

Theorem 1.21. There is an algorithm which, given an ε, a starting

point x1 satisfying ‖x1 − x?‖ ≤ D, and a function f which is L-smooth

with respect to the norm ‖·‖, produces a sequence of points x1, . . . , xT
such that

f(xT )− f(x?) ≤ ε

and

T = O

(
LD2

ε

)
.

To produce each point xt, it makes one call to a routine which computes

x# for a given x, i.e. minimizes an expression of the form (1.11).

1.7.7 Constrained setting – projection

If K is not the whole space Rn, then our choice of the next iterate xt+1

in the gradient descent method might fall outside of the convex body
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K. In this case we need to project it back onto K: to find the point in

K with the minimum distance to x, and take it to be our new iterate

instead:

xt+1 = projK (xt − ηt · ∇f(xt)) .

The convergence rates remain the same (for example, the first proof

just carries over to this new setting, since the value of f at the new

point will be at least as good as the bound that we had derived for its

value at the original point). However, depending on K, the projection

may or may not be difficult (or computationally expensive) to perform.

More precisely, as long as the algorithm has access to an oracle

which, given a query point x, returns the projection projK(x) of x onto

K, then for the G-Lipschitz case we have the following analogue of

Theorem 1.8:

Theorem 1.22. There is an algorithm which, given an ε, a function

f : K → R which is G-Lipschitz and has a minimum x?, and a start-

ing point x1 satisfying ‖x1 − x?‖ ≤ D, produces a sequence of points

x1, . . . , xT ∈ K such that

f

(
1

T

T∑
t=1

xt

)
− f(x?) ≤ ε

and

T =

(
DG

ε

)2

.

To compute each point xt, it uses one gradient query and one projection

query.

And for the L-smooth case we get the following analogue of Theo-

rem 1.13.

Theorem 1.23. There is an algorithm which, given an ε, a function f :

K → R which is L-smooth and has a minimum x?, and a starting point

x1 satisfying ‖x1 − x?‖ ≤ D, produces a sequence of points x1, . . . , xT ∈
K such that

f(xT )− f(x?) ≤ ε
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and

T = O

(
LD2 + f(x1)− f(x?)

ε

)
.

To compute each point xt, it uses one gradient query and one projection

query.

1.7.8 Constrained setting – the Frank-Wolfe algorithm

In cases where computing projections is prohibitively difficult (for ex-

ample, harder than the original problem), one can use another variant

of gradient descent: the Frank-Wolfe algorithm7. At the t-th step, it

first considers the first-order Taylor approximation of f around xt, and

tries to minimize this function over K, obtaining a minimizer yt. Then

it takes the new point xt+1 to be a weighted average of xt and yt,

which is guaranteed to also be in K. More precisely, it first minimizes

the function

f(xt) + 〈∇f(x), yt − xt〉

over yt ∈ K. But this function is linear in yt, and the task amounts

to finding the minimizer of 〈yt,∇f(xt)〉 over yt ∈ K. The new point is

selected as

xt+1 = (1− γt)xt + γtyt

with γt ∈ [0, 1] being a parameter8. Because this is a convex combi-

nation, we get that xt+1 ∈ K (as long as the starting point x1 was in

K).

This way, instead of having to project onto K, we need to be able

to optimize linear functions over K, which may very well be easier. For

example, if K is a polytope, then we are left with a linear programming

subproblem.

Using this method one can obtain the same bound on the number

of iterations as in Theorem 1.13: (see also Theorem 3.4 in [Bub14]):

7Also called the conditional gradient descent method.
8A good choice is γt = 2

t+1
.
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Theorem 1.24. There is an algorithm which, given parameters ε and

D, where D = diam(K), a function f : K → R which is L-smooth (with

respect to any norm ‖·‖) and has a minimum x?, and any starting point

x1 ∈ K, produces a sequence of points x1, . . . , xT ∈ K such that

f(xT )− f(x?) ≤ ε

and

T = O

(
LD2

ε

)
.

To compute each point xt, it uses one gradient query and one call to a

routine which optimizes a linear function over K.

This algorithm has another important feature: if K is a polytope and

x1 is a vertex of K, then any iterate xt can be written as a convex

combination of t vertices of K. In constrast, Caratheodory’s theorem

guarantees that any x ∈ K can be written as a convex combination of at

most n+1 vertices of K. Because T is independent of n (and will often

be much smaller), we can say that xT is sparse in the polytope-vertex

representation.
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Multiplicative Weights Update vs. Gradient
Descent

2.1 Overview

In the previous lecture we discussed gradient descent-type methods

from convex optimization and showed how they can be straight-

forwardly translated into regret-minimizing algorithms in the online

convex optimization setting. The key observation was that several

gradient-descent type methods are oblivious to the fact that the same

function is used in every round. Today we turn this idea on its head:

namely, we begin with an algorithm that solves an online problem,

and end up with a (new) convex optimization method. As a result, we

can get improved dependence on the number of iterations when we are

in settings other than the Euclidean space or have guarantees on the

function on the Euclidian norm. For instance, suppose we know that

‖∇f(x)‖∞ = O(1) which, at best, implies a bound ‖∇f(x)‖2 = O(
√
n).

We obtain a gradient-descent type algorithm that takes O(logn/ε2) it-

erations as opposed to O(
√
n/ε2) iterations if we use the algorithm from

the previous lecture. The journey we take in deducing this result is

long and rich. The central player is the old, famous and versatile: the

Multiplicative Weights Update (MWU) method. In the process we also

27
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explain how to bet on stocks, how to solve linear programs approxi-

mately and quickly, and how MWU can be thought of as a method

in convex optimization. We also hint how one may solve semi-definite

programs approximately using a matrix variant of the MWU.

2.2 The Multiplicative Weights Update Method

MWU has appeared in the literature at least as early as the 1950s and

has been rediscovered many times in many fields since then. It has ap-

plications in optimization (solving LPs), game theory, finance (portfolio

optimization), machine learning (Winnow, AdaBoost, Hedge), theoret-

ical computer science (devising fast algorithms for LPs and SDPs), and

many more. We refer the reader to the survey of Arora, Hazan, and

Kale [AHK12] for a survey on Multiplicative Weight Update method.

To describe MWU, consider the following game. We want to invest

in the stock market, i.e., to buy/sell stocks and make money. To sim-

plify, assume that each day we can either buy or sell one share of one

particular kind of stock. Now, our goal is to trade stock each day in

order to maximize our revenue.

Unfortunately, we do not know much about the stock market. How-

ever, we have access to n experts that know something (or a lot) about

the stock market. At the beginning of each day, each expert i advices

us on whether we should buy or sell. Once we hear all of the advice, we

decide what to do. At the end of each day we observe whether our profit

went up or down. If the advice of an expert was incorrect (i.e., they

said ”buy” when the best option was ”sell”), we say that the expert

made a mistake.

Now, of course, experts may make mistakes, or may even be ad-

versarial and collude against us. Nevertheless, our goal is to, based on

advice given by the experts, do as well as possible; i.e., consider the

expert ? who gave the most correct advice, our aim is to do almost as

good as expert ?.

To formalize the setup, we define mt
i and M t, for each expert i and

each day t, as follows

mt
i

def
= number of mistakes made by expert i until day t,
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and

M t def
= number of mistakes made by us until day t.

Having these definitions in hand, our goal is to ensure that the regret

Regrett
def
= M t −mt

?

is minimized, where mt
? = minim

t
i. Note that M t may even be smaller

than mt
?.

Let us first consider some obvious approaches to regret-

minimization given the advice of experts. One natural strategy is to

take advice from an expert who was right on the previous day. However,

one can very easily design examples where this strategy will perform

very poorly.1 Alternately, we can consider Majority Vote in which we

simply see the advice for a given day, and take the majority option. In

other words, we will buy if and only if the majority of the experts say

to buy. However, in this case we can also design examples where this

algorithm performs poorly.

2.2.1 The Weighted Majority Algorithm

In the two aforementioned approaches we were either too radical (i.e.,

ignoring experts who just made a mistake) or too forgiving (i.e., treat-

ing all experts equally regardless of their history). Instead, we could

consider a strategy which combines the best from both the worlds by

considering Weighted Majority. Here, we take an expert’s past advice

into consideration using weights, and take the weighted majority in

order to determine which advice to follow.

Let wti be the weight of expert i at the beginning of day t. We can

also think of wti as our confidence in expert i – the larger wti the more

confidence we have. We are unbiased in the beginning, and let

w1
i = 1, ∀i.

If expert i is right on day t, then we do not change wti , but otherwise

1For example, if half the experts are right on even days and wrong on odd days, and the
other half or the experts are wrong on even days and right on odd days, we will always
make the wrong choice.
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penalise that expert. Formally, define f ti to be

f ti
def
=

{
1 if expert i makes a mistake on day t

0 otherwise

Then, we set

wt+1
i

def
= wti(1− εf ti )

for an ε > 0. This introduction of ε is crucial and is a reflection of

our trust in the predictions of the experts. ε = 1 would correspond

to the setting when we know that there is some expert who is always

correct. On the other hand, if we set ε = 0, we are discarding the his-

tory. Morally, this parameter plays the same role as the η-parameter in

gradient-descent type methods and could depend on t and, in princi-

ple, be different for each expert. For now, we just think of ε as a small

enough number.

How do we make a decision given these weights? Towards this, let

Φt def
=
∑

iw
t
i denote the sum of all weights of the experts. On day t

we decide to buy if the sum of the weights of experts saying to buy is

at least Φt/2, and sell otherwise. This completes the description of the

Weighted Majority Algorithm (WMA).

How well does WMA perform? Before we delve into the proofs, let

us state two fact that we will use repeatedly.

Fact 2.1. For any x the following holds

(1− x) ≤ e−x.

Fact 2.2. For any |x| ≤ 1/2 we have

− ln (1− x) ≤ x+ x2.

Now we are ready to prove the following theorem.
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Theorem 2.3. After t steps, let mt
i denote the number of mistakes

made by expert i and M t the number of mistakes WMA had made,

and let 0 < ε ≤ 1/2. Then, for every i we have

M t − 2(1 + ε)mt
i ≤

2 lnn

ε
.

In other words, the performance of the WMA is within a factor of

2(1 + ε) of the best expert up to an additive factor of about lnn/ε. If we

consider the average after time t, i.e., Mt/t, the above theorem implies

that if t ≥ 2 lnn/ε2, then the difference between the average mistakes

made by the WMA is no more than an additive ε of that of the best

expert. This is formalized in the following corollary:

Corollary 2.4. After T days, let mT
? be the number of mistakes the

best expert has made and let MT be the number of mistakes WMA

has made. If T ≥ 2 lnn
ε2

where 0 < ε ≤ 1/2, then

1

T

(
MT − 2(1 + ε)mT

?

)
≤ ε.

Note that the corollary says that in the long run, i.e., for large T , the

algorithm essentially makes at most two times more mistakes than the

best expert in hindsight!2

The proof is easy and relies on observing that every time the WMA

makes a mistake, the total weight on the experts reduces by a multi-

plicative factor of (1− ε/2).

Proof. Assume that we make a mistake on day t. Then, at least half of

the total weight of the experts will get decreased by (1− ε), otherwise

the weighted majority would have told us to take the other option.

Hence,

Φt+1 ≤ Φt

(
1− ε

2
+

1

2

)
= Φt

(
1− ε

2

)
.

2 Interestingly, the factor of 2 in the bound is optimal for a deterministic strategy. We will
later see that randomization can help.
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Therefore, every time we make a mistake the total weight of the experts

decreases by the multiplicative factor of
(
1− ε

2

)
. Hence, we can upper

bound Φt+1 as follows

Φt+1 ≤ Φ1
(

1− ε

2

)Mt

= n
(

1− ε

2

)Mt

≤ ne−εM
t/2, (2.1)

where we recall that all weights were initialized to 1 so Φ1 = n and use

Fact 2.1.

On the other hand, since we have that Φt+1 is the sum of all the

weights of the experts on day t + 1, we also have the following lower

bound ∀i

Φt+1 ≥ wt+1
i

= w1
i (1− ε)m

t
i

= (1− ε)m
t
i , (2.2)

where again we use the fact that w1
i = 1.

Now, putting together the upper bound (2.1) and lower bound (2.2),

we obtain

(1− ε)m
t
i ≤ ne−εM

t/2.

Taking logarithms on both sides we get that

mt
i ln (1− ε) ≤ lnn− ε

2
M t. (2.3)

Using Fact 2.2, from (2.3) we conclude that

−ε(1 + ε)mt
i ≤ lnn− ε

2
M t,

which further implies that

M t − 2(1 + ε)mt
i ≤

2 lnn

ε
.

This gives a bound on the regret as desired.

2.2.2 The Multiplicative Weights Update Algorithm

The algorithm we saw so far makes, up to a factor of two, optimal

choices about trading a single item. Let us now consider a more general
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setting. As before, there are n experts, and following solely expert i’s

advice on day t incurs a cost f ti where f t : [n] → [−1, 1]. However,

in many cases, as with stocks, we can take fractional decisions. Hence,

for a given vector pt ∈ ∆n which represents a convex combination of

experts,3 we incur a loss of
〈
pt, f t

〉
.

Equivalently, we can think of pt as a probability distribution from

where we select a single expert xt, and incur a loss of f t(xt). In this case,

the expected loss Ext∼pt [f t(xt)] =
〈
pt, f t

〉
. Furthermore, we compete

against the best convex combination of the experts, and are interested

in minimizing the regret

T∑
t=1

〈
pt, f t

〉
− min
p∈∆n

T∑
t=1

〈
p, f t

〉
.

How do we update pt? The strategy is similar to the WMA: maintain

a weight wti for the i-th expert where we start with w1
t = 1. Given the

loss function f t, the weights are updated as

wt+1
i

def
= wti(1− εf ti )

for a parameter ε > 0 which has the same intention as before. Since

f ti could be negative or positive, the weight can increase or decrease.

However, since ‖f t‖∞ ≤ 1 for all t, the weights always remain non-

negative. Finally, since we need a probability distribution (or convex

combination) pt ∈ ∆n, we normalize the weight vector wt by the total

weight Φt def
=
∑

iw
t
i to obtain

pt
def
=

wt

Φt
.

We call this method the Multiplicative Weights Update (MWU) algo-

rithm. We are now ready to prove the main theorem of this section.

The only difference from Theorem 2.3 is that the factor of 2 goes away!

The proof is similar to that of Theorem 2.3.

3A point p is in ∆n if ‖p‖1 = 1 and pi ≥ 0 for all i.
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Theorem 2.5. Assume that ‖f t‖∞ ≤ 1 for every t, and let 0 < ε ≤ 1/2.

Then, the MWU algorithm produces a sequence of probability distri-

butions p1, . . . , pT such that

T∑
t=1

〈
pt, f t

〉
− inf
p∈∆n

T∑
t=1

〈
p, f t

〉
≤ lnn

ε
+ εT. (2.4)

Thus, the number of iterations after which the average regret becomes

less than 2ε is at most lnn
ε2
.

Proof. We have

Φt+1 =
∑
i

wt+1
i =

∑
i

wti
(
1− εf ti

)
.

Now, using the facts that pti = wti/Φt, ‖pt‖1 = 1 and pti ≥ 0, we rewrite

the above equation as follows

Φt+1 =
∑
i

(
ptiΦ

t
) (

1− εf ti
)

= Φt − εΦt
∑
i

ptif
t
i

= Φt
(
1− ε

〈
pt, f t

〉)
. (2.5)

Following Fact 2.1, equality (2.5) can be written as

Φt+1 ≤ Φte−ε〈pt,f t〉.

Therefore, after T rounds we have

ΦT+1 ≤ Φ1e−ε
∑T
t=1〈pt,f t〉

= ne−ε
∑T
t=1〈pt,f t〉, (2.6)

since Φ1 = n.

Our next step is to provide a lower bound on ΦT+1. As before, we

observe that Φt ≥ wti for any t and any i, and obtain

ΦT+1 ≥ wT+1
i =

T∏
t=1

(1− εf ti ).
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Using Fact 2.2 we can further write

ΦT+1 ≥ e−ε
∑T
t=1 f

t
i−ε2

∑T
t=1(f ti )

2

. (2.7)

Putting together the lower and the upped bound on ΦT+1, i.e. equations

(2.7) and (2.6), and taking logarithm we obtain

lnn− ε
T∑
t=1

〈
pt, f t

〉
≥ −ε

T∑
t=1

f ti − ε2
T∑
t=1

(
f ti
)2
,

which after rearranging and dividing by ε gives

T∑
t=1

〈
pt, f t

〉
−

T∑
t=1

f ti ≤
lnn

ε
+ ε

T∑
t=1

(
f ti
)2 ≤ lnn

ε
+ εT.

