
On Partitioning Graphs via Single Commodity Flows

Lorenzo Orecchia
∗

University of California
Berkeley, USA

orecchia@cs.berkeley.edu

Leonard J. SchulmanT

California Institute of
Technology

Pasadena, USA
schulman@caltech.edu

Umesh V. Vazirani
University of California

Berkeley, USA
vazirani@cs.berkeley.edu

Nisheeth K. Vishnoi ‡
IBM India Research Lab

New Delhi, India
nisheeth.vishnoi@gmail.com

ABSTRACT
In this paper we present two combinatorial algorithms for
Sparsest Cut which achieve an O(log n) approximation

factor and run in time eO(m + n1.5). This is achieved in the
framework proposed in [Khandekar et al., 2006] to partition
graphs quickly using only poly-logarithmically many single-
commodity max-flow computations while, at the same time,
keeping the approximation factor O(log2 n). Complementing
our algorithmic results, we prove that, in this framework of
reducing the Sparsest Cut problem to single-commodity
flows, one cannot get an approximation factor better than
Ω(
√

log n).

Categories and Subject Descriptors
F.22 [Analysis of Algorithms and Problem Complex-
ity]: Non-numerical Algorithms and Problems

General Terms
Algorithms, Theory

Keywords
Edge-separator, graph partitioning, single-commmodity max-
flow, sparsest cut, spectral method, matrix exponential

1. INTRODUCTION
The problem. The Sparsest Cut problem is the follow-
ing: Given a graph G = (V, E), find a partition (S, S) of

TThis work is supported by NSA Award H98230-06-1-0074,
NSF Award CCF-0515342.
‡Part of this work was done when author was visiting UC
Berkeley and is supported by ??
∗All authors were supported by NSF Grant 0635401.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’08, May 17–20, 2008, Victoria, British Columbia, Canada.
Copyright 2008 ACM 978-1-60558-047-0/08/05 ...$5.00.

the vertices which has the minimum edge expansion. The

edge expansion of a cut (S, S) is defined to be |E(S,S)|
min{|S|,|S|} .

Interest in this problem derives both from its numerous prac-
tical applications such as image segmentation, VLSI layout
and clustering (see the survey [Shmoys, 1996]), and from
its theoretical connections to spectral methods, linear/semi-
definite programming, measure concentration and metric
embeddings. In this paper, we provide fast algorithms for
this problem using the framework proposed in [Khandekar
et al., 2006]. This framework reduces the NP-hard Sparsest
Cut problem to the computation of a poly-logarithmic num-
ber of single-commodity max-flows while, at the same time,
keeping the approximation factor poly-logarithmic. We also
prove lower bounds on the best approximation factor that
can be obtained in this framework.
The cut-matching game. At the heart of the results
of [Khandekar et al., 2006] lies the following two person
game which starts with an empty graph on n vertices: in
each round, the cut player chooses a bisection (S, S) of the
vertices and in response the matching player chooses a per-
fect matching that pairs each vertex in S with a unique
vertex in S. The game ends when the (multi)-graph consist-
ing of the multi-set union of the perfect matchings has edge
edge expansion at least 1, i.e., every subset T of at most n/2
vertices has at least |T | edges leaving it. The goal of the cut
player is to minimize the number of rounds of play, while
the matching player tries to draw the game out for as many
rounds as possible. [Khandekar et al., 2006] show that any
strategy for the cut player that guarantees termination in t
rounds yields a O(t)-approximation algorithm for Sparsest
Cut. Moreover the resulting algorithm runs in O(t(Tc+Tf))
where Tc is the time to implement the cut player and Tf is
the running time of a single commodity max-flow computa-
tion. They also give a quasi-linear time implementation of a
cut player strategy that achieves t = O(log2 n), thereby ob-
taining an O(log2 n) approximation algorithm for Sparsest
Cut whose running time is dominated by O(log2 n) single
commodity max-flow computations. Subsequently, [Arora
and Kale, 2007] gave an algorithm that achieved an approx-
imation ratio of O(log n) while still running in time domi-
nated by poly-logarithmic single commodity max-flow com-
putations. Their algorithm did not rely on the cut-matching
game, but worked in a more general framework for designing
primal-dual algorithms for SDPs.

This work. In this paper we investigate what is the best
approximation factor for Sparsest Cut achievable in this
framework of [Khandekar et al., 2006]. We start by observ-
ing that rather than the number of rounds, a better measure
of performance in the cut-matching game is the ratio of the
number of rounds to the expansion of the union of match-
ings produced. This quantity, which we refer to as expan-
sion ratio, upper bounds the approximation ratio achieved
by the algorithm. Thus, rather than reducing the number
of rounds, we can increase the expansion of the union of
matchings. Indeed, we cannot hope to reduce the num-
ber of rounds, because it can be shown that the bound of
Ω(1) on the expansion in [Khandekar et al., 2006] is tight,
and therefore, the approximation ratio achieved by their al-
gorithm is equal to the number of rounds and, therefore,
Ω(log2 n). We give two simple modifications of the cut-
finding procedure of [Khandekar et al., 2006] that result
in an expansion of Ω(log n), while maintaining number of
rounds equal to O(log2 n). These result in simple and easy
to analyze combinatorial algorithms for Sparsest Cut that
match the Leighton-Rao approximation ratio of O(log n),
while using single-commodity max-flows rather than multi-
commodity flows. In theoretical terms, single-commodity
max-flows can be computed in time roughly O(m+ n1.5) by
a result of [Goldberg and Rao, 1998]. The central motivation
in [Khandekar et al., 2006] was to design fast algorithms with
provable approximation guarantees for Sparsest Cut that
could compete with practical heuristics such as METIS in
running time. They also noted certain similarities of the re-
sulting algorithm with METIS. The algorithms in this paper
add to this mix, both in terms of the potential for practical
improvements over METIS, as well as a rigorous justification
of METIS-like heuristics. DELETED NEXT:

The cut-finding procedures we propose are quite similar to
those of [Khandekar et al., 2006]. They perform a random
walk on the graph of matchings, starting from a suitably
random initial distribution, to find the bisection to present
next to the cut player. The difference lies in the kind of
random walk. In [Khandekar et al., 2006] the walk mixed
along each matching in turn (which we refer to as a round
robin walk), whereas our walks more closely resemble the
natural random walk on the graph of matchings and allow
for more effective bounds on the spectral gap. The analysis
of the resulting cut-finding procedures is similar to that of
[Khandekar et al., 2006] in that it makes use of a potential
function related to the mixing of the walk on the current
union of matchings: However, bounding the change in po-
tential function is now much trickier. The advantage is that
we can exploit the direct connection of the mixing of the
walk to the spectral gap of the graph.

