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Abstract

In a beautiful result, Raghavendra established optimal
Unique Games Conjecture (UGC)-based inapproximabil-
ity for a large class of constraint satisfaction problems
(CSPs). In the class of CSPs he considers, of which
Maximum Cut is a prominent example, the goal is to
find an assignment which maximizes a weighted fraction
of constraints satisfied. He gave a generic semi-definite
program (SDP) for this class of problems and showed
how the approximability of each problem is determined
by the corresponding SDP (upto an arbitrarily small ad-
ditive error) assuming the UGC. He noted that his tech-
niques do no apply to CSPs with strict constraints (all
of which must be satisfied) such as Vertex Cover.

In this paper we address the approximability of these
strict-CSPs. In the class of CSPs we consider, one is
given a set of constraints over a set of variables, and a
cost function over the assignments, the goal is to find
an assignment to the variables of minimum cost which
satisfies all the constraints. We present a generic lin-
ear program (LP) for a large class of strict-CSPs and
give a systematic way to convert integrality gaps for this
LP into UGC-based inapproximability results. Some im-
portant problems whose approximability our framework
captures are Vertex Cover, Hypergraph Vertex
Cover, k-partite-Hypergraph Vertex Cover, Inde-
pendent Set and other covering and packing problems
over q-ary alphabets, and a scheduling problem. For the
covering and packing problems, which occur quite com-
monly in practice as well, we provide a matching round-
ing algorithm, thus settling their approximability upto
an arbitrarily small additive error.
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1 Introduction

In this paper we address the approximability of strict-
Constraint Satisfaction Problems (CSPs). An instance of
such a problem is specified by positive integers k, q and n,
a collection of ordered k-tuples of {1, . . . , n} denoted by
E and a collection of subsets of [q]k, one for every e ∈ E,
denoted by {Ae}e∈E . It is customary to call the set [n]
the vertex set (denoted by V ) and the elements of E,
edges or hyper-edges. The collection of subsets are called
the constraints and the constraint Ae in particular is said
to be the constraint on the edge e. The goal is to assign
labels x1, x2, . . . xn from [q] to the vertices such that for
every edge e, the corresponding k-tuple of labels is an
element of Ae (or “satisfy” the constraint on every edge)
while minimzing

∑
i xi, also called the objective function.

In a more general setting, a set of weights w1, . . . wn is
also specified and the objective is to minimize

∑
i wixi.

Fixing k and restricting the choice of the constraints
Ae allowed in the specification (as opposed to allowing
arbitrary subsets of [q]k) gives raise to particular classes
of strict-CSPs. Many important optimization problems
are captured by this specification: Vertex Cover,
Hypergraph Vertex Cover, Independent Set,
covering and packing problems to name a few.

Note that strict-CSPs are different from the CSPs
considered by Raghavendra [Rag08] where the goal, given
a set of constraints is to find an assignment which max-
imizes a payoff function associated with whether a con-
straint is satisfied or not and, in particular, assignments
which satisfy only part of the constraints are feasible,
e.g., Maximum Cut. We refer to them as strict-CSPs
precisely for this reason. Even though optimal inapprox-
imability and approximability for several problems such
as Maximum Cut which fell in Raghavendra’s frame-
work were known before (see [Rag08]), the main feature
of his result was the use of semi-definite programming
(SDP)-integrality gaps to come up with Unique Games
Conjecture (UGC)-based hardness reductions, comple-
menting the result of Khot and Vishnoi [KV05] who show
how to use UGC-based hardness reductions to come up
with SDP-integrality gaps. He gave a generic SDP for
this class of CSPs and showed how the approximabil-
ity of each problem is determined by the corresponding
SDP up-to an arbitrarily small additive error assuming
the UGC. He noted in his paper that his techniques do



no apply to strict-CSPs such as Vertex Cover and
Graph-3-Coloring.

In this paper we present a framework similar to
the one in [Rag08] which applies to a large class of
strict-CSPs. In particular, we show that a natural lin-
ear program (LP) captures precisely (up-to arbitrarily
small additive error) the approximability of strict-CSPs
such as covering-packing problems, which include Ver-
tex Cover, Hypergraph Vertex Cover and Inde-
pendent Set, as observed by Guruswami and Saket
[GS10] - the k-partite-k-uniform-Hypergraph Vertex
Cover problem, and the concurrent open shop prob-
lem in scheduling [MQS+09], [BK09a]. We show how
to convert integrality gap for the LP for these prob-
lems to a Unique Games-based hardness of approxima-
tion result in a principled way. Thus, the above results
are obtained by invoking known integrality gaps for the
above-mentioned problems. In addition, for covering-
packing problems we give a simple rounding algorithm
which achieves the integrality gap, again up-to an ar-
bitrarily small additive constant. The rounding result
is an analogue in the strict-CSP world of that obtained
by Raghavendra and Steurer [RS09b]. Note that apart
from the natural packing and covering problems studied
in the theory community and mentioned above, covering-
packing problems also appear quite commonly in the op-
erations research community as models for real world
problems and we hope that our algorithmic results will
be useful there.

We do not attempt to list all the corollaries in this
paper and, rather, focus on providing a systematic frame-
work to compose LP integrality gap instances for strict-
CSPs with Unique Games instances and to demonstrate
how the rounding algorithm comes out as a natural by-
product of the soundness analysis.

Before we describe our results, it would be useful to
introduce some notation. We keep the discussion here
in the {0, 1} setting for the ease of presentation. The
results extend to the q-ary world in a straightforward
manner and we present the details in Section C.

1.1 Preliminaries
Strict-CSPs. A problem Π is said to be a k-strict-

CSP if it consists of a set of vertices (variables) V with
weights {wv}v∈V on them, a set of hyper-edges of size
at-most k and for every hyper-edge e ∈ E, a constraint
Ae ⊆ {0, 1}|e|.1 We will assume that

∑
v∈V |wv| = 1.

The objective is to find a {0, 1} assignment to the
vertices so as to satisfy all the hyper-edge constraints
and minimize

∑
v wvxv. This requirement, that in a

feasible assignment all the constraints be satisfied, is why

1If Ae is not symmetric then the hyper-edge e is best thought
of as an ordered tuple.

we refer to these CSPs as strict. If each constraint Ae is
upward-monotone, i.e., given a feasible solution (a subset
of vertices), adding more vertices to the solution keeps
it feasible, and each wv ≥ 0, we refer to the problem as
k-strict↑-CSP. If each constraint is downward-monotone,
i.e., given a feasible solution (a subset of vertices),
deleting vertices from the solution keeps it feasible, and
each wv ≤ 0, we refer to the problem as k-strict↓-CSP.
strict↑-CSP is also referred to as a covering problem while
strict↓-CSP as a packing problem. Observe that Vertex
Cover is a 2-strict↑-CSP and Independent Set a 2-
strict↓-CSP. Sometimes, we may also be interested in a
k-strict-CSP Π where the input hyper-graph has some
pre-specified structure, e.g., the hyper-graph could be k-
partite and k-uniform.

The LP for a k-strict-CSP problem. One can
define the following generic LP relaxation for any k-strict-
CSP. This relaxation is inspired by the Sherali-Adams
[SA90] relaxation and plays a crucial role in our results.

lp(I) def= minimize
∑
v∈V

wvxv

(1.1)

subject to ∀e=(v1,v2,...,vl)∈E (xv1 , xv2 , . . . , xvl
) ∈ ConvexHull(Ae)

(1.2)

∀v∈V 0 ≤ xv ≤ 1
(1.3)

Figure 1: LP for k-strict-CSP

Here, for a hyper-edge e = (v1, . . . , vl), ConvexHull(Ae)
denotes the convex hull of all assignments σ ∈ {0, 1}l
which satisfy the constraint Ae. For an instance I, let
lp(I) denote the optimum of the LP of Figure 1 for I.
Let val(I, x) denote the value of LP(I) for a feasible x
to it. Also, let opt(I) denote the value of the optimal
integral solution for I. For the sake of readability, we
will assume that all the hyper-edges are exactly of size
k.

Connected LP-solutions. Mossel [Mos08] intro-
duced a notion of connectedness which we recall here.
Two points (x1, . . . , xk), (y1, . . . , yk) ∈ {0, 1}k are said to
be connected by an edge if they differ in at-most one co-
ordinate. A subset S ⊆ {0, 1}k is said to be connected if
the subgraph induced by the vertices of S along with the
edges is connected. For an instance I of a k-strict-CSP,
given a solution x to LP(I), x-is said to be connected if
for every edge e = (v1, . . . , vl), (xv1 , . . . , xvl

) can be writ-
ten as a convex combination of points in Ae such that the
support of this convex combination is connected.

1.2 Results



Theorem 1.1. (LP-integrality gap based Inapproximability)
Let Π be a k-strict-CSP for k = O(1), and J be
a constant-sized instance of Π. Let x be a feasible-
connected solution for LP(J ). Then for every δ > 0,
it is Unique Games-hard to distinguish between the
following instances I of Π

– YES. opt(I) ≤ val(J , x) + δ

– NO. opt(I) ≥ opt(J )− δ.

