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Abstract

In this paper, we consider the following graph partitioning
problem: The input is an undirected graph G = (V,E), a
balance parameter b € (0, 1/2] and a target conductance value
y € (0,1). The output is a cut which, if non-empty, is of
conductance at most O(f), for some function f(G,y), and
which is either balanced or well correlated with all cuts of
conductance at most y. In a seminal paper, Spielman and Teng

[16] gave an O(|E|/y?)-time algorithm for f = w/ylog3 V]|
and used it to decompose graphs into a collection of near-
expanders [18].

We present a new spectral algorithm for this problem
which runs in time O(E| [y) for f = 4fy. Our result yields
the first nearly-linear time algorithm for the classic BALANCED
SEPARATOR problem that achieves the asymptotically optimal
approximation guarantee for spectral methods.

Our method has the advantage of being conceptually
simple and relies on a primal-dual semidefinite-programming
(SDP) approach. We first consider a natural SDP relaxation
for the BALANCED SEPARATOR problem. While it is easy to
obtain from this SDP a certificate of the fact that the graph
has no balanced cut of conductance less than y, somewhat
surprisingly, we can obtain a certificate for the stronger
correlation condition. This is achieved via a novel separation
oracle for our SDP and by appealing to Arora and Kale’s [3]
framework to bound the running time. Our result contains
technical ingredients that may be of independent interest.

1 Introduction
1.1 Graph Partitioning. Given a graph G = (V,E), the

conductance of a cut (S,S) is ¢(S) &f IE(S.5)l/min{vol($).vol(S)},
where vol(S) is the sum of the degrees of the vertices in the set
S. Acut(S,S)is b-balanced if min{vol(S), vol(S)} > b-volV.
A graph partitioning problem of widespread interest is the
BALANCED SEPARATOR problem: given G = (V, E), a constant!
balance parameter b € (0, 1/2], and a conductance value y €

(0, 1), does G have a b-balanced cut S such that ¢(S) < y?
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BALANCED SEPARATOR is an intensely studied problem in
both theory and practice. It has far-reaching connections to
spectral graph theory, the study of random walks and metric
embeddings. Besides being a theoretically rich problem,
BaLANCED SEPARATOR is of great practical importance, as it
plays a central role in the design of recursive algorithms,
image segmentation and clustering.

Since BALANCED SEPARATOR is an NP-hard problem [6],
we seek approximation algorithms that either output a cut
of conductance at-most f(y,log|V]) and balance Q,(1) or a
certificate that G has no b-balanced cut of conductance at most
v. In their seminal series of papers [16, 18, 17], Spielman and
Teng use an approximation algorithm for BALANCED SEPARATOR
as a fundamental primitive to decompose the instance graph
into a collection of near-expanders. This decomposition is
then used to construct spectral sparsifiers and solve systems
of linear equations in nearly linear time. Their algorithm
has two crucial features: first, it runs in nearly linear time;
second, in the case that no balanced cut exists in the graph, it
outputs a certificate of a special form. This certificate consists
of an unbalanced cut of small conductance which is well-
correlated with all low-conductance cuts in the graph. We
prove in Section A.1 in the Appendix that such a cut is indeed
a negative certificate for the BALANCED SEPARATOR problem.
Formally, they prove the following:

THEOREM 1.1. [16] Given a graph G, a balance parameter
b € (0,12], b = Q(1) and a conductance value y € (0, 1),
PARTITION(G, b, y) runs in time T and outputs a cut S C 'V such
that vol(S) < 7/8 - vol(G), #(S) < f1 or S = 0, and with high
probability, either

1. S is Q,(1)-balanced, or

2. for all C C V such that vol(C) < /2 - vol(G) and

$(C) < O, s = /2.

Originally, Spielman and Teng showed Theorem 1.1 with
=0
improved by Andersen, Chung and Lang [1] and then by An-

dersen and Peres [2] to the current best of f; = O ( VY log n)

and 7 = O(v v7)- All these results made use of bounds on the
convergence of random walk processes on the instance graph,
such as the Lovasz-Simonovits bounds [13]. These bounds

w/ylog3 n) and T = O (m/,?). This was subsequently



yield the logn factor in the approximation guarantee, which
appears hard to remove while following this approach.

1.2 Our Contribution In this paper, we use a semidefinite
programming approach to design a new spectral algorithm,
called BarLCur, that improves on the result of Theorem 1.1.
The following is our main result.

THEOREM 1.2. (MAIN THEOREM) Given a graph G = (V,E), a
balance parameter b € (0,1/2], b = Q(1), and a conductance
value y € (0, 1), BALCUT(G, b,y) runs in time O (m/y) and
outputs a cut S C 'V such that vol(S) < 7/8 - vol(G), if S # 0
then ¢(S) < Oy ( \/7) , and with high probability, either

1. S is Qu(1)-balanced, or

2. for all C C V such that vol(C) < 12 - vol(G) and

vol(SNC)
#(C) <O, Vi = V2

Note that our result improves the parameters of previous
algorithms by eliminating the log n factor in the quality of the
cut output, making the approximation comparable to the best
that can be hoped for using spectral methods [7]. Our result is
also conceptually simple: we use the primal-dual framework
of Arora and Kale [3] to solve SDPs combinatorially, and
we give a new separation oracle that yields Theorem 1.2.
Finally, our result implies an approximation algorithm for
BALANCED SEPARATOR, as the guarantee of Theorem 1.2 on the
cut S output by BaLCur also implies a lower bound on the
conductance of balanced cuts of G. The proof can be found in
Section A.1 in the Appendix.

CoroLLARY 1.1. Given an instance graph G, a balance pa-
rameter b € (0,1/2] and a target conductance y € (0, 1], BaL-
Cur (G, b, y) either outputs an Q,(1)-balanced cut of conduc-
tance at most Op(+\Jy) or a certificate that all Qp(1)-balanced
cuts have conductance at least Qp(y). The running time of the
algorithm is O(m/y).

This is the first nearly-linear-time spectral algorithm for BaL-
ANCED SEPARATOR that achieves the asymptotically optimal ap-
proximation guarantee for spectral methods.

1.3 Graph Decomposition. The main application of The-
orem 1.1 is the construction of a particular kind of graph
decomposition. In this decomposition, we wish to parti-
tion the vertex set of the instance graph V into components
Vi,...,Vi,..., Vi such that the graph induced by G on each V;
has conductance as large as possible, while at most a constant
fraction of the edges have endpoints in different components.
These decompositions are a useful algorithmic tool in several
areas [20, 11, 18].

Kannan, Vempala and Vetta [10] construct such decom-
positions achieving a conductance value of Q(1/1og?n). How-
ever, their algorithm runs in time O(m?) on some instances.

Spielman and Teng [18] relax this notion of decomposi-
tion by only requiring that each V; be contained in a superset

W; in G, where W; has large induced conductance in G. In
the same work, they show that this relaxed notion of decom-
position suffices for the purposes of sparsification by random
sampling. The advantage of this relaxation is that it is now
possible to compute this decomposition in nearly-linear time
by recursively applying the algorithm of Theorem 1.1.

