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Abstract

Caching data together with expiration times beyond which the data is no longer valid is a
standard method for promoting information coherence in distributed systems, including the In-
ternet, the World Wide Web (WWW) and Peer-to-Peer (P2P) networks. We use the framework
of competitive analysis of online algorithms, and study upper and lower bounds for page eviction
strategies in the case where data has expiration times. We show that minimal adaptations of
marking algorithms achieve performance similar to the well studied case of caching without the
expiration time constraint. Marking algorithms include the widely used Least Recently Used
(LRU) eviction policy. In practice, when data have expiration times, the LRU eviction policy
is used widely, often without any consideration of expiration times. Our results explain and
justify this standard practice.
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1 Introduction

Caching data together with expiration times beyond which the data is no longer valid is a standard
mechanism for promoting information coherence in distributed systems. It has been considered in
the context of distributed memory in computer architecture [16], distributed memory in databases
[12], and, more recently, in large database or datawarehouse maintenance [21, 15, 25]. Most im-
portant, caching data together with expiration times is becoming the method of choice in Internet
and WWW applications [2, 3, 6, 9, 10, 14, 24, 26]. For example, a WWW server, proxy, or client
(browser) may cache pages together with an estimate of the time before the information in the page
becomes stale -also known as time-to-live (TTL), expiration times are used to promote consistency
in Domain Name Server (DNS) resolution, and even in advanced telephony expiration times are
used in the context of translations of 800-numbers, mobile and personal communications services.
The most appealing characteristic of this expiration time assignment method for data consistency
is simplicity of implementation.

In the context of the Internet, an important consideration in caching seems to be the very
decision as to what are appropriate expiration time assignments [2, 9, 10, 14, 24]. In the context of
content distribution and DNS resolution a solid body of studies focus on issues concerning latency
and size [5, 18], as well as pre-emptive strategies, like prefetching and its ramifications [7, 8, 9, 10].
In this paper we focus on cache eviction policies.

How does the widely practiced LRU eviction policy adjust in the case where pages in the cache
have expiration times? If requests are generated by a fixed probability distribution, then it can be
verified that the most frequently used items, normalized by the length of their expiration times,
should be kept in the cache. Is such a normalization necessary when the request sequence does not
follow any particular pattern? The intuition behind LRU is that our best guess for the future is
that it mirrors the past, thus the least recently used item is also the one requested Farthest in the
Future (FF). If we carry this intuition to the case of expiration times, we might think it beneficial
to keep in the cache items without recent use, if these items have very long expiration times, and
are thus projected to be valid the next time they are requested. And on the other hand, we might
want to evict items that were used quite recently if such items have very short expiration times
and are projected to be stale the next time that they will be requested.

Our results suggest that, in the framework of competitive analysis of online algorithms, LRU
can be carried out effectively with minimal adaptations, and without any of the above additional
heuristics. This can be also viewed as reaffirming current practice which does not invest valuable
resources towards optimizing eviction strategies. It is therefore reassuring to know that, at least
from the point of view of competitive analysis, such additional resources are not necessary.

The problem of caching with expiration times was first studied by Kimbrel [20]. He obtained
deterministic algorithms for the general case where pages have expiration times, varying sizes as
well as varying costs to fetch each page. He shows that even in this scenario, a natural extension
of LRU and some other algorithms achieve a competitive ratio of k where hereafter k denotes the
size of the cache. Thus our two papers come to the same conclusion. For deterministic algorithms,
the result in [20] is stronger, since it refers to a more general model. The proof of competitiveness
in [20] uses a technical potential function argument, but our result is relatively simple.