Turning to lower bounds, we prove an Ω(
√

log n) bound on
the rounds to expansion ratio for the cut-matching game. It
follows that this framework cannot be used to design an al-
gorithm for Sparsest Cut with approximation ratio better
than Ω(

√
log n). By contrast, the best lower bound known

for the approach in [Arora et al., 2004b] is Ω(log log n) as
proved in [Devanur et al., 2006] via a involved and technical
argument. This suggests that the cut-matching game pro-
vides an attractive, concrete framework in which to study
the complexity of finding sparse cuts. An intruiging question
here is whether this lower bound is tight and whether there
is an efficient cut player strategy that achieves a O(

√
log n)

bound. It is encouraging to note that the algorithm of [Arora

et al., 2004b], which achieves a O(
√

log n) approximation,
also outputs, as a certificate of expansion, a union of large
matchings.

The proof of the lower bound relies on the following com-
binatorial statement that is related to the isoperimetric in-
equality for the hypercube: Given a bisection of the vertices
of the d-dimensional hypercube, there is always a pairing of
vertices between the two sides such that the average Ham-
ming distance between paired vertices is at most O(

√
d). As

far as we know, this natural property has not been studied,
and is worth exploring further.

Finally, we mention that a combinatorial study of the cut-
matching game was done in [Khandekar et al., 2007], where
it was shown that there is a cut-finding procedure, albeit,
not known to be efficient, which would terminate in O(log n)
rounds. In the same report, the connection between the
approach of [Arora et al., 2004b] and [Khandekar et al., 2006]
was made explicit and it was shown that any integrality gap,
gap(n) example for the approach of [Arora et al., 2004b] can
be used to prove a gap(n) lower bound on the number of
rounds required by any cut-finding procedure.
Organization. The two cut-finding procedures appear in
Section 3 and the lower bound appears in Section 4. Proofs
of the more technical lemmata are deferred to the Appendix.
In the remaining of this paper, we denote by φ(G) the edge
expansion of a graph G, i.e., the minimum edge expansion
over all cuts of G. We start by reviewing the framework of
[Khandekar et al., 2006].

2. REVIEW OF KRV FRAMEWORK
Certifying expansion. One way to certify that a graph G
has no sparse cut is to appeal to the expander flow formal-
ism of [Arora et al., 2004b]. This consists of constructing
a graph H of known expansion on n vertices and embed-
ding it as a flow in G such that the flow routed through
each edge in G is at most unit. Then the expansion of H
is a lower bound on the expansion of G. Indeed, the semi-
nal result of [Leighton and Rao, 1999] may be viewed as a
multi-commodity flow based algorithm to embed the scaled
complete graph α

n log n
Kn in any n-vertex graph G or pro-

duce a cut in G of expansion at most α. The expander flow
formulation of the O(

√
log n) factor approximation in [Arora

et al., 2004b] established that for every graph G, either one
can find, using an SDP, a cut of expansion at most α, or there
is an Ω(α/

√
log n) expander H(G) that one can embed as a

flow in it. An efficient implementation of this algorithm was
given by [Arora et al., 2004a], showing how to combinatori-
ally solve this SDP in time comparable to that of computing
multi-commodity flows.
Converting a cut player strategy to a Sparsest Cut
algorithm. [Khandekar et al., 2006] show that a cut player
strategy producing an expander in t(n) rounds can be con-
verted into a O(t(n)) approximation algorithm using single-
commodity max-flows. Here is how: Given a bisection (St, St),
the matching player performs a single-commodity max-flow
computation in an attempt to route a perfect matching be-
tween St and St with minimum congestion ct and outputs
the matching and the min-cut obtained. It is not hard to
show that the expansion of the min-cut is at most 1

ct
. Af-

ter t(n) rounds, the algorithm outputs the worst such cut,
which has expansion 1

cmax
. At this point, the union of the

matchings returned by the matching player has constant ex-
pansion and can be embedded in G with congestion equal to

P
ct ≤ cmaxt(n). This implies that G must have expansion

at least Ω
�

1
cmaxt(n)

�
. Hence, the cut that was output is

within O(t(n)) of the optimal. Moreover, the running time
of the algorithm is O(t(n)(Tc + Tf)), where Tc is the time
required by the cut player to compute his response in each
round, and Tf is the time for a single commodity max-flow
computation.
The cut-finding procedure CKRV. Let us recall the cut
player strategy CKRV of [Khandekar et al., 2006]. Given a
set of perfect matchings (M1, . . . , Mt) on n vertices, such
that their union is not an expander yet, the goal of CKRV

is to find a non-expanding cut. The procedure starts with
a random bisection on n vertices, which can be thought of
as assigning to a randomly chosen set of half of the vertices
a “charge” of 1 and to the other half a charge of −1. It
then iterates through each matching in turn to “mix” the
charge across the matchings. At time j, CKRV averages the
charge across the edges of Mj . The total charge is always
zero. More precisely, after j−1 steps, let uj−1 be the vector
whose i-th coordinate indicates the charge on vertex i. Then

uj :=
�

I
2

+
Mj

2

�
uj−1. After all the t matchings have been

processed, CKRV sorts the vertices by the charge remaining
on them, indicated by the coordinates of vector ut, and then
outputs a bisection whose two parts are the first half and the
second half of vertices in this order respectively.

Intuitively, the reason this procedure finds a bisection con-
taining a non-expanding cut is the following: Suppose (S, S)
is a cut across which there are very few edges, say none.
Then the averaging procedure using matching edges never
transfers any charge across this cut. Also, the initial random
bisection will create a Θ(

√
n) charge differential between S

and S, i.e, for all j, |
P

i∈S uj(i) −
P

i∈S uj(i)| = Θ(
√

n).
Hence, in the bisection output after mixing and then sort-
ing based on ut, the two sides of the bisection will have non-
trivial correlations with S and S respectively. Thus, the
matching added in the next iteration will add some edges
across the sparse cut (S, S). It is remarkable that strategy
CKRV, after O(log2 n) of such simplistic steps, is able to en-
sure that there is no non-expanding cut with constant prob-
ability.

3. UPPER BOUNDS

3.1 Preliminaries
Graphs, Random Walks and Eigenvalues. For a sym-
metric matrix M ∈ Rn×n, let L(M) ∈ Rn×n be its combi-
natorial Laplacian which is defined as L(M)ii :=

P
j 6=i Mij ,

and L(M)ij := −Mij if i 6= j. The eigenvalues of a sym-
metric matrix M ∈ Rn×n, are denoted by λ1(M) ≤ · · · ≤
λn(M). In the following, we identify a graph G with its
adjacency matrix and let L(G) denote the combinatorial
Laplacian of the graph G. Note that L(G) is symmetric
and positive semi-definite. For all graphs G, we then have
λ1(L(G)) = 0, with corresponding eigenvector ~1. The fol-
lowing is a fundamental relation between λ2(L(G)) and the
expansion of a d-regular graph [Chung, 1997].

