
Deterministically Testing Sparse Polynomial

Identities of Unbounded Degree ?

Markus Bläser a Moritz Hardt b,∗,1 Richard J. Lipton c

Nisheeth K. Vishnoi d

aSaarland University, Saarbrücken, Germany.
bPrinceton University, Princeton, NJ, USA.

cGeorgia Institute of Technology, Atlanta, GA, USA.
dIBM India Research Lab, New Delhi, India.

Abstract

We present two deterministic algorithms for the arithmetic circuit identity testing
problem. The running time of our algorithms is polynomially bounded in s and m,
where s is the size of the circuit and m is an upper bound on the number monomials
with non-zero coefficients in its standard representation. The running time of our
algorithms also has a logarithmic dependence on the degree of the polynomial but,
since a circuit of size s can only compute polynomials of degree at most 2s, the
running time does not depend on its degree. Before this work, all such deterministic
algorithms had a polynomial dependence on the degree and therefore an exponential
dependence on s.

Our first algorithm works over the integers and it requires only black-box access
to the given circuit. Though this algorithm is quite simple, the analysis of why it
works relies on Linnik’s Theorem, a deep result from number theory about the size
of the smallest prime in an arithmetic progression. Our second algorithm, unlike
the first, uses elementary arguments and works over any integral domains, but it
uses the circuit in a less restricted manner. In both cases the running time has a
logarithmic dependence on the largest coefficient of the polynomial.

Key words: theory of computation, polynomial identity testing, arithmetic
circuits, derandomization

? This paper builds upon the conference paper [1] by two of the authors.
∗ Corresponding author

Email addresses: mblaeser@cs.uni-sb.de (Markus Bläser),
mhardt@cs.princeton.edu (Moritz Hardt), rjl@cc.gatech.edu (Richard J.
Lipton), nisheeth.vishnoi@gmail.com (Nisheeth K. Vishnoi).
1 Part of this work was done while the author visited Carnegie Mellon University

Preprint submitted to Information Processing Letters 21 September 2008



1 Introduction

Testing polynomial identities is a fundamental problem in the theory of compu-
tation. Informally, the problem is equivalent to testing whether a multivariate
polynomial f(x1, . . . , xn) given in some representation is identical to the zero
polynomial. Many algorithmic problems such as finding perfect matchings in
graphs [2–4], checking the equivalence of read-once branching programs [5],
multi-set equality testing [6] and primality testing [7] reduce to this prob-
lem. Equally many applications have been discovered in complexity theory; to
only mention two celebrated results, both PSPACE=IP [8] and NP=PCP [9]
involved polynomial identity testing as a subroutine.

The earliest work in testing polynomial identities is due to DeMillo and Lipton
[10], Zippel [11] and Schwartz [12]. These results give efficient randomized
algorithms for checking polynomial identities. Indeed, no n-variate polynomial
of total degree d can vanish on more than half the points in a combinatorial
cube of size (2d)n. Moreover, we can efficiently sample from this set of points.
This observation led to a very important question which is still open today:
Are there efficient deterministic algorithms for checking polynomial identities?
This problem has become a prominent representative for the more general
question about the power of randomization in efficient computation; namely,
does P=BPP?

To make the complexity of the polynomial identity testing problem precise,
one needs to fix a representation of the polynomial which has to be tested
for being identically zero or not. If the polynomial is given as a list of its
coefficients, the problem is trivial. In the interesting case, one is given an
implicit representation of the polynomial such as the determinant of a matrix
or an arithmetic circuit computing it. We say an algorithm is given black-box
access, if it is restricted to using the input representation as an oracle only, i.e.,
it may only query the value of the represented polynomial at specific points.
In the case of black-box access, one can show that randomness is necessary
for polynomial identity testing (a simple dimension lower bound is given in
[13]). When it comes to arithmetic circuits, no such lower bounds are known.
However, we only know of deterministic arithmetic circuit identity tests when
we have an additional “promise” about the circuit or the polynomial that it
represents.