The last inequality is true since ‖f t‖∞ ≤ 1. Since this is true for any

i, by convexity we obtain that

T∑
t=1

〈
pt, f t

〉
−

T∑
t=1

〈
p, f t

〉
≤ lnn

ε
+ εT

for all p ∈ ∆n. This completes the proof of the theorem.

The width. What happens if instead of ‖f t‖∞ ≤ 1, we have ‖f t‖∞ ≤
ρ (for all t) some ρ > 1? This parameter is often referred to as the width

of the loss function. In this case, to maintain the non-negativity of the

weights, the update rule must be modified to

wt+1
i

def
= wti

(
1− εf ti

ρ

)
.

In this case, everything goes through as before except that the term lnn
ε

in the regret bound in Theorem 2.3 becomes ρ2 lnn
ε . Thus, the number

of iterations after which the average regret becomes less than 2ε is
ρ2 lnn
ε2

.

2.2.3 Solving Linear Programs Approximately using MWU

In this section we illustrate one of many of the applications of the MWU

algorithm: solving linear programs. Rather than solving the optimiza-

tion version of linear programming, we chose a very simple setting to
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illustrate the powerful idea of using the MWU algorithm. The method

has been used in numerous ways to speed up solutions to linear pro-

grams for fundamental problems. We consider the following feasibility

problem: given an m × n matrix A, and b ∈ Rn does there exist an x

such that Ax ≥ b?

∃?x : Ax ≥ b. (2.8)

For this problem we give an algorithm that, given an error parameter

ε > 0, either outputs a point x such that Ax ≥ b − ε1 or proves that

there is no solution to this linear system of inequalities. We also assume

the existence of an oracle that, given vector p ∈ ∆n, solves the following

relaxed problem

∃?x : p>Ax ≥ p>b. (2.9)

Note that the above feasibility problem involves only one inequality.

This, often, may be significantly easier algorithmically than the original

feasibility problem. In any case, we will assume that. Clearly, if there is

an x that satisfies (2.8), then x satisfies (2.9) as well for all p ∈ ∆n. On

the other hand, if there is no solution to (2.9), then the system (2.8)

is infeasible. Finally, we assume that when the oracle returns a feasible

solution for a p, the solution x that it returns is not arbitrary but has

bounded width:

max
i
|(Ax)i − bi| ≤ 1.

In this setting, we can prove the following theorem:

Theorem 2.6. If there is a solution to (2.8), then there is an algorithm

that outputs a x which satisfies the system (2.8) up to an additive error

of 2ε. The algorithm makes at most lnm
ε2

calls to a width-bounded oracle

for the problem 2.9. On the other hand, if there is no solution to (2.8),

then the algorithm says so.

The algorithm in the proof of the theorem is the MWU: we just have to

identify the loss function at time t. We maintain a probability distribu-

tion pt at any time t and pass it to the oracle. As is usual, the starting

probability distribution, p1, is uniform. We pass this pt to the oracle.

If the oracle returns that the system 2.9 is infeasible, the algorithm
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returns that the system (2.8) is infeasible. As feasibility is preserved

under taking convex combinations, we know that the algorithm is cor-

rect. On the other hand, if the oracle returns an xt, we set the loss

function to

f t
def
= Axt − b.

Since |(Axt)i − bi| ≤ 1, ‖f t‖∞ ≤ 1. Finally, if the algorithm succeeds

for T
def
= lnm

ε2
iterations, then we let

x̃
def
=

1

T

∑
t

xt.

Thus, to prove the theorem, it is sufficient to prove that x̃ satisfies (2.8)

up to an additive error of 2ε.

Towards that end, we begin by observing that, since xt is feasible

for the system (2.9) for pt for every t, we have〈
pt, f t

〉
=
〈
Axt − b, pt

〉
=
(
pt
)>
Axt −

(
pt
)>
b ≥ 0.

Thus, the loss at every step is at least 0. Hence, from Theorem 2.5, for

the choice of T = lnm/ε2 we obtain that for every i, − 1
T

∑T
t=1 f

t
i ≤ 2ε.

This is the same as

− 1

T

T∑
t=1

(
(Axt)i − bi

)
≤ 2ε.

Now, using the definition of x̃ = 1
T

∑
t x

t, we obtain that for all i,

(Ax̃)i ≥ bi − 2ε.

Thus, x̃ is 2ε-feasible for (2.8). This concludes the proof of Theorem

2.6.

2.3 Multiplicative Weights Update as Gradient Descent

Now we begin our journey towards using the ideas developed in the

previous sections to give a new algorithm for convex optimization. In

this section we first see how the MWU algorithm is in fact a form of

gradient descent. The connection is via the entropy function.
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For a non-negative vector w, let H(w) denote the function

H(w)
def
=
∑
i

wi lnwi.

(This function is the negative entropy when w ∈ ∆n.) The gradient of

H(w) is the vector x(w) where

xi = (1 + lnwi)i.

Thus, if w varies over the non-negative orthant, x(w) varies over Rn.
Moreover, this map is invertible: given x ∈ Rn, one can find a w such

that x = x(w) :

wi = exi−1.

Thus, at iteration t, for wt we let xt
def
= x(wt). The loss function is

f t, and the loss is F t(w)
def
= 〈f t, w〉. Thus, ∇wF t = f t. Thus, our

assumption that ‖f t‖∞ ≤ 1 is the same as

‖∇wF t‖∞ ≤ 1.

Suppose we take the gradient step of size η in the x-space with respect

to ∇wF t. Then, we obtain a new point in the x-space:

xt+1 = xt − η∇wF t = xt − ηf t.

The corresponding wt+1 is obtained by equating, for each i,

1 + lnwt+1
i = 1 + lnwti − ηf ti .

Exponentiating, the update step in the w-space is

wt+1
i = wtie

−ηf ti .

While this is not quite the update in the MWU algorithm, it is the

Hedge variant of the MWU. For these updates we can derive the same

regret bound as Theorem 2.5. It is the same as the MWU algorithm

when ηf ti � 1 for all t, i since we can then use the approximation

e−x ≈ 1− x, giving us the familiar update step:

wt+1
i = wti(1− ηf ti ).

Thus, if we allow going back and forth to a space via the gradient,

there is a function, namely the negative entropy function, for which

the MWU algorithm is nothing but a gradient-descent type method!

How general is this paradigm?
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2.3.1 A Gradient Descent Method Inspired from MWU

It turns out that there is a method for convex optimization that can be

abstracted out from the previous section which works well beyond the

MWU setting. As we mentioned in the beginning of this lecture, the

method we will derive could give better convergence rate than doing the

usual gradient descent in the ambient space. We are back in the setting

where we are given a convex function f and a convex set K ⊆ K ′, and

the goal is to find a point x ∈ K such that

f(x)− f(x?) ≤ ε.

(The reader can keep in mind K = ∆n and K ′ = Rn≥0 to draw the

analogy with the previous section.) Assume that the gradient of f is

bounded by 1 with respect to some norm ‖ · ‖. (This corresponds to

the assumption ‖f t‖∞ ≤ 1 for all t in the MWU setting.) Just like we

chose the negative entropy map H in the previous section, the method

depends on a map M which is assumed to be continuously differentiable

and strictly convex function M over K ′. Further, similar to H, the map

M should have additional properties (we do not spell them all out): the

map ∇M : K ′ 7→ S should be one-to-one and invertible. (S = Rn in the

previous section.) We can now generalize the algorithm in the previous

section.

The initial point x1 is chosen to be

x1 def
= arg inf

x∈K
M(x).

(For negative entropy, this results in the choice of the vector where all

the coordinates are the same, i.e., the uniform distribution over the

experts or the vector 1
n1). Let xt ∈ K. Once we map xt to ∇M(xt)

and do the gradient step, we may move out of K but should remain

in K ′. Let yt+1 be the point in K ′ which corresponds to the resulting

point in S. In other words, given xt and ∇f, for t ≥ 1 we let yt+1 be

the point such that

∇M
(
yt+1

)
= ∇M

(
xt
)
− η∇f

(
xt
)
. (2.10)

As yt+1 might lie outside of K, we project it back to K and let xt+1 be

its projection. We obtain the projection by minimizing the Bregman
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divergence as follows

xt+1 def
= arg inf

x∈K
DM

(
x, yt+1

)
.

Recall that the Bregman divergence DM (x, y) associated with M for

points x, y ∈ K ′ is defined to be

DM (x, y)
def
= M(x)−M(y)− 〈∇M(y), x− y〉 .

(In the MWU setting, the Bregman divergence of the negative entropy

function corresponds to the Kullback-Liebler divergence and projecting

according to it is nothing but normalizing a non-negative vector to

make its `1 norm 1.) In this setting, we can prove the following theorem

which is a generalization the MWU method (and from which we can

recover the MWU method):

Theorem 2.7. Let the gradient of f be bounded in a norm ‖ · ‖
by G. Let M be a map satisfying the properties listed above and,

in addition, is l-strongly convex with respect to norm ‖ · ‖?. Let

D
def
= supx∈KM(x)−M(x1). Then, for η

def
= D√

T
, the algorithm above

produces a sequence of points x1, . . . , xT such that

f

(
1

T

T∑
t=1

xt

)
− f(x?) ≤ ε

where

T =
1

l
·
(
DG

ε

)2

.

To complete the analogy to the MWU method in the previous section,

we note that if we let x1 def
= 1

n1, then D =
√

lnn. Further, Pinsker’s

inequality implies that the negative entropy function is 1-strongly con-

vex with respect to the ‖ · ‖1 norm, the dual norm to ‖ · ‖∞. The proof

of this theorem is left as an exercise. No new idea, other than those

discussed in this lecture and the last are required to complete the proof.

Thus, we have achieved the goal promised in the beginning of the

lecture. In conclusion, we started with the MWU algorithm in the online
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convex optimization setting, interpreted it as a gradient descent method

and then abstracted the essence to obtain a new method in convex

optimization. This method is often referred to as Mirror Descent or

Dual Averaging algorithm. In the appendix we present a matrix version

of the MWU method which has applications to approximately solving

SDPs quickly.

2.4 Appendix: A Multiplicative Weights Update for Matrices

In this section we discuss the generalization of our MWU framework

to the matrix world. As before we have n experts. So far, the decision

for round t was essentially the index i of the expert we follow in this

round. After this decision is made, the adversary reveals the cost vector

f t ∈ [−1, 1]n, and we pay f ti . This is equivalent to choosing on every

round t a vector vt ∈ {e1, e2, ..., en} and having loss 〈vt, f t〉. Recall that

the strategy we devised for the game was randomized and our vt was

a random vector chosen according to the distribution P [vt = ei] = pti,

where pt was the probability distribution at round t. Then the expected

loss was simply
∑

i pif
t
i = 〈pt, f t〉.

In the matrix case we allow the decision vt to be any vector of `2-

norm 1 (i.e. vector from unit sphere Sn−1). The loss at round t is given

by

〈vt, F tvt〉 = (vt)>Fvt,

where F t is the loss matrix chosen by the adversary right after our

decision at round t. We assume that this matrix is symmetric. Similarly

to the basic case, where we had the requirement |f ti | ≤ 1, we impose a

bound on the cost matrix: ‖F t‖ ≤ 1 (‖ · ‖ is the spectral norm, i.e. we

require that the eigenvalues of F t lie all in the interval [−1, 1]). Observe

that in our previous setting all the loss matrices were diagonal and we

could pick our decision only from a finite set {e1, e2, ..., en} ⊆ Sn−1.

Like before we will give a randomized strategy for this online problem.

Our goal is, of course, to minimize the expected total loss comparing

to the best expert. However, now the set of experts is much bigger, it

consists of all the unit length vectors.

Suppose our algorithm chooses the vector v
def
= vt according to dis-

tribution µ
def
= µt and the cost matrix is F

def
= F t. We calculate the loss
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at round t:

Ev∼µ[〈v, Fv〉] = Ev∼µ[(vvT ) • F ] = Ev∼µ[vvT ] • F

where A • B def
= Tr(ATB) is the usual matrix inner product. So if

we denote P t = Ev∼µ[vvT ], then the loss at round t is simply P t •
F t. Observe that P t is PSD and Tr(P t) = 1. Our algorithm, instead

of working directly with a distribution over Sn−1, will keep a matrix

P t. Our objective is to ensure that
∑T

t=1 P
t • Ft as small as possible,

compared to min‖w‖2=1

∑T
t=1w

TF tw. The latter is nothing but the

smallest eigenvalue of
∑T

t=1 F
t. We proceed with the description of our

algorithm based on MWU.

Matrix Multiplicative Weights Update (MMWU):

(1) Initialize Q1 = I.

(2) In round t, use the matrix

P t =
Qt

Φt
,

where Φt def
= Tr(Qt).

(3) Observe the loss matrix F t, and update Qt as follows

Qt+1 = e−ε
∑t
k=1 F

k
.

where: eA
def
=
∑∞

k=0
Ak

k!

We will now prove an analogue of Theorem 2.5 in the matrix world.

Theorem 2.8. Assume that −I � F t � I for every t, and let 0 <

ε ≤ 1. Then, the algorithm MMWU produces a sequence of matrices

P 1, . . . , P T with Tr(P t) = 1 such that:

T∑
t=1

P t • F t − inf
v∈Sn−1

T∑
t=1

vTF tv ≤ lnn

ε
+ εT. (2.11)
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Thus, after T = lnn
ε2
,

1

T

T∑
t=1

P t • F t ≤ λmin

(
1

T

T∑
t=1

F t

)
+ 2ε.

Thus, if we know that P t • F t ≥ 0 for all t, then

−2εI � 1

T

T∑
t=1

F t.

This is a powerful implication and has far reaching consequences when

one carefully constructs the setting, just as in Section 2.2.3. For in-

stance, this theorem is sufficient to construct fast and approximate

SDP solvers and show the existence of near-linear spectral sparsifiers.

We omit the details.

The proof has the same structure as the proof of Theorem 2.5. How-

ever, in the matrix world where we are plagued with non-commutativty:

AB 6= BA in general for matrices. For instance it would have been great

if eA+B = eAeB. But this is false in general. What is true instead is the

following fact which is known as the Golden-Thompson inequality:

Fact 2.9. Let A,B be symmetric matrices, then:

Tr
(
eA+B

)
≤ Tr

(
eAeB

)
.

We note that this is not true for 3 matrices A,B,C! We also need

some simple inequalities necessary in the proof which essentially are a

consequence of the corresponding scalar inequalities.

Fact 2.10. Let A,B,C be symmetric matrices, let A be PSD and B �
C, then:

Tr(AB) ≤ Tr(AC).
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Fact 2.11. Let A be a symmetric matrix and v be a vector of unit

length, then:

ev
>Av ≤ Tr

(
eA
)
.

Proof. Suppose the eigenvalues of A are λ1 ≤ · · · ≤ λn. The eigenvalues

of eA are precisely eλ1 , . . . , eλn . We know that v>Av ≤ λn. Therefore

ev
>Av ≤ eλn ≤ Tr

(
eA
)
.

Fact 2.12. Let A be a symmetric matrix satisfying ‖A‖ ≤ 1, then:

e−A � I −A+A2.

This is easy to see because the eigenspaces of all the matrices

A,A2, A3, ..., eA are the same, so it is enough to prove the above in-

equality for A being a number in the interval [−1, 1]. Now we are ready

to prove the theorem.

Proof. As in the proof of Theorem 2.5 we try to obtain upper and lower

bounds on the potential function Φt+1, which in our case is defined to

be Φt+1 def
= Tr(Qt+1). Let us start with the upper bound:

Φt+1 = Tr(Qt+1) = Tr
(
e−ε

∑t
k=1 F

k
)

G−T
≤ Tr

(
e−ε

∑t−1
k=1 F

k
e−εF

t
)

≤ Tr
(
e−ε

∑t−1
k=1 F

k (
I − εF t + ε2(F t)2

))
= Tr

(
Qt
)
− εTr

(
QtF t

)
+ ε2Tr

(
Qt(F t)2

)
.

Now we use the fact that Qt = P tTr(Qt):

Tr
(
QtF t

)
= Tr(Qt)Tr

(
P tF t

)
= Φt(P t • F t)

Similarly:

Tr
(
Qt(F t)2

)
= Tr(Qt)Tr

(
P tF t

)
= Φt(P t • (F t)2).
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Therefore we can conclude that:

Φt+1 ≤ Φt(1− ε(P t • F t) + ε2(P t • (F t)2)) ≤ Φte−ε(P
t•F t)+ε2(P t•(F t)2).