Theorem 3.1 (Cheeger’s Bound). For an undirected
d-regular graph G:

φ(G) ≥ 1

2
λ2(L(G))

All graphs considered in this paper are undirected, they may
have parallel edges but have no loops, and are assumed to
have an even number of vertices. Some of the graphs will
have weighted edges. We extend the definition of expansion
to these edge-weighted graphs by replacing the cardinality of
the cut with the sum of the weights of the edges in the cut.
It is also possible to show that Cheeger’s Bound holds in the
same form for such weighted graphs, if we let the degree of
a vertex be the sum of the weights of the edges incident to
it.

In the remainder of this section, we describe and analyze
our two new cut player strategies. Before doing so, let us un-
derstand why the procedure CKRV described in the previous
section cannot guarantee edge expansion more than O(1) at
termination. Suppose the union of matchings (M1, . . . , Mt),
have no edges crossing some bisection (S, S). Now suppose
that the round-robin walk on matchings M1, . . . , Mt mixes
the charges on each side of (S, S) perfectly (or very well).
The next cut selected by CKRV is necessarily (S, S). More-
over, presented with any perfect matching crossing CKRV,
when CKRV mixes across that perfect matching, the charge
at each vertex becomes zero, and CKRV will terminate. So
at termination, the edge expansion across bisection (S, S) is
1.

3.2 The Cut-Finding Procedure Cnat

After j rounds of the cut-matching game, we have seen
matchings M1, . . . , Mj and the cut player must pick a bisec-
tion of the graph Gj :=

Pj
i=1 Mi.

Ideally we would like to analyze the following cut player
strategy:

• Pick the initial vector of charges u as in the previously
described cut finding strategy CKRV.

• Repeat for t iterations: At the j-th iteration, given the
graph Gj , apply t steps of the lazy natural random

walk on Gj to u, i.e., compute y :=
�

jI+Gj

2j

�t

u.

• Finishing up: As in strategy CKRV, after t iterations,
sort the coordinates of y and output the median cut.

Can we analyze this new strategy along the lines of the
analysis of strategy CKRV in [Khandekar et al., 2006]? The
broad outline of the analysis there was to introduce a poten-
tial function measuring how “well mixed” the walk is after
j iterations, and show that the new matching Mj+1 signif-
icantly reduces this potential function. The round robin
nature of the random walk greatly facilitates this analysis,
since the process after j + 1 iterations is exactly the pro-
cess after j iterations followed by averaging across matching
Mj+1. Therefore computing the potential reduction in the
j + 1-th iteration simply boils down to analyzing how much
the potential drops due to averaging across matching Mj+1.

Things are much more complicated for the lazy natural
walk in the procedure sketched above. This is because the
process after j + 1 iterations no longer has such a simple
decomposition: all steps of the random walk include the
possibility of using edges from the matching Mj+1. The
actual analysis of the random walk is based on the matrix
inequality ‖(ABA)k‖F ≤ ‖AkBkAk‖F , which facilitates the
desired decomposition. To make all this work out we have
to modify the actual random walk as follows: let Nt :=

d
d+1

I + 1
d+1

Mt. Then a single step of the random walk after

t iterations is given by NtNt−1 · · ·N2N1N2 · · ·Nt−1Nt. The
t-th iteration consists of applying this random walk d + 1
times. Intuitively each step of the random walk corresponds
to a step of the natural random walk. It might be possible
to show that the analysis of the cut player strategy with this
modified random walk directly implies an analysis with the
natural random walk. We leave this as an open question.
The analysis. Let d + 1 be such that it is equal to 2k for
some integer k > 0 to be fixed later. d+1 will be the duration
of the game. Fix a matching playerM. Let Mt be the perfect
matching on [n] output by M at round t when presented by
the cut (St, St) by Cnat. The following probability transition
matrices (in Rn×n), defined recursively, are used by the cut-
finding procedure: R0 := I. For 1 ≤ t ≤ d + 1,

Rt := NtRt−1Nt,

where Nt := d
d+1

I + 1
d+1

Mt. Note that, for all t , Rt is a
symmetric doubly stochastic matrix with largest eigenvalue
1 (corresponding to the all 1s eigenvector 1). Define:

Wt := Rd+1
t

The cut-finding procedure, Cnat, for step t + 1 is as follows.
Let (M1, . . . , Mt) be fixed for some t ≥ 0.

1. Pick a random unit vector ut+1 ∈ Sn−1 ⊥ 1 indepen-
dent of all previous choices.

2. Compute yt+1 := Wtut+1.

3. Sort the entries of yt+1 = (y1, . . . , yn) as yi1 ≤ · · · ≤
yin/2 ≤ yin/2+1 ≤ · · · ≤ yin .

4. Let St+1 := {i1, . . . , in/2} and St+1 := [n]\St+1, and

output (St+1, St+1).

Analysis
Theorem 3.2. Cnat achieves an expansion of Ω(log n) in

O(log2 n) rounds against any matching player M with con-
stant probability.

As in [Khandekar et al., 2006], we measure the progress
of Cnat by a simple potential function which is the sum of
squares of all the eigenvalues, except the largest one, of the
walk matrix used to mix the charge. Formally, if for a sym-
metric matrix X, we let Tr1[X] denote the sum of all the
eigenvalues of X except the largest one, then the poten-
tial function for the analysis is Tr1[W

2
t] =

Pn−1
i=1 λ2

i (Wt) =

‖Wt− 1
n
~1~1T ‖2

F . Now we analyze the reduction in the poten-
tial by comparing the potentials at time t and t + 1 respec-
tively. Let Mt+1 be the perfect matching across (St+1, St+1)
obtained at the (t +1)-th step. The following lemma proves
that once we fix (M1, . . . , Mt), for every perfect matching
Mt+1 across the bisection (St+1, St+1), the potential reduces
by a multiplicative factor of 1− c

log n
, for some fixed constant

c > 0, in expectation over the choice of ut+1.

Lemma 3.3 (Potential Reduction).
Let (M1, . . . , Mt) be fixed. Then there is a constant c > 0
such that, for any perfect matching Mt+1 across the bisection
(St+1, St+1) (which is selected using ut+1),

Eut+1

�
Tr1[W

2
t+1]

�
≤
�

1− c

log n

�
Tr1[W

2
t].

Proof. Recall Wt = Rd+1
t and Rt+1 := Nt+1RtNt+1.