A natural and well-studied promise is that the polynomial is sparse: the num-
ber of monomials in it with non-zero coefficients is upper bounded by a pa-
rameter m. This parameter, which could be exponential in the number of
variables in general, would be a measure of sparsity of the polynomial and we
allow the runtime of our identity tests to depend on it. Also, in this paper

hosted by Steven Rudich.

2



we will consider polynomials represented by arithmetic circuits. Note that an
arithmetic circuit of size s can compute a polynomial of degree at most 2s,
even if it computes a sparse polynomial.

We present two deterministic algorithms for the identity testing problem whose
running time is a polynomial in s and m. Crucially, the running time of our
algorithms is logarithmic in the degree of the polynomial and, hence by the
discussion above, is independent of the degree. Before this work, all such de-
terministic algorithms had a polynomial dependence on the degree.

1.1 Related Work

Interpolating sparse polynomials. Originally, Zippel [11] was interested
in Sparse Polynomial Interpolation, a more difficult question that asks to re-
cover the entire list of coefficients of the given polynomial. Clearly, the spar-
sity of the polynomial is crucial in order to obtain efficient algorithms for this
problem. Zippel’s work was followed by many results [14–18] in interpolation.
These results essentially imply polynomial identity tests with a runtime poly-
nomial in n, m and d where n denotes the number of variables of the input
polynomial, m denotes its number of nonzero terms and d its degree. There
is also some dependence on the characteristic of the underlying field and the
bit size of the points queried varies. A survey of these results can be found in
[19].

Randomized complexity. A sequence of results [20,13,7,19,21,22] has
studied (and determined in several cases) how much randomness is required
in testing polynomial identities when only black-box access to the polynomial
is granted. Most of these results are not concerned with sparse polynomials in
our sense, but Klivans and Spielman [19] give an upper bound of O(log(mnd))
random bits where m is the number of nonzero terms of the given polynomial,
d is the degree and n is the number of variables. Trivial deterministic simu-
lation of this algorithm yields a runtime polynomial in m, n and d. However,
as before, the polynomial dependence on d implies an exponential worst-case
running time for arithmetic circuits.

In the case of finite fields, Karpinski and Shparlinski [23] give a randomized
and a deterministic algorithm with runtimes polynomial in m, n and log d. The
main issue here is that their deterministic algorithm has a linear dependence
on the characteristic of the field. This makes their algorithm inefficient in the
case of finite fields of large prime order. Their randomized algorithm has a
better dependence on the characteristic. However, it requires a large number
of random bits, namely polynomial in m, n, log d. For comparison, notice this

3



is exponentially more than [19].

Arithmetic circuits. In recent years, there has been progress on deter-
ministic identity testing for depth-3 circuits of constant top fan-in [24–26].
We can represent a polynomial with m terms by an arithmetic circuit of size
m + 1 and depth 2. Hence, depth-3 circuits can be seen as a generalization
of sparse polynomials. Previously, Agrawal [27] gave a “hitting set generator”
against the class of depth-2 arithmetic circuits. This result implies a deter-
ministic polynomial identity test for sparse polynomials. However, all of these
results require the input degree to be polynomially bounded.

When it comes to general circuits, no deterministic sub-exponential time arith-
metic circuit identity test is known. In fact, Kabanets and Impagliazzo [28]
show that such an algorithm would imply non-trivial circuit lower bounds.
Further connections along these lines were shown by Agrawal [27].

1.2 Our Results

We state our two results here informally and give a brief overview of the
proof techniques used. For a multivariate polynomial f(x1, . . . , xn), let m be
an upper bound on the number of monomials in it with non-zero coefficients,
d be its maximum degree, and H be the largest coefficient in its standard
representation (or the size of the field in the case of finite fields).