THEOREM 1.3. [I8] Assume the existence of an algorithm
achieving parameters T and fi in Theorem 1.1. Given y €
(0, 1), in time O(1), it is possible to construct a decomposi-
tions of the instance graph G into components V1, ..., Vy such
that:

1. for each V;, there exists W; 2 V; such that the conduc-
tance of the graph induced by G on W; is Q(7/logn).

2. the fraction of edges with endpoints in different compo-
nents is O(fi log n).

Using Theorem 1.3, Spielman and Teng showed the exis-
tence of a decomposition achieving conductance Q(1/iog®n).
Our improved results in Theorem 1.2 imply that we can
obtain decompositions of the same kind with conductance
bound Q(!/iog*s). Our improvement also implies speed-ups
in the sparsification procedure described by Spielman and
Teng [18]. However, this result has since been superceded
by work of Koutis, Miller and Peng [12] that gives a very fast
linear equation solver that can be used to compute sampling
probabilities for each edge, yielding a spectral sparsifier with
high probability [15].

Our work leaves open the important question posed by
Spielman [14] of whether stronger decompositions, of the
kind proposed by Kannan, Vempala and Vetta [10], can be
produced in nearly-linear time.

1.4 Overview of Techniques

Spectral Approach. The simplest algorithm for Bar-
ANCED SEPARATOR, also used by Kannan et al. [10], is the recur-
sive spectral algorithm. This algorithm finds the minimum-
conductance sweep cut of the second eigenvector of G, re-
moves the cut and all adjacent edges from G, and reiterates
on the remaining graph. The algorithm stops when the union
of the cuts removed becomes 2/2-balanced or when the resid-
ual graph is found to have spectral gap at least vy, certifying
that no more progress can be made. As every cut may only
remove O(1) volume and the eigenvector computation takes
Q(m) time, this algorithm may have quadratic running time.
It can be shown using Cheeger’s Inequality [5] that the cut this
procedure outputs is of conductance at most O(4/y).

Spielman-Teng Approach. The algorithm of Spielman
and Teng which proves Theorem 1.1 is also spectral in nature
and uses, as the main subroutine, local random walks that run
in time proportional to the volume of the output cut to find
sparse cuts around vertices of the graphs. These local methods
are based on non-trivial random walks on the input graph and
aggregation of the information obtained from these walks, all
performed while maintaining nearly-linear running time.



QOur Approach. We depart from the random-walk
paradigm and first consider a natural SDP relaxation for the
BALANCED SEPARATOR problem, which BALCut solves approxi-
mately using a primal-dual method. Intuitively, BALCut man-
ages to maintain the approximation guarantee of the recur-
sive spectral algorithm while running in nearly-linear time by
considering a distribution over eigenvectors, represented as a
vector embedding of the vertices, rather than a single eigen-
vector, at each iteration. The sweep cut over the eigenvec-
tor is replaced by a sweep cut over the radius of the vectors
in the embedding (see Figure 1). Moreover, at any iteration,
rather than removing the unbalanced cut found, BaLCut pe-
nalizes it by modifying the graph so that it is unlikely but still
possible for it to turn up in future iterations. Hence, in both
its cut-finding and cut-eliminating procedures, BALCut tends
to “hedge its bets” more than the greedy recursive spectral
method. This hedging, which ultimately allows BarLCur to
achieve its faster running time, is implicit in the primal-dual
framework of Arora and Kale [3].

Figure 1: Schematic representation of the speed-up intro-
duced by BaLCut when the instance graph contains many
unbalanced cuts of low conductance. Let v; and v, be the
two slowest-mixing eigenvectors of G. Assume that their
minimum-conductance sweep cuts S| and S, are unbalanced
cuts of conductance less than y. If we use the recursive algo-
rithm of Kannan et al. [10], two iterations could be required
to remove S| and S,. However, BALCur considers a multidi-
mensional embedding containing contributions from multiple
eigenvectors and performs a radial sweep cut. This allows S
and S to be removed in a single iteration.

The SDP relaxation appears in Figure 1.4. We denote by

def

u V> Ry the distribution defined as y; = d9i/volG), and

by d; the degree of the i-th vertex. Also, vgy &ef > 1iv;. Even
though our algorithm uses the SDP, at the core, it is spectral
in nature, as it relies on the matrix-vector multiplication
primitive. Hence, if one delves deeper, a random walk
interpretation can be derived for our algorithm.

psdp(G, b, y) : a- B vi-ol3 <y
{i.jleE
E [loj - vaygll; =1
J~H
1-b
Viev o = vl < 22

Figure 2: SDP for h-BALANCED SEPARATOR

The Primal-Dual Framework. For our SDP, the
method of Arora and Kale can be understood as a game be-
tween two players: an embedding player and an oracle player.
The embedding player, in every round of this game, gives a
candidate vector embedding of the vertices of the instance
graph to the oracle player. We show that, if we are lucky
and the embedding is feasible for the SDP and, in addition,
also has the property that for a large set S, for every i € S,
i = Vanglls < O(1-b)/b) (we call such an embedding round-
able), then a projection of the vectors along a random direc-
tion followed by a sweep cut gives an Q,(1)-balanced cut of
conductance at most O(+fy). The difficult case is when the
embedding given to the oracle player is not roundable. In this
case, the oracle outputs a candidate dual solution along with a
cut. The oracle obtains this cut by performing a radial sweep
cut of the vectors given by the embedding player. If at any
point in this game the union of cuts output by the oracle be-
comes balanced, we output this union and stop. We show that
such a cut is of conductance at most Op(+/y). If this union
of cuts is not balanced, then the embedding player uses the
dual solution output by the oracle to update the embedding.
Finally, the matrix-exponential update rule ensures that this
game cannot keep on going for more that O(le¢%/;y) rounds.
Hence, if a balanced cut is not found after this many rounds,
we certify that the graph does not contain any b-balanced cut
of conductance less than y. To achieve a nearly-linear running
time, we maintain only a log n-dimensional sketch of the em-
bedding. The guarantee on the running time then follows by
noticing that, in each iteration, the most expensive computa-
tional step for each player is a logarithmic number of matrix-
vector multiplications, which takes at most O(m) time.

The reason why our approach yields the desired corre-
lation condition in Theorem 1.2 is that, if no balanced cut is
found, every unbalanced cut of conductance lower than y will,
at some iteration, have a lot of its vertices mapped to vectors
of large radius. At that iteration, the cut output by the oracle
player will have a large correlation with the target cut, which
implies that the union of cuts output by the oracle player will
also display such large correlation. This intuition is formal-
ized in the proof of Theorem 1.2.

Our Contribution. The implementation of the oracle
player, specifically dealing with the case when the embedding
is not roundable, is the main technical novelty of the paper.