Hence, if it is the case that x is also an optimal solution
to LP(J ), then, assuming the UGC, the LP captures the
approximability of the problem Π. In general, it is not
clear whether the LP solution achieving the integrality
gap is connected. Hence, the inapproximability obtained
using connected-LP solutions may be weaker than the
integrality gap. For k-strict↑-CSP and k-strict↓-CSP we
can easily convert any optimal LP solution to a connected
one with at-most a δ loss in the LP value, for arbitrarily
small constant δ. Hence, we get the following important
corollary which proves that the LP of Figure 1 captures
precisely the approximability of all covering and packing
problems with k = O(1).

Corollary 1.1. (Optimal Inapproximability for Covering and Packing Problems)
Let Π be a k-strict↑-CSP or a k-strict↓-CSP for k = O(1),
and J be a constant-sized instance of Π. Then for every
δ > 0, it is Unique Games-hard to distinguish between
the following instances I of Π

– YES. opt(I) ≤ lp(J ) + δ

– NO. opt(I) ≥ opt(J )− δ.

We will, henceforth, keep the discussion just to covering
problems. All results can be directly translated in the
packing world and we omit the details.

Rounding for covering-packing problems. For
a k-strict↑-CSP Π we give a rounding algorithm called
ROUND (see Figure 2) for the LP of Figure 1. For an
instance I of Π, a solution x to LP(I), and a parameter
ε > 0, which should be ignored for this discussion, let
round(I, x, ε) denote the value of the integral solution
that ROUND produces for I starting from the LP solution
x. We show that ROUND (unconditionally) achieves an
approximation ratio equal to the integrality gap, up
to an arbitrarily small additive constant, of the LP
relaxation. This can be seen as an analogue of the result
of Raghavendra and Steurer [RS09a] for the class of CSPs
considered by Raghavendra [Rag08].

Theorem 1.2. (Rounding achieves Integrality Gap)
Let γ∗(Π) be the worst-case approximation ratio (in-
tegrality gap) achieved by the LP relaxation for a
k-strict↑-CSP Π, i.e., γ∗(Π) def= supJ (opt(J )/lp(J )),
where the supremum is taken over all instances J of Π.

Then, for any given instance I, an optimal LP solution
x? and ε > 0, round(I, x?, ε) ≤ γ∗(Π) · (opt(I) + ε).

For covering and packing problems, we show how to
start with an instance J of Π and a solution x to
LP(J ), , and give a Unique Games-based reduction
for Π whose soundness and completeness are roughly
val(J , x) and round(J , x, ε) respectively. The reduction
in this theorem is slightly different from that in the
corollary. This theorem is more useful in the case when
it is easier to come up with a LP-rounding gap rather
than an integrality gap.

Corollary 1.2. (LP-rounding gap based Inapproximability)
Let Π be a k-strict↑-CSP for k = O(1), and J be a
constant-sized instance of Π, and x a solution to LP(J ),
Then for every δ > 0, it is Unique Games-hard to
distinguish instances I of Π with optimum less than
val(J , x) + 2δ from those with optimum more than
round(J , x, δ)− δ.

1.3 Applications, Comparisons and Discussions
Comparison to previous hardness results on

Vertex Cover and Hypergraph Vertex Cover.
The k-Hypergraph Vertex Cover problem is the
following: given a hyper-graph with each edge of car-
dinality at most k, the goal is to pick the smallest set of
vertices such that every hyper-edge contains at-least one
vertex in the picked set. The Vertex Cover problem
is the 2-Hypergraph Vertex Cover problem. Ver-
tex Cover and k-Hypergraph Vertex Cover have
been extensively studied: while there is a simple fac-
tor k-approximation algorithm for it, on the hardness
side, there is a series of results based on standard com-
plexity assumptions [DS02, H̊as97, Tre01, Gol01, Hol02,
DGKR03]. They all fall short of coming arbitrarily
close to the upper bound of k. Khot and Regev [KR08]
proved that, assuming the UGC, k-Hypergraph Ver-
tex Cover cannot be approximated to within a factor
better than k − ε for any k ≥ 2 and any constant ε > 0.
The 2−ε hardness for Vertex Cover has been reproved
in [AKS09, BK09b, BK09a]. The analysis of Austrin,
Khot and Safra [AKS09] also depends on Mossel’s Invari-
ance Principle and they were motivated by the problem
of proving hardness of approximating Vertex Cover
and Independent Set on bounded degree graphs.

Since k-Hypergraph Vertex Cover falls in the
class k-strict↑-CSP, the existence of a k − ε factor LP-
integrality gap for these problems re-establishes these
Unique Games-hardness results using Corollary 1.1.
Note that our LP for the k-Hypergraph Vertex
Cover problem is equivalent to the standard one in
the literature. The advantage of our approach is that
it converts any integrality gap into an inapproximability
result. Moreover, since the reduction inherits the struc-
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ture of the integrality-gap, our result has been used to
derive new optimal inapproximability result for the k-
partite-k-uniform-Hypergraph Vertex Cover prob-
lem by Guruswami and Saket [GS10] discussed later in
this section.

Interestingly, we can also derive the k − ε hardness
result for k-Hypergraph Vertex Cover using a LP-
rounding gap and appealing to Corollary 1.2. Consider
the following instance I of k-Hypergraph Vertex
Cover– we are given a set V of size k, and there is only
one hyper-edge in E, namely, the set of all vertices in V .
The weight of every vertex is 1/k. Consider the solution
x which assigns value 1/k to all variables xu. It is easy to
check that it is feasible to our LP relaxation. The value of
the solution x is 1/k. . Let us now see how the algorithm
ROUND(I, x, ε), where ε < 1/k, rounds the solution x.
All entries in xε will still be same. Hence, the rounding
algorithm will consider only two options – either pick
all vertices in V , or do not pick any vertex. Since the
latter case yields an infeasible solution, it will output
the set V , which has value 1. Corollary 1.2 now implies
that assuming UGC, it is NP-hard to distinguish between
instances of k-Hypergraph Vertex Cover where the
optimal value is at-most 1/k − 2ε from those where the
optimal value is more than 1−ε. Note that the integrality
gap of LP(I) is 1. Still we are able to argue hardness of
k-Hypergraph Vertex Cover problem starting from
such an instance because the algorithm ROUND performs
poorly on this instance. In this sense, the statement of
Corollary 1.2 is stronger than that of Corollary 1.1.

Inheritance of structure from the starting in-
stance: k-Partite-k-Uniform Hypergraph Vertex
Cover. A nice feature about composing integrality gaps
with Unique Games-instances is that some structure
of the integrality gap shows up in the final instance.
Guruswami and Saket [GS10] considered the problem
of k-partite-k-uniform-Hypergraph Vertex Cover,
where, in addition to the vertices and the hyper-edges,
one is also given a k-partition of the vertex set and each
hyper-edge contains exactly one vertex from a partition.
As proved by Lovasz [Lov75], this problem has a k/2-
approximation algorithm. Guruswami and Saket [GS10]
show that this problem is NP-hard to approximate to a
factor better than k/16−ε for all ε > 0. Moreover, using
a slight modification of the main result from the initial
version of this paper (and Corollary 1.1 from this version
of this paper), they observe how the k/2 integrality gap
of Aharoni, Holzman and Krivelevich [AHK96] implies
k/2 − ε Unique Games-hardness for this problem for
any ε > 0 and settles the approximability of this prob-
lem. Their result applies for the more general Split-
Hypergraph Vertex Cover problem and we refer
the reader to their paper. The key point is that this k-
partition is preserved by the reduction if one starts from

a k-partite integrality gap. This result demonstrates an-
other interesting feature of our framework.

Application in Scheduling: Concurrent Open
Shop. In an initial version of this paper, we restricted
our attention to packing/covering problems. Bansal
and Khot [BK09a] independently prove a 2 − ε for
any ε > 0 hardness for the Concurrent Open Shop
scheduling problem. Upon reading their paper, we
noticed that their result can be proven in our framework
using an integrality gap for a related linear programming
relaxation constructed by [MQS+09]. In Section A, we
show how the gap instance of [MQS+09] can be used with
Theorem 1.1 to obtain a 2−ε inapproximability assuming
the UGC. We believe that our framework is more general
and should help prove more inapproximability for similar
problems and that the exposition in Section A would be
helpful.

Comparison to Raghavendra’s result. As
noted, we are partially able to address the problems left
open by Raghavendra [Rag08]. While he gives a system-
atic way to compose SDP-integrality gaps for his CSPs
with Unique Games to settle their approximability, we
do the same for covering and packing problems, except
that we just rely on LP-integrality gaps. As in his paper,
the rounding algorithm for covering and packing prob-
lems comes out as a natural but important by-product.
The strict-ness is critical in our results while, as Theo-
rem 1.1 demonstrates, monotonicity does not seem to be.
Both his and our result appeals to Mossel’s Invariance
Principle [Mos08] but the analysis differs and we end up
needing some additional Gaussian estimates as in Aus-
trin, Khot and Safra [AKS09]. We give more details of
how our reduction differs from his in Section 1.4.