Theorem 1 Given an arithmetic circuit of size s representing a multivariate
polynomial f with integer coefficients, there is a deterministic algorithm which
decides whether f is identically zero in time O((ms logH)O(1)). Furthermore,
the only operation the algorithm performs on the circuit is to test whether it
vanishes on a set of points.

Theorem 2 Given an arithmetic circuit of size s representing a multivari-
ate polynomial f over any integral domain, there is a deterministic algorithm
which decides whether f is identically zero in time O((nm log d)2s logH). Fur-
thermore, the only operation the algorithm performs on the circuit is to test
whether f is identically zero modulo certain polynomials.

Both the algorithms and their proofs are similar in spirit and we now briefly
illustrate the key ingredients and the places where they differ. The formal
description and proofs appear in Sections 3 and 4.

The first step in both the algorithms is to “convert” the multivariate poly-
nomial f(x1, . . . , xn) to a univariate polynomial g(X). This involves just a
computation of a transformation from a query point (a1, . . . , an) for f to a

4



query point a for g. This is standard and can be done efficiently even when
one is given black-box access to the polynomial. The key point about this
transformation is that f(a1, . . . , an) is non-zero if and only if g(a) is non-zero.
For such a property to hold the degree of g must be at least (d+ 1)n− 1 and,
indeed, there is a transformation, namely xi 7→ X(d+1)i−1

, which ensures that
the degree of g is at most d

∑n−1
i=1 (d + 1)i−1 = (d + 1)n − 1. Henceforth, we

may assume that we are given a univariate polynomial. In this setting, our
first algorithm can be summarized as follows.

Given a circuit computing g(X) with integer coefficients, declare ‘g is
identically zero’ if and only if g(X) vanishes modulo p for sufficiently many

prime numbers p.

To analyze this algorithm we need to show that there is a way to pick these
primes so that a non-zero polynomial g(X) does not vanish modulo many of
them. There are two ways in which a non-zero g(X) =

∑D
i=0 ciX

i can vanish
modulo a prime p. It may happen that some non-zero ci is divisible by p. Since
the number of distinct prime divisors of any integer can be at most logarithmic
in its magnitude, the number of distinct prime divisors of all the coefficients
is bounded m logH. More interestingly, it may happen that some X i ≡ Xj

where X takes value in {0, 1, . . . , p − 1}. This, by Fermat’s Little Theorem,
implies that (p − 1)|(i − j). In general it is difficult to bound the number of
primes p such that p − 1 divides an integer, but here is where we appeal to
Linnik’s Theorem about the smallest prime in an arithmetic progression.

We pick p carefully from an arithmetic progression {kq+ 1|k ≥ 1}, where q is
also a prime. Now, whenever (p−1)|(i−j), q serves as a prime factor for (i−j)
and this essentially allows us to upper bound the number of primes which will
be “bad” for the algorithm mentioned above. The key questions that remain
unanswered are why should there exist primes in arbitrary arithmetic progres-
sions and why should we be able to find them efficiently? Dirichlet generalized
the Prime Number Theorem to prove that every arithmetic progression in
which the terms have gcd 1 must have the “right density” of primes. But his
theorem does not say anything about how to efficiently find such a prime.
This is implied by Linnik’s Theorem which shows that the smallest prime in
an arithmetic progression with difference q is bounded by qO(1). Hence, modulo
some details, to complete the proof of Theorem 1 it suffices to pick sufficiently
many primes from arithmetic progressions whose difference itself is a prime
number. From the discussion above (mn log(d+ 1) +m logH)O(1) such primes
suffice.

The second algorithm observes that if one is allowed a weaker kind of black-
box access to the polynomial g(X), it is no longer necessary to pick the primes
in a clever manner as above. It also has the advantages that it works over any
integral domain and it does not require hard number-theoretic results.

5



Given a circuit computing g(X), declare ‘g computes the zero polynomial’ if
and only if g(X) is identically zero modulo Xp − 1 for sufficiently many

prime numbers p.