Studying the problem in the SDP-framework is the main
conceptual novelty. The main advantage of using SDPs to
design a spectral algorithm seems to be that SDP solutions
provide a simple representation for possibly complex random-
walk objects. Furthermore, the benefits of using a carefully
designed SDP formulation can often be reaped with little or
no burden on the running time of the algorithm, thanks to the
primal-dual framework of Arora and Kale [3].

1.5 Rest of the Paper In Section 2.1, we set the notation
for the paper. In Section 2.2, we present our SDP and its
dual, and also define the notion of a roundable embedding. In
Section 2.3, we present the algorithm BaLCut and the separa-
tion oracle OrAcLE, and reduce the task of proving Theorem
1.2 to proving statements about the OracLE. Section 3 con-
tains the proof of the main theorem about the OracLE used
in Section 2.3. For clarity of presentation, several proofs are
omitted from the above sections and appear in the appendix.

2 Algorithm Statement and Main Theorems

2.1 Notation

Instance graph and edge volume. We denote by G =
(V,E) the unweighted instance graph, where |V| = n and
|E| = m. We let d € RY, be the degree vector of G, i.e.
d; is the degree of vertex i. We mostly work with the edge

measure y over V, defined as y; e u(@ &ef di/>m. For a subset

S € V, we also define ug as the edge measure over S, i.e.
o def .

s (D) = HOfu(s).

Special graphs For a subset S C V, we denote by Ky the
complete graph over S such that edge {7, j} has weight u;u;
for i, j € § and O otherwise. Ky is the complete graph with
weight u;u; between every pair i, j € V.

Graph matrices. For an undirected graph H = (V, Ep),
let A(H) denote the adjacency matrix of H and D(H) the diag-

onal matrix of degrees of H. The (combinatorial) Laplacian

of H is defined as L(H) & D(H) — A(H). Note that for all

x € RY, X" L(H)x = ¥; jicg,(xi — x))*. By D and L, we de-
note D(G) and L(G) respectively.

Vector and matrix notation. For a symmetric matrix M,
we will use M > 0 to denote that it is positive semi-definite
and M > 0 to denote that it is positive definite. The expression
A > Bis equivalent to A — B > 0. For two matrices A, B of
equal dimensions, denote A e B f Tr(A” B) = };; Aj;- B;j. For
a matrix A, we indicate by ¢4 the time necessary to compute
the matrix-vector multiplications Au for any vector u.

Embedding notation. We will deal with vector embed-
dings of G, where each vertex i € V is mapped to a vector
v; € R?. For such an embedding {v;};ev, we denote by vayg the

mean Vector, i.e. Vayg « iev 1iv;. Given a vector embedding
of {v; € Ry, recall that X > 0, is the Gram matrix of the
embedding if X;; = v/ v;. For any X € R"*V, X > 0, we call
{vi}icv the embedding corresponding to X if X is the Gram ma-
trix of {v;};ey. For i € V, we denote by R; the matrix such that

Rie X =|jv; - Uavg”;

Basic facts. We will alternatively use vector and matrix
notation to reason about the graph embeddings. The follow-
ing are some simple conversions between vectors and matrix
forms and some basic geometric facts which follow immedi-
ately from definitions.

Fact 2.1. ]Ei~y||Ui_Uavg”% = 1/2'IE{i,j]~[_l><[_l||Ui_Uj”% = L(Kv).X
Fact 2.2. ForasubsetS CV, Y, cs iR = u(S)L(Ky)—L(Ky).

Fact 2.3. For a subset S C V, By jyusxus Vi —v.,-II% =2-1/us)?-
L(Kg) e X.

Modified matrix exponential update. Let Sp e the

subspace of R orthogonal to & = 1/vam - D'*1 and let T

o . def
be the identity over Sp, i.e. 7 = I —1/am- D*117D". For a
positive & and a symmetric matrix M € RV*V, we define
D~ 67(2;71-8)-13-1/21141)-‘/2 D'

U (A) S 2m -

T o o—Cm&)D~'2MD-'2
The following fact about J will also be needed:

Facr2.4. T =2m- D " L(Ky)D™">.

2.2 SDP Formulation We consider an SDP relaxation to
the decision problem of determining whether the instance
graph G has a b-balanced cut of conductance at most 7.
The SDP feasibility program psdp(G, b, y) appears in Figure
2.2, where we also rewrite the program in matrix notation,
using Fact 2.1 and the definition of R;. psdp can be seen as

psdp(G, b, y) : E i —vjll; <4y
{i,j}eE
E |loj - vaygll; =1
J~H
1-b
VieV - vagllh < 5
1
psdp(G,b,y): —-LeX <4y
m
LKy)eX =1
1-b
YieV RieX < b

Figure 3: SDP for h-BALANCED SEPARATOR

a scaled version of the balanced-cut SDP of [4], modified
by replacing vayg for the origin and removing the triangle-
inequality constraints. The first change makes our psdp
invariant under translation of the embeddings and makes the
connection to spectral methods more explicit. Indeed, the
first two constraints of psdpnow exactly correspond to the
standard eigenvector problem, with the addition of the R;



constraint ideally forcing all entries in the eigenvector not
to be too far from the mean, just as it would be the case if
the eigenvector exactly corresponded to a balanced cut. The
removal of the triangle-inequality constraints causes psdp to
only deal with the spectral structure of L and not to have a
flow component. For the rest of the paper, denote by A the set
XeR™WW,X>0:L(Ky)eX =1}

The following simple lemma establishes that psdp is indeed a
relaxation for the integral decision question and is proved in
Section A.2.

Lemma 2.1. (SDP 1s A RELaXATION) If there exists a b-
balanced cut S with ¢(S) < vy, then psdp(G,b,y) has a
feasible solution.

BaLCur will use the primal-dual approach of [3] to determine
the feasibility of psdp(G, b, y). When psdpis infeasible, BAL-
Curt will output a solution to the dual dsdp(G, b, y), shown in
Figure 4.

1-b

dsdp(G.by): @~ = fi >4y
i€V
1
— . L iR, — aL(Ky) >
m +;ﬁl i a ( V)—O
aeR, 20

Figure 4: dsdp(G, b, y) feasibility problem

In the rest of the paper, we are going to use the following
shorthands for the dual constraints

def

L
M(@.p)E 5=+ ) BiRi—aL(Ky).

i€V

e 1-b
V(a,p) o r——= Z,Bi,

i€V

Notice that V(a, ) is a scalar, while M(«, ) is a matrix in
RV, Given X > 0, a choice of (@, 8) such that V(a,8) > 4y
and M(a,B) e X > 0 corresponds to a hyperplane separating
X from the feasible region of psdp(G, b,y) and constitutes a
certificate that X is not feasible.

Ideally, BALCut would produce a feasible solution to psdpand
then round it to a balanced cut. However, as discussed in [3],
it often suffices to find a solution “close” to feasible for the
rounding procedure to apply. In the case of psdp, the concept
of “closeness” is captured by the notion of roundable solution.