Our result for deterministic online algorithms (Theorem 9) concerns only the case where all
the pages have the same size. However, for this case, our proof is much simpler. For randomized
algorithms, we show that a simple randomized marking algorithm is (2Hj) competitive. We show



that if the expiration times are all bounded by 7T, < k% — k, then the lower bound of k is no
longer valid. We present a simple class of algorithms that achieve a ratio of [T5ez] 4 1. We give
a lower bound on the competitive ratio as a function of 7,,4, that tends to k for large values of
Tmaz- We also study the complexity of the offline problem. Without expiration times, the strategy
of evicting the page whose next request is farther in the future (FF) is the optimal offline strategy
[1]. We show that a natural extension of FF is no longer optimal with expiration times (A similar
observation is made in [20]). We show that a natural extension of FF achieves an approximation
factor of 3. We give an optimal offline algorithm that runs in time n©®*) where n is the length of
the request sequence. The exact complexity of the offline problem remains open.

In Section 2, we briefly review some classical results about caching in the standard model.
We then formally define the problem when the pages have expiration times. We introduce the
notion of a covering requirement for each page which captures the technical difficulties introduced
by expiration times. We analyze deterministic algorithms in Section 3 and randomized algorithms
in Section 4. In Section 5 we give better upper and lower bounds on the competitive ratio as a
function of the maximum expiration time 7,,4,. We study the offline problem in Section 6.

A preliminary version of our paper appeared in [13].

2 Preliminaries

In this section we briefly review the standard caching problem and state some classical results. We
give a formal statement of the problem of caching when the pages are assigned expiration times
beyond which they are no longer valid. We define the notion of a covering requirement which is
used in our analysis.

2.1 The Classical Caching Problem

Consider a universe of equal sized pages maintained in slow memory, and a fast memory, or cache,
which can hold k£ pages. k is typically much smaller than the total number K of pages in the
universe. We will assume, for convenience, that the cache starts with k¥ dummy pages, which are
never requested. Consider a sequence of n page requests o =01,09,...,0,. In the standard model,
the requirement is that a copy of page o; is in the cache at time 7, otherwise it must be fetched from
the slow memory at unit cost. This is also called a fault or a miss. However, since the cache can
hold at most k pages, pages must be also evicted. The question is to devise eviction policies that
minimize the number of faults. In the offline scenario, where the whole request sequence is known
in advance, it is well known that evicting the page whose next request is Farthest in the Future
(FF) is an optimal eviction policy [1]. In the online scenario, the request sequence is presented one
request at a time. Thus, when the cache is full and a page must be fetched from slow memory, then
the decision of which page to evict must be made without knowing the rest of the request sequence.
Naturally, this lack of information causes online algorithms to fault more frequently than offline
algorithms.

Competitive analysis measures the performance of an online algorithm by comparing its number
of faults on a sequence of requests to the number of faults of an optimal offline algorithm for the
same request sequence, and taking the worst possible ratio over all sequences. For an algorithm
A, let fa(o) denote the number of faults incurred on request sequence o. Let fopr(o) denote the
number of faults incurred by the optimal offline algorithm.



Definition 1 The online algorithm A is c-competitive if there is a constant b such that for every
request sequence o,

fa(o) <c- fopr(o) +b

If the algorithm A is randomized, we replace fa(c) by E(fa(c)) where the expectation is over the
coin-tosses of A.

The following class of so-called marking algorithms have been well studied and are known to
be k-competitive [17]. Sleator and Tarjan show a lower bound of k on the competitive ratio of any
deterministic online algorithm [23].

Algorithm 1 MARK

Initially the cache contains £ dummy pages, all unmarked;
repeat
T = next request;
if r € cache, then mark r;
if r & cache, then begin
if all pages are marked then unmark all pages;
evict an (arbitrary) unmarked page;
fetch and mark r;
end;

In [11], the randomized variant of MARK, which evicts an unmarked page chosen uniformly at
random among all unmarked pages (instead of an arbitrary one), is shown to be (2H})-competitive,
where Hy = Zle % In fact this bound is tight. Detailed statements and proofs of these results
can be found in the survey by Irani [17].