It is easy to see that in this case, the only way a non-zero polynomial will
become zero after reducing it modulo Xp − 1 is when p|(i − j). Since, as
above, the degree of g is upper bounded by (d + 1)n, picking O(mn log d)
prime numbers suffices.

The key difference between the two algorithms is in how we access the given
circuit. The first algorithm is black-box in what we may call the point query
model where we only evaluate the input representation at specific points. The
second algorithm is black-box in what we may call the polynomial query model.
Here we are allowed to specify polynomials σ1(X), . . . , σn(X) and h(X) and
ask if f(σ1(X), . . . , σn(X)) is identically zero modulo h(X). The cost of this
operation is polynomial in the degree of h and the logarithm of the largest
coefficient of f in the case of of infinite fields (or the logarithm of the size of
the field in the finite field case). The polynomial query model is natural, since
it can be implemented straightforwardly when the polynomial is represented
by an arithmetic circuit.

A virtue of both algorithms is their conceptual simplicity. Furthermore, both
algorithms have a logarithmic runtime dependence on the degree of the input
polynomial. In the arithmetic circuit model, this implies that we do not need
to place any restriction on the degree of the input. Even though sparse polyno-
mials have been extensively studied, the natural case of unbounded degrees in
the arithmetic circuit model has not been treated previously. Now we proceed
to formal proofs. We start with some preliminaries in Section 2.

2 Preliminaries

In this paper, K denotes an integral domain. We will refer to the degree of a
polynomial f ∈ K[x1, . . . , xn] as is its maximum degree, that is, the smallest
integer d such that the exponent of every variable in f is bounded by d.

We consider division-free arithmetic circuits over K with fan-in 2 at each
multiplication and addition gate. Multiplication and addition by constants is
allowed. The size of a circuit is the number of multiplication and addition
gates. Over fields of characteristic zero, we add the logarithm of the magni-
tude of each constant to the size of the circuit. We denote the class of such
arithmetic circuits of size s by C(s). We let C(s,m, d) denote the restriction
of C(s) to circuits that compute polynomials with at most m nonzero terms
and degree bounded by d.

6



We use the notation Õ(t) to suppress poly-logarithmic factors of t, i.e., Õ(t) =
O(t · logO(1) t).

Multivariate to univariate reductions. As remarked earlier, our algo-
rithms will be designed for univariate polynomials and extended to the mul-
tivariate case using the following (folk) substitution attributed to Kronecker.

Lemma 3 Let f ∈ K[x1, . . . , xn] be a polynomial of degree at most d. Then
the substitution xi 7→ X(d+1)i−1

maps f to a univariate polynomial g ∈ K[X]
of degree at most (d+ 1)n such that any two distinct monomials w and w′ in
f map to distinct monomials in g. In particular, if f is not identically zero in
K[x1, . . . , xn], then g is not identically zero in K[X].

2.1 Number-Theoretic Preliminaries

Fact 4 An integer k ≥ 1 has at most log k distinct prime divisors.

We will need the following variant of the Prime Number Theorem.

Theorem 5 The k-th prime number is of order Θ(k log k).

Let P (k) denote the smallest prime number in the arithmetic progression
{jk + 1 | j ≥ 1}. Linnik’s Theorem gives an unconditional upper bound on
P (k).

Theorem 6 (Linnik’s Theorem [29]) There is a constant L > 1 (called
Linnik’s constant) such that P (k) < kL for every sufficiently large k ≥ k0.

The best known value for L is 5.5 due to Heath and Brown. Schinzel, Sierpin-
ski, and Kanold have conjectured the value to be 2. For a detailed discussion
of these facts the reader is referred to the book by Ribenboim [30].