Computing approximation ratios. Similar to
Raghavendra’s result, our results do not imply any
explicit inapproximability ratios. However, like [Rag08],
for any constant δ > 0 we can compute the best
approximation ratio to within additive δ error in constant
time for covering and packing problems. The proofs are
identical to those in [Rag08] and we omit the details.

On monotonicity in the {0, 1}-world. For k-
strict↑-CSP (and k-strict↓-CSP) over the alphabet {0, 1}
one can reduce any problem Π to a l-Hypergraph
Vertex Cover for some l ≤ k in an approximation
preserving sense. This does not happen in in the q-ary
world when q ≥ 2 : consider the problem of minimizing∑

i xi subject to constraints of the form xi + xj ≥ q + 1
and xi ∈ {0, 1, . . . , q}. Also, as we note earlier, [KR08]
does not apply when trying to prove inapproximability
for families of graph with certain structure (as in the
result of Guruswami and Saket [GS10]). Thus, we believe
the right approach to understanding the approximability
of these problems is not by reduction to a canonical
problem in the class, but instead to study where the



linear programming relaxation fails for the problem.
Future directions. We anticipate that our results

will lead to a better understanding on the power of linear
programming in approximability. In particular, we leave
as an open problem of proving LP-based inapproxima-
bility results for hard-ordering CSPs as in Guruswami,
Manokaran and Raghavendra [GMR08]. Our rounding
algorithm do not seem to generalize for all strict-CSPs for
which we can prove inapproximability results. It would
be interesting to study rounding schemes for our LP for
these problems It is a very interesting question to charac-
terize strict-CSPs for which our LP captures optimality.
Is existence of connected integrality gaps sufficient?

Previous LP inspired hardness results. There
are several problems for which the best known inapprox-
imability results have been obtained as follows: first con-
struct integrality gap instances for the standard LP re-
laxations for these problems and then use these instances
as guides for constructing hardness reductions based on
standard complexity theoretic assumptions. These re-
ductions yield inapproximability ratios quite close to the
actual integrality gaps. Examples include Asymmetric
k-center [CGH+04], Group Steiner Tree [HK03]
and Average Flow-time on Parallel Machines
[GK07]. Assuming UGC, our result proves hardness of
a large class of problems in a similar spirit. However,
instead of explicitly constructing integrality gap exam-
ples for such problems, we give a more direct and intu-
itive proof that the integrality gap is close to the actual
hardness of such problems. We note that the only other
result for LPs similar in flavor as ours, though unrelated,
is that of [MNRS08] for Multi-Way Cut and Metric
Labeling problems.

Unique Games Conjecture. We refer the reader
to the survey by Khot [Kho10] on this conjecture and its
implications.

1.4 Overview of Techniques In this section we out-
line the proof of Theorem 1.1 and how it implies Corol-
lary 1.1.

Recall that we need to establish an inapproximability
result for a k-strict-CSP Π, for which we start with a
constant-sized instance J = (V,E, {Ae}e∈E , {wv}v∈V )
of Π itself and a feasible-connected solution x to LP(J ).
As is common in basing most hardness results on UGC,
we will first construct, for an integer r ≥ 1, a bigger
instance (dictatorship test gadget) Dr

J ,x of Π and then
compose it in a standard way with a Unique Games
instance. For this discussion, we restrict ourselves to the
dictatorship test gadget. The instance Dr

J ,x will have
the following components:

– Vertex Set. The vertex set of Dr
J ,x is V × {0, 1}r,

i.e., for every vertex v ∈ V, there is an r-dimensional
hyper-cube.

– Vertex Weights. The weight of a vertex
(v, (a1, . . . , ar)) will be wv times the xv-biased mea-
sure of (a1, . . . , ar). xv is the LP value for the ver-
tex v given by x. The p-biased measure of a point
a ∈ {0, 1}r is the probability of getting a if we pick
a random point from {0, 1}r where each coordinate
is i.i.d. with probability of 1 being p.

– Edges and Constraints. Recall that for ev-
ery hyper-edge e = (v1, . . . , vk) in E(J ), from the
solution x, we can read off a probability distri-
bution Pe on {0, 1}k. Moreover the constraint in
the LP requires that this distribution is supported
on Ae, and the hypothesis requires that this sup-
port is connected. For every e = (v1, . . . , vk) ∈
E(J ) and every a(1), . . . , a(k) ∈ {0, 1}r, there will
be an hyper-edge in Dr

J ,x between the vertices
((v1, a

(1)), . . . , (vk, a(k))) with the constraint Ae. We
will also associate a weight with this edge which is∏r

i=1 Pe(a
(1)
i , . . . , a

(k)
i ). We will not keep any hyper-

edges with 0 weight. These weights will be useful for
the analysis and are irrelevant to the actual instance
since every constraint has to be satisfied.

This completes the description of the dictatorship test
gadget. Note that the main difference from what is
constructed by Raghavendra is that we have a different
hyper-cube for each v ∈ V (J ) whereas he has just
one hyper-cube. This is so because we set the weights
associated with the vertices based on the LP solution;
thus a single hyper-cube might not suffice. Now we
state the two class of assignments which we want to
understand for this instance Dr

J ,x.

– Dictator Assignments. There are special dictator
assignments {Λi}ri=1 to vertices of Dr

J ,x which sat-
isfy all its constraints and has cost val(J , x). Namely
Λi(v, (a1, . . . , ar)) = ai.

– Feasibility. It is easy check that Λi satisfies
all the constraints as for the hyper-edge

((v1, a
(1)), . . . , (vk, a(k)))

the assignment obtained from Λi is
(a(1)

i , . . . , a
(k)
i ) which is in the support of

Pe (as we threw away hyper-edges with zero
weight) which is contained in Ae and, hence,
satisfies this hyper-edge.

– Cost. The cost of this assignment is precisely∑
v∈V (J ) wvxv = val(J , x). This is because the

xv-biased measure of the set selected by Λi in
the hyper-cube of v is exactly xv.

– Pseudo-random Assignments. We argue that
every assignment to vertices of Dr

J ,x which is far
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from a dictator (which we refer to as pseudo-
random) and satisfies all the constraints has cost
at-least opt(J ) up-to a small additive error. We
do this by decoding an assignment λ to J given a
pseudo-random assignment Λ to the gadget. An as-
signment to the dictatorship test gadget is simply a
function Λ : V × {0, 1}r → {0, 1}.

– Decoding assignment to J . Let δ be the
additional cost we can incur. For every v ∈ V ,
define Sv

def= {b ∈ {0, 1}| Ea[Λ(v, a) = b] ≥ δ}
(the expectation is over picking a ∈ {0, 1}r
from the xv biased measure). Set λ(v) to be
the element in Sv with minimum cost. (0 has
less cost than 1.)

– Relating cost of λ to Λ. By definition of
Sv, for every v ∈ V , at most a δ mass of
the corresponding hyper-cube was assigned a
value not in Sv. Since λ(v) is the minimum
cost element from Sv, we pay at most a δwv

additional cost in λ for the vertex v. Thus,

opt(J ) ≤ val(J , λ) ≤ val(Dr
J ,x,Λ)+δ

∑
v

wv ≤ val(Dr
J ,x,Λ)+δ.

– Feasibility of λ. We now just have to prove
that λ is a feasible assignment. For every con-
straint hyper-edge e = (v1, v2, . . . , vk) ∈ E
in J , we will in fact show that Sv1 × Sv2 ×
· · · × Svk

⊆ Ae. This is where we appeal to
Mossel’s Invariance Principle which in turn re-
quires that x was a feasible-connected solu-
tion to LP(J ). This last part is also where
we differ from Raghavendra [Rag08]. We cru-
cially rely on the fact that the assignment sat-
isfies all the constraints. Fix an assignment
(s1, . . . , sk) ∈ Sv1 ×Sv2 × · · · ×Svk

. If Λ is suf-
ficiently pseudo-random, the probability that
we sample (a(1), . . . , a(k)) such that the event
Λ(vi, a

(i)) = si for every i; can be bounded up-
to an ε error for arbitrarily ε > 0 in terms
of the equivalent probability in the gaussian
world where it can be shown to be a function
dependent only on δ, k and Pe. When Pe is
connected, this can be shown to be a strictly
positive quantity. Choosing ε smaller than
the estimate implies that there is a constraint
((v1, a

(1)), . . . , (vk, a(k))) such that Λ(vi, a
(i)) =

si. Since every constraint was satisfied by Λ,
(s1, . . . sk) ∈ Ae.