Expanding further,

Φt+1 ≤ ne−ε
∑t
k=1(Pk•Fk)+ε2

∑t
k=1(Pk•(Fk)2). (2.12)

It remains to obtain a suitable lower bound for Φt+1. To this end let us

fix any vector v with ‖v‖2 = 1. We use Fact 2.11 with A = −ε
∑t

k=1 F
k:

e−ε
∑t
k=1 v

>Fkv ≤ Tr
(
e−ε

∑t
k=1 F

k
)

= Φt+1. (2.13)

Putting inequalities 2.12 and 2.13 together and taking logarithms of

both sides yields

−ε
t∑

k=1

v>F kv ≤ −ε
t∑

k=1

(P k • F k) + ε2
t∑

k=1

(P k • (F k)2) + lnn.

After dividing by ε and rearranging, we get for every v ∈ Sn−1:

t∑
k=1

(P k • F k) ≤
t∑

k=1

vTF kv + ε

t∑
k=1

(P k • (F k)2) +
lnn

ε
.



3

Newton’s Method and the Interior Point Method

3.1 Overview

In the last of the three foundational lectures we continue our journey

towards faster (and better) algorithms for convex programs. The al-

gorithms introduced till now assume access only to an oracle for the

value of the convex function and its gradient at a specified point. In

this lecture we assume that we are also given a second order access to

f : namely, given vectors x and y, we could obtain (∇2f(x))−1y. The

resulting method would be Newton’s method for solving unconstrained

programming and will have this property that if one starts close enough

to the optimal solution the convergence would be in log log 1/ε itera-

tions! Finally, we present the application of Newton’s method to solv-

ing constrained convex programs. This is achieved by moving from

constrained to unconstrained optimization via a barrier function. The

resulting methods are broadly termed as interior point methods. We an-

alyze one such method, referred to as the primal path-following interior

point method, for linear programs. We end this lecture by a discussion

on self-concordant barrier functions which allow us to go beyond linear

programs to more general convex programs.

46
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g(x)

r x1 x0

Fig. 3.1 One step of Newton’s Method

3.2 Newton’s Method and its Quadratic Convergence

Our starting point is the versatile Newton’s method which we first

explain in the simplest setting of finding a root for a univariate poly-

nomial.

3.2.1 Newton-Raphson method

In numerical analysis, Newton’s method (also known as the Newton-

Raphson method), named after Isaac Newton and Joseph Raphson, is

a method for finding successively better approximations to the roots

(or zeroes) of a real-valued function. Suppose we are given a function

g : R 7→ R and we want to find its root (or one of its roots). Assume we

are given a point x0 which is likely to be close to a zero of g. We consider

the point (x0, g(x0)) and draw a line through it which is tangent to the

graph of g. Let x1 be the intersection of the line with the x-axis (see

Figure 3.2.1). Then it is reasonable (at least if one were to believe the

figure above) to suppose that by moving from x0 to x1 we have made
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progress in reaching a zero of g. First note that:

x1
def
= x0 −

g(x0)

g′(x0)

From x1, by the same method we obtain x2, then x3 etc. Hence, the

general formula is:

xk+1
def
= xk −

g(xk)

g′(xk)
for all k ≥ 0. (3.1)

Of course we require differentiability of g, in fact we will assume even

more – that g is twice continuously differentiable. Let us now analyze

how fast the distance to the root decreases with k.

Let r, be the root of g, that is g(r) = 0. Expand g into Taylor

series at the point xk and, use the Mean Value Theorem, to obtain the

following:

g(r) = g(xk) + (r − xk)g′(xk) +
1

2
(r − xk)2g′′(θ)

for some θ in the interval [r, xk]. From (3.1) we know that

g(xk) = g′(xk)(xk − xk+1).

Recall also that g(r) = 0. Hence, we get:

0 = g′(xk)(xk − xk+1) + (r − xk)g′(xk) +
1

2
(r − xk)2g′′(θ)

which implies that

g′(xk)(r − xk+1) =
1

2
(r − xk)2g′′(θ).

This gives us the relation between the new distance from the root in

terms of the old distance from it:

|r − xk+1| =
∣∣∣∣ g′′(θ)2g′(xk)

∣∣∣∣ |r − xk|2.
This can be summarized in the following theorem:
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Theorem 3.1. Suppose g : R 7→ R is a C2 function, 1 r ∈ R is a root

of g, x0 ∈ R is a starting point and x1 = x0 − g(x0)
g′(x0) , then:

|r − x1| ≤M |r − x0|2

where M = supx∈[r,x0]

∣∣∣ g′′(θ)2g′(x)

∣∣∣.
Thus, assuming that M is a small constant, say M ≤ 1 (and remains

so throughout the execution of this method) and that |x0 − r| < 1, we

obtain quadratically fast convergence of xk to r. For the error |xk − r|
to became less then ε one needs to take k = log log 1/ε. As one can

imagine, for this reason Newton’s Method is very efficient and powerful.

In practice, it gives very good results even when no reasonable bounds

on M or |x0 − r| are available.

3.2.2 Newton’s Method for Convex Optimization

How could the benign looking Newton-Raphson method be useful to

solve convex programs? The key lies in the observation from the first

lecture that the task of minimization of a differentiable convex func-

tion in the unconstrained setting is equivalent to finding a root of its

derivative. In this section we abstract out the method from the previous

section and present Newton’s method for convex programming.

Recall that the problem is to find

x?
def
= arg inf

x∈Rn
f(x).

where f is a convex (smooth enough) function. The gradient ∇f of f is

a function Rn 7→ Rn and its derivative∇2f maps Rn to n×n symmetric

matrices. Hence, the right analog of the update formula (3.1) to our

setting can be immediately seen to be:

xk+1
def
= xk − (∇2f(xk))

−1∇f(xk) for all k ≥ 0. (3.2)

For notational convenience we define the Newton step at point x to be

n(x)
def
= −(∇2f(x))−1∇f(x),

1The function is twice differentiable and the second derivative is continuous.



50 Newton’s Method and the Interior Point Method

then (3.2) gets abbreviated to xk+1 = xk + n(xk). One may convince

themselves that (3.2) is meaningful by applying it to f being a strictly

convex quadratic function (i.e. f(x) = x>Mx for M positive definite).

Then, no matter which point we start, after one iteration we land in

the unique minimizer. This phenomenon can be explained as follows:

suppose f̃ is the second order approximation of f at point x,

f̃(y) = f(x) + (y − x)>∇f(x) +
1

2
(y − x)>∇2f(x)(y − x)

If f is sctrictly convex then its Hessian is positive definite, hence the

minimizer of f̃(y) is

y? = x− (∇2f(x))−1∇f(x) = x+ n(x)

For this reason Newton’s method is called a second-order method, be-

cause it takes advantage of the second order approximation of a func-

tion to make a step towards the minimum. All the algorithms we looked

at in the previous lecture were first-order methods. They used only the

gradient (first order approximation) to perform steps. However, com-

putationally our task has increased as now we would need a second

order oracle to the function: given x and y, we would need to solve the

system of equations ∇2f(x)y = ∇f(x).

The next question is if, and, under what conditions xk converges

to the minimizer of f . It turns out that it is possible to obtain a sim-

ilar quadratic convergence guarantee assuming that x0 is sufficiently

close to the minimizer x?. We can prove the following theorem whose

hypothesis and implications should be compared to Theorem 3.1.

Theorem 3.2. Let f : Rn 7→ R be a C2 function and x? be its mini-

mizer. Denote the gradient ∇2f(x) by H(x) and assume that the fol-

lowing hold:

• There is some constant h > 0 and a ball B(x?, r) around x?

such that, whenever x ∈ B(x?, r), ‖H(x)−1‖ ≤ 1
h .

• There is some constant L > 0 and a ball B(x?, r) around

x? such that, whenever x, y ∈ B(x?, r), ‖H(x) − H(y)‖ ≤
L‖x− y‖.
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If x0 is a starting point, sufficiently close to x? and x1 = x0 + n(x)

then:

‖x1 − x?‖ ≤M‖x0 − x?‖2

for some constant M . For example M = L
2h will do.

Thus, if M ≤ 1, then with a starting point close enough to the opti-

mal solution, Newton’s method converges quadratically fast. One can

present a rough analogy of this theorem with Theorem 3.1. There, for

the method to have quadratic convergence, |g′(x)| should be bigger in

comparison to |g′′(x)| (to end up with small M). Here, the role of g is

played by the derivative f ′ of f (the gradient in the one-dimensional

case). The first condition on H(x) says basically that |f ′′(x)| is big. The

second condition may be a bit more tricky to decipher, it says that f ′′(x)

is Lipschitz-continuous, and upper-bounds the Lipschitz constant. As-

suming f is thrice continuously differentiable, this essentially gives an

upper bound on |f ′′′(x)|. Note that this intuitive explanation does not

make any formal sense, since f ′(x), f ′′(x), f ′′′(x) are not numbers, but

vectors, matrices and 3-tensors respectively. We only wanted to em-

phasize that the spirit of Theorem 3.2 still remains the same as Theo-

rem 3.1.

Proof. [Proof of Theorem 3.2] The basic idea of the proof is the same

as in 3.1. We need a similar tool as the Taylor expansion used in the

previous chapter. To obtain such, we consider the function φ : [0, 1]→
Rn, φ(t) = ∇f(x + t(y − x)). Applying the fundamental theorem of

calculus to φ (to every coordinate separately) yields:

φ(1)− φ(0) =

∫ 1

0
∇φ(t)dt

∇f(y)−∇f(x) =

∫ 1

0
H(x+ t(y − x))(x− y)dt. (3.3)

Let x = x0 for notational convenience and write x1−x? in a convenient
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form:

x1 − x? = x− x? + n(x)

= x− x? −H(x)−1∇f(x)

= x− x? +H(x)−1(∇f(x?)−∇f(x))

= x− x? +H(x)−1

∫ 1

0
H(x+ t(x? − x))(x− x?)dt

= H(x)−1

∫ 1

0
(H(x+ t(x? − x))−H(x))(x− x?)dt.

Now take norms:

‖x1 − x?‖ ≤ ‖H(x)−1‖
∫ 1

0
‖(H(x+ t(x? − x))−H(x))(x− x?)‖dt

≤ ‖H(x)−1‖‖x− x?‖
∫ 1

0
‖(H(x+ t(x? − x))−H(x))‖dt.

(3.4)

We use the Lipschitz condition on H to bound the integral:∫ 1

0
‖(H(x+ t(x? − x))−H(x))‖dt ≤

∫ 1

0
L‖t(x? − x)‖dt

≤ L‖x? − x‖
∫ 1

0
tdt

=
L

2
‖x? − x‖.

Together with (3.4) this implies:

‖x1 − x?‖ ≤
L‖H(x)−1‖

2
‖x? − x‖2 (3.5)

which completes the proof. We can take M = L‖H(x)−1‖
2 ≤ L

2h .

3.3 Constrained Convex Optimization via Barriers

In this section return to constrained convex optimization problems of

the form:

inf
x∈K

f(x) (3.6)
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where f is a convex, real valued function and K ⊆ Rn is a convex

set. 2 In the first lecture we discussed how gradient-descent type meth-

ods could be adapted in this setting by projecting onto K at every

step. We took an improvement step xk 7→ x′k+1 with respect to f and

then we projected x′k+1 onto K to obtain xk+1. There are a few prob-

lems with this method. One of them is that in most cases computing

projections is prohibitively hard. Furthermore, even if we ignore this

issue, the projection-based methods are not quiet efficient. To get an

ε-approximation to the solution, the number of iterations depends poly-

nomially on ε−1 (i.e. the number of iterations is proportional to 1/εO(1)).

Unfortunately such dependence on ε is often unsatisfactory. For exam-

ple, to obtain the optimal solution for a linear program we need to take

ε of the form 2−L, where L is the size of the instance.3 Hence, to get a

polynomial time algorithm, we need the running time dependence on ε

to be logO(1)(1/ε). Today we will see an interior point algorithm which

achieve such a guarantee.

3.3.1 Following the Central Path

We are going to present one very general idea for solving constrained

optimization problems. Recall that our aim is to minimize a given con-

vex function f(x) subject to x ∈ K. To simplify our discussion, we

assume that the objective function is linear, 4 i.e. f(x) = c>x and

the convex body K is bounded and full-dimensional (it has positive

volume).

Suppose we have a point x0 ∈ K and we want to perform an im-

provement step maintaining the condition of being inside K. The sim-

plest idea would be to move in the direction−c to decrease our objective

value as much as possible. Our step will then end up on the bound-

ary of K. The second and further points would lie very close to the

2K is given to us either explicitly – by a collection of constraints defining it, or by a
separation oracle.

3One should think of L as the total length of all the binary encodings of numbers in the
description of the linear program. In the linear programming setting, LO(1) can be shown
to bound the number of binary digits required to represent the coordinates of the optimal
solution.

4Actually we are not losing on generality here. Every convex problem can be stated equiv-
alently with a linear objective function.
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boundary, which will force our steps to be short and thus inefficient. In

case of K being a polytope, such a method would be equivalent to the

simplex algorithm, which as known to have an exponential worst case

running time. For this reason we need to set some force, which would

repel us from the boundary of K. More formally, we want to move our

constraints to the objective function and consider c>x+ F (x),5 where

F (x) can be regarded as a “fee” for violating constraints. F (x) should

become big for x close to ∂K. Of course, if we would like the methods

developed in the previous sections for unconstrained optimization to be

applicable here, we would also like f to be strongly convex. Thus, this

is another route we could take to convert a constrained minimization

problem into unconstrained minimization, but with a slightly altered

objective function. To formalize this approach we introduce the notion

of a Barrier Function. Instead of giving a precise definition, we list

some properties, which we wish to hold for a barrier function F :

• F is defined in the interior of K, i.e. dom(F ) = int(K) , (3.7)

• for every point b ∈ ∂K we have: limx→b F (x) = +∞, (3.8)

• F is strictly convex. (3.9)

Suppose F is such a barrier function, let us define a perturbed objective

function fη, where η > 0 is a real parameter:

fη(x)
def
= ηc>x+ F (x) (3.10)

We may imagine that fη is defined on all of Rn but attains finite values

only on int(K). Intuitively, making η bigger and bigger reduces the

influence of F (x) on the optimal value of fη(x). Furthermore, observe

that since c>x is a linear function, the second order behavior of fη is

completely determined by F , that is ∇2fη = ∇2F . In particular, fη is

strictly convex and it has a unique minimizer x?η. The set

{x?η : η ≥ 0}

5One seemingly perfect choice of F would be a function which is 0 on K and +∞ on the

complement of K. This reduces our problem to unconstrained minimization of c>x+F (x).
However, note that we have not gained anything by this reformulation, even worse: our
objective is not continuos anymore.
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Fig. 3.2 Example of a central path

can be seen to be continuous due to the Implicit Function Theorem

and is referred to as a central path starting at x?0 and approaching x?

– the solution to our convex problem 3.6. In other words:

lim
η→∞

x?η = x?.

A method which follows this general approach is called a path-following

interior point method. Now, the key question is: “how fast is this conver-

gence?”. Needless to say, this would depend on the choice of the barrier

function and the method for solving the unconstrained optimization

problem. We answer it in the next section for linear programs: using

the logarithmic barrier function along with Newton’s method from the

previous section we can give an algorithm to solve linear programs in

time polynomial in the encoding length.

3.4 Interior Point Method for Linear Programming

3.4.1 A Brief History of IPMs

Interior point methods (IPMs), as alluded to in the previous section,

first appear in a recognizable form in the Ph.D. thesis of Ilya Dikin
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in the 60s. However, there was no analysis for the time needed for

convergence. In 1984 Narendra Karmarkar announced a polynomial-

time algorithm to solve linear programs using an IPM. At that point

there was already a known polynomial time algorithm for solving LPs,

namely the Ellipsoid Algorithm from 1979. Further, the method of

choice in practice, despite known to be inefficient in the worst case, was

the Simplex method. However, in his paper, he also presented empirical

results which showed that his algorithm was consistently 50 times faster

than the simplex method. This event, which received publicity around

the world throughout the popular press and media, marks the beginning

of the interior-point revolution. For a nice historical perspective on this

revolution, we refer the reader to the survey of Wright [Wri05].

Karmarkar’s algorithm needed roughly O(m log 1/ε) iterations to

find a solution (which is optimal up to an additive error of ε) to a

linear program, where m is the number of constraints. Each such it-

eration involved solving a linear system of equations, which could be

easily performed in polynomial time. Thanks to the logarithmic depen-

dence on the error ε it can be used to find the exact, optimal solution

to a linear program in time polynomial with respect to the encoding

size of the problem. Thus, Karmarkar’s algorithm was the first efficient

algorithm with provable worst case polynomial running time. Subse-

quently, James Renegar proposed an interior point algorithm with re-

duced number of iterations: O(
√
m log(1/ε)). Around the same time,

Nesterov and Nemirovski abstracted out the essence of interior point

methods and came up with the the notion of self-concordance, which

in turn was used to provide efficient, polynomial time algorithms for

many nonlinear convex problems such as semi-definite programs.