We are interested in the value of P (q) where q itself is a prime number. Notice,
it is not immediately clear whether or not two distinct primes q1 6= q2, could
have P (q1) = P (q2). However, we can show that no more than L primes can
map to the same smallest prime. In particular, if we take a set of 5t distinct
primes {qi | 1 ≤ i ≤ 5t}, then the set {P (qi) | 1 ≤ i ≤ 5t} has cardinality at
least t.

Lemma 7 Let q1 < · · · < qv and p be primes such that P (qi) = p for all
i ∈ {1, . . . , v} and suppose q1 > k0 where k0 is the constant from Linnik’s
Theorem above. Then, v < L.

7



PROOF. By hypothesis, there is a positive integer r such that p − 1 =
rq1q2 · · · qv. Hence, qv

1 ≤
∏v

i=1 qi < p. As p is the smallest prime in the arith-
metic progression {1 + kq1 | k ≥ 1}, Linnik’s Theorem implies p < qL

1 . Hence,
qv
1 < qL

1 and thus v < L. 2

3 Identity Testing via Primes on Arithmetic Progressions

In this section we prove Theorem 1. The key is the following lemma.

Lemma 8 Let f =
∑d

i=0 ciX
i be a univariate polynomial such that each co-

efficient ci ∈ Z with |ci| ≤ H. Suppose that at least one, but no more than
m coefficients of f are nonzero. Then, there are less than 5 logH + m log d
distinct prime numbers q such that f vanishes on every point modulo P (q).

PROOF. Let i be the smallest index such that the coefficient ci 6= 0.

Claim 9 The set {q prime | ci ≡ 0 mod P (q)} has cardinality at most
5 logH.

This claim follows directly from Lemma 7 once we observe there are at most
log ci ≤ logH prime numbers q such that ci ≡ 0 mod q.

Claim 10 The set {q prime | Xj ≡ X i mod P (q) for some j > i} has car-
dinality less than m log d.

In order to prove Claim 10, suppose there is an index j > i such that X i ≡ Xj

mod P (q). Equivalently, (P (q)−1)|(j−i) (by Fermat’s Little Theorem). Since
P (q) lies on the arithmetic progression {1 +kq | k > 0}, we conclude q|(j− i).
However, j − i ≤ d and hence j − i has at most log d prime divisors. On the
other hand, there at most m−1 choices for j > i. Our second claim is proven.

It remains to note, whenever f vanishes modulo a prime number q, then q is
contained at least one of the two sets above. 2

Algorithm 1
Input: Arithmetic circuit C on n inputs, parameters R, d ∈ N.
Output: Whether or not C computes the identically zero polynomial over Z.

(1) Determine the first R distinct prime numbers p1, . . . , pR.
(2) For all p ∈ {p1, . . . , pR} and all k ∈ {0, . . . , p − 1}, evaluate C at the

point (r1, . . . , rn) modulo p where rj = k(d+1)j−1

.
(3) Output “C is zero” if all queries returned are zero, otherwise output “C

is nonzero”.

8



Theorem 11 Given a circuit C ∈ C(s,m, d) over Z, Algorithm 1 decides
whether C computes the identically zero polynomial in time (ms log(d + 1) +
logH)O(1) where H is an upper bound on the absolute value of each coefficient
computed by C. Moreover, the algorithm only evaluates C on inputs of bit
length logarithmic in m, s, log d and logH.

PROOF. The claim is trivial if the circuit C computes the identically zero
polynomial over Z. So, suppose otherwise. We claim that Algorithm 1 will
reject C for a suitable setting of the parameter R. To see this, let C ′(X)
denote the circuit obtained from C by applying the Kronecker substitution
(Lemma 3). Notice, C ′ computes a nonzero univariate polynomial of degree at
most (d + 1)n. Therefore, it follows from Lemma 8 that there exists a prime
number q among the first r = 5 logH+m log((d+1)n) = O(logH+mn log(d+
1)) prime numbers such that C ′(X) does not vanish modulo P (q). In this case,
the query computed by Algorithm 1 for p = P (q) and some k ∈ {0, . . . , p− 1}
will return a nonzero value. By Theorem 6, we have P (q) ≤ q5.5 and hence it
suffices to set R = rO(1).