2.2 Caching with Expiration Times

We study the problem of caching when the pages are assigned expiration times. When page p is
brought from main memory at time ¢, it is also assigned a time-to-live (TTL) 7,(¢). This copy
of the page is fresh only until time i + 7,(7). After time ¢ + 7,(¢) the copy of the page becomes
stale and a new copy will need to be fetched to serve requests. Thus an input instance consists of
a request sequence o where o; € {1,--- ,n} and a set of expiration times 7,(z) which specify the
expiration times for the pages. Given the request sequence o, the requirement is that a fresh copy
of page o; is in the cache at time ¢. We want to serve the request sequence causing as few faults
as possible. In the classical case where there are no expiration times, one may assume without loss
of generality that succesive requests are for different pages. However, in our model with expiration
times, succesive requests for the same page are meaningful.

We will assume that the expiration times satisfy the following requirement which we call the
monotonicity assumption: Copies of page p that are fetched later expire later. In other words,
if i < j then i+ 1p(i) < j+ 1p(4)-

This is a natural assumption since it says that if a page fetched from CNN headline news at
9 am will be fresh until noon, then it cannot be the case that the same page fetched at 10 am



is fresh only until 11 am. Note that we are not imposing any restriction on requests for different
pages. Indeed it is quite likely that, for example, stock market quotes are consistently assigned
much shorter times-to-live than headline news.

The monotonicity assumption also allows us to restrict ourselves to lazy algorithms. We say that
an algorithm is lazy if it fetches a page p at time ¢ only if o; = p and we do not have a fresh copy
of p in the cache. Since the monotonicity assumption guarantees that a page which is fetched later
will stay fresh longer, we can bring pages into the cache only when absolutely necessary. Without
the monotonicity assumption it might happen that for some page p, at a certain time 4, 7,(7) is
very large while at all other times, it is small. The best strategy might to bring p into the cache at
time ¢, even if there is a fresh copy already in the cache or o; # p.

The monotonicity requirement allows us to specify 7,(i) only for the page p where o; = p since
this is the only page we might bring in at time 7. Thus we may assume that the input consists a
pair of sequences (o, 7), where o(i) = p is the i request and 7(i) = 7, (i) is the TTL if a copy of p
is fetched at time 3.

2.3 The Covering Requirement

We introduce a convenient graphical representation of the problem. Using this we show that
expiration times impose a certain covering requirement for every page p, i.e. a minimum number
of faults on requests to p for any algorithm whether online or offline. This does not hold in the
classical model. All the bounds in this section are independent of the cache size, they are purely a
result of the expiration times.

For each page p and each time ¢ where (i) = p, we introduce an interval L,(i) of type p that
starts at ¢ and ends at ¢ + 7,(¢). The interval L,(i) can cover all requests for p at time j where
j € [i,i + 7p(i)]. A set S of intervals covers all requests for p if every request is covered by an
interval in 5. We can cover all requests to p by choosing intervals greedily. Pick the smallest ¢ such
that o(i) = p and 7 is not already covered by S. Add L,(i) to S. We denote the size of this greedy
cover by a(p).

Lemma 1 Any set of intervals that covers all requests for p has size at least a(p).

Proof: Let S denote the greedily constructed cover above. Let the starting points of the intervals
in S be {i1,42," - iq(p)}- Let T be some other cover of size o/(p) consisting of intervals starting at
points {j1,j2, " jar(p)}- Clearly i1 = ji since this is the only interval that can cover the request
at time 7;. The interval Lp(il) covers all requests for p till 7o. Assume that in T', i2 is covered by
Ly(j). We must have j # j; and j < ip. By the monotonicity assumption, we can replace j with iy
since this will only cover more requests. Repeating this argument, we can show that o/ (p) > a(p).
O

We say that a set of intervals of type p is independent if the intervals do not overlap.
Lemma 2 A set of independent intervals of type p can have size at most a(p).

Proof: The greedy cover S constructed above is independent, and it has size a(p). Let T be an
independent set of size ¢t consisting of intervals starting at points {j1, jo, -+ ,7:}. Clearly j1 > i3
since 7; is the first request for page p. By monotonicity, we can replace Ly(j1) by L,(i1) and still
have an independent. By repeating this argument, we can replace T" by a subset of S of size t,
hence t < a(p). O



It is not hard to see that the greedy cover S is the unique cover which is also independent.