We begin our discussion by introducing the logarithmic barrier func-

tion and then Newton’s Method, which is at a core of all interior-

point algorithms. Then we present Renegar’s primal path following

method. We give a full analysis of this algorithm, i.e. we prove that

after Õ(
√
m log(1/ε)) it outputs a solution which is ε-close to the op-

timum.
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3.4.2 The Logarithmic Barrier

In this section we switch from a general discussion on constrained con-

vex optimization to a particular problem: linear programming. We will

use ideas from the previous section to obtain an efficient algorithm for

solving linear programs in the form:

min
x∈Rn

c>x

s.t. Ax ≤ b
(3.11)

where x is the vector of variables of length n, c ∈ Rn, b ∈ Rm and

A ∈ Rm×n. We will denote the rows of A by a1, a2, . . . , am (but treat

them as column vectors). We will assume that the set of constraints

Ax ≤ b defines a bounded polytope P of nonzero volume in Rn.6

We are going to use the following barrier function which is often

called the logarithmic barrier function:

F (x)
def
= −

m∑
i=1

log(bi − a>i x)

It is easy to see that F (x) is well defined on int(P ) and tends to infinity

when approaching the boundary of P . Let us now write down formulas

for the first and second derivative of F , they will prove useful a couple

of times in the analysis. To simplify the notation, we will often write

si(x) for bi − a>i x.

Fact 3.3. If x is a point in the interior of P , then:

(1) ∇F (x) =
∑m

i=1
ai
si(x)

(2) ∇2F (x) =
∑m

i=1
aia
>
i

si(x)2

Using the above formulas we can investigate the convexity of F . It is

clear that ∇2F (x) � 0, which implies convexity. Strong convexity of F

6Of course this is not always the case for general linear programs, however if the program

is feasible then we can perturb the constraints by an exponentially small ε > 0 to force
the feasible set to be full dimensional. Moreover, it will turn out soon that infeasibility is
not a serious issue.
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(i.e. ∇2F (x) � 0) is equivalent to the fact that a1, a2, . . . , an span the

whole Rn, in our case this is true, because of the assumption that P

is full dimensional and bounded. Which is which should be clear from

the context.

From now on, whenever we talk about a function F we will write

H(x) for its Hessian ∇2F (x) and g(x) for the gradient ∇F (x). Note

however that at some places in the text we refer to F as a general

function and sometimes we fix F to be a specific one: the logarithmic

barrier.

3.4.3 Local Norms

In this section we introduce an important concept of a local norm. It

plays a crucial role in understanding interior point methods. Rather

than working with the Euclidean norm, the analysis of our algorithm

will be based on bounding the local norm of the Newton step. Let

A ∈ Sn be a positive definite matrix, we associate with it the inner

product 〈·, ·〉A defined as:

〈x, y〉A
def
= x>Ay

and the norm ‖ · ‖A:

‖x‖A
def
=
√
x>Ax

Note that a ball of radius 1 with respect to such a norm corresponds

to an ellipsoid in the Euclidean space. Formally, we define the ellipsoid

associated with the matrix A, centered at x0 ∈ Rn as:

Ex0(A)
def
= {x : (x− x0)>A(x− x0) ≤ 1}.

Matrices of particular interest are for us Hessians of strictly convex

functions F : Rn 7→ R (such as the logarithmic barrier). For them we

usually write in short:

‖z‖x
def
= ‖z‖H(x)

whenever the function F is clear from the context. This is called a local

norm at x with respect to F . From now on, let F (x) =
∑m

i=1− log(bi−
a>i x) be the logarithmic barrier function. For the logarithmic barrier,

Ex(∇2F (x)) is called the Dikin Ellipsoid centered at x. An important



3.4. Interior Point Method for Linear Programming 59

property of this ellipsoid is that it is contained in P and that the

Hessian does not change much. Thus, the curvature of the central path

with respect to the local norm does not change much and, hence, it is

close to a straight line. Thus, taking a short Newton step inside this

ellipsoid from the center keeps one close to the central path.

We return to this intimate connection between the Dikin Ellipsoid

and IPMs in the appendix. We conclude this section by noting that

there is another way to motivate measuring progress in the local norm:

that Newton’s method is affinely invariant. This means that if, for a

invertible linear transformation A, we do a change of variables x = Ay,

then the Newton step is just a transformation by A: n(x) = An(y). On

the other hand the Lipschitz condition on the Hessian in Theorem 3.2

is not affine invariant w.r.t. the Euclidean norm. However, it would be

if we redefine it as

‖H(x)−H(y)‖ ≤ L‖x− y‖x,

this remains affine invariant.

3.4.4 A Primal Path-Following IPM

We come back to the description of the path following algorithm. Recall

that we defined the central path as: {x?η : η > 0} consisting of optimal

solutions to the perturbed linear program. We want to start at x0 = x?η0
for some small η0 > 0 and move along the path by taking discrete steps

of certain length. This corresponds essentially to increasing η in every

step. So one idea for our iterative procedure would be to produce a

sequence of pairs (x0, η0), (x1, η1), . . . such that η0 < η1 < · · · and

xk = x?ηk for every k. We should finish at the moment when we are

close enough to the optimum, that is when c>xk < c>x? + ε. Our first

lemma gives a bound on when to stop:

Lemma 3.4. For every η > 0 we have c>x?η − c>x? < m
η .

Proof. Calculate first the derivative of fη(x):

∇fη(x) = ∇(ηc>x+ F (x)) = ηc+∇F (x) = ηc+ g(x)
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The point x?η is the minimum of fη, hence ∇fη(x?η) = 0 and so:

g(x?η) = −ηc (3.12)

Using this observation we obtain that

c>x?η − c>x? = −
〈
c, x? − x?η

〉
=

1

η

〈
g(x?η), x

? − x?η
〉

To complete the proof it remains to argue that
〈
g(x?η), x

? − x?η
〉
< m.

We will show even more, that for every two points x, y in the interior

of P , we have 〈g(x), y − x〉 < m. This follows by a simple calculation:

〈g(x), y − x〉 =

m∑
i=1

a>i (y − x)

si(x)

=

m∑
i=1

(bi − a>i x)− (bi − a>i y)

si(x)

=
m∑
i=1

si(x)− si(y)

si(x)
= m−

m∑
i=1

si(y)

si(x)
< m

Where in the last inequality we make use of the fact that our points

x, y are strictly feasible, i.e. si(x), si(y) > 0 for all i.

This lemma tells us that if want an ε-additive solution, we could stop

our path following procedure when

η = Ω
(m
ε

)
.

At this point one may wonder why instead of working in an iterative

fashion we do not just set η = m/ε and solve the perturbed linear

problem to optimality. It turns out that it is hard to compute x?η when

some arbitrary η > 0 is given (essentially, it is at least as hard as

solving linear optimization problems). What we are able to do is given

x?η for some η > 0 calculate x?η′ for η′ a little bit larger than η. This

immediately rouses another question: then how do we find x?η0 at the

very beginning of the algorithm? We will discuss this problem in detail
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later, for now let us assume that it is possible to provide some η0 > 0

and the corresponding point x0 = x?η0 .

One step of our algorithm will essentially correspond to one step

of Newton’s method. Before we give a full description of the algorithm

recall that n(x) is the Newton step at point x with respect to some

underlying function f . Whenever we write n(xk), we have the function

fηk(x) = ηkc
>x+ F (x) in mind. So

n(xk) = −H(xk)
−1∇fηk(xk).

We now give the algorithm.

Primal Path Following IPM for Linear Programming :

(1) Find an initial η0 and x0 with ‖n(x0)‖x0 ≤ 1
2 .

(2) At iteration k (k = 0, 1, 2, . . .):

• compute xk+1 according to the rule:

xk+1
def
= xk + n(xk)

• set ηk+1
def
= ηk

(
1 + 1

8
√
m

)
.

(3) Stop when for the first time K, ηK > m
ε .

(4) Calculate x̂
def
= x?ηK by Newton’s method (starting at

xK), output x̂.

In this algorithm we do not ensure that xk = x?ηk at every step. This

means that as opposed to what we have said before, our points do not

lie on the central path. All we care about is that the points are close

enough to the central path. By close enough, we mean ‖n(xk)‖xk ≤ 1/2.

It may not be clear why this is the right notion of the distance from

central path. We will discuss this in the Section 3.5. Let us conclude

the description of the algorithm by the following remark.

Remark 3.5. At step 4. of the Primal Path Following IPM we apply

Newton’s method to obtain a point on the central path. At this moment

it is not obvious that it will converge and, if yes, how quickly. We will
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see later that the point xK is in the quadratic convergence region of

Newton’s method, so in fact we will need only a few iterations to reach

x?ηK . Instead of doing this final computation, one could also output

simply xK . It can be shown that the optimality guarantee at point xK
is O(ε), see Appendix 3.7

We summarize what we prove about the algorithm above:

Theorem 3.6. The primal path following algorithm, given a linear

program with m constraints and a precision parameter ε > 0, performs

O(
√
m logm/η0·ε) iterations and outputs a point x̂ satisfying:

c>x̂ ≤ c>x? + ε.

3.4.5 Analysis of the Algorithm

This section is devoted to the proof of Theorem 3.6. The statement

does not provide any bounds on the cost of a single iteration. It is easy

to see that the only expensive operation we perform at every iteration

is computing the Newton step. This computation can be viewed as

solving a linear system of the form H(x)z = g(x), where z is the vector

of variables. Of course, a trivial bound would be O(n3) or O(nω), but

these may be significantly improved for specific problems. For example,

computing a Newton step for an LP max-flow formulation can be done

in Õ(|E|) time.

Recall that we initialize our algorithm with some η0 > 0. Then,

at every step we increase η by a factor of (1 + 1
8
√
m

), thus after

O(
√
m logm/η0·ε) we reach Ω(m/ε). This establishes the bound on the

number of iterations. It remains to prove the correctness (the optimal-

ity guarantee).

The following lemma plays a crucial role in the proof of correctness.

It asserts that the points we produce lie close to the central path:

Lemma 3.7. For every k = 0, 1, . . . ,K it holds that ‖n(xk)‖xk ≤ 1
2 .
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To prove this, we consider one iteration and show that, if started with

‖n(xk)‖xk ≤ 1/2, then we will end up with ‖n(xk+1)‖xk+1
≤ 1/2. Ev-

ery iteration consists of two steps: the Newton step w.r.t. fηk and the

increase of ηk to ηk+1. We formulate another two lemmas explaining

what happens when performing those steps.

Lemma 3.8. After taking one Newton step at point x w.r.t. the func-

tion fη , the new point x′ satisfies:

‖n(x′)‖x′ ≤ ‖n(x)‖2x.

Lemma 3.9. For every two positive η, η′ > 0, we have:

‖H−1(x)∇fη′(x)‖x ≤
η′

η
‖H−1(x)∇fη(x)‖x +

√
m

∣∣∣∣η′η − 1

∣∣∣∣ .
It is easy to verify that the above two lemmas together imply that if

‖n(xk)‖xk ≤ 1
2 , then

‖n(xk+1)‖xk+1
≤ 1

4
+

1

8
+ o(1) <

1

2
.

Hence, Lemma 3.7 follows by induction.

It remains to prove Lemmas 3.8 and 3.9. We start with the latter,

since its proof is a bit simpler.

Proof. [Proof of Lemma 3.9] We have

H−1(x)∇fη′(x) = H−1(x)(η′c+ g(x))

=
η′

η
H−1(x)(ηc+ g(x)) + (1− η′

η
)H−1g(x)

=
η′

η
H−1(x)∇fη(x) +

(
1− η′

η

)
H−1g(x).

After taking norms and applying triangle inequality w.r.t. ‖ · ‖x:

‖H−1(x)∇fη′(x)‖x ≤
η′

η
‖H−1(x)∇fη(x)‖x +

∣∣∣∣1− η′

η

∣∣∣∣ ‖H−1g(x)‖x.
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Let us stop here for a moment and try to understand what is the

significance of the specific terms in the last expression. In our analysis

of the algorithm, the term ‖H−1(x)∇fη(x)‖x is a small constant. The

goal is to bound the left hand side by a small constant as well. We

should think of η′ as η(1 + δ) for some small δ > 0. In such a setting
η′

η ‖H
−1(x)∇fη(x)‖x will be still a small constant, so what prevents

us from choosing a large δ is the second term (1 − η′

η )‖H−1g(x)‖x.

We need to derive an upper bound on ‖H−1g(x)‖x. We show that

‖H−1g(x)‖x ≤
√
m. Let us denote z

def
= H−1g(x). We get:

‖z‖2x = z>g(x) =

m∑
i=1

z>ai
si(x)

≤
√
m

√√√√ m∑
i=1

(z>ai)2

si(x)2
. (3.13)

The last inequality follows from Cauchy-Schwarz. Further:

m∑
i=1

(z>ai)
2

si(x)2
= z>

(
m∑
i=1

aia
>
i

si(x)2

)
z = z>H(x)z = ‖z‖2x. (3.14)

Putting (3.13) and (3.14) together we obtain that ‖z‖2x ≤
√
m‖z‖x, so

in fact ‖z‖x ≤
√
m.

Before we proceed with the proof of Lemma 3.8 let us remark that it

can be seen as an assertion that x belongs to the quadratic convergence

region of Newton’s method.

Proof. [Proof of Lemma 3.8] We know that the point x′ is the minimizer

of the second order approximation of fη at point x, hence:

∇fη(x) +H(x)(x′ − x) = 0.

which implies that:

m∑
i=1

ai
si(x)

+
m∑
i=1

aia
>
i

si(x)2
(x′ − x) = −ηc.

We use it to compute ∇fη(x′):
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∇fη(x′) = ηc+

m∑
i=1

ai
si(x′)

= −

(
m∑
i=1

ai
si(x)

+

m∑
i=1

aia
>
i

si(x)2
(x′ − x)

)
+

m∑
i=1

ai
si(x′)

=

m∑
i=1

(
ai

si(x′)
− ai
si(x)

− aia
>
i (x′ − x)

si(x)2

)

=

m∑
i=1

(
aia
>
i (x′ − x)

si(x)si(x′)
− aia

>
i (x′ − x)

si(x)2

)

=
m∑
i=1

ai(a
>
i (x′ − x))2

si(x)2si(x′)
.

Our goal is to show that ‖n(x′)‖x′ ≤ ‖n(x)‖2x. Instead 7 , we will prove

that for every vector z, we have that 〈z, n(x′)〉x′ ≤ ‖z‖x′‖n(x)‖2x.
Indeed:〈
z, n(x′)

〉
x′

= z>∇fη(x′) =
m∑
i=1

z>ai(a
>
i (x′ − x))2

si(x)2si(x′)

Cauchy−Schwarz
≤

(
m∑
i=1

(z>ai)
2

si(x′)2

)1/2

·

(
m∑
i=1

(a>i (x′ − x))4

si(x)4

)1/2

≤ ‖z‖x′ ·

(
m∑
i=1

(a>i (x′ − x))2

si(x)2

)
= ‖z‖x′‖n(x)‖2x

which completes the proof.

3.4.6 The Starting Point

In this section we give a method for finding a valid starting point. More

precisely, we show how to find efficiently some η0 > 0 and x0 such that

7 The following fact is true for every Hilbert space H: the norm of an element u ∈ H is

given by the formula ‖u‖ = max{ 〈z,u〉‖z‖ : z ∈ H \ {0}}. We work with H = Rn but with

nonstandard inner product: 〈u, v〉x′ = u>H(x′)v
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‖n(x0)‖x0 ≤ 1/2.

Before we start, we would like to remark that this discussion pro-

vides a very small η0, of order 2−L. This enables us to prove that in

fact IPM can solve linear programming in polynomial time, but does

not seem promising when trying to apply IPM to devise fast algorithms

for combinatorial problems. Indeed, there is a factor of log η−1
0 in the

bound on number of iterations, which translates to L for such a tiny η0.

To make an algorithm fast, we need to have η0 = Ω(1/poly(m)). How-

ever, it turns out that for specific problems (such as maximum flow)

we can often devise some specialized methods for finding satisfying η0

and x0 and thus solve this issue.