The claimed runtime follows easily. The largest point queried has bit size log pR

which is logarithmic in m,n, log d and logH. We conclude by observing that
n ≤ s. 2

Remark 12 The analysis of the previous algorithm works even if instead of
Linnik’s Theorem we consider a bound on the average size of the smallest
prime in an arithmetic progression. Baker and Harman [31] showed that Lin-
nik’s constant is less than 1.93 on average. This leads to improvements by
polynomial factors in the runtime of our algorithm. We omit the details.

4 A Simple Modular Arithmetic Approach

In this section we prove Theorem 2. Unlike in the previous section, the follow-
ing easy lemma turns out to be sufficient.

Lemma 13 Let f ∈ K[X] be a nonzero univariate polynomial with at most
m nonzero terms and degree bounded by d. Then there are less than m log d
prime numbers p for which f(X) is identically zero modulo Xp − 1.

PROOF. Let f(X) =
∑d

i=0 ciX
i. Fix the smallest index i for which ci 6= 0.

If f(X) vanishes modulo Xp − 1, then there must exist an index j > i with
cj 6= 0 such that Xj ≡ X i mod Xp − 1. By basic modular arithmetic, this
condition is equivalent to p|(j − i). But, 0 < j − i ≤ d and therefore j − i has

9



at most log d prime divisors (Fact 4). On the other hand, we only have m− 1
different choices for the index j. 2

Testing if a polynomial f(X) is identically zero modulo Xk − 1 is a standard
operation that can be carried out when f is represented by an arithmetic cir-
cuit. Given the circuit, we can recursively compute f in its reduced form. That
is, at each gate we carry out the given arithmetic operation and reduce the
resulting polynomial modulo Xk − 1. In this fashion, we maintain a polyno-
mial of degree at most k − 1. Reducing the polynomial gate-wise is justified,
since we are computing a ring homomorphism. Multiplying two degree k − 1
polynomials can be done at the cost of Õ(k) ring operations over any integral
domain using Schönhage-Strassen multiplication. Hence, the entire operation
requires Õ(sk) ring operations where s is the size of the given circuit. For
details the reader is referred to the book by v. z. Gathen and Gerhard [32].

Our algorithm is stated and analyzed next. It will perform the Kronecker
substitution so as to apply to multivariate polynomials as well.

Algorithm 2
Input: Arithmetic circuit C on n inputs, parameters R, d ∈ N.
Output: Whether or not C computes the identically zero polynomial.

(1) Determine R distinct prime numbers p1, . . . , pR.
(2) For each i ∈ {1, . . . , R}:

(a) Construct the circuit Ci(X) = C(Xr1 , Xr2 , . . . , Xrn) where rj denotes
the remainder of (d+ 1)j−1 modulo pi.

(b) Test if Ci(X) ≡ 0 mod (Xpi − 1).
(3) Output “C is zero” if (2b) holds for all i ∈ {1, . . . , R}, otherwise output

“C is nonzero”.

Runtime Analysis Step 1 of our algorithm requires time Õ(R) using a
deterministic polynomial time primality test [33]. Computing the circuit Ci

requires us to compute the remainder of d + 1 modulo p. This can be done
in time O(log d log p) [32]. The remaining values (d + 1)j−1 modulo p for 1 ≤
j ≤ n can be computed with less than n multiplications modulo p. Since
p = Õ(R) by Theorem 5, Step (2a) costs time Õ(Rn log d). If s denotes the
size of C, then the size of Ci need not be larger than s′ = s + O(n logR).
Hence, the test Ci(X) ≡ 0 mod (Xpi − 1) in (2b) can be performed with
Õ(Rs′) arithmetic operations as discussed earlier. This results in the overall
count of Õ(R2(s+ n logR)) = Õ(R2s) arithmetic operations.