Hence, by the matrix inequality in Theorem A.2 in the Ap-
pendix, it follows that

Tr1[W
2
t+1] = Tr1

h
(Nt+1RtNt+1)

2d+2
i

≤ Tr1
h
N2d+2

t+1 R2d+2
t N2d+2

t+1

i
= Tr1

h
N4d+4

t+1 W 2
t

i
.

Here the last equality follows from Fact A.1 in the Appendix
and from the definition of Wt.

The following fact allows us to estimate the contribution
of Nt+1 in the expression above. Its proof is found in the
Appendix.

Fact 3.4. Let λ := 1
2
− 1

2

�
1− 2

d+1

�4d+4

. Then, N4d+4
t+1 =

I − λ(I −Mt+1).

Using this, one can write:

Tr
h
N4d+4

t+1 W 2
t

i
= Tr

�
(I − λ(I −Mt+1)) W 2

t

�
= Tr

�
W 2

t

�
− λTr

�
L(Mt+1)W

2
t

�
.

The decrease in potential Tr1
�
W 2

t

�
− Tr1

�
W 2

t+1

�
is

λTr
�
L(Mt+1)W

2
t

�
= λ

X
{i,j}∈Mt+1

‖wi −wj‖2,

where wi is the i-th row vector of Wt. Now we need to show
that the above potential reduction is large in expectation.

The following lemma is based on the Gaussian nature of
projections and appears in the same form in [Khandekar
et al., 2006]. The proof follows from the Projection Lemma
(Lemma B.2 in the Appendix) applied to {vi := wi − 1

n
1}.

Lemma 3.5. There is a constant c′ > 0 such that

Eut+1

24 X
{i,j}∈Mt+1

‖wi −wj‖2

35 ≥ c′

log n
· Tr1

�
W 2

t

�
Notice that λ ≥ 1−e−8

2
. Hence, it follows from the lemma

that

Eut+1

�
Tr1[W

2
t+1]

�
≤
�

1− (1− e−8)c′

2 log n

�
Tr1[W

2
t].

This completes the proof of Lemma 3.3.

This implies that starting with a potential of n−1, the po-
tential drops at a rate of roughly (1−c/ log n) in expectation.
Hence, combining the recursive application of the previous
lemma with Markov’s Inequality, we obtain the following
corollary.

Corollary 3.6 (Total Potential).
With constant probability over the choices of (u1, . . . ,ud+1),

Tr1[W
2
d+1] ≤

�
1− c

log n

�d+1

n.

Hence, for d = O(log2 n), the potential drops below 1
n
, and

we have that λn−1(W
2
d+1) ≤ 1

n
.

Now, differently from [Khandekar et al., 2006], we embed
Rd+1 (and not the walk Wd+1 itself) in Gd+1 to show that
φ(Gd+1) = Ω(log n). In particular, we use the bound on
λn−1(W

2
d+1) to show a lower bound on the spectral gap of

the 1-regular weighted graph Rd+1. A simple application of
Cheeger’s Bound then yields the final result.

Lemma 3.7 (Estimating Expansion).
Consider the graph Gd+1 on the vertex set [n] formed by the
union of matchings (M1, . . . , Md+1). Then, for d = O(log2 n),
φ(Gd+1) ≥ Ω(log n) with constant probability.

Proof. By the argument above: λn−1(W
2
d+1) = (1 −

λ2(L(Rd+1)))
2d+2 ≤ 1

n
. Hence, λ2(L(Rd+1)) ≥ Ω

�
1

log n

�
.

By Cheeger’s Bound, this implies that φ(Rd+1) = Ω
�

1
log n

�
.

Finally, as Rd+1 embeds in Gd+1 with congestion 2
d+1

, we

have φ(Gd+1) ≥ d+1
2

φ(Rd+1) = Ω(log n).

Hence, with constant probability, after d = O(log2 n) rounds
one can ensure that the graph obtained by the union of
matchings (M1, . . . , Md+1) has expansion at least Ω(log n).
This completes the proof of Theorem 3.2.

Running time
Note that we do not need to compute Wt explicitly, as we
only use Wt to compute Wtut. Hence, at iteration t we only
need to perform O(2t log2 n) matrix-vector multiplications.
As each matrix is a step of a lazy random walk along a
matching, each of these operations takes time O(n). As t
varies from 0 to O(log2 n), the total running time throughout
the game of the cut-finding procedure Cnat is O(n log6 n) =eO(n).

3.3 The Cut-Finding Procedure Cexp

Preliminaries: Matrix Exponential
Definition 3.8 (Matrix Exponential).

For a matrix X ∈ Rn×n, the matrix exponential eX of X is
defined as the following Taylor Series:

eX :=

∞X
j=0

Xj

j!

If X is symmetric, then X has an ortho-normal basis of
eigenvectors and, hence, X and eX are simultaneously diag-
onalizable. Thus, for all i: λi(e

X) = eλi(X).

A basic identity eXeY = eX+Y , that is true for scalar expo-
nentiation, holds for matrix exponentiation only under the
condition that X and Y commute. The following theorem
shows that something weaker is true in general, and it turns
out to be sufficient for our purpose.

Theorem 3.9 (Golden-Thompson Inequality). Let
X, Y ∈ Rn×n be symmetric matrices. Then, Tr[eX+Y] ≤
Tr[eXeY].

It should be noted that this is only true for two matrices.

Finding the Cut
Fix a matching player M. Let Mt be the perfect match-
ing on [n] output by M at round t when presented by the
cut (St, St) by Cexp. In the same way Cnat considered the
transition matrix of a walk across the matchings to produce
the next bisection to present, Cexp makes use of the matrix

Wt := e−
1
2 L(Gt) = e−

1
2
Pt

i=1 L(Mi). We note that, for all t ,
Wt is a doubly stochastic positive semi-definite matrix.

The bisection finding procedure for Cexp is exactly the
same as that described in Subsection 3.2 for Cnat if we take
Wt = e−

1
2 L(Gt).

Overview. It is worthwhile pointing out that CKRV can also
be seen as using matrix exponentials. In particular, it is not
difficult to show that e−η(I−M) is the matrix representing
a kind of slowed down lazy random walk along matching

M . As
�

I+M
2

�i
= (I+M)

2
for i ≥ 1, the Taylor Series of the

exponential yields: e−η(I−M) = 1+e−η

2
I + 1−e−η

2
M. Hence,

the CKRV mixing procedure is close to the walk

e−η(I−Mt)e−η(I−Mt−1) · · · e−η(I−M1)

for small η. Our second cut-finding procedure mixes the
charge using the matrix e−η(tI−(M1+···+Mt)) on the union of
matchings to find a non-expanding cut. If it were true that
e−η(tI−(M1+···+Mt)) ≈ e−η(I−Mt)e−η(I−Mt−1) · · · e−η(I−M1),
then it would establish that the two walks are almost the
same. In fact, even under the weaker condition that

Tr
h
e−η(tI−(M1+···+Mt))

i
≤ Tr

h
e−η(I−Mt) · · · e−η(I−M1)

i
we would be done. Unfortunately, we cannot show this to be
true. Hence, a different way to analyze this walk is needed.
We also note that the random walk in the cut-finding pro-
cedure of [Khandekar et al., 2006] is best thought of as a
“discrete gradient descent” method while the random walk
based on matrix exponential updates as a “continuous gra-
dient descent” method with the same “loss” functions, i.e.,
those defined by the matchings.