First, we will show how given a point x′ ∈ int(P ) we can find some

starting pair (η0, x0). Then finally we show how to obtain such point

x′ ∈ int(P ). Let us assume now that such a point is given. Furthermore,

we assume that each of its coordinates is written using O(L) bits and

each constraint is satisfied with slack at least 2−L, that is bi − a>i x′ ≥
2−L. Our procedure for finding x′ will provide such an x′ based on our

assumption that P is full dimensional. 8

Recall that we want to find a point x0 close to the central path

Γc = {x?η : η ≥ 0}, which corresponds to the objective function c>x.

Note that as η → 0, x?η → x?0 = xc, the analytic center of P . So finding

a point x0, very close to the analytic center and choosing η0 to be some

very tiny number should be a good strategy. In fact it is, but how to

find a point close to xc?

The central path Γc is of main interest for us, because it tends to

the optimal solution to our linear program. In general, if d ∈ Rn we

may define Γd to be the path consisting of minimizers to the functions

νd>x + F (x) for ν ≥ 0. What do all the paths Γd have in common?

The origin! They all start at the same point: analytic center of P . Our

strategy will be to pick one such path on which x′ lies and traverse it

backwards to reach a point very close to the origin of this path, which

at the same time will be a good choice for x0.

Recall that g is the gradient of the logarithimic barrier F and define

8 In this presentation we will not discuss some details, e.g. the full-dimensionality assump-
tion. These are easy to deal with and can be found in any book on linear programming.
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d = −g(x′). Now it turns out that x′ ∈ Γd. Why is this? Denote

f ′ν(x) = d>x+ F (x) and let x′?ν be the minimizer of f ′ν . Then x′?1 = x′,

since ∇f ′1(x′) = 0. We will use n′(x) for the Newton step at x with

respect to f ′ν . We see in particular that n′(x′) = 0.

As mentioned above, our goal is to move along the Γd path in the

direction of decreasing ν. We will use exactly the same method as in

the Primal Path Following. We perform steps, in each of them we make

one Newton step w.r.t. current ν and then decrease ν by a factor of

(1− 1/8
√
m). At each step it holds that ‖n′(x)‖x ≤ 1/2, by an argument

identical to the proof of Lemma 3.7. It remains to see, how small ν we

need to have (how many iterations we need to perform).

Lemma 3.10. If ‖H(x)−1g(x)‖x ≤ 1/4 and we take η0 =

(4‖H(x)−1c‖x)−1, then the point x is a good candidate for x0. The

Newton step n(x) w.r.t. fη0 satisfies:

‖n(x)‖x ≤
1

2
.

Proof. This is just a simple calculation: ‖n(x)‖x =

‖H−1(x)(η0c+ g(x))‖x ≤ η0‖H(x)−1c‖x + ‖H(x)−1g(x)‖x ≤
1

4
+

1

4
.

Suppose now we have some very small ν > 0 and a point x such that

‖n′(x)‖x ≤ 1/2. By performing two further Newton steps, we may as-

sume ‖n′(x)‖x ≤ 1/16. We have:

n′(x) = H(x)−1(−νg(x′) + g(x)),

hence:

‖H(x)−1g(x)‖x ≤ ν‖H(x)−1g(x′)‖x+‖n′(x)‖x ≤ ν‖H(x)−1g(x′)‖x+
1

16

So it turns out, by Lemma 3.10 that it is enough to make

ν‖H(x)−1g(x′)‖x smaller then a constant. We can make ν as small

as we want, but what with ‖H(x)−1g(x′)‖x? Let us present a technical

claim, which we leave without proof:
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Claim 3.11. All the calculations during the backward walk along Γd
can be performed with 2O(L) precision.

This means that we may assume that all the points x computed during

the procedure have only O(L) places after the comma, and are of ab-

solute value at most 2O(L). This allows us to provide an upper bound

on ‖H(x)−1g(x′)‖x.

Claim 3.12. If the description sizes of x′ and x are O(L), then

‖H(x)−1g(x′)‖x ≤ 2poly(L).

This follows from the fact that a solution to a linear system is of polyno-

mial size. Now it remains to take ν so small that ν‖H(x)−1g(x′)‖x ≤ 1/8.

By our previous reasoning this is enough to get suitable (η0, x0). To

reach such a ν we need to perform Õ(
√
m log 1/ν) iterations, but log 1/ν

is polynomial in L, so we are done.

To complete our considerations we show how to find a suitable x′ ∈
int(P ). To this end, we consider an auxiliary linear program:

min
(t,x)∈Rn+1

t

a>i x ≤ bi + t, for all i
(3.15)

Taking x = 0 and t big enough (t = 1 +
∑

i |bi|), we get a strictly

feasible solution. Having such, we may solve 3.15 up to an additive

error of 2−O(L) in polynomial time (by IPM). This will give us a solution

(t′, x′) with t′ = −2−Ω(L), so x′ ∈ int(P ) is a suitable starting point for

our walk along Γd.

3.5 Self-Concordant Barrier Functions

Finally, in this section we present the definition of a self-concordant

barrier function for a convex set P. Armed with this definition, the

task of bounding the number of iterations of the path following method

for minimizing a linear function over P reduces to analyzing certain

structural properties of the self-concordant barrier function. We omit

the straightforward details about how, once we have a self-concordant
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barrier function for a convex set, one can design a path following IPM

for it.

Definition 3.13. Let F : int(P ) 7→ R be a C3 function. We say that

F is self-concordant with parameter ν if:

(1) F is a barrier function: F (x)→∞ as x→ ∂P.

(2) F is strictly convex.

(3) For all x ∈ int(P ), ∇2F (x) � 1
ν∇F (x)∇F (x)>.

(4) For all x ∈ int(P ),
∣∣∇3F (x)[h, h, h]

∣∣ ≤ 2‖h‖3x =

2
∣∣∇2F (x)[h, h]

∣∣3/2 .9
With this definition in hand, it is not difficult to give an IPM for P

which takes about
√
ν log 1/ε iterations. In fact, a careful reader would

already have observed that Lemmas 3.9 and 3.8 prove exactly (3) and

(4) for the log-barrier function with the complexity parameter m.

Similar to the log-barrier function for the positive real-orthant, for

semidefinite programs over the cone of positive-definite matrices (or an

affine transformation of it), one can use the following barrier function:

F (X) = − log detX

for X � 0.

In the next lecture we will discuss self-concordant barrier functions

with complexity parameters � m. The main object of study will be

the volumetric barrier of Vaidya.

3.6 Appendix: The Dikin Ellipsoid

Recall our setting:

min 〈c, x〉
s.t. Ax ≤ b

where Ax ≤ b defines a bounded, nonempty and full-dimensional poly-

tope P . Recall that we can write the constrains at 〈ai, x〉 ≤ bi and

9Here we interpret ∇3F (x)[h, h, h] as the inner product between the 3-tensor ∇3F (x) and
h⊗h⊗h, namely, 〈∇3F (x), h⊗h⊗h〉) and ∇2F (x)[h, h] = h>∇2F (x)h = 〈∇2F (x), h⊗h〉.
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then consider the slacks si(x) = bi − 〈ai, x〉 which capture the extent

to which a constraint is satisfied. Clearly, if x is a feasible point, then

si(x) ≥ 0 for all i. Note that, when clear from context, we will often

write si for si(x) for conciseness. The log-barrier function (rather its

negative) and its differentials are:

F (x) =
∑
i

log(si(x))

where

∇F (x) =
ai
si
, and

∇2F (x) =
∑
i

aia
>
i

s2
i

.

We often write H(x) = ∇2F (x) for the Hessian of x, and note that

H(x) � 0 (and in fact H(x) � 0 when A is fully-dimensional).

Now, we can consider the ellipsoid centred at x and defined by H,

namely

Ex(H(x)) = {y : (y − x)>H(x)(y − x) ≤ 1}.

This is the Dikin ellipsoid centred at x.

Definition 3.14. The Dikin Ellipsoid at x ∈ int(P ) is defined as the

ball of radius 1 around x in the local norm defined by H(x) at x.

We will show that the Dikin ellipsoid is always completely contained in

the polytope P . Furthermore, if we denote by xc the Analytic Center

of P , i.e. the unique minimizer of F (x), then the Dikin ellipsoid at xc
inflated m times contains the whole polytope P (we will also show that√
m blow-up is sufficient for symmetric polytopes). We start by proving

the first claim.

Theorem 3.15. For every x ∈ int(P ), the Dikin ellipsoid at x is fully

contained in P .10

10 In fact, this also holds when P is not bounded for certain cases such as if P is the positive
orthant.
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Proof. This is easy to see since, for any y ∈ Ex, all slacks are non-

negative, and hence y ∈ P . Formally, let y ∈ Ex(H(x)). Then,

(y − x)>H(x)(y − x) ≤ 1

⇒
∑
i

〈ai, y − x〉2

s2
i

≤ 1

⇒ 〈ai, y − x〉
2

s2
i

≤ 1 ∀i since all summands are non-negative

⇒
(
si(x)− si(y)

si(x)

)2

≤ 1 ∀i

⇒
∣∣∣∣1− si(y)

si(x)

∣∣∣∣ ≤ 1 ∀i.

Hence, for all i we know that 0 ≤ si(y)/si(x) ≤ 2, and, in particular,

si(y) ≥ 0 ∀i.

Let us start with a very interesting lemma describing one crucial prop-

erty of the analytic center of P :

Lemma 3.16. If xc is the analytic center of P then for every point

x ∈ int(P ) it holds that:

m∑
i=1

si(x)

si(xc)
= m.

Proof. Let us denote r(x) =
∑m

i=1
si(x)
si(xc)

. We know that r(xc) = m. To

show that a function is constant, it remains to find its derivative and

argue that it is zero:

∇r(x) = ∇

(
m∑
i=1

si(x)

si(xc)

)
=

ai
si(xc)

= ∇F (xc)

but xc is the minimizer of F (x) so the gradient at this point vanishes.

Now we are ready to proof the second theorem describing the Dikin

ellipsoid. This time we look at the Dikin ellipsoid centered at a specific

point xc:
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Theorem 3.17. The Dikin ellipsoid at xc inflated m times contains P

inside: P ⊆ mExc(H(xc)).

Proof. Take any point x ∈ P , the goal is to show that (x −
xc)
>H(xc)(x− xc) ≤ m2. We compute:

(x− xc)>H(xc)(x− xc)

=(x− xc)>
(

m∑
i=1

aia
>
i

si(xc)2

)
(x− xc)

=
m∑
i=1

(a>i (x− xc))2

si(xc)2
=

m∑
i=1

(si(xc)− si(x))2

si(xc)2

=
m∑
i=1

si(x)2

si(xc)2
+

m∑
i=1

si(xc)
2

si(xc)2
− 2

m∑
i=1

si(xc)si(x)

si(xc)2
.

Now, the middle term
∑m

i=1
si(xc)

2

si(xc)2
is equal to m and

∑m
i=1

si(xc)si(x)
si(xc)2

=∑m
i=1

si(x)
si(xc)

= m by Lemma 3.16. So we obtain:

(x− xc)>H(xc)(x− xc) =
m∑
i=1

si(x)2

si(xc)2
−m.

Observe that all the terms in the sum
∑m

i=1
si(x)2

si(xc)2
are nonnegative, so

we can use the simple bound
∑m

i=1
si(x)2

si(xc)2
≤
(∑m

i=1
si(x)
si(xc)

)2
= m2 (the

last equality again by Lemma 3.16) and obtain finally:

(x− xc)>H(xc)(x− xc) ≤ m2 −m ≤ m2.

The last theorem we want to proof about the Dikin ellipsoid asserts

that when we restrict ourselves to symmetric polytopes (i.e. symmetric

with respect to the center of P ) then the Dikin ellipsoid at the center

inflated only
√
m times contains the polytope.
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Theorem 3.18. Let P be a symmetric polytope, then P ⊆√
mExc(H(xc)).

Remark 3.19. Note that the Dikin ellipsoid depends not exactly on

P but rather on the description of P (on the set of constraints). In the

above theorem we assume that the description of P is reasonable. Since

P is symmetric (with respect to the origin), we can assume that for

every constraint x>ai ≤ bi there is a corresponding constraint −x>ai ≤
bi.

Proof. [Proof of Theorem 3.18] We assume that P is symmetric w.r.t.

the origin, so xc = 0. Further, since all the bi’s are nonzero, we may

rescale the constraints and assume bi = 1 for all i. After this reductions,

our ellipsoid is as follows: E = {x :
∑m

i=1(x>ai)
2 ≤ 1}.

Take any point x on the boundary of E , that is
∑m

i=1(x>ai)
2 = 1.

We need to show that
√
mx /∈ int(P ). This will finish the proof.

Since
∑m

i=1(x>ai)
2 = 1, there exists i with |x>ai| ≥ 1√

m
. The set

of constraints is symmetric, so we can assume that x>ai ≥ 1√
m

. Hence

(
√
mx)>ai ≥ 1, so

√
mx /∈ int(P ).

Theorems 3.17 and 3.18 together with Theorem 3.15 demostrate that

the Dikin ellipsoid centered at xc is a very good approximation of the

polytope P . We obtain an ellipsoid with a blow-up ratio of m (that is

Exc(H(xc)) ⊆ P ⊆ mExc(H(xc))) or
√
m for the symmetric case. One

can ask if this is the best we can do. It turns out that we can obtain

better ratio by taking the so called John ellipsoid. It is defined as the

largest-volume ellipsoid contained in the polytope P . When we inflate

it by a factor of n, it contains P inside (similarly,
√
n is enough for sym-

metric polytopes). This means that the John Ellipsoid achieves better

blow-up ratio, because n ≤ m (we need at least n linear inequalities

to define a non-degenerate, bounded polytope in n-dimensional space).

One can also prove that this is indeed tight, the best possible blow-up

ratio for the n-dimensional simplex is exactly n.
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3.6.1 The Dikin Algorithm and some Intuition for
√
m Iter-

ations

The results above imply an particularly simple greedy IPM: start with

the analytic centre xc of a polytope P and move to the boundary of

Exc(H(xc)) in the direction of −c, where c is the cost vector. Repeat the

same from the next point. First note that algorithmically this makes

sense as Theorem 3.15 implies that throughout the execution of the

algorithm, we are always inside P. The cost is also decreasing. However,

we can only argue that the cost becomes 1/
√
m in the symmetric case (or

1/m in the non-symmetric case) of the optimal cost in the first iteration.

To see this assume that P is symmetric. Thus, xc = 0 and the cost of

this point is 0. Let x be the point on the boundary of Exc(H(xc)) in the

direction of −c. We know from Theorem 3.15 that x ∈ P. However, we

also know from Theorem 3.18 that 〈c,
√
mx〉 ≤ 〈c, x?〉 = opt, where x?

is the optimal solution to the linear program. This is because
√
mx lies

on the boundary of
√
mExc which contains P, and is in the direction of

−c. Thus, 〈c, x〉 ≤ 1√
m

opt. If this were to magically continue at every

step then one would expect the cost to come around opt in about
√
m

iterations. However, we cannot prove this and this analogy ends here.

3.7 Appendix: The Length of Newton Step

In this section we explain the relation between the length of the Newton

step at point x (with respect to the function fη) and the distance to

the optimum x?η. We show that whenever ‖n(x)‖x is sufficiently small,

‖x−x?η‖x is small as well. This together with a certain strenghtening of

Lemma 3.4 imply that in the last step of Primal Path Following IPM

we do not need to go with xK to optimality. In fact, only 2 additional

Newton steps bring us (2ε)-close to the optimum.

Let us start by a generalization of Lemma 3.4, which shows that

to get a decent approximation of the optimum we do not neccessarily

need to be on the central path, but only close enough to it.

Lemma 3.20. For every point x ∈ int(P ) and every η > 0, if ‖x −
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x?η‖x < 1 then:

c>x− c>x? ≤ m

η
(1− ‖x− x?η‖x)−1.

Proof. For every y ∈ int(P ) we have:

c>x− c>y = c>(x− y)

= 〈c, x− y〉
= 〈cx, x− y〉x
≤ ‖cx‖x‖x− y‖x

Where cx = H−1(x) and the last inequality follows from Cauchy-

Schwarz. Now, we want to bound ‖cx‖x. Imagine we are at point x and

we move in the direction of −cx until hitting the boundary of Dikin’s

ellipsoid. We will land in the point x− cx
‖cx‖x , which is still inside P by

Theorem 3.15. Therefore:〈
c, x− cx

‖cx‖x

〉
≥ 〈c, x?〉.

Since 〈c, cx〉 = ‖cx‖2x, we get:

‖cx‖x ≤ 〈c, x〉 − 〈c, x?〉.