Theorem 14 Given an arithmetic circuit C ∈ C(s,m, d) on n inputs, Algo-
rithm 2 deterministically decides if C computes the identically zero polynomial
at the cost of Õ((nm log d)2s) ring operations over any integral domain.

10



PROOF. We claim that given a circuit C ∈ C(s,m, d) and the parameter set-
ting R = O(mn log d), Algorithm 2 accepts C if and only if C computes the
identically zero polynomial. Clearly, the algorithm accepts C, if it computes
the identically zero polynomial. On the other hand, suppose C does not com-
pute the identically zero polynomial. Let C ′(X) = C(X,Xd+1, . . . , X(d+1)n−1

).
By Lemma 3, C ′ computes a nonzero univariate polynomial with at most
m nonzero terms and degree (d + 1)n. Hence, by Lemma 13, there are less
than R = O(mn log d) prime numbers p for which C ′(X) ≡ 0 mod Xp− 1. It
remains to observe, for all i ∈ {1, . . . , R}, the circuits C ′ and Ci compute iden-
tical polynomials modulo Xpi − 1. The runtime of our algorithm is dominated
by the number of arithmetic operations for the given setting of R. 2

Notice, over fields of characteristic zero, the cost of an arithmetic operation
depends on the size of the coefficients of the polynomial. For instance, we
obtain the runtime Õ ((nm log d)2s logH) over the field of rational numbers
where H is an upper bound on the largest coefficient. Over a finite field of
order q, the runtime will be Õ ((nm log d)2s log q).

Remark 15 It would be interesting to know whether our analysis can be im-
proved. The authors are not aware of a polynomial f computed by a constant
depth circuit for which the univariate polynomial f(X,Xd+1, . . . , X(d+1)n−1

)
vanishes modulo Xp−1 for more than a polynomial (in the size of the circuit)
number of primes p. In fact, Agrawal [27] conjectured that a similar test does
work for any constant depth circuit.

References

[1] R. Lipton, N. Vishnoi, Deterministic identity testing for multivariate
polynomials, in: Proc. SODA, ACM-SIAM, 2003, pp. 756–760.

[2] S. Chari, P. Rohatgi, A. Srinivasan, Randomness-optimal unique element
isolation with applications to perfect matching and related problems, SIAM
J. Comput. 24 (5) (1995) 1036–1050.

[3] L. Lovász, On determinants, matchings, and random algorithms, in: FCT, 1979,
pp. 565–574.

[4] K. Mulmuley, U. V. Vazirani, V. V. Vazirani, Matching is as easy as matrix
inversion, Combinatorica 7 (1) (1987) 105–113.

[5] M. Blum, A. K. Chandra, M. N. Wegman, Equivalence of free boolean graphs
can be decided probabilistically in polynomial time, IPL 10 (1980) 80–82.

[6] M. Blum, S. Kannan, Designing programs that check their work, J. ACM 42 (1)
(1995) 269–291.

11



[7] M. Agrawal, S. Biswas, Primality and identity testing via chinese remaindering,
J. ACM 50 (4) (2003) 429–443.

[8] A. Shamir, IP = PSPACE, J. ACM 39 (4) (1992) 869–877.

[9] S. Arora, S. Safra, Probabilistic checking of proofs: a new characterization of
NP, J. ACM 45 (1) (1998) 70–122.

[10] R. A. DeMillo, R. J. Lipton, A probabilistic remark on algebraic program
testing, Inf. Process. Lett. 7 (4) (1978) 193–195.

[11] R. Zippel, Probabilistic algorithms for sparse polynomials, in: Proc. ISSAC,
Springer-Verlag, Berlin, 1979, pp. 216–226.

[12] J. Schwartz, Fast probabilistic algorithms for verification of polynomial
identities, Journal of the ACM 27 (1980) 701–717.