Analysis
Theorem 3.10. Cexp achieves an expansion of Ω(log n)

in O(log2 n) rounds against any matching player M with
constant probability.

The structure of the proof is the same as for Cnat. Us-
ing the exponential walk means that we need to apply the
Golden-Thompson Inequality to analyze the potential reduc-
tion. Moreover, our certificate of expansion is also different.
The potential function is again Tr1[W

2
t].

Lemma 3.11 (Potential Reduction).
Let (M1, . . . , Mt) be fixed. Then there is a constant c > 0
such that, for any perfect matching Mt+1 across the bisection
(St+1, St+1) (which is selected using ut+1),

Eut+1

�
Tr1[W

2
t+1]

�
≤
�

1− c

log n

�
Tr1[W

2
t].

Proof. We have:

Tr[W 2
t+1] = Tr

h
e−
Pt+1

i=1 L(Mi)
i
≤ Tr

h
W 2

t e−L(Mt+1)
i

≤ Tr
�
W 2

t

�
−
�

1− e−2

2

�
Tr
�
W 2

t L(Mt+1)
�
.

The first inequality follows from the Golden-Thompson In-
equality (3.9) and the second inequality follows from Fact
A.4 in the Appendix. Hence, the decrease in potential at
round t + 1 is:

Tr1
�
W 2

t

�
− Tr1[W

2
t+1] ≤

�
1− e−2

2

�
Tr
�
W 2

t L(Mt+1)
�
.

Let wi denote the i-th row of Wt. Then:

Tr1
�
W 2

t

�
− Tr1[W

2
t+1] ≤

�
1− e−2

2

� X
{i,j}∈Mt+1

‖wi −wj‖2.

Now we need to show that the above potential reduction is
large. As in the analysis of Cnat, this is a simple application
of the Lemma B.2 with {vi := wi − 1

n
1}. We get:

Eut+1

�
Tr1[W

2
t+1]

�
≤ Tr1[W

2
t]

�
1−

�
c′(1− e−2)

2 log n

��
= Tr1[W

2
t]

�
1− Ω

�
1

log n

��

By recursively applying the lemma above and by Markov’s
Inequality, we obtain the following.

Corollary 3.12 (Total Potential). With constant
probability over the choices of (u1, . . . ,ud),

Tr1[W
2
d] ≤

�
1− c

log n

�d

n.

Lemma 3.13 (Estimating Expansion). Consider the
graph Gd on the vertex set [n] formed by the union of match-
ings (M1, . . . , Md). Then, for d = O(log2 n),

φ(Gd) = Ω(log n)

with constant probability.

Proof. Let Gd be the union of matchings (M1, . . . , Md)
obtained through the cut-finding procedure Cexp. From Corol-
lary 3.12 it follows that for d = O(log2 n), λn−1(Wd) =

λn−1(e
−L(Gd)) ≤ 1

n
. By Theorem 3.1, φ(Gt) ≥ λ2(L(Gt))

2
.

Hence:

φ(Gd) ≥ λ2(Gd)

2
≥ − log(λn−1(e

−L(Gd)))

2
=

log n

2
.

This completes the proof of Theorem 3.10.

Running time

We approximate the exponential e−
1
2 L(Gt) by truncating its

Taylor series as it is also done in [Arora and Kale, 2007]. All

we need to compute is e−
1
2 L(Gt)u for some random unit vec-

tor u. We define the approximation vk as vk :=
Pk

j=0
1
j!

�
L(Gt)

2

�j

u.

For vk to be a good approximation for the purposes of the
algorithm we require that

‖vk − e−
1
2 L(Gt)u‖2 ≤ O

�
1

log n

�
.

[Arora and Kale, 2007] show that this inequality is satisfied
for

k ≥ max

�
e2

2
t, Ω(log log n)

�
.

Finally, to compute vk we just need to perform k matrix-
vector multiplications. Each of these takes time O(tn) as Gt

is t regular. As t ≤ O(log2 n) and by the bound on k, we

get a running time of O(n log6 n) = eO(n) for the procedure
Cexp.

4. LOWER BOUND
In this section we prove the following lower bound for the

cut-matching game.

Theorem 4.1. There is a matching player M∗ such that
the number of rounds to expansion ratio for any cut player
is at least Ω(

√
log n).

This result establishes a limit on the upper bound arguments
in the framework of the cut-matching game, i.e., that there
do not exist cut players, even computationally unbounded
ones, which can achieve a rounds to expansion ratio bet-
ter than Ω(

√
log n) against M∗. In this section we focus on

the description and the analysis of M∗ as claimed by the
theorem.

4.1 Proof Idea
A matching player M could keep the game G(n) going for

Ω(
√

log n) rounds if, at each of the first Ω(
√

log n) rounds,
M is able to exhibit a cut with expansion less than 1

4
in

the graph formed by the union of the matchings thus far.
A simple way for M to do this would be to pick a fixed
cut (D, D) at the beginning of the game and keep this cut
as sparse as possible round after round. However, if the
cut player guesses one bisection containing or equal to D,
any perfect matching that M adds across this bisection will
make the cut (D, D) have constant expansion immediately.

To overcome this problem, the matching player M∗ first
identifies the vertex set [n] with the vertex set of a hy-
percube with d coordinates, {−1, 1}d. (Assume n = 2d.)
Then, rather than trying to keep one bisection sparse, it
tries to keep d = log n “orthogonal” bisections sparse on
an average. The natural choice for such orthogonal bisec-
tions for the hypercube vertex set are those induced by the
coordinate cuts. Formally, denote this set of bisections by
D := {(D1, D1), . . . , (Dd, Dd)}. Here, Di := {(x1, . . . , xd) ∈
{−1, 1}d | xi = 1}, and Di := {−1, 1}d\Di. The orthog-
onality makes it possible to add edges across one (Di, Di)
without increasing the expansion of other bisections in D
by too much. The Main Lemma formalizes this intuition by
showing that at any iteration t, and for any choice of a bisec-
tion (St, St) (by any cut player), there exists a matching Mt

across (St, St) which increases the average expansion over D
by at most O

�
1√

log n

�
. This implies that Ω(

√
log n) rounds

are necessary before the union of matchings has a constant
expansion.