Corollary 3 Any algorithm A (online or offline) must fault at least a(p) times on requests to page
D.

Proof: We show that any algorithm must construct a cover for requests to p. A request for p
either results in a page fault or it is served using a copy of p brought in previously. Consider the
set F'(p) of times when A faults on a request to p and brings a new copy of p into the cache. Since
other requests for page p result in a cache hit, the set of intervals {L,(¢)|i € F(p)} covers all the
requests for p. By Lemma 1, |F(p)| > a(p). O

A similar covering requirement holds for requests to p between time s and ¢. For s < ¢, denote
the subsequences of o and 7 that start at s and end at ¢ by ol and 7. Let r,--- , 7, denote the
requests to p in this interval. We can construct a greedy cover S’ by picking L,(r1), then repeatedly
picking the smallest r; that is not covered by the intervals chosen so far. Denote the size of this
cover by a!(p). Note that in general, a cover for the requests in ¢! can contain intervals that start

before s.

Lemma 4 Any set of intervals that covers all requests for p in ol has size at least o' (p). Further,
at least ol — 1 intervals must start between s and t.

Proof: The first statement is proved by an argument similar to Lemma 1. We will prove the
second statement. Assume that T is a cover for the requests to p in ol containing at most o, — 2
intervals starting between s and ¢. Let L,(i) be an interval starting at ¢ < s. Since r; > s > i,
by monotonicity the interval Ly(ri) covers all the requests to p in of that are covered by Ly(i).
Thus removing all the intervals from T that start before s and replacing them by L,(r;) still gives
a cover for the requests to p in of. This cover has size at most o — 1 which is a contradiction. O

Corollary 5 Any algorithm A (online or offline) must fault at least ol(p) — 1 times on requests
to page p between s and t. If the cache does not contain a copy of p at time s, it must fault ol (p)
times.

Proof: Consider the set F!(p) of pages used by the algorithm to serve requests to p in o. The
intervals starting at these points cover the requests to p in 0. By Lemma 4 at least ol (p) — 1 of
them start between s and ¢. The starting points correspond to faults on requests to page p between
s and t.

If the cache does not have a copy of p at time ¢, all the intervals start between s and ¢, so the
algorithm faults at least ol (p) times. O

Consider the following instance of the problem where o = {1,2,3,1,2,3,1} and the times to
live are 7 = {5,6,2,10,10,6,10}. The cache is of size k = 2.
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The optimal eviction policy is as follows. At time 1, fetch in page 1. At time 2, fetch page 2.
At time 3, fetch page 3 and evict page 1. At time 4 fetch page 1 and evict page 3. At time 5, there
is a fresh copy of page 2 in the cache. At time 6, fetch page 3 and evict page 2. At time 7, there
is a fresh copy of page 1 in the cache. To see that this strategy is optimal, observe that it gives a
total of 5 faults, and a(1) = 2, @(2) = 1, a(3) = 2.

We conclude this section with an illustration that the problem with expiration times significantly
different from the classical caching problem. Essentially the same observation was made in [20]. It
is well known that for the offline version of the classical problem, Farthest in the Future (FF) is
an optimal eviction policy [1]. In our model, the following simple modification to Farthest in the
Future may seem to be a good candidate for the optimal offline algorithm.

Algorithm 2 FF2

r := next request;

If ¢ cache;
Evict a page which is stale already, or will be stale before the next request for it;
Else evict the page whose next request is farthest in the future.

Theorem 6 Algorithm FF2 is not an optimal offline algorithm.

Proof: The request sequence in Figure 1 shows that FF2 is not optimal. At time 3, when page
3 is requested, we need to evict either page 1 or page 2. Though page 2 is requested farther in the
future, the optimal strategy is to evict page 1. On can see that fppa(o) = 6, whereas fopr(o) = 5.
O

3 Deterministic Online Marking Algorithms

In this section we show that a simple modification of MARK achieves competitive ratio of k, for
the generalized problem of caching with expiration times.