[13] D. Lewin, S. Vadhan, Checking polynomial identities over any field: Towards a
derandomization?, in: Proc. 30th STOC, ACM, 1998, pp. 438–437.

[14] M. Ben-Or, A deterministic algorithm for sparse multivariate polynomial
interpolation, in: Proc. 29th STOC, ACM, 1988, pp. 301–309.

[15] D. Y. Grigoriev, M. Karpinski, M. F. Singer, Fast parallel algorithms for sparse
multivariate polynomial interpolation over finite fields, SIAM J. Comput. 19 (6)
(1990) 1059–1063.

[16] M. Clausen, A. Dress, J. Grabmeier, M. Karpinski, On zero-testing and
interpolation of k-sparse multivariate polynomials over finite fields, Theor.
Comput. Sci. 84 (2) (1991) 151–164.

[17] D. Grigoriev, M. Karpinski, M. F. Singer, Computational complexity of sparse
rational interpolation, SIAM J. Comput. 23 (1) (1994) 1–12.

[18] K. Werther, The complexity of sparse polynomial interpolation over finite fields,
Applicable Algebra in Engineering, Communication and Computing 5 (1994)
91–103.

[19] A. Klivans, D. A. Spielman, Randomness efficient identity testing of
multivariate polynomials, in: Proc. 33th STOC, ACM, 2001, pp. 216–223.

[20] Z.-Z. Chen, M.-Y. Kao, Reducing randomness via irrational numbers, in: Proc.
29th STOC, ACM, 1997, pp. 200–209.

[21] A. Bogdanov, Pseudorandom generators for low degree polynomials., in: Proc.
37th STOC, ACM, 2005, pp. 21–30.

[22] M. Bläser, M. Hardt, D. Steurer, Asymptotically optimal hitting sets against
polynomials, in: Proc. 35th ICALP, Springer, 2008, pp. 345–356.

[23] M. Karpinski, I. Shparlinski, On some approximation problems concerning
sparse polynomials over finite fields, Theor. Comput. Sci. 157 (2) (1996) 259–
266.

12



[24] N. Kayal, N. Saxena, Polynomial identity testing for depth 3 circuits, in: Proc.
21st CCC, IEEE, 2006, pp. 9–17.

[25] Z. Dvir, A. Shpilka, Locally decodable codes with two queries and polynomial
identity testing for depth 3 circuits, SIAM J. Comput. 36 (5) (2007) 1404–1434.

[26] A. Shpilka, Interpolation of depth-3 arithmetic circuits with two multiplication
gates, in: Proc. 39th STOC, ACM, 2007, pp. 284–293.

[27] M. Agrawal, Proving lower bounds via pseudo-random generators., in: Proc.
25th FSTTCS, Springer, 2005, pp. 92–105.

[28] V. Kabanets, R. Impagliazzo, Derandomizing polynomial identity tests means
proving circuit lower bounds, Comput. Complex. 13 (1/2) (2004) 1–46.

[29] U. V. Linnik, On the least prime in an arithmetic progression. I. The basic
theorem, Mat. Sbornik N. S. 15 (57) (1944) 139–178.

[30] P. Ribenboim, The New Book of Prime Number Records, Springer, New York,
1996.

[31] R. C. Baker, G. Harman, The Brun-Titchmarsh theorem on average, in:
Analytic number theory, Vol. 1 (Allerton Park, IL, 1995), Vol. 138 of Progr.
Math., Birkhäuser Boston, Boston, MA, 1996, pp. 39–103.

[32] J. V. Z. Gathen, J. Gerhard, Modern Computer Algebra, Cambridge University
Press, New York, NY, USA, 2003.

[33] M. Agrawal, N. Kayal, N. Saxena, PRIMES is in P, Ann. of Math. (2) 160 (2)
(2004) 781–793.

13