DeriniTION 2.1. (RoUNDABLE EMBEDDING) Given an embedding
{vitiev, letR={i eV : |, - va\,g||% < 32 - =b)/p}. We say that
{vi}iev is a roundable solution to psdp(G, b, ) if:

— By jee i —vjll3 < 2y,
- ]Ej~,u ||Uj - Uavg”% =1,

— B gl l0i = 0113 > Voa.

A roundable embedding can be converted into a balanced
cut of the conductance required by Theorem 1.2 by using a
standard projection rounding, which is a simple extension of
an argument already appearing in [4] and [3]. The rounding
procedure ProsRounD is described precisely in Section A.4,
where the following theorem is proved.

THEOREM 2.1. (RoUNDING RounDABLE EMBEDDINGS) If {v; €
Riey is a roundable solution to psdp(G,b,y), then
ProsRounp({v;}iev, b) produces a Q,(1)- balanced cut of con-
ductance Oy, ( \/7) with high probability in time O(nd + m).

2.3 Primal-Dual Framework

Separation Oracle. The problem of checking the fea-
sibility of a SDP can be reduced to that of, given a candi-
date solution X, to check whether it is close to feasible and,
if not, provide a certificate of infeasibility in the form of a
hyperplane separating X from the feasible set. The algorithm
performing this computation is known as a separation oracle.
Arora and Kale show that the original feasiblity problem can
be solved very efficiently if there exists a separation oracle
obeying a number of conditions. We introduce the concept
of good separation oracle to capture these conditions for the

program psdp(G, B, y).

DeriniTION 2.2. (GoOD SEPARATION ORACLE) An algorithm is a
good separation oracle if, on input some representation of X,
the algorithm either finds X to be a roundable solution to
psdp(G, b,y) or outputs coefficents a, such that V(a,B) >
34-y, M(a,B)e X > l/64-y and —yL(Ky) < M(«a,B) < 3L(Ky).

Algorithmic Scheme. We adapt the techniques of [3]
to our setting, where we require feasible solutions to be in
A rather than having trace equal to 1. The argument is
a simple modification of the anaylsis of [3] and in [19].
The algorithmic strategy of [3] is to produce a sequence of
candidate primal solutions X", ..., X iteratively, such that
X® e Afor all ¢.

Our starting point X" will be the solution 27/s-1 - D71,
At every iteration, a good separation oracle OracLe will take
X® and either guarantee that X is roundable or output
coefficents o, certifying the infeasiblity of X”. The
algorithm makes use of the information contained in a®, 8
by updating the next candidate solution as follows:

2.1) PO E —fs - (M@, ) + yL(Ky))

1
X(z+l) déf Ua[ P(i)J
where € > 0 is a parameter of the algorithm. The following is
immediate.
LemMa 2.2. Forallt > 0, XY € A.

Following [3], we prove that, after a small number of itera-
tions this algorithm either yields a roundable embedding or a



Lete = V130. Fortr=1,2,...,T = 0(105"):

— Execute ORACLE(G, b,, {5?)}1@\/) :

Let 0 &'

InpuT: An instance graph G = (V, E), a balance value b € (0, !/2] such that b = Q(1), a conductance value y € (0, 1).

Compute the embedding {51(.')}@/ corresponding to X = U, (Z;;ll P(j)) dfr=1,X0 = 0, (0) = 2m/u-1- D71

If OrAcLE finds that {ﬁl@}iev is roundable, run PROJROUND(G, b, {55’)},-6‘/) , output the resulting cut and terminate.
Otherwise, OrAcLE outputs coefficients ((x(’), ,8(’)) and cut B,
U, BO.If C¥ is b/4-balanced, output C and terminate.
. def . .
Otherwise, let PO = —¢/¢ - (M (a(’), ,8(’)) + yL(KV)) and proceed to the next iteration.

Output S = UL, B”. Also output @ = /7 3., @@ and g = /1 3., B©.

Figure 5: The BaLCut Algorithm

feasible solution to dsdp(G, b, Q(y)). We present the proof in
Section A.3 for completeness.

THEOREM 2.2. (ITERATIONS OF ORACLE, [3]) Let € = 1/130. As-
sume that the procedure ORACLE is a good separation oracle .
Then, after T = O (logn/y) iterations of the update of Equation
2.1, we either find a roundable solution to psdp(G, b, y) or the
coefficents @ = /1 3,1, @ and p = Y1 3., BV are a feasible
solution to dsdp(G, b, 3/16 - ).

Approximate Computation. Notice that, while we are
seeking to construct a nearly-linear-time algorithm, we cannot
hope to compute X exactly and explicitly, as just maintain-
ing the full X matrix requires quadratic time in 7. Instead,
we settle for a approximation X“*V to X(*1 which we define

as
t
oS

The function U, is a randomized approximation to U, ob-
tained by applying the Johnson-Linderstrauss dimension re-
duction to the embedding corresponding to U,. U, is de-
scribed in full in Section A.5, where we also prove the fol-
lowing lemma about the accuracy and sparsity of the approx-
imation. It is essentially the same argument appearing in [9]
applied to our context.

Lemma 2.3. (ApPROXIMATE COMPUTATION) Let € = 1/130. For a

matrix M € RV, M = 0, let X < 0,(M) and X < U (M).

1. X>0and X € A.

2. The embedding {U;};cy corresponding to X can be repre-
sented in d = O(log n) dimensions.

3. {; € R% ey can be computed in time O(ty + n).

4. for any graph H = (V, Ey), with high probability
(1-1/64)-L(H)oX—7 < L(H)oX < (1+1/64)-L(H) e X+,
and, for any vertexi €'V,

(1—164)-Ri@eX—T<R ®eX<(1+1/64)-R;®X+T,

where T < O(!/poly(m)).

This lemma shows that X?) is a close approximation to X,
We will use this lemma to show that ORACLE can receive X
as input, rather than X®  and still meet the conditions of
Theorem 2.2. In the rest of the paper, we assume that X
is represented by its corresponding embedding {ﬁf’)},-ev.

The Oracle. OractE is described in Figure 6. We show
that OrRAcLE on input X meets the condition of Theorem 2.2.
Moreover, we show that OrRacLE obeys an additional condi-
tion, which, combined with the dual guarantee of Theorem
2.2 will yield the correlation property of BALCuT.

THEOREM 2.3. (MAIN THEOREM ON ORACLE) On input X®, Or-
ACLE runs in time O(m) and is a good separation oracle for
X, Moreover, the cut B in Step 4 is guaranteed to exist.

Proof of Main Theorem. We are now ready to prove
Theorem 1.2. To show the overlap condition, we consider the
dual condition implied by Theorem 2.2 together with the cut
B® and the values of the coefficents output by the ORACLE.

Proof. [Proof of Theorem 1.2] If at any iteration ¢, the em-
bedding {Ey) }iey corresponding to X is roundable, the stan-
dard projection rounding ProsRounp produces a cut of bal-



32 - (=b)fp}.