Algorithm 3 MARK1

initially the cache has k& dummy pages, all unmarked;
repeat
r = next request;
if » € cache and r is fresh, then mark r;
if 7 € cache and r is stale, then begin
evict r;
fetch and mark r;
end;
if 7 & cache, then begin
if all pages are marked, then unmark all pages;
evict an (arbitrary) unmarked page;
fetch and mark r;
end;

To prove that MARKI is k-competitive, we argue in phases. The request sequence is divided
into phases, with the first phase starting at time 1. A phase ends just before the request for the
(k + 1)% distinct page. The start of a new phase coincides with the point when the algorithm
unmarks all the pages in its cache. Suppose that phase ¢ begins at time s and ends at time ¢. Let
P; ={p1,--- ,pr} be the set of distinct pages requested in phase i.

Lemma 7 MARK] will fault at most Z?ﬂ ol (p;) times during phase i.

Proof: Let p be a fixed page. At the start of phase 4, if there isn’t a fresh copy of p in the
cache, then MARK1 constructs a greedy cover S(p) for the requests to p in phase i. By Lemma
4, it faults ol(p) times. Now assume that there is fresh copy of p at the start of phase i, which
expires at time s’ > 5. If s > s’ < t, MARKI1 will greedily cover the requests to p in az, at a cost
of o, (p). It is easy to show that of,(p) < ol(p). In the case when s’ > ¢ MARKI will not fault
on page p in phase i. Let faarki1(i) denote the number of faults of MARKI1 in phase i. Then

fuarii(i) > Y5 ot(py). O

Following [17], we define segment ¢ to be the sequence starting at time s+ 1 and ending at time
t+ 1. Let pgy1 be the page requested at time ¢ 4 1.

Lemma 8 Any algorithm will fault at least 1 + Zle(ag (pj) — 1) times during segment i.

Proof: The pages that could be requested in segment ¢ are py,--- ,pg+1- The number of faults
on p; during segment 7 are minimized if a fresh copy of p; is brought into the cache at time s. In
this case, constructing a greedy cover for the remaining requests requires o’(p;) — 1 faults. This
shows that any algorithm must fault at least «!(p1) — 1 times on request to page p; in segment i.

For ps,--- ,prr1 we bound the number of faults using Corollary 5. At time k£ + 1, the cache
contains a copy of pi, so by the pigeonhole principle it does not contain a copy of py for some ¢
between 2 and k£ + 1. The algorithm will fault 0‘?4—-11 (p¢) times on requests to py. For j # £, the
algorithm ai"_i'_ll (pj) — 1 times on page p; during segment 7. Both these statements follow from
Corollary 5.



Note that for 2 < j < k, ost(pJ) = al(pj) and aSH(Pk_H) = 1. Let fopr(i) denote the number
of faults in segment 4. We have

kt1
forr(i) > ai(m _1+Z (aihi(ps) = 1) + aita (po)
J#
k
> Y (ehp) ~ 1)+ Since a1 () = 1

J=1

|

Theorem 9 MARKI is k-competitive.

Proof: We compare the faults incurred by MARKI1 in phase 7 to those incurred by OPT in
segment 7. By Lemmas 7 and 8,

favrari(0) Yo fvarki(3)
fopr(o) = > fopr(i)
< fvrarki(4)
< max

< 2521 a ;)

Tk (ke 1) +1
< Z§:1(ag(PJ)_1)+k
Tt (ek(p) — 1) +1
< k

LRU with Expiration Times

The following modification of LRU is a marking algorithm by the above definition. On a request
for page p, if there is a fresh copy of p in the cache, then use it. If there is a stale copy of p in
the cache, then evict the stale copy and replace it with a fresh copy. If there is no copy of p in the
cache, then evict the least recently used page and fetch a copy of p.

Notice that the above algorithm does not take into account expiration times. Indeed, the
algorithm may evict a fresh page (if this was the least recently used page), and keep a stale page
(if this page happened to have been used recently). And yet, at least according to the competitive
ratio performance measure, the algorithm achieves optimal competitiveness.