Hence, informally we have the following

1. The cost of any dictator assignment is at-most
val(J , x) ≤ lp(J ).

2. The cost of any pseudo-random assignment is at-
least opt(J )− δ for any small enough constant δ.

In Section B we show how to compose the dictatorship
test gadget with Unique Games-instances in a standard
way to prove Theorem 1.1. Before that, we can quickly
deduce Corollary 1.1.

Deducing Corollary 1.1 from Theorem 1.1.
Let Π be a k-strict↑-CSP, J be an instance of Π and x any
feasible solution to LP(J ). Let δ > 0 be the parameter
in Corollary 1.1. Consider y = (1− δ) · x + δ · (1, . . . , 1).
For a hyper-edge e = (v1, . . . , vk) ∈ E(J ), let Pe be any
probability distribution on {0, 1} such that Eσ←Pe [σ] =
(xv1 , . . . , xvk

). Let Qe be the probability distribution on
{0, 1}k obtained from Pe in the following way:

– Pick σ from Pe.

– For each vi, if σvi = 0, let σ̃vi = 1 with probability
δ and σ̃vi = 0 with probability 1− δ, else if σvi = 1,
let σ̃vi = 1 with probability 1.

It follows that Eσ̃←Qe [σ̃vi ] = (1− δ) · xvi + δ. Moreover,
the support of Qe can be easily seen to upward closure
of the support of Pe and, hence, connected. Hence,
y = (1− δ) ·x+ δ is a feasible and connected solution for
LP(J ). val(J , y) = (1− δ) · val(J , x) + δ ≤ val(J , x) + δ
as

∑
v∈V (J ) wv = 1. If x is an optimal solution to LP(J ),

then val(J , x) = lp(J ).

1.5 Rest of the paper. In Section 2 we present the
algorithm ROUND and prove Theorem 1.2 and Corollary
1.2. This part should be easy to read. In Section 3 we
give a formal proof of the properties of the dictatorship
test gadget described in Section 1.4. In Section B we
give the details of composing our dictatorship test gadget
with Unique Games. In Section C we give the relevant
statements and details of our results in the q-ary world.
In Section A we show how our result applies to the
Concurrent Open Shop Problem.

2 The Rounding Algorithm, its Optimality and
LP-Rounding Gap based Inapproximability

In this section we describe our rounding algorithm
ROUND and prove that it achieves the integrality gap
unconditionally for covering and packing problems. We
prove Theorem 1.2 and Corollary 1.2. We keep the dis-
cussion here to covering problems. Completely analogous
results hold for packing problems.

The algorithm. Let I be an instance of a k-strict↑-
CSP Π. The algorithm will use a parameter ε. We assume
without loss of generality that 1/ε is an integer. We first
define a way of perturbing a solution x to LP(I) (Figure
1) such that the number of distinct values the variables
of x take is at-most 1/ε + 1.



Definition 2.1. Given an x such that 0 ≤ xu ≤ 1
for all u ∈ V, and a parameter ε > 0, define xε as
follows – for each u ∈ V , let ku be the integer satisfying
kuε < xu ≤ (ku + 1)ε, then xε

u
def= (ku + 1)ε (if xu = 0,

we define xε
u to be 0 as well).

In other words, xε is obtained from x by rounding up
each coordinate to the nearest integral multiple of ε (note
that this value will not exceed 1 because 1/ε is an integer).
First we observe the following simple fact.

Fact 2.1. Let x be a feasible solution to LP(I). Then

1. xε is feasible for LP(I).

2. val(I, xε) ≤ val(I, x) + ε.

Proof. We first prove the first statement. It is enough
to prove this for x′ where x′ differs from x on only
one coordinate u. Fix an edge e = (u1, . . . , uk) and
without loss of generality assume that u = u1. Let λσ

for σ ∈ Ae be the coefficients in the convex combination
of vectors in Ae which yield (xu1 , . . . , xuk

). Let A′e
be the set of σ for which σ1 = 0. For each σ ∈ A′e,
define m(σ) as vector which is same as σ except that
σ′1 = 1. Clearly, m(σ) ∈ Ae as well. Now consider the
vector

∑
σ/∈A′

e
λσσ +

∑
σ∈A′

e
λσm(σ). This is equal to

(1, xu2 , . . . , xuk
). Thus, we have shown that the vector

x′′ which is identical to x except that x′′u = 1 is feasible
to LP(I). Now note that x′ is a convex combination of
x and x′′. Hence, the claim follows. We now prove the
second statement. Since xε

u ≤ xu + ε, we get that

val(I, xε) =
∑

u

wuxε
u ≤

∑
u

wuxu+ε
∑

u

wu = val(I, x)+ε.

The algorithm ROUND is described in Figure 2. This
algorithm takes as input an instance I, a feasible so-
lution x to LP(I) and a parameter ε > 0. We denote
round(I, x, ε) as the value of the integral solution re-
turned by ROUND(I, x, ε). First, the algorithm perturbs
x to xε to make sure that the number of distinct val-
ues taken by the variables in xε is at-most m = O(1/ε),
which is to be thought of as a (large) constant. Thus,
the variables fall into m buckets and now, the rounding
algorithm goes over all possible assignments to these con-
stantly many buckets and outputs the assignment with
the least cost.

The optimality of the rounding algorithm. We
now prove Theorem 1.2. The proof is quite straight-
forward.

Definition 2.2. Consider an input (I, x, ε) to the al-
gorithm ROUND. We define a new instance Iε of Π
as follows: the set of variables V ε def= {0, . . . , 1/ε + 1}
and hyper-edge set Eε def= {(i1, . . . , ik) | (v1, . . . , vk) ∈

E and xε
uj

def= ij · ε for allj ∈ [k]}. We take the weight wi

of i ∈ V ε to be
∑

xε
v=iε wv and take constraint Ae′ for an

edge e′ ∈ Eε to be the same as Ae for the corresponding
edge in e ∈ E. Note that it follows from Fact 2.1-(1) that
xε is also a feasible solution for LP(Iε).

Proof. Consider an input (I, x, ε) to the algorithm
ROUND. Let Iε and xε be as in the definition above.
Then, since ROUND(I, x, ε) searches over all feasible as-
signments to variables in Iε, we get that round(I, x, ε) =
opt(Iε). Hence, we get

round(I, x, ε) = opt(Iε) ≤ γ∗(Π) · lp(Iε) ≤ γ∗(Π) · val(Iε, xε)
Fact 2.1−(2)

≤ γ∗(Π) · (val(I, x) + ε)
≤ γ∗(Π) · (opt(I) + ε).

LP-Rounding Gap based Inapproximability.
Now we see how Corollary 1.2 follows from Corollary
1.1 and the discussion on the rounding algorithm above
for k-strict↑-CSPs. Let J be the constant-sized instance,
and x a solution to LP(J ) on which we would like to base
the reduction of a k-strict↑-CSP Π and δ be a parameter.
We convert (J , x) to (J δ, xδ) as in Definitions 2.1 and
2.2 with δ instead of ε. We know from the description of
ROUND that opt(J δ) = round(J , x, δ). Moreover, from
Fact 2.1-(2), we get that val(J δ, xδ) ≤ val(J , x) + δ.
Moreover if xδ is not connected for LP(J δ), we can
connect it at an additional additive δ loss to get y as
in the proof of Corollary 1.1. Now we base our reduction
on (J δ, y) rather than (J , x) to obtain that it is Unique
Games-hard to distinguish between instances of Π with
value at-most val(J , x) + 2δ form those with value at-
least opt(J δ)− δ = round(J , x, δ)− δ.

3 Dictatorship Gadget

3.1 Preliminaries We will be interested in functions
on Ωr def= {0, 1}r along with a product probability
measure. For r = 1, there are functions (χ0 = 1, χ1) that
form an orthonormal basis for all functions f : {0, 1} →
[0, 1]. Tensoring these gives a natural orthonormal basis
{χS}{S⊆[r]} where each χS is a product of χ1 on the
coordinates i ∈ S. Thus, every function f : {0, 1}r →
[0, 1] can be written in a multilinear representation:

f =
∑

S⊆[r]

f̂(S)χS .

Definition 3.1. (Low Degree Influence) The
d-degree influence of the ith coordinate of f is given by:

Inf{<d}
i (f) def=

∑
|S|<d

f̂2(S).

Note that the definition of influence implicitly depends on
the probability measure on Ωr = {0, 1}r. In our setting,
the measure will be clear from the function we measure
the influence of.
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Input: An instance I = (V,E, {Ae}e∈E , {wv}v∈V ) of a problem in k-strict↑-CSP, a feasible solution x to
LP(I) and a parameter ε > 0. Let m := 1/ε.

Output: A labeling Λ : V 7→ {0, 1}.

1. Construct the solution xε.

2. For every z ∈ {0, 1}m, construct a 0-1 solution Λz as follows : Λz
u

def= zj if xε
u = jε.

3. Output the solution Λz?

which has the smallest objective value among all feasible solutions in {Λz|z ∈
{0, 1}m}.