2. CasE 1: ]E{i,j]eE ||5; - ﬁ‘]”% z

3. Caskg 2: not Case 1 and By, llVi — vjll2

cut of r. Let z the smallest index such that u(S ;) >
that ¢(B) < 2048 - +fy. Output a = /8y, B;

1. Input: The embedding {7;};cy, corresponding to XeA Letr =

>2y.Outputa =y,B=0and B=0.
8. Then {7;};cv is roundable, as X € A implies E;., r =1.

4. Cask 3: not Caske 1 or 2. Relabel the vertices of V such that r| >
b/g. Let B the most balanced sweep cut among {S, ...
= y;-yforie Bandg; = 0 fori ¢ B. Also output the cut B.

_ . def .
[15; — Davgll2 for all i € V. Denote R = {i € V : r? <

rp>...2r,andletS; = {1,...,i} be the j-th sweep

,S,-1} such

Figure 6: ORACLE

ance €,(1) and conductance Op(+/y) by Theorem 2.1. Simi-
larly, if for any #, C? is b/4-balanced, BALCuT satisfies the bal-
ance condition in Theorem 1.2, as ¢(C?) < O( \/¥) because
C" is the union of cuts of conductance at most O( /).

Otherwise, after T = O (logn/y) iterations, by Theorem
2.2, we have that @ = /Y ,a® and g = Yryl, g?
constitute a feasible solution dsdp(G, b, 3/16 - y). This implies
that M(@,B) > 0, i.e.
22) — L+ > BiRi - &L(Ky) = 0.

eV

For any cut C such that u(C) < 1/2 and ¢(C) < 7/1s,
let the embedding {u; € R}y be defined as u; = HO)/uc)
fori € C and u; = — VuO/uc) for i ¢ C. Then ugyg = 0

and ]EiNﬂ_Hu,- - ua\,g||§ = 1. Moreover, Ej; jcellu; — uj||§ =
Um - IECO o) < 4 - ¢(C) < v/4. Let U be the Gram matrix
of {Mi € ]R}iev-

We apply the lower bound of Equation 2.2 to U. By Facts
2.1 and 2.2.

E li =l + 3 Billus — tagll = & JEllus = a5

ti.j i€V

=M@,pB)eU>0

Recall that, by the definition of OracLE, for all ¢ € [T],
>7/s-yand B = p; -y fori € BY andﬁ(r) 0 fori ¢ B®.
Hence,

a® >

T
Ya+vT Z (L(BY 0 C) - 1Ouc) + (B 1 C) - HO)uc)

t=1

=78y 20
Dividing by vy and using the fact that u(C) < !/2 and
1(C) < 1, we obtain
u(BY N C) u(BYnC)
1 7fg — 1/g) = 5
" Zl( WO 20 )2(/8 [ =0
Now,
u S NC) ulS N C) . Z (,u(B(’) NC) BN C_‘))
u(€) 2.0 7 & wo) 2-u(C)

so that we have

uS NC) N H(S ﬂC)
u(C) 2-pu(0)
Moreover, being the union of cuts of conductance O(+fy), S

also has ¢(S) < O(+fy). As u(S) < b/a, KSNO/2u(C) < pu(S) <
b < 1/s. This finally implies that

> 5/s.

HS N0

wo

Finally, both ProsRounp and ORACLE run in time O(m) as
the embedding is O(log n) dimensional. By Lemma 2.3, the
update at time 7 can be performed in time #);, where M =
21 PY. This is a matrix of the form a-L+Y;cy biR;+cL(Ky).
The first two terms can be multiplied by a O(logn) vectors
in time O(@m), while the third term can be decomposed as
L(Ky) = E;,R; by Fact 2.1 and can therefore be also
multiplied in time O(m). Hence, each iteration runs in time
O(m), which shows that the total running time is O(m/y) as
required.

3 Proof of Main Theorem on ORACLE

3.1 Preliminaries The following is a variant of the sweep
cut argument of Cheeger’s Inequality [5], tailored to ensure
that a constant fraction of the variance of the embedding is
contained inside the output cut. For a vector x € RY, let
supp(x) be the set of vertices where x is not zero.

Lemma 3.1. Let x € RV, x > 0, such that xTLx < A and

u(supp(x)) < /2. Relabel the vertices so that xy =2 x, > ... 2
X1 > 0and x, = ... = x, = 0. For i € [z— 1], denote
by S; C V, the sweep cut {1,2,...,i}. Further, assume that

Y dix? < 1, and, for some fixed k € [z -
Then, there is a sweep cut S, of x such that z — 1

Sy < Yo - V24,

We will also need the following simple fact.

1, Y0, dix? > o
>h>kand

Facr 3.1. Givenv,u,t € R, (v =t — llu — tl)*> < |jv — uII%.



3.2 Proof of Theorem 2.3

Proof. Notice that, by Markov’s Inequality, u(R) <
b/32-(1-b)) < b/16. Recall that 7 = O (1/poly(m)) .

— Cask 1: ]E[i,j}eE ||ﬁ, - l~)]||% = ﬁ -Le f( > 2)/ ‘We have
V(a,B) > y and, by Lemma 2.3,

M@,B)eX > (1 —1/64) 2y —y—7 2> 1/64-.

— Case 20 By juexuelloi = vjll3 >
roundable by Definition 2.1.

1/64. Then {ai}iEV is

— CasE 3: By ji~puexuellvi — Uj”% < 1/64. This means that, by
Fact 2.3, L(Kg) ® X < 1/2- u(R)? - /64 < 1/128. Hence, by
Fact 2.2,

Z,uiR,- X = Zu,-r,- > u(R) — /128 > 1 —1/32 — 1/128
i€eR i€eR
> 1 —5/12s.

We then have R = S, for some g € [n], where we also
denote by S, the g largest coordinates dictated by the
sweep cut S . Let k < z be the the vertex in R such
that 3.5, pjrj > (1= 1/128) - (1 - 5/128) and SO Hirj >
1/128 - (1 —5/128). By the definition of z, we have k < g < z
and rz2 < 8/b < 16 - (1-b)/,, Hence, we have r, < 1/2- r;, for

. def
all i > g. Define the vector x as x; = Uom - (r; — r,) for

ieS,andr; “10 for i ¢ S .. Notice that:

X Lx = Z (xi = xj)2 < lom- Z (ri — rj)2
{i.jleE {i.jleE
Fact 3.1
< 1o Z I15: — 3,13 < 2y.
{i.J}eE

Also, x > 0 and u(supp(x)) < b/8 < /2, by the definition
of z. Moreover,

i dixi = 1om - Z di(ri = 12" < Vfom - Z dir} =1,
i=1 i=1 i=1

and

D dixt = 1o Z di(ri = .’

i=k i=k

g
> 1fom - Z di(ri =12 1)’
ik

g
= 1am - 14 Z dir?

i=k
> 1/512- (1 —5/128) > /1024

Hence, by Lemma 3.1, there exists a sweep cut S, with
Z > h > k, such that ¢(S ) < 2048 - /y. This shows that

B, as defined in Figure 6 exists. Moreover, it must be the
case that S, C B. As h > k, we have

k
Z#i”z‘z > Z,uiriz > Z > (1-1/128)-(1-5/128) > 1—3/e4.
i=1

i€B €Sy, i

Recall also that, by the construction of z, u(B) < %/s.
Hence, we have

Vie,p) =7/8 -y = U=Dp-u(B) -y > (/s = 1/8) - y > 3/ay.
M(a,B) e X > (1 —1e4) - (1 =3fea)yy =T7/sy — T > /64 - y.