4 A Randomized (2H})-Competitive Algorithm

In this section we study a randomized eviction policy, for the case where pages have expiration times.
We introduce the randomized marking algorithm RMA, defined exactly like MARKI1, except that,



on being required to evict a page, the algorithm evicts a page chosen uniformly at random from
the set of unmarked pages in the cache. We show that RMA achieves competitive ratio of 2Hy,.
RMA is a simple adaptation of the randomized marking algorithm of [11], where pages are
not assigned expiration times. This latter algorithm was shown to achieve competitive ratio of
2H}, [11]. Therefore we come to the conclusion that, like deterministic marking algorithms studied
in the previous section, the standard randomized eviction policies achieve good performance with
minimal adaptations and, in particular, essentially without consideration of expiration times.

Theorem 10 The randomized marking algorithm RMA is (2H})-competitive.

Proof: As in the previous section, phase ¢ starts at time s and ends at time ¢. The set of pages
requested in phase 7 is denoted by P;. At the beginning of phase 4, there are k distinct pages in
the cache which were brought in before the phase started. During phase 4, k distinct pages are
requested, some of which may be in the cache at the beginning of phase i. For phase 7, let A; be
the set of pages which are in the cache at the beginning of the phase, but which will be stale the
first time that they will be requested during the phase. Let B; be the set of pages in the cache at
the beginning of the phase which will be fresh the first time they will be requested in the phase.
Let C; be the set of pages requested in phase 7, which are not in the cache at the beginning of phase
i. Therefore, there were |C;| pages in the cache at the end of phase ¢ — 1 which were not requested
during phase i. Let a; = |4;|, b; = |B;| and let ¢; = |C;|. Notice that a; + b; + ¢; = k.

RMA will certainly fault on the first requests for pages in A; U C;. The number of faults on
the first requests for the pages in B; is a random variable Z;. Let us first calculate the expected
value of Z;. To do so, order the pages in B; according to the time when they are first requested.
We calculate the probability of a fault on the first request for the jth page in B;. Suppose that [;
pages in C; and m; pages in A; have already been requested. There are k — (m; + j — 1) pages
which were in the cache at the beginning of the phase, and which have not already been requested.
It can be seen (for example, inductively) that the I; pages from C; replace a set of size [; chosen
uniformly at random from these pages. The probability that the jth page from B; is in this subset

. l;
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Let fopr(i) be the number of faults of this optimal algorithm in the 5% phase. Consider phases
1 and ¢ + 1. There are k + ¢; distinct pages requested in these two phases. Hence the optimal

10



algorithm faults at least ¢; times in these two phases. Hence,

¢ < forr(i)+ fopr(i+1)
=>Zci < 2fopr(o) (2)

Let z be the total number of fresh pages evicted by RMA over all phases.

v <Y (et Z)

2

= Elz] < > a+ > EZ]

)

< (1+ Hy) Zci By (1)

< 2(1+ Hy)foprr(o) By (2) (3)

Let y be the total number of stale pages evicted by RMA over all phases. Let y, denote the
number of stale copies of page p. The intervals corresponding to y, form an independent set, hence
by Lemma 2 y, < a(p). Note that both y and y, are random variables. Hence

Ely] = D> Ely] < Y ap) < forr(o) (4)
p P
The total number of faults equals the total number of pages evicted. Hence
Elfrma(o)] = Elz]+ Ely]
< (2Hi +3)fopr(o) (5)

5 Improved Bounds for Deterministic Online Algorithms

In this section we investigate how the competitive ratio of deterministic online algorithms depends
on the maximum time-to-live Tmax = maxy ;{7,(i)}. The case when all times-to-live are infinity
corresponds to caching without expiration times, for which the well known tight upper and lower
bounds of k apply [23, 4]. When 7Tmax = 0, it is obvious that the competitive ratio is necessarily 1,
since every requested page has to be fetched at every time step. We would like to determine upper
and lower bounds on competitive ratios for intermediate values of 7 ax.

Theorem 11 For Ty < k, there is a deterministic algorithm with competitive ratio 1.