Figure 2: Algorithm ROUND

Definition 3.2. (τ-pseudo-random function) A
function, f : {0, 1}r → [0, 1], is said to be τ -pseudo-
random if for d = d1/τe and every i, Inf{<d}

i (f) ≤ τ .

Note that we have relaxed the range of f to [0, 1] (from
{0, 1}). This is necessary for finally composing with
the Unique Games instance as we will average the
function defined on multiple hyper-cubes. We will need
the following well-known lemma in our composition with
a Unique Games instance. We refer the reader to
[KKMO07] for a proof of the lemma.

Lemma 3.1. For any f : {0, 1}r → [0, 1], there are at
most O( d

τ ) coordinates such that Inf{<d}
i (f) ≥ τ .

Invariance Principle. The space Ωk = {0, 1}k
along with a probability measure P is called a correlated
space. Such a space is said to be connected if every point
in the support can be reached from every other point by
a path in the support such that adjacent points in the
path change in exactly one coordinate of {0, 1}k.

Given a connected correlated space P on {0, 1}k,
we can naturally extend it to a correlated space, P (r)

on {0, 1}r × {0, 1}r × · · · × {0, 1}r by sampling indepen-
dently r times from P . Given pseudo-random functions,
f1, . . . , fk : {0, 1}r → [0, 1], the invariance principle of
Mossel stated below gives tight bounds on

E
(a(1),...,a(k))←P (r)

[f1(a(1)) · · · fk(a(k))]

in terms of properties of P and E[fi] alone (thus inde-
pendent of r).

Theorem 3.3. (Invariance Principle, Mossel [Mos08])
For every integer k, and numbers 0 < δ, α < 1/2, there
exists a Γ = Γ(k, δ, α) > 0 such that, for every ε > 0,
there exists a τ > 0, such that for all connected correlated
space P on {0, 1}k such that the minimum non-zero
probability of any event is α, and τ -pseudo-random

functions f1, . . . , fk : {0, 1}r → [0, 1] such that E[fi] ≥ δ,

E
(a(1),a(2),...,a(k))←P (r)

[Πifi(a(i))] + ε ≥ Γ(k, δ, α) > 0.

Note that the pseudo-randomness and the non-
triviality of measure of the functions are defined with re-
spect to the corresponding marginal measures induced by
P (r).

In our setting, the correlated space P will be obtained
from a connected LP solution x for a (finite sized)
instance J and hence α is a constant bounded away
from zero. k will be the arity of the constraints in the
strict− CSP. Thus, setting ε < Γ(k, δ, α)/2, we have the
following corollary that we will use.

Corollary 3.1. For every integer k, and numbers 0 <
δ, α < 1/2, there exists a τ > 0 such that, given a
connected correlated space P on {0, 1}k such that the
minimum probability of any event is α, and τ -pseudo-
random functions f1, . . . , fk : {0, 1}r → [0, 1] such that
E[fi] ≥ δ, E(a(1),a(2),...,a(k))←P (r) [Πifi(a(i))] > 0.

3.2 Dictatorship Gadget We quickly recall the dic-
tator gadget Dr

J ,x. Given a connected LP solution x
to J = (V,E), the gadget is on V × {0, 1}r. The
weight of a vertex (v, a) is wv times the xv-biased
measure of a. For every hyper-edge e = (v1, . . . , vk)
in E(J ), the solution x gives a probability distribu-
tion connected Pe whose support is in Ae. For every
(a(1), a(2), . . . , a(k)) with positive probability in P

(r)
e , add

a constraint ((v1, a
(1)), . . . , (vk, a(k))) with accepting set

Ae to Dr
J ,x.

Lemma 3.2. (Completeness) The dictator assign-
ments {Λi}ri=1, where Λi(v, (a1, . . . , ar)) = ai. satisfy
every constraint in Dr

J ,xand costs exactly val(x,J ).

Proof. For any edge e, the distribution Pe is sup-
ported on the accepting set Ae. Thus, for any con-
straint ((v1, a

(1)), . . . , (vk, a(k))) added using edge e,



(a(1)
j , . . . , a

(k)
j ) ∈ Ae for any j ∈ [r]. Thus, the dictator

assignments satisfy every constraint. Since we weight the
hyper-cube corresponding to v by the xv-biased measure,
the cost of a hyper-cube is exactly wvxv. Summing the
cost shows that the total cost is exactly val(x,J ).

Now, we delve into the proof of the harder part. Let δ
be the additional cost we can incur. Fix an assignment
to the dictatorship gadget, Λ : V × {0, 1}r → {0, 1}
that satisfies every constraint in Dr

J ,x. Denote by Λv

the restriction of Λ to the hyper-cube corresponding to
vertex v ∈ V . We will use the “shortform” Λ1

v for Λv

and Λ0
v for the function 1−Λv. We call an assignment Λ

τ -pseudo-random if for every v ∈ V and b ∈ {0, 1}, the
function Λb

v is τ -pseudo-random.
Decoding assignment to J . For every v ∈ V ,

define Sv
def= {b ∈ {0, 1}| P[Λv(a) = b] ≥ δ (the

expectation is over the corresponding biased measure).
Set λ(v) to be the element in Sv with minimum value.
In the binary world, this just means we set λ(v) = 0 if
0 ∈ SV and 1 otherwise.

Theorem 3.4. (Cost of λ) For λ, Λ, δ as above,
val(λ,J ) ≤ val(Λ,Dr

J ,x) + δ.

Proof. For every v ∈ V , at most a δ fraction of the
corresponding hyper-cube was assigned a value not in
Sv. Since λ(v) is the minimum value element from Sv,
we pay at most a δwv additional cost in λ for the vertex
v. Thus, opt(J ) ≤ val(J , λ) ≤ val(Dr

J ,x,Λ)+ δ
∑

v wv ≤
val(Dr

J ,x,Λ) + δ.

Theorem 3.5. (Feasibility of λ) For every δ > 0,
there exists τ > 0 such that if the assignment Λ is τ -
pseudo-random, then λ is feasible for J .

Proof. Let τ be the minimum value stipulated by Corol-
lary 3.1 over all the edges e ∈ E(J ). Note that for every
s ∈ Sv, E[Λs

v] ≥ δ by the definition of Sv.
For every constraint hyper-edge e =

(v1, v2, . . . , vk) ∈ E in J , we will in fact show
that Sv1 × Sv2 × · · · × Svk

⊆ Ae. Fix an assignment
(s1, . . . , sk) ∈ Sv1 × Sv2 × · · · × Svk

. Applying Corol-
lary 3.1 to the functions {Λsvi

vi }{1≤i≤k} says that there
is a constraint in Dr

J ,xwith acceptance set Ae that
was satisfied by the assignment (s1, . . . , sk). Thus,
(s1, . . . , sk) ∈ Ae.

Acknowledgments. The authors would like to
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A Concurrent Open Shop Scheduling

In the concurrent open shop model, we have a set of
machines M = {1, . . . ,m}, each for processing one
component and a set of jobs N = {1, . . . n}. Each
job needs a specific processing time on each of the M
machines specified by a matrix P = {pij}{i∈M,j∈N}. The
processing on the machines can be done in any order.
The machines can process one job at a time and the
objective is to minimize the sum of the completion times
of the jobs.

[MQS+09] obtain a 2-approximation for this prob-
lem via a linear programming relaxation and a rounding
procedure. They also show a simple 2− ε integrality gap
for their relaxation. Here, we will show a 2− ε inapprox-

imability assuming the Unique Games Conjecture.
strict-CSP formulation. We first formulate the

problem as a strict-CSP. For simplicity, let us restrict
our attention to the case where pijs are all 0 or 1; the
integrality gap of [MQS+09] has this property. Then, the
maximum completion time of any job is m. We have a
vertex for every job that takes an assignment between 1
and m denoting its completion time. For every machine,
we have a constraint on all the vertices that restricts the
assignment to set of acceptable configuration of comple-
tion times.

Remarks. As formulated, the arity of the con-
straints and the label set depend on the size of the in-
stance. However, this is not an issue as we will apply the
reduction to a finite sized instance (the size will depend
on ε). In the instance produced by the reduction, each
constraint will be on a finite (n) vertices and each ver-
tex will take a finite (m) set of values. The important
fact is that the strict-CSP produced by the reduction can
be reformulated as a concurrent open shop problem (by
setting the irrelevant entries of P to zero). As stated ear-
lier, we believe the framework should be useful in proving
inapproximability for many other problems as this.

Integrality Gap The gap instance, J , (con-
structed by [MQS+09]) is simply the r-uniform complete
hyper-graph on n vertices. Each hyper-edge is a machine
which takes takes one unit of time to process jobs corre-
sponding to the vertices it contains and zero otherwise.
[MQS+09] show that opt(J ) is at least r(n− r + 1).