This completes all the three cases. Notice that in every case
we have:

tam - L —yL(Ky) < M(a, ) < Y/2m - L + yL(Ky).

Hence,
—YL(Ky) 2= M(a,B) < 3L(Ky).

Finally, using the fact that {f;};cy is embedded in O(logn)
dimensions, we can compute L e X in time O(m). L(Kg) @ X
can also be computed in time O(n) by using the decomposition
Eji, ji~pexuellvi = ujllg =2 Byl - UanR”%, where vayg, is the
mean of vectors representing vertices in R. The sweep cut over
r takes time O(m). Hence, the total running time is O(m).
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Hence,

- 2(2 dl-xf.J < V22

{i.j)eE i€V

) Then, let ¢ be the conductance of the least conductance cut
A Appendlx among Sk+] N Sk+2, “eey Sh.
D iyl

A.1 Proof of Corollary 1.1

Lemma A.1. If only the second condition in Theorem 1.1 (LTI
holds, then G has no Qp(1)-balanced cut of conductance O(y). " h
> Y IESHS)l Gi=yis) 2 ¢ ), vol(S) - (i — yis1)

Proof. We may assume that the cut S output by BaLCur is i Py

not Qp(1)-balanced. Then, by the second condition, any cut h h

T with vol(T) < /2 - vol(G) and ¢(T) < O(y) must have > ¢ Z diy; = Z dix} = ¢ Z dix} = o
vol(SNT)/vol(T) 2> 1/2. Hence, vol(T) < 2-vol(S NT) < 2-vol(§) < i=k+1 i=k+1 i€V=Sy

Q,(1). This implies that there are no Q;(1)-balanced cuts of

conductance less than O(y). Hence, ¢ < /o - V2.

A.2 Proof of Basic Lemmata A.3 Primal-Dual Framework



A.3.1 Preliminaries Recall that Sp is the subspace of RY
orthogonal to & = 1/v2m - D'1 and that I be the identity over
Sp.

Define
det  exp(—eY)

EY) = T eexp(—¢Y)’

The following simple facts will be useful.

Fact A.1. Let M be a symmetric matrix in RVV such that
M?D = 0. Then, exp(M)b = 0.

THEOREM A.1. Let & > 0 and let YV, ..., YD) pe a sequence
of symmetric matrices in RVV such that, for all i € [T],
Yo =0and 0 <Y; < I. Then:

T T
PREE ((1 —e) Y Y0 ez - —log"]f,
E
y=1 t=1

where Z* = E.(X!_, YO).

A32 Proofs In the following, let M® € 2m.D~2PO D",
Also, let W® = E, (2?;} M(i)) . Then, we have

t—1 t—1
ZP@] —2m-D "E, (Z MD

i=1 i=1

X0 = D

=2m-D"PWOD ",
Proof. [Proof of Lemma 2.2] By Fact 2.4,
L(Ky) e X” = (D""ID") ¢ (D""WOD™") = T « W = 1.
We are now ready to complete the proof of Theorem 2.2.

Proof. [Proof of Theorem 2.2] Suppose that ORACLE outputs
coefficents (a/m, ,B(’)) for T iterations. Then for all t € [T], by
the definition of good oracle W ¢ M®

= (1/2m . D'2x® Dl/z)) . (2m . D2 p® D—l/z) = X0 ¢ pO

é . (M (a,(t)’ﬂ(f)) e X0 4+ YL(Ky) o X(t))

A\

> 1/6 . (1/64 -y + 'y) = 1/6 . 65/64 -y.
Notice that, as (a(’), ,8(’)) are the output of a good oracle, we

have 0 < P® < L(Ky), which implies 0 < M® < T < I.
Hence, we can apply Theorem A.1 to obtain:

T T
3 w0 (a oY MO ewo _1°g")z.
&
i=1 t=1

This implies

ZP(D >(

and by the definition of P,

(v

i=1

a.p0) + yL(Ky))

O\I'—‘

logn

= ((1 -&)- )L(KV).

Hence,

6logn

M(a,B)z1/r~((1—g)~T.65/64~y— —y~T)L(KV)

and

6logn
eT

M@a,p) > ((1 —&)-65/64 -y — - 7/) L(Ky).

By picking & < V130 and T € 6 129 - 1/s - lognfy = O (lognfy) ,
we obtain M(@,B) > 0 - L(Ky). As M(&,B8)1 = 0, this also
implies

M@,p) = 0.
Finally, by the definition of good oracle, V(@,B8) > 3/a -y
Hence, (&, 8) is a solution to dsdp(G, b, 3/16 - ).

A4 Projection Rounding The description of the rounding
algorithm ProsRounp is given in Figure 7. We remark that
during the execution of BALCut the embedding {v; € R% ey
will be represented by a projection over d = O (log n) random
directions, so that it will suffice to take a balanced sweep cut
of each coordinate vector.

We now present the proof of Theorem 2.1. The constants
in this argument were not optimized to preserve the simplicity
of the proof.

A.4.1 Preliminaries. We will make use of the following
simple facts. Recall that for y € R, sgn(y) = 1ify > 0
and —1 otherwise.

Fact A2. Forally,z € R, (y + 2)* < 2(y* + 2.
Proof. 2(y* +2)—(y+2)* = (y—2)* = 0.

FactA3. Forally > z € R, |sgn(y)-y2—sgn(z)-z2| <
(y — 2yl + IzD.

Proof.

1. If sgn(y) = sgn(z), then [sgn(y)-y>—sgn(z2)-2*| = ly*~2*| =

Y-2-ly+d=@-ayl+lzhasy >z
2. If sgn(y) # sgn(y), then since y > z, (y — 2) = |yl + |z.
Hence, [sgn(y) - y* — sgn(z) - 22| = y* + 22 < (yl + |z)* =

(y = 2yl + I2D).

Fact A4. Forally > 7 € R, (y—z)* < 2(sgn(y)-y*—sgn(z)-z°).



Proof.

1. If sgn(y) = sgn(2), (y —2)*> = y* + 22 — 2yz < y* +
22 -272 = y* =2 as y > z. Since sgn(y) = sgn(z),
y? =2 <2sgn(y) - y* - sgn(z) - 7).