Proof: Since Tpax < k, the only pages which could be fresh at time ¢ are the pages that are
brought in during the interval [i — k,i — 1]. There are at most k£ of them so we can keep all these
pages in the cache.

The algorithm is the obvious greedy algorithm. When a request for page p arrives, if there is a
fault, evict a page which will be stale at time ¢ + 1. Such a page always exists. It is easy to show
that this algorithm produces a greedy cover for each page p so it is optimal by Corollary 3. O

11



Any algorithm that evicts only stale pages is optimal. Since LRU will not evict a page which
is used in the last k£ — 1 requests, it will never evict a fresh page, hence it is optimal.

For Tmax > k we establish a lower bound which tends to k, for large Tmax. We also give an upper
bound for a simple modification of the basic marking algorithm.

Theorem 12 When Ty, > k, for any deterministic online algorithm the competitive ratio is at
least M’;ﬁ

Proof: Let A be a deterministic online algorithm. We construct a request sequence o for k + 1
distinct pages of length 7,2« + 1 as follows. At each time i < 7. + 1, we request a page in
1,--- ,k+1 that A does not have in the cache. We set 7(i) = Tmax + 1 — 7, so that all pages expire
at time 7.y + 1. From time 7Tax 4+ 2 to 2705 + 2 we construct a similar sequence of requests for a
different set of k pages and so on. Clearly the expiration times are bounded by Tmax and they are
monotone. The algorithm A faults on every request in this sequence.

We now service the request using the offline algorithm Farthest in the Future (FF). (FF is in
fact the optimal offline strategy for the above request sequence, but we will not need this fact.) FF
faults & times for the first k requests. Beyond that, FF faults just once at the start of each phase,
where a phase is as defined in section 3. Since each phase has length at least k, there are at most
[Tmex=k] phases after the first k requests. Hence FF faults at most k + [Z==E7 times until time

k
Tmax + 1.
This gives a lower bound of ]ﬁﬁ on the competitive ratio of A. O
Tmax—k

Let p = [™2<]. In terms of p, the competitive ratio is at least pkak:' When p is large compared
to k, this ratio is close to k.

We derive upper bounds on the competitive ratio of marking algorithms as a function of the
maximum expiration time. We defined a new class of marking algorithms below. We analyze their
performance using the notion of an epoch.

Algorithm 4 MARK2

initially cache has k¥ dummy pages, all unmarked;
repeat
r = next request;
if » € cache and r is fresh then mark r;
else begin
if all pages are marked then unmark all pages;
evict an unmarked page;
fetch and mark r;
end;

For an interval [s, ] let P! denote the set of pages requested in that interval.

Definition 2 An epoch starting at time s ends at time t where t is the maximum time such that
ZpePst ag(p) S k

The next epoch begins at time ¢ + 1. The first epoch begins at time 1.

12



Theorem 13 For T, > k, MARK2 is min{[™2] + 1, k}-competitive.

Proof: Let p = [Mm2x]. Divide the input sequence into epochs. Suppose there are N epochs, and
assume, for simplicity, that the last epoch was completed. The start of a new epoch coincides with
the time when the marking algorithm unmarks all the pages in the cache.

Suppose that epoch i begins at time s and ends at time ¢. It follows from the definition of epoch
that Zpe P al(p) = k. MARK2 constructs a greedy cover for pages in P!, hence it faults at most
k times in epoch i. Thus fyrark2(o) < NEk.

By Lemma 4, any algorithm will need at least o(p) distinct copies of page p € P! to serve the
requests for p in epoch 4. Hence, in total any algorithm will need & distinct copies of pages in P!
to service all requests in epoch 7. We use this observation to derive a lower bound on fopr (o).