We have obtained:

c>x− c>y ≤ ‖x− y‖x(c>x− c>x?). (3.16)

Now, let us express

c>x− c>x? = (c>x− c>x?η) + (c>x?η − c>x?)

and use 3.16 with y = x?η. We obtain

c>x− c>x? ≤ (c>x− c>x?)‖x− y‖x + (c>x?η − c>x?).

Thus

(c>x− c>x?)(1− ‖x− y‖x) ≤ c>x?η − c>x?.

By applying Lemma 3.4 we get the result.
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Note that in the algorithm we never literally mention the condition that

‖x− x?η‖x is small. However, we will show that it follows from ‖n(x)‖x
being small. We will need the following simple fact about logarithmic

barrier. A proof appears in the notes on Volumetric Barrier in the next

lecture.

Fact 3.21. If x, z ∈ int(P ) are close to each other, i.e. ‖z − x‖z ≤ 1
4

then H(x) and H(z) are close as well:

4

9
H(x) � H(z) � 4H(x).

We are ready to prove the main theorem of this section.

Theorem 3.22. Let x be any point in int(P ) and η > 0. Consider the

Newton step n(x) at point x with respect to fη. If ‖n(x)‖x ≤ 1
18 , then

‖x− x?η‖x ≤ 5‖n(x)‖x.

Proof. Pick any h such that ‖h‖x ≤ 1
4 . Expand fη(x+h) into a Taylor

series around x:

fη(x+ h) = fη(x) + h>∇fη(x) +
1

2
h>∇2fη(θ)h (3.17)

for some point θ lying on the segment [x, x+ h]. We proceed by lower-

bounding the linear term. Note that:∣∣∣h>∇fη(x)
∣∣∣ = |〈h, n(x)〉x| ≤ ‖h‖x‖n(x)‖x (3.18)

by Cauchy-Schwarz. Next:

h>∇2fη(θ)h = h>H(θ)h ≥ 4

9
h>H(x)h (3.19)

where we used Fact 3.21. Applying bounds 3.18, 3.19 to the expansion

3.17 results in:

fη(x+ h) ≥ fη(x)− ‖h‖x‖n(x)‖x +
2

9
‖h‖2x. (3.20)
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Set r = 9
2‖n(x)‖x and consider points y satysfing ‖x − y‖x = r, i.e.

points on the boundary of the local norm ball of radius r centered at

x. Then 3.20 simplifies to:

fη(x+ h) ≥ fη(x)

which implies that x?η, the unique minimizer of fη, belongs to the above

mentioned ball and the theorem follows.

Combining Lemma 3.20 with Theorem 3.22 we get that if η ≥ m
ε and

‖n(x)‖x ≤ 1
18 then c>x− c>x? < 2ε.



4

Volumetric Barrier, Universal Barrier and John
Ellipsoids

4.1 Overview

In this lecture we take a step towards improving the
√
m in the number

of iterations the path-following IPM presented in the previous lecture

to
√
n. This will be achieved by considering more involved barrier func-

tions rather than altering the basic framework of IPMs. The log-barrier

function was particularly nice as working with it was computationally

not harder than solving linear systems. However, it had many short-

comings. An obvious one is that it has no way to take into account

that a constraint could be repeated many time. One way to handle

this would be to work with weighted barrier functions which have the

following form:

−
∑
i

wi(x) log si(x)

where we could allow the weights to depend on the current point as

well. Analyzing such methods, however, poses great technical challeges

as now the gradients and Hessians become more unwieldy. Amazingly,

Vaidya laid the foundations of analyzing such weighted barrier func-

tions. He introduced one such function, the volumetric barrrier and

showed how it allows us to improve the
√
m to (mn)1/4. Computation-

78
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ally, the volumetric barrier was no harder than computing determi-

nants.

Subsequently, Nesterov-Nemirovskii discovered the Universal Bar-

rier which achieves the stated goal of
√
n iterations. Their result held

far beyond the setting of LPs and worked for almost any convex body.

However, computationally the barrier is at least hard as solving the

convex program itself!

The search for a
√
n barrier which is computationally efficient got

a major boost by a recent result of Lee-Sidford who demonstrated a

computationally efficient barrier (about the same complexity as solving

linear systems) which achieves Õ(
√
n) iterations. In my opinion, their

result is inspired by Vaidya’s work: while Vaidya considered the vol-

ume of the Dikin ellipsoid as a barrier, Lee-Sidford consider an object

which can be considered a smoothening of John ellipsoid. It remains

an outstanding problem to remove the log-factors from the work of

Lee-Sidford.

We begin by presenting yet another proof of
√
m convergence and

then show how the volumetric barrier allows us to improve this to

(mn)1/4. Towards the end, we give a brief presentation (without proofs)

of the
√

rank Universal Barrier by Nesterov-Nemirovskii for any con-

vex set. As for the work of Lee-Sidford, currently, explaining it simply

remains a challenge. However, in the appendix we introduce the John

ellipsoid and give some basic intuition about why one may expect the√
m to be possibly replaced by

√
n.

4.2 Restating the Interior Point Method for LPs

We start by restating the interior point method in a slightly different

but equivalent way.

Theorem 4.1. Let F be a barrier function such that there exists δ

and θ as follows:

(1) For all x, z ∈ int(P ) such that ‖x − z‖2∇2F (z) ≤ δ, we have

∇2F (z)
O(1)
≈ ∇2F (x),1 and

1Formally, there exist constants c1, c2 such that c1∇2F (z) � ∇2F (x) � c2∇2F (z).
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(2) ‖∇F (x)‖(∇2F (x))−1 ≤ θ.2

Then, there is an interior point method that produces an ε-approximate

solution to LPs of the form min c>x, such that Ax ≤ b in O(θ/δ log 1/ε)

iterations. Here m is the number of rows of A.

Note that the first property captures the fact that, if two points x and z

are close in the local norm, then the Hessian does not change by much.

These two requirements along with differentiability are equivalent to

self-concordance with complexity parameter θ/ε. We leave the proof to

the reader.

4.2.1 The Logarithmic Barrier Revisited

Before we proceed to the volumetric barrier, as an exercise, we revisit

the log-barrier funtion and derive the O(
√
m)-iteration convergence

result for it, yet again. Recall that the log-barrier function is:

F (x)
def
= −

m∑
i=1

log(bi − a>i x).

We will show that for this function θ =
√
m and δ = O(1). Hence, via

Theorem 4.1, it follows that this results in an IPM which converges in

roughly
√
m iterations.

4.2.1.1 θ for log-barrier

Let S be the diagonal matrix where Sii = si(x). We can now restate the

gradient and Hessian of F with more convenient notation as follows:

∇F (x) = A>S−11, and

∇2F (x) = A>S−2A.

2Equivalently, we could write (∇F (x))(∇F (x))−1 � θ∇2F (x).
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Hence,

‖∇F (x)‖2(∇2F (x))−1) = (∇F (x))>(∇2F (x))−1(∇F (x))

= (A>S−11)>(A>S−2A)−1(A>S−11)

= 1>(S−1A(A>S−2A)−1A>S−1)1.

Denote

Π
def
= S−1A(A>S−2A)−1A>S−1,

and note that Π is a projection matrix; i.e., Π2 = Π. Hence,

‖∇F (x)‖2(∇2F (x))−1) = 1>Π1 = 1>Π21.

= ‖Π1‖22 ≤ ‖1‖22
= m.

Thus, ‖∇F (x)‖(∇2F (x))−1) ≤
√
m as desired.

4.2.1.2 δ for the log-barrier

We will show that ∇2F (z)
O(1)
≈ ∇2F (x) for δ = 1/4. Let x, z be such

that ‖x− z‖z ≤ δ. Hence,

(x− z)>(∇2F (z))(x− z) =
∑
i

〈ai, x− z〉2

s2
i (z)

=
∑
i

(a>i (x− z))2

s2
i (z)

=
∑
i

(
si(x)− si(z)

si(z)

)2

.

Therefore, ∣∣∣∣si(x)− si(z)
si(z)

∣∣∣∣ ≤ √δ ∀i.

In particular, for all i, 1 −
√
δ ≤ si(x)/si(z) ≤ 1 +

√
δ, and hence, for

δ = 1/4,
s2
i (z)

s2
i (x)

≤ 4 and
s2
i (x)

s2
i (z)

≤ 9

4
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for all i. Since mini

(
s2i (z)

s2i (x)

)
·∇2F (z) � ∇2F (x) � maxi

(
s2i (z)

s2i (x)

)
·∇2F (z),

we have that
4

9
∇2F (z) � ∇2F (x) � 4∇2F (z)

which gives ∇F (x)
O(1)
≈ ∇F (z) as desired.

4.3 Vaidya’s Volumetric Barrier

Now, we go beyond
√
m; though we would like to get roughly

√
n it-

erations, we will not quite reach this target, but will come somewhere

in-between. The problem with the log-barrier function is that it weighs

each constraint equally. Thus, if, for instance, a constraint is repeated

many times, there is no way for the log-barrier function to know this.

Vaidya introduced the volumetric barrier function which aims to bypass

this limitation by assigning weights to each constraint:

−
∑
i

wi log(bi − a>i x).

Of course, a useful choice of weights must depend on the current point

x, and this causes several technical difficulties. His work laid the foun-

dations for and developed many techniques to analyze such weighted

barrier functions.

4.3.1 The Volumetric Barrier

The proposed barrier function by Vaidya uses the log-volume of the

Dikin Ellipsoid.

Definition 4.2. The volumetric barrier is defined to be

V (x)
def
= −1

2
· log det

(
∇2F (x)

)
.

Note that, whenever we come up with a new barrier function, we must

also worry about its computability along with the computability of

its first and second order oracle. Using the restatement of the barrier

function as the determinant of a positive definite matrix, we see that

the volumetric barrier is efficiently computable.
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Notation and basic properties. Notation will play an important

role in understanding the rather technical sections that are to follow.

Towards this, we introduce new notation, some of which may conflict

with what we have used previously. Instead of F (x), V (x), H(x), and

so on, we denote the same quantities by Fx, Vx, and Hx. Similarly, the

slack vector will be denoted by sx and its components by sx,i = si(x).

Let the i-th row of A be the vector ai. For an x ∈ int(P ), let

Ax
def
= S−1

x A

where Sx is the diagonal matrix corresponding to the vector sx. Then,

the Hessian of the log-barrier function can be written as

Hx = A>xAx = A>S−2A.

Thus, if Vx = −1
2 log detHx, then

∇Vx = A>x σx (4.1)

where

σx,i
def
=

a>i H
−1
x ai

s2
x,i

.

An informed reader could compare σx,i with leverage scores, or effective

resistances that arise when dealing with graph Laplacians. We note

some simple properties of σx which will allow us to build towards finding

the θ and δ necessary for applying Thoerem 4.1.

Fact 4.3.

(1) σx ≤ 1.

(2) σ>x 1 = n.

Proof. The first fact follows from the fact that
a>i H

−1
x ai

s2x,i
≤ 1 if and only

if
aia
>
i

s2x,i
� Hx. But the latter is true since Hx is the sum over all i of
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quantites on the left hand side. For the second part note that

σ>x 1 =
∑
i

a>i H
−1
x ai

s2
x,i

= Tr

(
H−1
x

∑
i

aia
>
i

s2
x,i

)
= Tr

(
H−1
x Hx

)
= n.

Thus, each σx,i is at most one and they sum up to n. Thus, σx,i assigns

a relative importance to each constraint while maintaining a budget

of n. This is unlike in the setting of log-barrier where each constraint

has a weight of 1 and, hence, requires a budget of m. Further, note the

following straightforward fact:

Fact 4.4. σx,i =
∑

j
(a>i H

−1
x aj)

2

s2x,is
2
x,j

.

Proof.

σx,i =
a>i H

−1
x ai

s2
x,i

=
a>i H

−1
x HxH

−1
x ai

s2
x,i

=

a>i H
−1
x

(∑
j

aja
>
j

s2x,j

)
H−1
x ai

s2
x,i

=
∑
j

(a>i H
−1
x aj)

2

s2
x,is

2
x,j

.

Let Σx denote the diagonal matrix corresponding to σx. Let

Px
def
= AxH

−1
x A>x = Ax(A>xAx)−1A>x .
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Note that Px � 0, is symmetric and is a projection matrix since

P 2
x = Ax(A>xAx)−1A>xAx(A>xAx)−1A>x = Px.

Further, let P
(2)
x denote the matrix whose each entry is the square of

the corresponding entry of Px. Then, Fact 4.4 above can be restated as

σx = P (2)
x 1.

Thus, P
(2)
x ≥ 0, Σx −P (2)

x is symmetric and (Σx −P (2)
x )1 = 0. Thus, it

is a graph Laplacian. As a consequence we obtain the following fact.

Fact 4.5. Λx
def
= Σx − P (2)

x � 0.

Gradient and the Hessian of the Volumetric Barrier. In the

appendix we show the following by a straightforward differentiation of

the volumetric barrier:

Lemma 4.6.

(1) ∇Vx = A>x σx and

(2) ∇2Vx = A>x (3Σx − 2P
(2)
x )Ax.

Thus, using Fact 4.5, we obtain the following corollary which allows

us to think of the Hessian of the volumetric barrier as the log-barrier

weighted with leverage scores. This lemma greatly simplifies the calcu-

lations to come.

Corollary 4.7.

A>x ΣxAx � ∇2Vx � 5A>x ΣxAx.

Proof. The lower bound is a direct consequence of Fact 4.5.

For the upper bound, note that for a graph Laplacian, it follows

from the inequality (a− b)2 ≤ 2(a2 + b2) that

Λx � 2(Σx + P (2)
x ).



86 Volumetric Barrier, Universal Barrier and John Ellipsoids

Thus,

∇2Vx = A>x (3Σx − 2P (2)
x )Ax = A>x (Σx + 2Λx)Ax � 5A>x ΣxAx.

We now let Qx
def
= A>x ΣxAx. The next lemma relates Qx back the

Hessian of the log-barrier function.

Lemma 4.8. 1
4mHx � Qx � Hx.

This lemma is responsible for us losing the grounds we gained by

the weighted barrier function. If we could somehow improve the lower

bound to 1
100Hx, then we would achieve our goal of

√
n. In the next

section we show how to alter the barrier function to get a lower bound

of n
mHx which will enable us to get the bound of (mn)1/4.

Proof. The upper bound follows straightforwardly from Fact 4.3 which

states that Σx � I.
For the lower bound, we first break the sum into two parts as follows

Qx =
∑
i

σx,iaia
>
i

s2
x,i

=
∑

i:σx,i≥1/2m

σx,iaia
>
i

s2
x,i

+
∑

σx,i<1/2m

σx,iaia
>
i

s2
x,i

�
∑

i:σx,i≥1/2m

σx,iaia
>
i

s2
x,i

.

Thus,

Qx �
1

2m

∑
i:σx,i≥1/2m

aia
>
i

s2
x,i

=
1

2m

Hx −
∑

i:σx,i<1/2m

aia
>
i

s2
x,i

 . (4.2)

Now note that by the definition of σx,i, we obtain for all i,

aia
>
i

s2
x,i

� σx,iHx.
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Thus, ∑
i:σx,i<1/2m

aia
>
i

s2
x,i

�
∑

i:σx,i<1/2m

σx,iHx �
1

2m

∑
i

Hx �
1

2
Hx.

Thus, plugging in this estimate in (4.2), we obtain that

Qx �
1

2m

(
Hx −

1

2
Hx

)
=

1

4m
Hx.

This completes the proof of the lemma.

This allows us to get the following crucial bounds on σx.

Lemma 4.9.
a>i Q

−1
x ai

s2x,i
≤ min

{
1
σx,i

, 4mσx,i

}
≤ 2
√
m.

Proof. From the lower bound estimate of Lemma 4.8, it follows that

a>i Q
−1
x ai

s2
x,i

≤ 4ma>i H
−1
x ai

s2
x,i

= 4mσx,i.

The other inequality follows from the following simple inequality

σx,iaia
>
i

s2
x,i

� Qx.

We can now conclude by stating the key properties of the volumetric

barrier function necessary to get a desired bound on the number of

iterations of the IPM:

Theorem 4.10.

(1) ∇V >x (∇2Vx)−1∇Vx ≤ n.
(2) For all x, y ∈ int(P ) such that ‖x− y‖x ≤ 1

8m1/2
,

∇2Vx
O(1)
≈ ∇2Vy.
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Proof. For the first part, note that

ζ>∇Vx∇V >x ζ = 〈ζ,A>x σx〉2

= 〈ζ,A>x Σx1〉2

= 〈Σ1/2
x Axζ,Σ

1/2
x 1〉2

≤
(
ζ>A>x ΣxAxζ

)(
1>Σx1

)
≤

(
ζ>Qxζ

)
n

≤ n
(
ζ>∇2Vxζ

)
.