2. If sgn(y) # sgn(z), (y — 2)* = (yl + |2)* < 23y + 12P) =
2(sgn(y) - y> — sgn(z) - 22). Here, we have used Fact A.2.

We also need the following standard facts.

Fact A.5. Let v € RY be a vector of length € and u a unit
vector chosen uniformly at random in 8. Then,

_

d,and

1. E, (vTu)2
2. for0 <8 <1, P, | Vd-o"ul < 6t] < 3.

Fact A.6. Let Y be a non-negative random variable such that
P[Y < K] = 1 and E[Y] = 6. Then,
0

>_

P[Y > 6/2] K

The following lemma about projections will be crucial
in the proof of Theorem 2.1. It is a simple adaptation of an
argument appearing in [4].

Lemma A.2. (ProJECTION) Given a roundable embedding {v; €
R%};ey, consider the embedding x € R" such that x; & Vd -
ulv;, where u € $%', and assume without loss of generality
that x; = ... 2 x,. Then, there exists ¢ € (0, b] such that with
probability Q,(1) over the choice of u € 84!, the following
conditions hold simultaneously:

1. Eyjies(xi — x;)* < Oy (]E{i,jleE”Ui - Uj||2) = Op(y),

2. Eip(x; — Xavg)z = 0p(1), and

3. thereexists 1 <1< nwithvol({l,...,1}) > c-vol(G) and,
there exists | < r < n such that vol({r, ..., n}) > c-vol(G)
such that x; — x, 2 Q,(1).

Proof. We are going to lower bound the probability, over u,
of each of (1), (2) and (3) in the lemma and then apply the
union bound.

Part (1). By applying Fact A.5 to v = v; —v; and noticing
Vd - v"ul = |x; - x;| , we have

E E

2 2
E (xi—x)"= E |lv;—vjll.
u {i,j)eE (i.jIeE

Hence, by Markov’s Inequality, for some p; to be fixed later

P| E

2 2
xi—=x;)" 2 Yp - E |lvi=vill”| < pr1.
" [i,j}EE( i _1) =z /l’l {i,j}eE” i ]” S D1

11

Part (2).

o Fact A_.S—( 1) |2 round_abilily

IE‘J[_]E‘(X,' — Xavg) ]];i]g”vi - Uavg| L.

Hence, for some p; be fixed later

P| E(x; — Xavg)*

2
2 1p, - Ellv; - Uavg” < P2
u |i~u i~

Part (3). Let R £ (i € V ¢ [l — vaygll® < 32 - 1-bs}.

Let o & 4. V2 T 5. By Markov’s Inequality, u(R) < 1/o2.
As {v;}iey is roundable, for all 7, j € R, |lv; — vj|| < 20~ Hence,
lvi = vjll = Y20 - [Jv; — vj||2 for such i, j € R. This, together with

the roundability of {v;};cy, implies that

E

llv; — v;ll > /1280
(i, Ji~prX R

For any k € R, we can apply the triangle inequality for the
Euclidean norm as follows

E

lo; —vill < E
(L.} ~urXpr i, J

(Ito: = oell + llox = v;1)
(i} ~urXpr

<2- E |, — vell.
I~HR
Hence, for all k € R

E |jv; — vkl| = /2560
i~pR

Let Ry be the set {i € R : ||[v; — vi]| = 5120}, Since |jv; — vil| <
20, applying Fact A.6 yields that, for all k € R,

P [i € Ri] = 1/102402.
i~UR

For all vertices i € Ry, by Fact A.5

P[|xx — x;| = Yo - /5120 = 1/46080] >
u

W

def . def .
Let§ = 1/2 - /46080 = 1/92160. Consider the event & = {i €
Ry A |x; — x¢| = 2 - 6}. Then,

P

= [ieR]-Pllxi—xi| >2-0|i€Ri]
{ik}~prXpr u

u, {ik}~pRXpR
J | 21
~ 102402 3 153602

def
=p.

Hence, from Fact A.6, with probability at least /2 over
directions u, for a fraction #/2 of pairs {i, k} € RXR, |xz—x;| > 2-
0. Let v be the median value of {x;};cy. Let L & {i:xi<v-96}
and H & {i: x; >v+06}. Any pair {i,j} € R X R with
|x; — x;| > 2 - 6 has at least one vertex in L U H. Hence,

WL U H) > 1/2-0/2- u(R)? > pfa- (-102)* > pf16 = Qp(1).

Assume (L) > r/32, otherwise, apply the same argument to
H. Let [ be the largest index in L. For all i € L and j such that



xj > v, we have |x; — x;| > 6. (Similarly, let r be the smallest
index in H.) This implies that,

[x; — an/2J| >0

with probability at least #/2 = Q,(1), satisfying the required
condition. Let p; be the probability that this event does not
take place. Then,

D3 < 1 —P/2.

To conclude the proof, notice that the probability that all three
conditions do not hold simultaneously is, by a union bound,
at most p; + po+ p3. Setting p; = py = #/5 = Qp(1), we satisfy
the first and third conditions and obtain

pr+p2t+p3<1l—p-(2-1/5-1/5)<1-r/0.
Hence, all conditions are satisfied at the same time with
probability at least #/10 = Q,(1).

From this proof, it is possible to see that the parameter ¢ in
our rounding scheme should be set to #/32.

We are now ready to give a proof of Theorem 2.1. It is
essentially a variation of the proof of Cheeger’s Inequality,
tailored to produce balanced cuts.

Proof. [Proof of Theorem 2.1] For this proof, assume that x
has been translated so that xa,g = 0. Notice that the guarantees
of A.2 still apply. Let x,/, r and ¢ be as promised by Lemma
A.2. For z € R, let sgn(z) be 1 if z > 0 and —1 otherwise. Let

def
yi = sgn(x;) - x7.

Hence,
E | IFMA'3 E ( D) - (il + 1x;]
. < xi —xiD - (x| + |x;
i, jIeE Yi yj = {i,j}eE( 1 J ) ( i J )

< xi—x)? E (x| +x;))?
< \/{, E (v-x)7- E x|+ )

Fact A.2

< 2- E (—-x)* E (Z+x%)
{i,j)€E ’ (i, j)eE ! J

2
- \/2- E (xi—x2 = E x2
(i.j}eE m i

\/4 B (i-xp - Ex?
i.jle

Lemma A 2—(1),(2)

< O (V).