Let f1,---, fn be the number of faults in each epoch, thus fopr(c) = Zf\;l fi - Consider the
last epoch. At least k distinct copies of pages are needed to serve all the requests in epoch N.
Since the algorithm faults fy times in epoch IV, the other £ — fx pages would have been brought
in during previous epochs. Note that each epoch is of length at least k. Since the expiration time
is bounded by pk, these pages must have been brought in during the epochs N -1, N —2.-- N —p,
since all pages brought before that would have expired. This implies

Inci+ e+ -+ vy > k- fn
= Nttt e, >k
Similarly we get
fN—p—l + fN—p—2 +---+ fN—Zp—l > k
fet+fi =2k
Adding all these equations we get
N Nk
> | — > — 6
N P ©)
Hence the competitive ratio of MARK2 is at most % < p + 1. By analysis similar to

that used for MARK1 in section 3, we can also show that the competitive ratio is also bounded by
k. Hence the competitive ratio is bounded by min{p + 1,k}. O

MARK?2 seems rather wasteful since it might evict a fresh page even though some other page
in the cache is stale. However, we are unable to show an improved competitive ratio for any
deterministic algorithm.

6 The Offline Problem

The offline problem of caching with expiration times can be stated as follows:
Input: The cache size k, a request sequence o of length n, a sequence of expiration times 7 that
satisfy the monotonicity assumption.

13



Output: A sequence of pages to evict such that there is a fresh copy of page o; in the cache at
time ¢ and the number of faults is minimized.

We showed in Theorem 6 that the natural modification of Farthest in the Future is not optimal.
We have not found an optimal offline algorithm polynomial in both » and k. We do not know if
the problem is NP-complete for arbitrary k.

Theorem 14 There is an optimal offline algorithm that runs in time n®®),
Proof: The problem of finding the optimal offline algorithm can be modeled as a shortest path
problem on a graph with n9®) vertices. The vertices of the graph correspond to all possible
configurations of the cache. At time ¢, there are at most (Z) possible configurations corresponding
to the subsets of pages currently in the cache. Hence the total number of nodes is bounded by
k+1
neTh
A configuration at time ¢ is connected to those configurations at time ¢+ 1 which can be reached
from it. The edge is assigned a weight of 1 or 0 depending on whether or not the algorithm must
fault in order to make the transition. We add a source connected to all configurations at time 1
and a sink connected from all configurations at time n by edges of cost 0. The problem reduces to

finding a shortest path from the source to the sink. The running time of this algorithm is n®*). O

Theorem 15 The is a factor-3 approximation to the offline problem that runs in time poly(n, k).

Proof: We define an offline algorithm OFF which proceeds in phases like the randomized marking
algorithm RMA. We follow the terminology used in Section 4. At the start of phase 4, since
algorithm OFF knows the entire request sequence, it can identify the sets A;, B; and Cj. It evicts
all pages in A; and then the ¢; pages which are not requested in this phase. These ¢; pages are the
only pages that could be fresh when evicted. Note that there are only ¢; new pages are requested
in phase ¢. So we do not need to evict any page in B;.

Suppose that Algorithm OFF evicts z fresh pages and y stale pages.

y < > alp) < forr(o) By Lemma 2
P
Tz = Z ¢i < 2fopr(o) By Equation 2
i
= Forr(o) = z+y < 3foprr(o)

Hence OFF is a factor 3 approximation to the offline problem. O

Corollary 16 Algorithm FF2 gives a factor-3 approximation to the offline problem.

Proof: We analyze FF2 in phases. Assume that during phase i, algorithm FF2 faults on a request
to page p and evicts a fresh copy of page q. Then it must be that ¢ is requested farthest in the
future and the k& —1 other pages currently in the cache are requested before gq. Also page p has been
requested in phase 7. Since phase i terminates just before the (k + 1) distinct page is requested,
we conclude that page ¢ is not requested again in phase 3.

Thus if FF2 evicts a live page, that page is not requested again in the same phase. Hence the
analysis of Theorem 15 can be applied to it implying that FF2 gives a factor-3 approximation to
the offline problem. O
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7 Further Work

There is a gap between the upper and lower bounds on the competitive ratio in Theorems 12 and
13. Perhaps tighter bounds are possible. Also, the algorithms here do not make use of the time to
live. It may be possible to get a better competitive ratio using this information. Finally, the status
of the optimal offline problem (NP-completeness or upper bounds polynomial in both n and k) is
open.
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