We will now show a solution x = {xv}{v∈J} to
the linear programming relaxation for the q-ary case
(Figure 3 on page 13). Suppose, each xv is a point in
∆m such that the first r coordinates are 1/r and the rest
are 0. Every machine has non-zero processing time for
exactly r machines and hence a distribution over random
permutations of those r vertices is a convex combination
of accepting configurations. Thus, x = {xv} is a feasible
solution with cost n(r+1)

2 .
Connectedness Note that the support of the dis-

tribution is not connected as is (since every two permu-
tations change in at least two places). To get around
this, we “perturb” the distribution as follows: instead of
distribution over all permutations, we take the uniform
distribution over r tuples of {1, . . . , r + 1}r such that no
two elements are the same. It is easy to check that this
distribution has a connected support. The marginals in-
duce an xv whose first r+1 coordinates are 1/r+1 and the
rest are zero. The new cost, val(x,J ) = n(r+2)

2 . Thus,
choosing r, say

√
n and n large enough (depending on ε)

gives a 2 − ε gap for any ε > 0. This immediately gives
a 2− 2ε inapproximability for any ε > 0 using our main
theorem.



B Composing the Dictatorship Test Gadget
with Unique Games

In this section, we give the reduction from Unique
Games to a problem Π in the class k-strict-CSP. The
proof is standard and uses the dictatorship test gadget
in Section 3. Here, we highlight the important steps in
the proof. We first state the version of UGC on which
our results rely.

Definition B.1. (Unique Games) An instance U =
(G(U,A), [r], {πe}e∈A,wt) of Unique Games is defined
as follows: G = (U,A) is a bipartite graph with set of
vertices U = Uleft ∪ Uright and a set of edges A. For every
e = (v, w) ∈ E with v ∈ Uleft, w ∈ Uright, there is a bijection
πe : [r] 7→ [r], and a weight wt(e) ∈ R≥0. We assume that∑

e∈E wt(e) = 1. The goal is to assign one label to every
vertex of the graph from the set [r] which maximizes the
weight of the edges satisfied. A labeling Λ : U 7→ [r]
satisfies an edge e = (v, w), if Λ(w) = πe(Λ(v)).

The following notations will be used in the hardness
reduction and we state them here.

Notations.

1. For a vertex v ∈ U , Γ(v) is the set of edges incident
to v.

2. For a vertex v ∈ U , define pv
def=

∑
e∈Γ(v) wt(e). This

gives a probability distribution over the vertices in
Uleft (or Uright).

We now state the Strong UGC which was shown by Khot
and Regev [KR08] to be equivalent to the UGC [Kho02].

Conjecture B.2. (Strong UGC) For every pair of
constants η, ζ > 0, there exists a sufficiently large con-
stant r := r(η, ζ), such that it is NP-hard to distinguish
between the following cases for an instance
U = (G(U,A), [r], {πe}e∈A,wt) of Unique Games:

– YES: There is a labeling Λ and a set U0 ⊆ Uleft of
vertices,

∑
u∈U0

pu ≥ (1 − η), such that Λ satisfies
all edges incident to U0.

– NO: There is no labeling which satisfies a set of
edges of total weight value more than ζ.

Now we describe the reduction from Unique Games
instance to our problem. The reduction shall use the
instance dictatorship test gadget D def= Dr

J ,x of Π
described in Section 3.
Input Instance : The input to the reduction is
an instance U = (G(U,A), [r], {πe}e∈A,wt) of Unique
Games problem as defined in Definition B.1. Recall that
G is a bipartite graph with U = Uleft ∪Uright, and the edge
weights wt induce probability distribution pv over ver-
tices in Uleft.

Output Instance : The output instance F of Π is as
follows :

1 Vertex Set V (F) = Uleft × V (D), i.e., we place a
copy of V (D) at each vertex of Uleft. We shall index
a vertex by (u, b, y) where u ∈ Uleft and (b, y) ∈ V (D).

2 Vertex Weights The weight of a vertex (u, b, y) is

wF ((u, b, y)) = pu · wD((b, y)).

3 Hyper-edges For every hyper-edge e =(
(b1, y1), (b2, y2), . . . , (bk, yk)

)
in D, we add the

following edges to F – for each vertex u ∈ Uright and
all sets of k neighbors, u1, . . . , uk (with repetition)
of u, we add the hyper-edge(
(u1, b1, y1 ◦ πu

(u,u1)), . . . , (u
k, bk, yk ◦ πu

(u,uk))
)

to
F . The constraint for the these hyper-edges is the
same as that for e.

Completeness.

Theorem B.3. Suppose there is a labeling λ for U and
a subset U0 of Uleft,

∑
v∈U0

pv ≥ 1 − η, such that λ
satisfies all edges incident on U0. Then there is a subset
of vertices in F which satisfy all the constraints in F and
has weight at-most val(J , x) + η.

Proof. Consider the labeling λ. We now show how to
pick a set F of vertices from V (F) which satisfies all the
hyper-edge constraints. For each u ∈ U0, define Ju as
{(u, b, y) ∈ V (F) : yλu = 1}. For each u ∈ Uleft − U0,
define J ′u as the set {(u′, b′, y′) ∈ V (F) : u′ = u}. Now
define F = ∪u∈U0Ju

⋃
∪u∈Uleft−U0J

′
u.

We now show that F satisfies all hyper-edge con-
straints. Fix a hyper-edge e =

(
(b1, y1), . . . , (bk, yk)

)
in

D. Let u ∈ Uright and u1, . . . , uk be k neighbors of u.
Consider a corresponding edge f = ((u1, b1, y1 ◦ πu

(u,u1)),
. . . , (uk, bk, yk ◦ πu

(u,uk))) in F . Lemma 3.2 shows that
the set Ci = {(b, z) : zi = 1} satisfies the edge constraint
for e for any i. Let us pick i = λu. It will be enough
to prove that if (bl, yl) satisfies yl

i = 1, then the vertex
w = (ul, bl, yl ◦ πu

(u,ul)) is in F . But this is indeed the
case because if ul ∈ U0, then λu = πu

(u,ul)(λul). There-
fore, yl ◦ πu

(u,ul) has coordinate λul equal to 1. Hence,
w ∈ J l

u. If ul ∈ Uleft − U0, then we add w ∈ J ′ul trivially.
Thus, we have shown that F satsifies the edge constraint
for the hyper-edge f .

Let us now compute the weight of F . If u ∈ U0,
then Lemma 3.2 shows that the weight of Ju is at-most
pu · val(J , x). If u /∈ U0, then the weight of J ′u is pu.
Thus, the weight of F is at-most

val(J , x) ·
∑

u∈U0

pu +
∑

u/∈U0

pu ≤ val(J , x) + η.
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Soundness.

Theorem B.4. Suppose there is a subset of vertices F
which satisfies all the constraints in F and wF (F ) <
opt(J )− δ. Then there is a constant ζ(δ) such that there
is a labeling for U for which the set of satisfied edges has
weight at-least ζ(δ).

Proof. Consider a set F satisfying the conditions of the
theorem. Let IF (·) be the indicator function for F . For a
vertex u ∈ Uright, let N(u) ⊆ Uleft denote the neighbors of
u. Recall that every vertex of F can be written as (w, z),
where w ∈ Uleft and z ∈ V (D). Since the distribution
{pw}w∈Uleft

is same as first picking a vertex u ∈ Uright with
probability pu and then picking a random neighbor of u
(according to edge weights), we get

wF (F ) = Eu∈Uright
Ew∈N(u)Ez∈V (D)IF ((w, z ◦ πu

(u,w))),

where z is picked according to vertex weights in D. For
a vertex u ∈ Uright, let G(u) denote the quantity

E
w∈N(u)

E
z∈V (D)

I
F
((w, z ◦ πu

(u,w))).

We can therefore state the condition of the Theorem
as Eu∈Uright

G(u) < opt(J )−δ. Call a vertex u ∈ Uright good
if G(u) < opt(J ) − δ/2. A simple averaging argument
shows that the weight of good vertices is at-least δ/2.

Fix a good vertex u. Let D(u) be a copy of the
instance D. We construct a solution S(u) for D(u) as
follows : for each (b, y) ∈ V (D(u)), we pick a random
neighbor ui of u according to edge weights wt in the
instance U . If (ui, b, y ◦ πu

(u,ui)) ∈ F , we add (b, y) to
S(u).

Claim B.5. S(u) satisfies all the constraints in D(u).

Proof. Let e =
(
(b1, y1), . . . , (bk, yk)

)
be a hyper-edge

in D(u). Suppose while constructing the set S(u), we
decide to add (bi, yi) to this set based on whether
(ui, bi, yi ◦ πu

(u,ui)) ∈ F . Now observe that the instance
F has the hyper-edge(
(u1, b1, y1 ◦ πu

(u,u1)), . . . , (u
k, bk, yk ◦ πu

(u,uk))
)

. Since
this hyper-edge is satisfied by F , the claim follows.

Note that E[S(u)] is exactly G(u), where the expec-
tation is over the choice of random neighbors of u. For
each vertex w ∈ Uleft and b ∈ V , define a 0-1 function
fF,w

b on {0, 1}r as follows –

fF,w
b (y) def=

{
1 if (w, b, y) /∈ F
0 otherwise

Note that fF,w
b is the indicator function for complement

of F for the set of vertices {(w, b, y) : y ∈ {0, 1}r}.