Geometrically, the Main Lemma states that given any bi-
section of the hypercube vertex set, there exists a matching

across it with edges of average `22 length O
�

1√
d

�
in the stan-

dard embedding of the hypercube on the unit d-dimensional
sphere. To establish this lemma, we first encode the task
of finding a matching across the given bisection with min-
imum `22 length as a min-cost perfect-matching LP. Then,
we show that the dual of this LP can be interpreted as a
non-expanding embedding of the hypercube into `1. This al-
lows us to use the hypercube vertex iso-perimetry to upper
bound its optimal value.

4.2 Preliminaries

Cut vectors
For any cut (S, S) of [n], we define the cut vector ~xS ∈ Rn

by:

(~xS)i =

�
+1 if i ∈ S
−1 if i /∈ S

Hence, for any cut (S, S):

~xT
SL(G)~xS = 4|E(S, S)|.

Vertex iso-perimetry of the hypercube
For any graph G = (V, E), let γ(G) denote the vertex iso-
perimetry number of G. γ(G) is the minimum ratio among

all cuts S ⊆ V, with |S| ≤ |V |
2

, of the number of neighbors
of S outside of S to that of the size of S. That is

γ(G) := min
S⊆V, |S|≤ |V |

2

{i ∈ V \S : ∃j ∈ S : {i, j} ∈ E}
|S| .

The following is a standard fact about the vertex iso-perimetry
of the hypercube [Chung, 1997].

Fact 4.2. γ(Hd) = Θ
�

1√
d

�
.

4.3 Proof of Theorem 4.1
Let n := 2d for a positive integer d. Let Hd denote the

d-dimensional hypercube. This is the graph with V (Hd) :=
{−1, 1}d and {i, j} ∈ E(Hd) if and only if i and j differ
in exactly one coordinate. At the start of the game, M∗

picks an arbitrary bijection f : V → Hd. Let Ud be the
unit embedding of Hd, i.e., Ud := Hd√

d
and, for all v ∈ V ,

denote by uv the point f(v)√
d

of Ud. Each dimension cut in

Hd corresponds to a cut in V through the mapping f . In
particular, we denote by Di the cut {v ∈ V : f(v)i = +1},
and Di := V \Di. This defines a set D := {D1, . . . , Dd} of
bisections of V .

Fix an arbitrary cut player C which at every round presents
a bisection to the matching player M∗ to which M∗ must
add a perfect matching. Let Gt := ([n], Et) denote the graph
formed by the union of matchings M1, . . . , Mt for some in-
teger t ≥ 0. G0 := ([n], ∅). Define a potential function

Φt := EDi←D

h
Et(Di,Di)
|Di|

i
to be the expected expansion in

Gt of a cut sampled uniformly at random from D. Note that
the matching player M∗ is not random. These expectations
are just averages and it is convenient to use this language
for the proof.

Fact 4.3. Φt = 1
2n

P
{h,k}∈Et

‖uh − uk‖2

Proof.

Φt = EDi←D

�
|Et(Di, Di)|

|Di|

�
= EDi←D

�
~xT

Di
L(Gt)~xDi

4|Di|

�

=
1

d

dX
i=1

~xT
Di

L(Gt)~xDi

2n

=
1

d

dX
i=1

P
{h,k}∈Et

((~xDi)h − (~xDi)k)2

2n

=
1

2n

X
{h,k}∈Et

dX
i=1

�
1√
d
(~xDi)h −

1√
d
(~xDi)k

�2

=
1

2n

X
{h,k}∈Et

‖uh − uk‖2.

Notice that in the last inequality we used the definition of
the cuts D1, . . . , Dd as the coordinate cuts of Hd.

This shows that Φt equals the sum of the squared length
of the edges of Gt in the hypercube representation Ud of
V , scaled by 2n. Hence, for any t ≥ 1, we can rewrite the
increase in potential at round t as:

Φt − Φt−1 =
X

{i,j}∈Et\Et−1

‖ui − uj‖2 =
X

{i,j}∈Mt

‖ui − uj‖2

At every iteration t, given C’s choice of (St, St), M∗ adds the
matching Mt across (St, St) which minimizes

P
{i,j}∈Mt

‖ui−
uj‖2. This only requires a minimum cost matching compu-
tation on the complete bipartite graph induced by (St, St).
The proof of Theorem 4.1 is based on the following lemma,
which is proved at the end of this section.

Lemma 4.4 (Main Lemma). For all bisections (S, S),
there exists a perfect matching M across (S, S) such thatP
{i,j}∈M ‖ui − uj‖2 = O

�
n√
d

�
.

Here we see how the Main Lemma implies the theorem.

Proof of Theorem 4.1. By the Main Lemma, the po-

tential increase in one round is: Φt−Φt−1 = O
�

1√
d

�
. Hence

Φt = O
�

t√
d

�
. This implies that EDi←D

h
|Et(Di,Di)|
|Di|

i
=

O
�

t√
d

�
. Hence, there exists a cut Di with |Et(Di,Di)|

|Di|
=

O
�

t√
d

�
. This shows that φ(Gt) = O

�
t√
d

�
. As the game

stops after t iterations only if φ(Gt) is constant, we must

have t = Ω
�√

d
�

= Ω
�√

log n
�
. Moreover, this also shows

that t
Φ(Gt)

= Ω(
√

d) = Ω(
√

log n) for all t.

We now proceed to prove the Main Lemma.

Proof of Main Lemma 4.4. Let cij := ‖ui−uj‖2. Con-
sider the LP relaxation of Figure 1 for computing the mini-
mum cost perfect matching across the cut (S, S).

Minimize
P

i∈S,j∈S cijxij

Subject to
∀i ∈ S,

P
j∈S xij = 1

∀j ∈ S,
P

i∈S xij = 1

∀i ∈ S, j ∈ S, xij ≥ 0

Figure 1: LP for Bipartite Min-Cost Matching

By the integrality of the bipartite perfect matching poly-
tope (see [Papadimitriou and Steiglitz, 1982]), the objective
of this program is the minimum of

P
{i,j}∈M ‖ui−uj‖2 over

all perfect matchings M across (S, S). In Figure 2 we con-
sider a formulation of the dual of this LP.