Now we lower bound Ey; jeg lyi —
then y; > y; and vice-versa. Hence,

yjl. Notice that if x; > x;,

Y1 = ... 2 Y.

def

LetS; = {1,...,i} and let ¢ be the minimum conductance of
S;overall [ ig,r
n—1
E ESLS) - (i — i
ihee 9= g Z E(S S0l (i = yist)

1(S; 1(S;
z2¢- meVO(|E)| - voll )}( i — Yir1)

I<i<r
Lemma_A.Z—(S)

QD) ¢ D Wi = yinn)

I<igr

2Qp(1) - ¢ - (Y1 = yr)

Fact A4 2
2 Q)¢ (x—x)

Lemma A.2

> -6,

Hence, ¢ < O(+/y) with constant probability over the choice
of projection vectors u. Repeating the projection O(logn)
times and picking the best balanced cut found yields a high
probability statement. Finally, as the embedding is in d
dimensions, it takes O(nd) time to compute the projection.
After that, the one-dimensional embedding can be sorted in
time O(n) and the conductance of the relevant sweep cuts can
be computed in time O(m), so that the total running time is
O(nd + m).

A.5 Proof of Lemma 2.3

A.5.1 Preliminaries For the rest of this section the norm
notation will mean the norm in the subspace Sp. Hence
[|All = [[TAZ||. We will need the following lemmata.

LemmMA A.3. (JOHNSON-LINDENSTRAUSS) Given an embedding
{vi € R"cy, V = [n], let uy,uy,...,u, be vectors sampled
independently uniformly from the n — 1-dimensional sphere of
radius \"fk. Let U be the k X t matrix having the vector u; as
i-th row and let ¥; f Uv,. Then, for ks f O(logn/s?), for all
i,jeV

(1=6) - lloi = v)IP < 115 = 517 < (1 +6) - lloy = vl
and

(1 =8) - lloill® < 1Bl < (1 +6) - ol .

Lemma A4, ([9]) There exists an algorithm EXPV which, on
input of a matrix A € R™", a vector u € R" and a parameter
n, computes a vector v € R, such that |lv — e 2ul| < lle ™| - 17
in time O(t4 log>(1/n)).

The algorithm EXPV is described in [9] and [8] .

A.5.2 Proof We define the U, algorithm in Figure 8 and
proceed to prove Lemma 2.3.

Proof. We verify that the conditions required hold.



— By construction, X > 0,as X = 1/z-B" B, and L(Ky)eX = As D' (17 - I?) D' = ETE + ¥")TE + ETY', we have
1.

_ ID" (¥ - ¥) D™l

~ X = (Y¥Z-B)" (/¥Z- B) and B is a k; X n matrix, with , . T o
ks = O(logn), by Lemma A.3. SIETE+YT)Y E+E Y|

. < V3(IEI; +2 - IEILIIT "))

— We perform ks = O(logn) calls to the algorithm EXPV, 5
each of which takes time O(t4) = O(ty + n). Sampling <9-2m)”-(1+96)-L(Ky)eY -n.

time. Hence, théwt‘otal running time is O(ty + n). and
— Let U be the ks x n matrix having the sampled vectors IL(Ky) e (Y = Y)|
. 1
ui,...,ug, as rows. Let {v;}iey be the embedding cor- < L(Ky) @ (ETE) +2 - |L(Ky) o (ETY')|
responding to matrix Y e D¢ AD™' je., v; is the < Vom - ||E||12r +22m - ||ElleN Y F
i-tl“; ::olumn of Y2, NoticeA that X = Y/i(ky)ey. Define <3-2m-(1+6)-L(Ky)eY 1.
D; = U v; for all i and let Y be the Gram matrix corre-
sponding to this embedding, i.e.. ¥ € (¥')T UTU(Y™). Finally, combining these bounds we have
Also, let Y be the Gram matrix corresponding to the em- ~ .
bedding (i}icy. i.e.. ¥ = BT B and X = ¥/1ky)e7. We will [F- Y —
relate Y to ¥ and ¥ to ¥ to complete the proof. 2 LKy)e ¥ L(Ky)eYl|,
First, by Lemma A.3, applied to {v;};cy, with high proba- < )4 B Y
bility, for all H TlLKy) oV LKy)e YL,
(1=6)-LH)eY<SLH) eY<(1+6)-L(H)oY + Y — — Y _
L(Kv) oY L(Kv) o) 2
and foralli e V - WYl - IL(Ky) @ ¥ — L(Ky) o Y| .\ ¥ =7l
. L(Ky)e Y- L(Ky)e ¥ L(Ky)e ¥
(I1-0)-RieY<RieV<(1+0)-Riel _2m|LKy) o ¥ = LKy) o P14+ 11¥ = Tl
In particular, this implies that (1 —6)- T e Y < T e ¥ < L(Ky)e Y
(1 +06)- 7 oY Hence, <12'(2m)2'(1+5)'L(KV)°Y'77
s Les - (1-06)-L(Ky)eY
- N +
173 L(H)e X < L(H)® X < =% -L(H)e X <12-Q2m)* - 149151

< O(/poly(m)
and for all ;

by taking n sufficiently small in O(}/poly(n)).

1-9¢ ~ 1406
T35 ‘RieX<RieX< T ‘RieX. Hence, as ||L(H)|l, < O(m) and ||R;|l> < O(m)
i o IL(H) - X — L(H) - X] < O /polym)
Now we relate ¥ and V. Let E = (Y]/2 - Y]/2) D', By
Lemma A.4 and

IR @ X — R; @ X| < O(!/poly(m).

2 2 _ Y A2 2 ) .
IEN; < IIEllF = Z”dlvl olI* < 2m-|le™ iy - This, together with the fact that 1-9/1+6 > 1 — /64 and
1

o 1+6/1-5 < 1 + /64 completes the proof.
<2m-|[YDIE - * < 2m)* - L(Ky) o Y - .

This also implies

IEIL - 172Dl < IENF - 117D

<erWWWmWy/Z¢m—%W
1

<2m-n-(1+6)-LKy)eY.
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1. IneuT: An embedding {v; € R%};cy, b € (0, 1/2].
2. Let ¢ = Qp(1) be a constant to be fixed in the proof.
3. Fort=1,2,...,0(ogn):
(a) Pick a unit vector u uniformly at random from §4-1 and let x € R with x; &ef vVd - u” v;.
(b) Sort the vector x. Assume w.l.og. that x; > x; > ... > x,. Define §; def {jeln]:x;>x}
(©) LetS® ¥ (s, §,) which minimizes #(S ;) among sweep-cuts for which vol(S;) € [c - 2m, (1 - ¢) - 2m].

4. Ourtput: The cut S@ of least conductance over all choices of 7.

Figure 7: ProsRounD

INPUT: A matrix M € R™",

Letn f O(Y/polym)). Let & f 1/512 and & = 1/130.

— For ks as in Lemma A.3, sample ks vectors uy, ..., u;, € R" asin Lemma A.3.

LetAY 2m-g)- D"MD™".

— For 1 < i < ks, compute vectors b; € R", b; & EXPV(l/2- A, D™""u;, ).

Let B be the matrix having b; as i-th row, and let ; be the i-th column of B. Compute Z aef E jeuxullli — 0 j-||2 =
L(Ky) e B'B.

Return X €' 1/7. BB, by giving its correspoding embedding, i.e., {1/ VZ - Ui }icy-

Figure 8: The E, algorithm