For the vertex u, we now define the function fF,u
b (y)

which is the average of the corresponding functions for
the neighbours of u.

fF,u
b (y) def= E

w∈N(u)
fF,w

b

(
y ◦ πu

(u,w)

)
.

Observe that fF,u
b (y) = P[(u, b, y) /∈ S(u)], where the

probability is over the choice of S(u). The following is
identical to the soundness proof in the analysis of the
dictatorship test gadget. (Stated here in the contra-
positive form.)

Lemma B.1. There exist values b ∈ V, i ∈ [r] and
constants d, τ depending on δ and k only such that
Inf{<d}

i (fF,u
b ) ≥ τ.

Using an application of Jensen’s Lemma, it follows that
for a good vertex u ∈ Uleft there is an i ∈ [r] such that for
at least τ/2 fraction of its neighbors

Inf{<d}
πu
(u,w)(i)

fF,w
b ≥ τ/2.

It follows from Lemma 3.1 that the number of such influ-
ential variables is at-most O(2d/τ). Hence, we can satisfy
at-least δ/2 · τ/2 · τ/2d fraction of the Unique Games-
instance U . This completes the proof this theorem.

Thus, to appeal to the Strong-UGC, we need to pick
η ≤ δ, where δ is as in the statement of Theorem 1.1
and ζ < ζ(δ) and conclude the proof of Theorem 1.1.

C Extension to q-ary Alphabet

In this section, we show how our results extended to the
case when variables take values from a larger alphabet
[q] = {0, . . . , q−1}. We first need some definitions in the
q-ary world.

C.1 Preliminaries. Given x, y ∈ [q]k, we say that
y � x, if, yi ≥ xi for all i, 1 ≤ i ≤ k. A set A ⊆ [q]k

is said to be upward monotone if for every x ∈ A, and
every y such that y � x, it follows that y ∈ A. For sake
of brevity, we assume that the alphabet size, q, is implicit
in the definition below.

Definition C.1. (The class k-strict-CSP) Let k be a
positive integer. An instance of type k-strict-CSP is given
by

I = (V,E, {Ae}{e∈E}, {wv}v∈V ) where :

– V = {v1, v2, . . . , vn} denotes a set of vari-
ables/vertices taking values over [q] along with non-
negative weights such that

∑
v∈V wv = 1.

– E denotes a collection of hyper-edges, each on at
most k vertices. For each hyper-edge e ∈ E, there is
a constraint Ae.



The objective is to find an assignment Λ : V 7→ [q] for
the vertices in V that minimizes

∑
v∈V wvΛ(v) such that

for each e = (v1, v2, . . . , vl), (Λ(v1), . . . ,Λ(vl)) ∈ Ae. A
k-strict↑-CSP is one where every Ae is upward monotone
while in a k-strict↓-CSP every Ae is downward monotone.
We often refer to a k-strict↑-CSP as a covering problem
and a k-strict↓-CSP as a packing problem. k-will be
assumed to be constant throughout.

LPrelaxation We now give an LPrelaxation for a
problem in k-strict-CSP. The following definition allows
us to map values in [q] to vectors whose coordinates lie
between 0 and 1.

Definition C.2. Let ∆q denote the set of vectors {
(z0, . . . , zq−1) : zi ≥ 0 for all i ∈ [q] and

∑
i∈[q] zi = 1

}. There is a natural mapping Ψq : ∆q 7→ [q] defined as
Ψq((z0, . . . , zq−1)) =

∑
i∈[q] zi · i. Let ei, for i ∈ [q], be

the unit vector in Rq which has value 1 at coordinate i,
and 0 elsewhere. It is easy to check that ∆q is the convex
hull of the vectors {ei : i ∈ [q]}. It follows that a vector
x ∈ ∆q can also be thought of as a probability distribution
over [q].

Definition C.3. Given an integer i ∈ [q], define Φq(i)
as the vector ei ∈ Rq. Given a sequence σ ∈ [q]k, for
some parameter k, define Φq(σ) = (Φq(σ1), . . . ,Φq(σk)).
Note that Φq(σ) is a vector in Rq·k.

The LP relaxation for an instance I of a problem Π ∈
k-strict-CSP is described in Figure 3.

lp(I) def= minimize
∑
v∈V

wvΨq(xv)

(C.1)

subject to ∀e=(v1,v2,...,vk)∈E (xv1 , xv2 , . . . , xvk
) ∈ ConvexHull(Ae)

(C.2)

∀v∈V xv ∈ ∆q

(C.3)

Figure 3: LPfor k-strict-CSP

Here, ConvexHull(Ae) is the convex hull of the set
{Φq(σ) : σ is a satisfying assignment for Ae}. It is easy
to check that this indeed is a linear program. Given a
solution x to LP(I), let val(I, x) denote the objective
function value for x. Let opt(I) denote the value of the
optimal integral solution for I.

C.2 Results The following are equivalents of Theo-
rem 1.1, Corollary 1.1, Theorem 1.2 and Corollary 1.2
respectively. We skip the proofs and just highlight the
important points in this section.

Theorem C.4. (LP-integrality gap based Inapproximability)
Let Π be a k-strict-CSP for k = O(1), and J be
a constant-sized instance of Π. Let x be a feasible-
connected solution for LP(J ). Then for every δ > 0,
it is Unique Games-hard to distinguish between the
following instances I of Π

– YES. opt(I) ≤ val(J , x) + δ

– NO. opt(I) ≥ opt(J )− δ.

Hence, if it is the case that x is also an optimal solution
to LP(J ), then, assuming the UGC, the LP captures
the approximability of the problem Π. For k-strict↑-CSP
and k-strict↓-CSP we can easily convert any optimal LP
solution to a connected one with at-most a δ loss in the
LP value, for arbitrarily small constant δ. Hence, we get
the following important corollary which proves that the
LP of Figure 3 captures precisely the approximability of
all covering and packing problems with k = O(1).

Corollary C.1. (Optimal Inapproximability for Covering and Packing Problems)
Let Π be a k-strict↑-CSP or a k-strict↓-CSP for k = O(1),
and J be a constant-sized instance of Π. Then for every
δ > 0, it is Unique Games-hard to distinguish between
the following instances I of Π

– YES. opt(I) ≤ lp(J ) + δ

– NO. opt(I) ≥ opt(J )− δ.

Note that the form makes sense for both covering and
packing problems if one notices that in the case of pack-
ing problems both the LP value and the optimal value are
negative. We will, henceforth, keep the discussion just to
covering problems. All results can be directly translated
in the packing world and we omit the details.

Rounding for covering-packing problems. For
a k-strict↑-CSP Π we give a rounding algorithm called
ROUNDq (see Figure 4) for the LPof Figure 3. For an
instance I of Π, a solution x to LP(I), and a parameter
ε > 0, which should be ignored for this discussion, let
roundq(I, x, ε) denote the value of the integral solution
that ROUNDq produces for I starting from the LP
solution x. We show that ROUNDq (unconditionally)
achieves an approximation ratio equal to the integrality
gap, up to an arbitrarily small additive constant, of the
LPrelaxation.

Theorem C.5. (Rounding achieves Integrality Gap)
Let γ∗(Π) be the worst-case approximation ratio (in-
tegrality gap) achieved by the LP relaxation for the
problem Π, i.e., γ∗(Π) def= supJ (opt(J )/lp(J )), where
the supremum is taken over all instances J of Π. Then,
for any given instance I, optimal LPsolution x? and
ε > 0, roundq(I, x?, ε) ≤ γ∗(Π) · (opt(I) + Oq(ε)).
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For covering and packing problems, we show how to start
with an instance J of Π and a solution x to LP(J ), ,
and give a Unique Games-based reduction for Π whose
soundness and completeness are roughly val(J , x) and
roundq(J , x, ε) respectively.

Corollary C.2. (LP-rounding gap based Inapproximability)
Let Π be a k-strict↑-CSP for k = O(1), and J be a
constant-sized instance of Π, and x a solution to LP(J ),
Then for every δ > 0, it is Unique Games-hard to
distinguish instances I of Π with optimal less than
val(J , x) + Oq(δ) from those with optimal more than
roundq(J , x, δ)− Ωq(δ).

The reduction in this theorem is slightly different from
that in the corollary. This theorem is useful compared
to the in the case when it is easier to come up with a
LP-rounding gap rather than an integrality gap.

The Rounding Algorithm. We now describe the
rounding algorithm for a k-strict↑-CSP. The algorithm
uses a perturbation parameter ε. We first argue that we
can perturb a feasible solution to LP(I) such that the
number of distinct (vector) values taken by the variables
are small. This perturbation will not affect the objective
value significantly. We shall assume without loss of
generality that 1/ε is an integer.