Maximize
P

i∈S yi −
P

j∈S yj

Subject to
∀i ∈ S, j ∈ S, yi − yj ≤ cij

∀i ∈ V, yi ∈ R

Figure 2: The dual of the LP for Bipartite Min-Cost
Matching

A feasible solution for this LP can be seen an embedding
{yi}i∈[n] of [n] on the real line such that no pair i, j with

i ∈ S and j ∈ S and yi ≥ yj can be further away in `1
distance than its `22 distance in the hypercube embedding
Ud. We now prove the following two properties of solutions
to the dual LP:

1. If {yi}i∈[n] is a feasible solution of value Y , then for
any c ∈ R, {y′i = yi + c}i∈[n] is a feasible solution of
value Y ′ = Y .

2. In any optimal dual solution, we must have, for all
pairs i, j ∈ [n], |yi − yj | ≤ cij = ‖ui − uj‖2.

Proof of Property 1: The shifted solution is feasible as for
all i ∈ S, j ∈ S:

y′i − y′j = yi + c− yj − c = yi − yj ≤ cij

The value of this solution is:

Y ′ =
X
i∈S

y′i −
X
j∈S

y′j =
X
i∈S

(yi + c)−
X
j∈S

(yj + c)

=
X
i∈S

yi +
cn

2
−
X
j∈S

yj −
cn

2
=
X
i∈S

yi −
X
j∈S

yj = Y

Proof of Property 2: Notice that the costs cij ’s respect the
triangle inequality as the `22 distance on the hypercube is a
metric. To prove the statement, we need to handle the three
remaining cases:

1. i ∈ S, j ∈ S. Assume yi ≥ yj without loss of generality.
As the solution is optimal, it is not possible to increase
yj to obtain a larger dual objective. This implies that
there must exist k ∈ S such that yj − yk = cjk. But
we must have cik ≥ yi − yk = (yi − yj) + (yj − yk) =
yi − yj + cjk. As cik ≤ cij + cjk, we have yi − yj ≤ cij .

2. i ∈ S, j ∈ S. This is handled as in the previous case.

3. i ∈ S, j ∈ S such that yj ≥ yi. Because the solution is
optimal there must exists j′ ∈ S and i′ ∈ S such that
yj′ − yj = cj′j and yi − yi′ = cii′ . But, by the dual
constraint, we must have ci′j′ ≥ yj′−yi′ = (yj′−yj)+
(yj − yi) + (yi − yi′) = cj′j + yj − yi + cii′ . By triangle
inequality, ci′j′ ≤ cj′j + cji + cii′ , so that yj − yi ≤ cji

as required.

Application of vertex iso-perimetry of Hd: Now we use these
properties of an optimal dual solution together with the
vertex iso-perimetry of the hypercube to obtain an upper
bound on the dual optimal. By Property 1, we can trans-
late any optimal dual solution preserving optimality. Hence,
we may consider an optimal solution {yi}i∈[n] such that
at most n

2
vertices are mapped to positive value and at

most n
2

are mapped to negative values. Notice that, as

maxi,j ‖ui − uj‖2 = 4, we have yk ∈ [−4, 4] for all k ∈ [n].
Now define sets R1, . . . , R4d ⊆ [n] as follows:

Ri :=

�
k ∈ [n] : yk ∈

�
i− 1

d
,

i

d

��
.

Similarly, for the negative side we can define L1, . . . , L4d:

Li :=

�
k ∈ [n] : yk ∈

�
− i

d
,− i− 1

d

��
.

We also define Ai :=
S4d

k=i Ri and Bi :=
S4d

k=i Li. By our
assumption on {yi}i∈[n] we know that, for all i, |Ai|, |Bi| ≤
n
2
.
Consider now any k ∈ Ai for i ≥ 2. Consider any h /∈ Ai

such that ‖uh − uk‖2 = 1
d
, i.e., uh is a neighbor of uk in

the hypercube graph. Notice that h must lie in Li−1, as, by
Property 2, |yk − yh| ≤ 1

d
and h /∈ Ai. Hence, all vertices

which are outside of Ai and adjacent to Ai in the hypercube
must belong to Li−1. Because |Ai| ≤ n

2
, by the vertex iso-

perimetry of the hypercube, there are at least γ(Hd)|Ai|
such vertices and, for i ≥ 2:

|Li−1| ≥ Ω

�
1√
d

�
|Ai|.

This implies that for i ≥ 2,

|Ai−1| ≥
�

1 + Ω

�
1√
d

��
|Ai|.

Since |A1| ≤ n
2
,

|Ai| ≤
n

2

�
1 + Ω

�
1√
d

��−(i−1)

.

The same reasoning can be applied to Bi to deduce that

|Bi| ≤
n

2

�
1 + Ω

�
1√
d

��−(i−1)

.

Now notice that the cost of the dual solution {yk}k∈[n] is
upper bounded by

1

d

4dX

i=1

i|Li|+
4dX

i=1

i|Ri|

!
≤ 1

d

4dX

i=1

|Ai|+
4dX

i=1

|Bi|

!

=
n

d

4dX
i=1

�
1 + Ω

�
1√
d

��−(i−1)

=
n

d
O
�√

d
�

= O

�
n√
d

�
.

But, by strong duality, the primal optimum equals the the
dual optimum. Hence, we complete the proof by noticing
that X

{i,j}∈M

‖ui − uj‖2 = O

�
n√
d

�
.

5. OPEN PROBLEMS
The main remaining open question is whether it is possi-

ble to construct a cut player running in almost linear time
and achieving a number of rounds to expansion ratio of
O(
√

log n). Another direction of study is to try to reduce
the running time of the algorithms presented in this pa-
per by eliminating some of the polylog factors: this may
help in making these algorithms competitive against the best
heuristics for the Sparsest Cut problem. Finally, the Main
Lemma used in the proof of lower bound raises the follow-
ing interesting combinatorial question, which, to our knowl-
edge, is unresolved: What is the bisection of the hypercube
which maximizes the minimum over all pairings of vertices
across the bisection of the average Hamming distance be-
tween paired vertices?

Acknowledgments
We would like to thank Satish Rao for several illuminating
discussions and for sharing his insights into the realm of
graph partitioning.

6. REFERENCES
Arora, S., Hazan, E., and Kale, S. (2004a). O(

√
log n)

approximation to sparsest cut in Õ(n2) time.
Proceedings, IEEE Symposium on Foundations of
Computer Science, 00:238–247.

Arora, S. and Kale, S. (2007). A combinatorial,
primal-dual approach to semidefinite programs. In
STOC ’07: Proceedings of the thirty-ninth annual ACM
symposium on Theory of computing, pages 227–236, New
York, NY, USA. ACM.

Arora, S., Rao, S., and Vazirani, U. (2004b). Expander
flows, geometric embeddings and graph partitioning. In
STOC ’04: Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing, pages 222–231, New
York, NY, USA. ACM.

Bhatia, R. (1996). Matrix Analysis (Graduate Texts in
Mathematics). Springer.