For the second part, we start by noting that ‖x− y‖x ≤ δ is the same

as (x− y)>Qx(x− y) ≤ δ2. This in turn implies that

|a>i (x− y)|2 ≤ δ2a>i Q
−1
x ai ≤

1

4
· s2
x,i.

Thus, an argument similar to what we did for the log-barrier implies

that ∣∣∣∣1− sy,i
sx,i

∣∣∣∣ ≤ 1

2
.

This implies that Hx ≈ Hy and σx,i ≈ σy,i for all i. Thus, Qx ≈ Qy.

This implies that ∇2Vx ≈ ∇2Vy, completing the proof.

4.3.2 The Hybrid Barrier

Now consider the barrier function

Gx = Vx +
n

m
Fx,

where Vx is the volumetric barrier function and Fx the log-barrier func-

tion.

∇2Gx = ∇2Vx +
n

m
Hx.

This adding a scaled version of the log-barrier function changes nothing

significantly in the previous section. However, crucially this addition

implies, via Lemmas 4.7 and 4.8 that

∇2Gx �
n

m
Hx
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rather than 1
4mHx in the case of volumetric barrier. This implies that

the upper bound in Lemma 4.9 comes down to
√
m/n. This then implies

that, while the first part of Theorem 4.10 continues to hold with 4n

instead of n, the second part holds with (mn)1/4 rather than
√
m. Hence,

from Theorem 4.1, we obtain an (mn)1/4 iteration IPM for LPs.

One can interpret Vaidya’s technique as starting with a barrier F

and replacing it with

−1

2
log det∇2F (x) +

n

m
F (x).

One may ask if repeating this helps improve the bound of (mn)1/4. In

particular, it is an interesting question to understand the fixed point of

this functional equation and to what extent is it self-concordant.

4.4 Appendix: The Universal Barrier

In this section we introduce Nesterov-Nemirovskii’s result that every

bounded and convex body K in n-dimensions admits an O(n) -self

concordant barrier function. This implies that the number of iterations

scale like
√
n. This not only improves the self-concordance results for

polytopes we have proved till now, but also significantly generalizes it

to all convex bodies. However, as we will see, computationally it is not

very attractive. Designing a barrier function that does not require much

more computation than solving linear system of equations, at least for

polytopes, remains an outstanding open problem.

What is their barrier function that works in such a general setting?

It is a volumetric barrier; however, not of any ellipsoid, rather of the

polar of the body K centered at the current point x. More precisely,

for a point x ∈ int(K), let

K◦x
def
= {z : z>(y − x) ≤ 1 ∀y ∈ K}.

Then, the Nesterov-Nemirovskii barrier function is defined to be

F (x)
def
= log volK◦x.

SinceK is bounded, this is well-defined in the interior ofK.Moreover, it

is easy to see that as x approaches the boundary of K from the interior,
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the volume blows up to infinity. For instance, if K is the interval [0, 1]

then K◦x =
[
− 1
x , 0
]
∪
[
0, 1

1−x

]
. Thus, as x → 1, the right end of the

polar goes to +∞ and as x→ 0, the left end of the polar goes to −∞.
In either case, the volume goes to infinity.

In fact this one-dimensional intuition goes a long way in understand-

ing F (x). This is due to the following simple observation which allows

us to think of K◦x as a collection of line segments. Let v ∈ Sn−1 be a

unit vector and let p(v) denote the maximum over y ∈ K of v>y. Thus,

we can rewrite the polar as a collection of the following line segments;

each along a unit vector v.

K◦x =
⋃

v∈Sn−1

[
0,

1

p(v)− v>x

]
v.

This representation allows us to easily rewrite the volume of K◦x as

f(x)
def
= vol K◦x =

1

n

∫
v∈Sn−1

(p(v)− v>x)−ndS(v)

where dS(v) is the (n − 1)-dimensional volume of the surface of the

unit sphere around v.

What we achieve by this transformation is an understanding of the

derivatives of f(x) in terms of moment integrals over the polar. In fact

the following claim can now be seen easily:

Dlf(x)[h, h, . . . , h] =
(−1)l(n+ l)!

n!
Il(h)

where

Il(h)
def
=

∫
K◦x

(z>h)ldz.

However, we are interested in the differentials of F (x) = log f(x). How

do we calculate the differentials of this function? This is also easy since

d log g(x)

dx
=

1

g(x)

dg(x)

dx
.

This allows us to easily derive the following expressions:

(1) DF (x)[h] = −(n+ 1) I1(h)
I0

.
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(2) D2F (x)[h, h] = (n+ 1)(n+ 2) I2(h)
I0
− (n+ 1)2 I

2
1 (h)

I20
.

(3) D3F (x)[h, h, h] = −(n + 3)(n + 2)(n + 1) I3(h)
I0

+ 3(n + 2)(n +

1)2 I2(h)I1(h)
I20

− 2(n+ 1)3 I1(h)3

I30
.

It follows that F (x) is convex since a straightforward calculation shows

that

D2F (x)[h, h] > 0.

Further, it is not difficult to see that

|DF (x)[h, h]| ≤
√
n+ 1

√
|D2F (x)[h, h]|,

which establishes the required bound on the complexity parameter. The

self-concordance property remains to be proved; that does not seem to

have a very illuminating proof and hence we omit the details here.

In summary, we sketched the proof of the fact that log-volume of the

polar is a
√
n self-concordant barrier function. Could this be improved

beyond
√
n? The answer turns out to be no in general. This is as far

as the theory of self-concordant barriers takes us. However, that is not

to say that interior point methods cannot take us further, at least in

the case of combinatorial polytopes!

4.5 Appendix: Calculating the Gradient and the Hessian of
the Volumetric Barrier

In this section we give a sketch of the gradiant and Hessian calculation

of the volumetric barrier. In particular, we prove the followin lemma

mentioned earlier.

Lemma 4.11. (1) ∇Vx = A>x σx and

(2) ∇2Vx = A>x (3Σx − 2P
(2)
x )Ax.

Proof. Recall that Hx =
∑

i
aia
>
i

s2x,i
and Vx = 1

2 log detHx. Let ζ be a

vector and let t ∈ R be an infinitesimal. First note that

Hx+tζ −Hx =
∑
i

aia
>
i

s2
x+tζ,i

−
∑
i

aia
>
i

s2
x,i

= 2t
∑
i

aia
>
i

s2
x,i

a>i ζ

sx,i
+O(t2).
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Let ∆
def
= 2t

∑
i
aia
>
i

s2x,i

a>i ζ
sx,i

. Thus, for an infinitesimal t,

1

2
log detHx+tζ −

1

2
log detHx ≈ 1

2
log det(Hx + ∆)− 1

2
log detHx

=
1

2
log detH

1/2
x (I +H−

1/2
x ∆H−

1/2
x )H

1/2
x

−1

2
log detHx

=
1

2
log det(I +H−

1/2
x ∆H−

1/2
x )

≈ 1

2
Tr(H−

1/2
x ∆H−

1/2
x )

= tTr

(
H−

1/2
x

∑
i

aia
>
i

s2
x,i

a>i ζ

sx,i
H−

1/2
x

)

= t
∑
i

σx,i
a>i ζ

sx,i
.

Thus, ∇Vx = A>x σx.

To get the formula for the Hessian, start by noting that

∂2Vx
∂xk∂xl

=
∂

∂xk
e>l A

>
x σx =

∂

∂xk

∑
i

a>i H
−1
x ai

Ail
s3
x,i

=
∑
i

(
Ail
s3
x,i

· ∂

∂xk
a>i H

−1
x ai + a>i H

−1
x ai ·

∂

∂xk

Ail
s3
x,i

)

=
∑
i

(
Ail
s3
x,i

· ∂

∂xk
a>i H

−1
x ai + 3a>i H

−1
x ai ·

AilAik
s4
x,i

)
.

It remains to compute ∂
∂xk

a>i H
−1
x ai. Towards this first note that similar

to the calculation we did above,

H−1
x+tζ −H

−1
x ≈ −H−1

x ∆H−1
x .

Thus, a>i H
−1
x+tζai − a>i H

−1
x ai = −a>i H−1

x

(
2t
∑

j

aja
>
j

s2x,j

a>j ζ

sx,j

)
H−1
x ai =

−2t
∑

j
(a>i H

−1
x aj)

2

s2x,j

a>j ζ

sx,j
. Thus,

Ail
s3
x,i

· ∂

∂xk
a>i H

−1
x ai = −2

∑
j

(a>i H
−1
x aj)

2

s2
x,js

2
x,i

Ajk
sx,j

Ail
sx,i

= −2A>x P
(2)
x Ax.
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Thus taking ζ = ek and letting t→ 0, we obtain

∇2Vx = A>x (3Σx − 2P (2)
x )Ax.

4.6 Appendix: John ellipsoid

In this section we introduce the John ellipsoid and contrast it with

the Dikin ellipsoid introduced in the previous lecture. In particular,

we show a fundamental result that, for symmetric polytopes, the John

ellipsoid
√
n approximates the body (as opposed to the

√
m achieved

by the Dikin ellipsoid). Thus, just as we did with the Dikin ellipsoid,

one can in principle define “The John Algorithm” and hope that it

converges in
√
n iterations. Whether it does remains far from clear.

Recently, Lee-Sidford show that a smoothened version of John ellipsoid

actually does converge in
√
n logO(1)(m) iterations.

Definition 4.12. Given a bounded polytope P
def
= {x ∈ Rn : a>i x ≤

bi for i = 1, . . . ,m} and a point x ∈ int(P ), the John ellipsoid of P at

x is defined to be the ellipsoid of maximum volume which is centered

at x and contained in P .

Let us try to describe the John ellipsoid Ex centered at a point x using

a quadratic form. Towards this, let Bx be a PSD matrix such that

Ex = {y : ‖y − x‖2Bx ≤ 1}.

Then, the constraint that Ex is contained inside the polytope P would

require that for every i = 1, . . . ,m

Ex ⊆ {y : 〈ai, y〉 ≤ bi}.

In other words for all i,

max
y∈Ex
〈ai, y〉 ≤ bi

or equivalently

max
y:y>Bxy≤1

〈ai, y + x〉 ≤ bi
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or equivalently

max
y:y>Bxy≤1

〈ai, y〉 ≤ bi − 〈ai, x〉 = si(x).

It can be checked that the left-hand side is equal to ‖ai‖B−1
x

. Because

si(x) ≥ 0, we can square both sides and obtain the constraint

a>i B
−1
x ai ≤ si(x)2.

As for the volume of Ex (which we are maximizing), we have that vol(Ex)

equals

vol({y : y>Bxy ≤ 1}) = vol({B−1/2
x v : ‖v‖2 ≤ 1}) = Vn

(
det(B−

1/2
x )

)
where Vn is the volume of the unit `2 ball in Rn. Ignoring the Vn term

(by just redefining the volume relative to Vn) we obtain

log vol Ex =
1

2
log det(B−1

x ).

We take the logarithm here because this will allow us to obtain a convex

program.

We can now write the following program, called (John-Primal):

min − log detB−1

s.t.
a>i B

−1ai
si(x)2

≤ 1 for i = 1, . . . ,m.

Note that we deal with the constraint B � 0 (equivalently, B−1 � 0)

by encoding it into the domain of the function log det.

Let us denote C = B−1. The program (John-Primal) is convex in

the variables {Cij}.

4.6.1 Duality

Let us now write the dual program (John-Dual). We multiply the i-th

constraint by a multiplier wi ≥ 0, obtaining the Lagrangian

L(C,w) = − log detC +
∑
i

wi

(
a>i Cai
si(x)2

− 1

)

= − log detC + C •

(∑
i

wi
si(x)2

aia
>
i

)
−
∑
i

wi.
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The KKT optimality condition ∇CL(C,w) = 0 yields

−C−1 +
∑
i

wi
si(x)2

aia
>
i = 0

and thus

B = C−1 =
∑
i

wi
si(x)2

aia
>
i .

The dual objective function is

g(w) = inf
C
L(C,w) = − log det

(∑
i

wi
si(x)2

aia
>
i

)−1

+ n−
∑
i

wi,

with constraints wi ≥ 0 and
∑

i
wi

si(x)2
aia
>
i � 0 (the latter arising from

our restriction of log det to PD matrices).

Slater’s condition holds (just consider a small ball certifying that

x ∈ int(P )) and we have strong duality. Thus, at optimal values of C

and w:

− log detC = − log detC −
∑
i

wi + n,

and hence ∑
i

wi = n.

We can interpret wi as a measure of how strongly the ellipsoid Ex is

supported on the hyperplane defined by the i-th constraint. For ex-

ample, from the complementary slackness conditions we have that if

a>i B
−1ai < si(x)2 (i.e., the ellipsoid does not touch the hyperplane),

then wi = 0.

4.6.2 Approximating symmetric polytopes

Now we show that the John ellipsoid improves the
√
m of the Dikin

ellipsoid to
√
n for symmetric polytopes.

Proposition 4.13. Let P be a polytope which is symmetric around

the origin (i.e., P = −P ), 0 ∈ int(P ), and let E be the John ellipsoid

of P at 0. Then the ellipsoid
√
nE contains P .
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Proof. The proof resembles the one of a similar statement for Dikin

ellipsoids. Without loss of generality assume that all bi = 1. Also,

because P is symmetric, we assume that for every constraint 〈ai, x〉 ≤ 1

there is a corresponding constraint 〈−ai, x〉 ≤ 1. Now all si(x) = 1 and

the John ellipsoid E is given by

B =
∑
i

wiaia
>
i , E = {x : x>Bx ≤ 1} =

{
x :
∑
i

wi 〈ai, x〉2 ≤ 1

}
.

Pick a point x on the boundary of E . It is enough to show that
√
nx is

not inside K. Since x ∈ ∂E , we have∑
i

wi 〈ai, x〉2 = 1.

If it were the case that
√
nx ∈ int(P ), then for every i we would have

〈ai,
√
nx〉 < 1 and 〈−ai,

√
nx〉 < 1, so that〈
ai,
√
nx
〉2
< 1,

and multiplying by wi/n and summing over all i we would get∑
i

wi 〈ai, x〉2 =
∑
i

wi
n

〈
ai,
√
nx
〉2
<

∑
iwi
n

= 1,

a contradiction.

4.6.3 The John Algorithm?

Thus, the John ellipsoid provides us with an alternative to the Dikin

ellipsoid and one may ask what is stopping us from defining a barrier

similar to Vaidya’s volumetric barrier. After all, it does give us a barrier

of the form ∑
i

wi(x)
aia
>
i

si(x)2

with weights summing up to n at every point raising the possibility of a√
n-iteration algorithm. Unfortunately, the weights wi(x) are not even

continuous (let alone differentiable). For example, consider the square

[−1, 1]2 defined by the four natural constraints (suppose w1 corresponds

to x ≤ 1 and w2 corresponds to −x ≤ 1). At a point (ε, 0), with ε very
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small, we have w1 = 1 and w2 = 0, but at (−ε, 0) the converse is true.

However, Lee-Sidford were able to find a workaround by smoothening

the weights at a poly-log cost in the number of iterations. The details

are quite involved and omitted here.



5

A Primal-Dual IPM for Linear Programs
(without the Barrier)

5.1 Overview

In this lecture we will present an elementary proof of Ye’s primal-

dual interior point method (IPM) for solving linear programming (LP)

problems. The primal-dual approach presented here can be cast in the

language of central path using a barrier function. The formulation and

analysis here are simpler and make no reference to barrier functions,

central paths, Newton step, affine scaling, predictor step, corrector step,

centering etc., however an avid who is familiar with path following

methods is encouraged to see the similarities.

5.2 Linear Programming and Duality

It is well-known that any LP problem can be formulated as below,

along with the corresponding dual program.

98
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Primal (P)

min 〈c, x〉
s.t.

Bx = b

∀e ∈ [m] xe ≥ 0
Dual (D)

max 〈b, y〉
s.t.

B>y + s = c

∀e ∈ [m] se ≥ 0

Here, m is the num-

ber of variables and n is the number of constraints, i.e.,

B ∈ Rn×m, b ∈ Rn, c ∈ Rm, x ∈ Rm, y ∈ Rn, s ∈ Rm.

Example 5.1. As an important example, if we think of B as a vertex-

edge incidence matrix1 of a directed graph G with edge costs c, then the

primal problem above encodes the MinCostUncapacitatedFlow in

G with demands given by the vector b and the cost by c. In view of this

application, we will be indexing coordinates of x and s with the letter

e.