Definition C.6. For a parameter ε > 0, define
∆ε,i

q , 0 ≤ i < q, as the set of points z ∈ ∆q satisfying
the following conditions – (1) z0, . . . , zi−1 are multiples
of ε, and (2) zi+1 = · · · = zq−1 = 0. Observe that zi

must equal 1−
∑i−1

j=0 zj. Let ∆ε
q denote

⋃
i ∆ε,i

q .

It is easy to check that |∆ε
q| is at most 1/(ε+1)q. We now

show how a vector x ∈ ∆q can be perturbed to a vector
in ∆ε

q.

Definition C.7. Let a ∈ [0, 1] be a real number. Define
aε as the smallest multiple of ε greater than or equal to
a. Consider x ∈ ∆q. Let i be the largest integer such
that xε

0 + · · ·+xε
i−1 ≤ 1. Then, define xε to be the vector

(xε
0, . . . , x

ε
i−1, 1−

∑i−1
j=0 xε

j , 0, . . . , 0) ∈ ∆ε,i
q .

The rounding algorithm is described in Figure 4. Let
roundq(I, x, ε) denote the objective value of the solution
returned by ROUNDq(I, x, ε).
Since mq is O(1/εq), the running time of ROUNDq is
O(poly(nk, 1/εq)). We state the following fact without
proof.

Fact C.1. Let x be a feasible solution to LP(I). Then

1. xε is feasible for LP(I).

2. val(I, xε) ≤ val(I, x) + ε · q2.

C.3 Dictatorship Test Gadget In this section we
outline the proof of Theorem C.4. For this discussion,
we restrict ourselves to the dictatorship test gadget and
the case that wv ≥ 0 and

∑
v wv = 1. First, we need

some preliminaries.

Definition C.8. Let x be a feasible solution to LP(J ).
For a hyper-edge e, let x|e be the vector obtained by
restricting x to only those vertices which belong to e.
Pe shall denote the probability distribution over vectors
in ∆k

q corresponding to elements of Ae that arises from
the fact that x|e ∈ ConvexHull(Ae). Given a vector
p ∈ ∆q, let µp be the corresponding distribution over [q]
(as described in Definition C.2).

Consider an instance J = (V,E, {Ae}e∈E , {wv}v∈V )
of a k-strict-CSP problem Π, and a feasible-connected
solution x to LP(J ). As is key in basing hardness
results on UGC, we will first construct, for an integer
r ≥ 1, a bigger instance (dictatorship test gadget) Dr

J ,x

of Π and then compose it in a standard way with a
Unique Games instance. For this discussion, we restrict
ourselves to the dictatorship test gadget. The instance
Dr
J ,x will have the following components:

– Vertex Set. The vertex set of Dr
J ,x is V × [q]r.

– Vertex Weights. The weight of a vertex
(v, (a1, . . . , ar)) will be wv · µxv ((a1, . . . , ak)).

– Edges and Constraints. Recall that for every
hyper-edge e = (v1, . . . , vk) in E(J ), from the so-
lution x, we can read off a probability distribution
Pe on [q]k. Moreover the constraint in the LP re-
quires that this is distribution is supported on Ae,
and the hypothesis requires that this support is con-
nected. For every e = (v1, . . . , vk) ∈ E(J ) and every
a(1), . . . , a(k) ∈ [q]r, there will be an hyper-edge in
Dr
J ,x between the vertices ((v1, a

(1)), . . . , (vk, a(k)))
with the constraint Ae.

We will also associate a weight with this edge which
is

∏r
i=1 Pe(a

(1)
i , . . . , a

(k)
i ). We will not keep any

hyper-edges with 0 weight. These weights will be
useful for the analysis and will not show up in the
actual instance produced by the reduction.

Influence in the q-ary world We will be inter-
ested in functions on Ωr = [q]r along with a product
probability measure. As in the binary case, for r = 1,
there are functions (χ0 = 1, χ1, χq−1) that form an or-
thonormal basis for all functions f : [q]→ [0, 1] which can
be tensored to obtain a orthonormal basis {χS}{S∈[q]r}.
Thus, every function f : [q]r → [0, 1] can be written in a
multilinear representation:

f =
∑

S⊆[r]

f̂(S)χS .



Input: An instance I = (V,E, {Ae}e∈E , {wv}v∈V ) of a problem in k-strict↑-CSP, a feasible solution x to
LP(I) and a parameter ε > 0. Let mq denote |∆ε

q|.

Output: A labeling Λ : V 7→ [q].

1. Construct the solution xε.

2. Let I denote the set ∆ε
q arranged in some order.

3. For every z ∈ [q]mq , construct an integral solution Λz as follows : Λz
u

def= zj if xε
u = Ij .

4. Output the solution Λz∗ which has the smallest objective value among all feasible solutions in {Λz|z ∈ [q]mq}.

Figure 4: Algorithm ROUNDq

The definition of influence and pseudo-randomness are
exactly as in the binary case.

Definition C.9. (Low Degree Influence) The d-
degree influence of the ith coordinate of f : [q]r → [0, 1]
is given by:

Inf{<d}
i (f) def=

∑
|S|<d

f̂2(S).

Note that the definition of influence implicitly depends
on the probability measure on Ωr = [q]r. In our setting,
the measure will be clear from the function we measure
the influence of.

Definition C.10. (τ-pseudo-random function) A
function, f : [q]r → [0, 1], is said to be τ -pseudo-random
if for d = d1/τe and every i, Inf{<d}

i (f) ≤ τ .

Invariance Principle The space Ωk = [q]k along
with a probability measure P is called a correlated space.
Two points (x1, . . . , xk), (y1, . . . , yk) ∈ [q]k are said to
be connected by an edge if they differ in at-most one
position. A subset S ⊆ [q]k is said to be connected if
the subgraph induced by the vertices of S along with the
edges is connected. For an instance I of a k-strict-CSP,
given a solution x to LP(I), x-is said to be connected
if for every edge e = (v1, . . . , vl), (xv1 , . . . , xvl

) can be
written as a convex combination of points in Ae such
that the support of this convex combination is connected.
As in the binary world, we have the following powerful
theorem of Mossel.

Theorem C.11. (Invariance Principle, Mossel [Mos08])
For every integer k, q, and numbers 0 < δ, α < 1/2,
there exists a Γ = Γ(k, q, δ, α) > 0 such that, for every
ε > 0, there exists a τ > 0, such that for all connected
correlated space P on [q]k such that the minimum

probability of any event is α, and τ -pseudo-random
functions f1, . . . , fk such that E[fi] ≥ δ.

E
(a(1),a(2),...,a(k))←P (r)

[Πifi(a(i))] + ε ≥ Γ(k, q, δ, α) > 0.

Note that the pseudo-randomness and non-triviality of
measure of the functions are defined with respect to the
corresponding marginal measures induced by P (r).

As before, we set ε < Γ(k, q, δ, α)/2, obtaining the
following corollary.

Corollary C.3. For every integer k, q, and numbers
0 < δ, α < 1/2, there exists a τ > 0 such that, given
a connected correlated space P on [q]k such that the
minimum probability of any event is α, and τ -pseudo-
random functions f1, . . . , fk : [q]r → [0, 1] such that
E[fi] ≥ δ,

E
(a(1),a(2),...,a(k))←P (r)

[Πifi(a(i))] > 0.

Definition C.12. An assignment f : V × [q]r 7→ [q] is
said to be a dictator if there exists an j ∈ [r] such that
f(v, z) = zj.

Given v ∈ V , let fv denote the restriction of f to (v, [q]r).
Given p ∈ ∆q, let z←µr

p denote a string in [q]r drawn
from the product distribution µr

p. We can think of an
assignment fv : [q]r 7→ [q] also as a a function from
[q]r to ∆q (where the value i ∈ [q] gets associated with
ei ∈ ∆q). Further, let f

(1)
v , f

(2)
v , . . . , f

(q)
v : [q]r → [0, 1]

denote the q-components of q. Thus,
∑

i f
(i)
v (x) = 1 for

every x ∈ [q]r.

Definition C.13. Given τ, d ≥ 0, an assignment f :
V × [q]r 7→ ∆q is said to be (τ, d)-pseudo-random if
for every v ∈ V , every i ∈ [q] and every j ∈ [r],
Inf≤d

j (f (i)
v ) ≤ τ .
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Now we state the completeness and soundness properties
of the dictatorship function. The proof of the theorems
is very similar to the proofs in the binary case and hence
omitted. Let D def= Dr

J ,x.

Lemma C.1. (Completeness) Let f : V × [q]r 7→ [q]
be a dictator. Then f satisfies all the constraints of D
and

∑
v∈V (D) wD(v) · f(v) ≤ val(J , x).

Theorem C.14. (Soundness) For every small enough
δ > 0, there exists a d, τ such that if f : V × [q]r 7→ [q]
satisfies all the constraints of D and is (τ, d)-pseudo-
random, then∑

v∈V (D)

wD(v) ·Ψqf((v, a)) ≥ optq(J )− Ωq(δ).
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