Chung, F. R. (1997). Spectral Graph Theory (CBMS
Regional Conference Series in Mathematics, No. 92).
American Mathematical Society.

Devanur, N. R., Khot, S. A., Saket, R., and Vishnoi,
N. K. (2006). Integrality gaps for sparsest cut and
minimum linear arrangement problems. In STOC ’06:
Proceedings of the thirty-eighth annual ACM symposium
on Theory of computing, pages 537–546, New York, NY,
USA. ACM.

Goldberg, A. V. and Rao, S. (1998). Beating the flow
decomposition barrier. Journal of the ACM (JACM),
45:783–797.

Khandekar, R., Rao, S., and Vazirani, U. (2006). Graph
partitioning using single commodity flows. In STOC ’06:
Proceedings of the thirty-eighth annual ACM symposium
on Theory of computing, pages 385–390, New York, NY,
USA. ACM.

Khandekar, R. M., Khot, S., Orecchia, L., and Vishnoi,
N. K. (2007). On a cut-matching game for the sparsest
cut problem. Technical Report EECS-2007-177, EECS
Department, University of California, Berkeley, CA.

Leighton, T. and Rao, S. (1999). Multicommodity
max-flow min-cut theorems and their use in designing
approximation algorithms. J. ACM, 46(6):787–832.

Papadimitriou, C. H. and Steiglitz, K. (1982).
Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall.

Shmoys, D. (1996). Cut problems and their application
to divide and conquer. In Hochbaum, D., editor,
Approximation algorithms for NP-hard problems, pages
192–235. PWS Publishing Co., Boston, MA, USA.

APPENDIX
A. MATRIX INEQUALITIES

The following facts follow from the definition of the trace
function. They are proved in [Bhatia, 1996].

Fact A.1 (Cyclic Shift Invariance of Trace).
Let X, Y ∈ Rn×n. Then, Tr[XY] = Tr[Y X].

Theorem A.2 (Symmetric Rearrangement).
Let X, Y ∈ Rn×n be symmetric matrices. Then for any
positive integer k,

Tr
h
(XY X)2

k
i
≤ Tr

h
X2k

Y 2k

X2k
i
.

The following claim uses the fact that, for a matching M ,
M2 = I to simplify the expression for a power of a lazy
random walk across a single matching.

Fact A.3. Let λ := 1
2
− 1

2

�
1− 2

d+1

�4d+4

. Then, N4d+4
t+1 =

I − λ(I −Mt+1).

Proof. For this proof, let N := Nt+1, M := Mt+1. Note
that since M2 = I, (I−M)2 = 2(I−M). Hence, (I−M)j =
2j−1(I − M) for j ≥ 1. We use this observation below to
complete the proof of the fact.

N4d+4 =

�
I − 1

d + 1
(I −M)

�4d+4

= I +

4d+4X
j=1

(−1)j 1

(d + 1)j

4d + 4

j

!
(I −M)j

= I +
I −M

2

4d+4X
j=1

(−1)j 2j

(d + 1)j

4d + 4

j

!

= I − I −M

2

1−

�
1− 2

d + 1

�4d+4
!

The following fact is a matrix version of the simple scalar
inequality e−εx ≤ (1 − (1 − e−ε)x) for all x ∈ [0, 1] and
ε ∈ (0, 1).

Fact A.4. Let X ∈ Rn×n be symmetric matrix such that
0 � X � I and ε ∈ (0, 1). Then,

e−εX � (I − (1− e−ε)X).

B. PROJECTION LEMMA
The results in this section essentially appear in [Khan-

dekar et al., 2006]. We include them here for completeness.

Fact B.1 (Gaussian behavior of projections).
If v is a vector of length l in Rm and u is a random vector
in Sm−1. Then

1. Eu

�
〈v,u〉2

�
= l2

m
,

2. For x ≤ m/16, Pru
�
〈v,u〉2 ≥ xl2/m

�
≤ e−x/4.

Lemma B.2. Let {vi}n
i=1 be vectors in Rn−1 such that

1.
P

i vi = 0.

2. For all i, ‖vi‖2 ≤ B for some constant B.

3. Φ :=
P
‖vi‖2 ≥ 1

poly(n)
.

Let r be a random unit vector in Rn−1 and for all i set
ui := 〈vi, r〉. Let S be the partition of [n] such |S| = n/2
and for all i ∈ S and j ∈ S ui ≥ uj. Consider any matching
M of the indices [n] across (S, S). Then,

Er

24 X
{i,j}∈M

‖vi − vj‖2

35 = Ω

�
1

log n

�
Φ.

Proof. Define the event

Eij :=

�
(ui − uj)

2 ≤ c log n

n− 1
‖vi − vj‖2

�
for some constant c > 0. Let E :=

T
i,j Eij . By the Fact B.1

we have that Pr[Eij] ≤ n−c/4. Hence, by a union bound,

Pr[E] ≤ n−c/4+2. Then:

Er

24 X
{i,j}∈M

‖vi − vj‖2

35 ≥
n− 1

c log n
Er

24 X
{i,j}∈M

(ui − uj)
2 | E

35 ·Pr[E].

Let a be the real number such that ui ≥ a ≥ uj for all
i ∈ S, j ∈ S. Hence, for u := (u1, . . . , un),

Pn
i=1 ui =Pn

i=1〈vi, r〉 =

(
Pn

i=1 vi), r
�

= 0. Hence,X
{i,j}∈M

(ui − uj)
2 ≥

nX
i=1

(ui − a)2

= ‖u‖2 − 2a

nX

i=1

ui

!
+ na2

= ‖u‖2 + na2 ≥ ‖u‖2.

Hence, we have

Er

24 X
{i,j}∈M

‖vi − vj‖2

35 ≥ Er

�
‖u‖2 | E

�
·Pr[E].

To obtain a lower bound on the r.h.s., notice that

Er[‖u‖2] =

nX
i=1

Er[u
2
i] =

nX
i=1

‖vi‖2

n− 1
=

Φ

n− 1
.

Since |ui|2 ≤ B for all i, ‖u‖2 ≤ Bn. Hence,

Er

�
‖u‖2 | E

�
·Pr[E] ≥ Er[‖u‖2]−Er

�
‖u‖2 | E

�
·Pr[E]

≥ Φ

n− 1
−Bn−c/4+3.

Since Φ ≥ 1
poly(n)

, by picking c to be a large enough constant,

one obtains

Er

�
‖u‖2 | E

�
·Pr[E] ≥ Φ

2(n− 1)
.

Hence, we can complete the proof of the lemma by conclud-
ing that

Er

24 X
{i,j}∈M

‖vi − vj‖2

35 ≥ Φ

2c log n
.