Motivated by this example, we will present our method in the context

of solving a combinatorial problem, that is, one where the input data

B, b, c contains only entries of bounded length (e.g. only from the set

{−1, 0, 1}). Therefore, the encoding length L of the instance will not be

a factor in our considerations. Moreover, we will not solve programs (P)

and (D) to optimality; instead, once we are able to bring the duality

gap 〈c, x〉 − 〈b, y〉 down to O(m−1), we will stop and assume that the

1That is, Bve = −1 and Bwe = 1 for e = 〈v, w〉.
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solution we output will be good enough for the purpose at hand (for

example, that it can be rounded to an optimal solution).2

Consider an optimal primal-dual solution (x, y, s). It satisfies all

four (sets of) conditions from the programs (P) and (D), as well as the

following complementary slackness condition:

∀e ∈ [m] xese = 0.

Moreover, it follows from the theory of linear programming that any

triple (x, y, s) satisfying all these constraints, that is,

Bx = b

B>y + s = c

∀e ∈ [m] xe ≥ 0

∀e ∈ [m] se ≥ 0

∀e ∈ [m] xese = 0

is in fact an optimal primal-dual solution (i.e. it satisfies 〈c, x〉 = 〈b, y〉).
Thus, we have turned the task of finding the optimum solution of a

linear program into the task of finding a feasible solution to a quadratic

program. At first sight, this does not seem promising, especially given

that the new program is not even convex. Nevertheless, we will be able

to come up with a polynomial-time algorithm for approximately solving

this new program. The following is the main result:

Theorem 5.2. There is an algorithm, which produces a solution

(x, y, s) which is feasible for the primal-dual linear program mentioned

above such that 〈c, x〉 − 〈b, y〉 ≤ δ in O(
√
m logm/δ) iterations. Each

iteration corresponds to solving an m×m positive semi-definite (PSD)

linear system of equations.

2 Extremal solution to linear programming problems have this property that they are

rational with the denominator bounded by 2O(L), where L is the encoding length. Further,
for many combinatorial polytopes, the vertices have all coordinates 0/1. Due to this, once

the duality gap is small enough, of the order 2−O(L), one can round the solutions to get
an actual vertex solution. For the MinCostUncapacitatedFlow problem, a duality gap
of m−O(1) suffices. This is left as an easy exercise.
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5.3 A Primal-Dual Interior Point Method

The most important challenge seems to be handling the quadratic con-

straints xese = 0. To this end, we will introduce a parameter µ ∈ R+,

which is going to serve as an approximation of the 0 in these constraints.

And we define the relaxed program called KKT(µ) as follows:3

Bx = b (5.1)

B>y + s = c (5.2)

∀e ∈ [m] xe ≥ 0 (5.3)

∀e ∈ [m] se ≥ 0 (5.4)

∀e ∈ [m] xese = µ (5.5)

It is easy to see that as µ→ 0, the optimal solution to KKT (µ) tends to

the optimal solution of the underlying linear program. The rough idea

of our approach is to start with an initial solution (x0, s0, y0) satisfying

KKT(µ) for a large value of µ. Then we hope to turn it into solutions

(xt, st, yt) of programs KKT(µ) for smaller and smaller values of µ using

some iterative process. When µ is small enough, we can stop. Why?

Fact 5.3. The duality gap 〈c, x〉 − 〈b, y〉 is equal to
∑

e xese = 〈x, s〉.

Proof.

〈x, c〉 − 〈b, y〉 =
〈
x,B>y + s

〉
− 〈Bx, y〉

=
〈
x,B>y

〉
+ 〈x, s〉 −

〈
x,B>y

〉
= 〈x, s〉 .

Therefore, a setting of µ = O(m−2) would give us a duality gap of∑
e xese = mµ = O(m−1), which, as we discussed before, we are as-

suming to be good enough.

3The KKT stands for Karush-Kuhn-Tucker. The reason we call it KKT(µ) is because these

are the KKT-conditions for the following convex programming problem obtained from
our primal LP by removing the x ≥ 0 constraints and replacing them by the log barrier
function: inf〈c, x〉 − µ

∑
e lnxe subject to Ax = b.
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Unfortunately, this is still too difficult a task. Namely, approximat-

ing 0 by µ is not enough: it is unreasonable to expect that we will be

able to make all the terms xese equal to any given parameter (and also,

we are still left with a quadratic constraint). Indeed, we will not try to

solve KKT(µ) exactly. Instead, we will allow some leeway in the con-

straints xese = µ, but we will take care to measure the total relative

error in the approximate equality (xese)e ≈ µ · 1 and keep it under

control.

We will encode this measurement using the following potential func-

tion:

v
def
= v(x, s, µ)

def
=

∥∥∥∥(xese − µµ

)
e

∥∥∥∥
2

That is,

v(x, s, µ) =

√√√√∑
e

(
xese
µ
− 1

)2

.

Our main invariant is that we will keep this quantity bounded from

above by 1/2 at all times. In other words, we will always be close to the

actual solution of KKT(µ).4 Hence, the program KKT’(µ) that we will

be solving is the following:

Bx = b

B>y + s = c

∀e ∈ [m] xe ≥ 0

∀e ∈ [m] se ≥ 0

v(x, s, µ) ≤ 1

2

It can be checked that one can find an initial solution (x0, s0, y0) to the

above problem for some µ0 = mO(1).5 Let us quickly verify that this

relaxation is good enough for our purposes.

4The solution of KKT(µ) traces a path in the interior of the primal polytope and the dual

polytope simultaneoulsly as µ→ 0 continuously. This is the primal-dual central path.
5Actually, we will need to introduce a constant number of new x, y, s variables (with very

high costs) that enable us to find a starting solution.
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Fact 5.4. Let µ = O(m−2). If (x, y, s) is a solution of the program

KKT’(µ), then the duality gap is O(m−1).

Proof. We have that

v(x, s, µ) =

∥∥∥∥(xese − µµ

)
e

∥∥∥∥
2

≤ 1

2
,

hence6 ∥∥∥∥(xese − µµ

)
e

∥∥∥∥
1

≤
√
m

2
,

and hence, ∑
e

(xese − µ) ≤ µ
√
m

2

and, using Theorem 5.3, the duality gap is∑
e

xese ≤
µ
√
m

2
+ µm = O(m−1).

Hence, the gist of our approach will be to produce solutions of the

program KKT’(µ) for values of µ that decrease geometrically until we

reach µ = O(m−2).

We will always maintain the invariant that x and s are strictly

positive, i.e., that we are in the interior of the primal and dual bodies.

This is why this method can be considered an interior point method.

Let (xt, st, yt) be the solutions at iteration t.

Invariant : xt � 0, st � 0. (5.6)

Again, we are tacitly assuming that we are able to somehow produce

an initial solution (x0, y0, s0) for KKT’(µ) satisfying x0 � 0, s0 � 0,

for some setting of µ which is polynomial in m.

6We are using the basic fact that ‖v‖1 ≤
√
m‖v‖2 (actually, a factor of m would suffice).
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We will now describe a single update step. It will consist of two

stages:

from (x, y, s, µ)
def
= (xt, yt, st, µt) s.t. v ≤ 1/2

through (x+ ∆x, y + ∆y, s+ ∆s, µ)
def
= (xt+1, yt+1, st+1, µt) s.t. v ≤ 1/4

to (x+ ∆x, y + ∆y, s+ ∆s, µ(1− γ))
def
= (xt+1, yt+1, st+1, µt+1) s.t. v ≤ 1/2

That is: in the first stage, we will try to bring v down as much as

possible by changing our solution (but keeping µ intact). In the second

stage we will decrease µ as much as possible while still keeping v below

1/2 (we decrease µ using the multiplicative update µt+1 def
= (1 − γ)µt).

Thus our task amounts to finding (for the first stage) a way to decrease

v, and (for the second stage) a maximum value of γ which will guarantee

v ≤ 1/2.

Let us focus on the first stage for now. We have a solution which

satisfies all constraints of KKT(µ) except for (5.5), and our goal is

to satisfy this constraint (as much as possible). We have denoted by

(∆x,∆s,∆y) the change in the solution. Let us write the old and new

linear equality constraints:

Bx = b

B>y + s = c

B(x+ ∆x) = b

B>(y + ∆y) + s+ ∆s = c

Straightforward subtraction shows that the two new ones will be sat-

isfied iff

B∆x = 0,

B>∆y + ∆s = 0.

Ideally, we would want to satisfy (5.5), that is, to have

(xe + ∆xe)(se + ∆se) = µ.

But this would lead to having to solve a program with a quadratic

constraint – precisely what we are trying to avoid. Thus instead, we
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use the following as an approximation:

∀e ∈ [m], xese + ∆xese + xe∆se = µ.

I.e., we just dropped the quadratic term ∆xe∆se.
7

Thus, the linear system of equations LS which we need to solve to

find (∆x,∆s,∆y) is:

B∆x = 0 (5.7)

B>∆y + ∆s = 0 (5.8)

∀e ∈ [m], xese + ∆xese + xe∆se = µ. (5.9)

Note that we should still enforce that x+ ∆x, s+ ∆s � 0. But it turns

out that this is true for any solution, as Theorem 5.9 will show.

We begin by showing that this system has a solution.

Lemma 5.5. The linear system LS has a solution.

Proof. Let8 L
def
= BXS−1B>, and let z

def
= − 1

µBs
−1, where we denote(

s−1
)
e

def
= s−1

e . Then ∆y can be found by solving:

L∆y = z.

It can be checked that this has a solution since x, s � 0 and, by def-

inition, z lies in the column space of B. Vectors ∆s and ∆x are now

determined by (5.8) and (5.9), respectively:

∆s = −B>∆y,

(∆x)e =
µ− xe∆se

se
− xe.

We are left with verifying that B∆x = 0, which is an easy exercise.

7This is the Newton step which approximates the function by its first order Taylor series

and finds the best direction to move.
8We use the notation that for a vector x, let X denote the diagonal matrix with the entries

of x in the diagonal.
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Example 5.6. Coming back to Theorem 5.1, we can see that the ma-

trix BXS−1B> from the proof of Theorem 5.5 is the Laplacian matrix

of a graph where each edge e has conductance xe
se

. Solving the system

for ∆y (which is the only computationally nontrivial step in solving the

system LS) amounts to computing an electrical flow in this graph. It

can be done in nearly-linear time using a fast approximate Laplacian

solver due to Spielman-Teng. It is important to note that the Lapla-

cian solver of Spielman-Teng can find a solution in Õ(m log 1/ε) time

where ε is the relative error of the solution. It can be checked that an

approximate solution with ε = 1/mO(1) suffices for our purpose. In sum-

mary, our method solves the MinCostUncapacitatedFlow problem

by computing a sequence of electrical flows where the resistances and

the demand vector depend on the current point.

Now let us fix a solution (∆x,∆y,∆s) and proceed to analyzing its

properties. We begin with a simple but very useful observation.

Lemma 5.7. If (∆x,∆s) satisfy LS, then∑
e∈[m]

∆xe∆se = 0.

As a corollary, on average the duality gap is satisfied:

1

m

∑
e

(xe + ∆xe)(se + ∆se) = µ.

The proof of the lemma is immediate.

Proof. Start by multiplying (5.8) by ∆x> and use (5.7) to obtain

0 = ∆x>B>∆y + ∆x>∆s = (B∆x)>∆y + ∆x>∆s = ∆x>∆s.

The following crucial lemma establishes that potential reduces quadrat-

ically9 and lets us analyze the first stage.

9This is similar to the analysis of Newton’s method (see Lecture 3) and this similarity is
not coincidental. The Taylor approximation we performed can be seen as a Newton step
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Lemma 5.8. For (x, s, µ) such that v(x, s, µ) < 1 and ∆x,∆s that

satisfy LS, we have

v(x+ ∆x, s+ ∆s, µ) ≤ 1

2
· v(x, s, µ)2

1− v(x, s, µ)
.

It follows that if v(x, s, µ) ≤ 1
2 , then v(x + ∆x, s + ∆s, µ) ≤ 1/2 · 1/2 ·

1/2 · 2 = 1/4. The proof relies on the Cauchy-Schwarz inequality and

Theorem 5.7.

Proof. Define dxe
def
=
√

se
µxe

∆xe and dse
def
=
√

xe
µse

∆se. Thus,

dxe + dse = −
√

µ

xese

(
xese
µ
− 1

)
.

Hence, v(x+ ∆x, s+ ∆s, µ)2 =
∑

e∈[m] dx
2
eds

2
e which is at most

1

4

∑
e∈[m]

(dx2
e+ds

2
e)

2 ≤ 1

4

∑
e∈[m]

(dxe + dse)
2

2

=
1

4
max
e∈[m]

(
µ

xese

)2

v(x, s, µ)4.

Here we have used that∑
e∈[m]

(dxe + dse)
2 =

∑
e∈[m]

dx2
e + ds2

e + 2dxedse =
∑
e∈[m]

dx2
e + ds2

e

since
∑

e∈[m] dxedse = 0. Thus, for all e, 1− xese
µ ≤ v(x, s, µ). This im-

plies that 1− v(x, s, µ) ≤ xese
µ . Since v(x, s, µ) < 1, maxe∈[m]

(
µ

xese

)
≤

1
1−v(x,s,µ) . This completes the proof of the lemma.

As we remarked above, the following fact proves that just solving

this linear system (consisting only of equalities) is actually enough to

guarantee that the linear inequalities are satisifed as well (i.e. that we

are in the interior of the primal and dual bodies).

for the system of quadratic equations we started with and the condition that v ≤ 1/2
corresponds to the domain of quadratic convergence in Newton’s method.
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Lemma 5.9. If (x, s, µ) are such that v(x+ ∆x, s+ ∆s, µ) < 1, where

∆x,∆s satisfy LS, then x+ ∆x > 0 and s+ ∆s > 0.

Proof. v(x+ ∆x, s+ ∆s, µ) < 1 implies that for all e, −µ < ∆xe∆se <

µ. Thus,

(xe + ∆xe)(se + ∆se) = µ+ ∆xe∆se > 0.

Thus, for each e, both xe + ∆xe and se + ∆se are either both positive

or both negative. If they are both negative then,

∆xe < −xe and ∆se < −se.

Since xe > 0 and se > 0, multiplying the above inequalities by se and

xe respectively and adding we obtain

∆xese + ∆sexe < −2xese.

Thus, µ = ∆xese + ∆sexe + xese < −xese which is a contradiction as

µ > 0.

Finally, the following lemma lets us analyze the second stage. It gives

an estimate of the rate of convergence of the whole method. That is,

it answers the question of what values of γ are guaranteed to keep v

below 1/2.

Lemma 5.10. For (x, s, µ) such that v(x, s, µ) < 1 and ∆x,∆s that

satisfy LS we have

v(x+ ∆x, s+ ∆s, (1− γ)µ) ≤ 1

1− γ
·
√
v(x+ ∆x, s+ ∆s, µ)2 + γ2m.

Thus, if v(x, s, µ) ≤ 1/2 and consequently v(x + ∆x, s + ∆s, µ) ≤ 1/4,

then we must take γ = Ω (1/
√
m) in order to maintain the invariant that

v(x+ ∆x, s+ ∆s, (1− γ)µ) ≤ 1/2.
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Proof.

v(x+ ∆x, s+ ∆s, (1− γ)µ)2 =
∑
e∈[m]

(
(xe + ∆xe)(se + ∆se)

µ(1− γ)
− 1

)2

=
1

(1− γ)2

∑
e∈[m]

(
∆xe∆se

µ
+ γ

)2


=
1

(1− γ)2

∑
e∈[m]

(
∆xe∆se

µ

)2

+
∑
e∈[m]

2∆xe∆seγ

µ
+mγ2

 .

Using Theorem 5.7, we obtain

v(x+ ∆x, s+ ∆s, (1− γ)µ)2 =
1

(1− γ)2

∑
e∈[m]

(
∆xe∆se

µ

)2

+
mγ2

(1− γ)2

=
v(x+ ∆x, s+ ∆s, µ)2

(1− γ)2
+

mγ2

(1− γ)2
.

To finish, we calculate the number of iterations is takes to bring µ0 =

poly(m) down to µT = O(m−2). Note that after T iterations we have

µT = µ0(1 − γ)T , and hence, we need (1 − γ)T = poly(m−1). Since

γ = Ω
(

1√
m

)
, a constant decrease in µ is brought about by O(

√
m)

iterations, and we need to iterate this O(logm) times. We conclude

that

T = O
(√
m logm

)
.

Each iteration involves solving a system of linear equations.

Example. Coming back to Theorems 5.1 and 5.6, notice that our

result, together with a fast Laplacian solver, implies that we are able to

solve the MinCostUncapacitatedFlow problem in time Õ
(
m3/2

)
.
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