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Abstract
In this paper we prove that the mixing time of a broad
class of evolutionary dynamics in finite, unstructured
populations is roughly logarithmic in the size of the state
space. An important special case of such a stochastic
process is the Wright-Fisher model from evolutionary
biology (with selection and mutation) on a population
of size N over m genotypes. Our main result implies
that the mixing time of this process is O(logN) for all
mutation rates and fitness landscapes, and solves the
main open problem from [4]. In particular, it significantly
extends the main result in [18] who proved this form = 2.
Biologically, such models have been used to study the
evolution of viral populations with applications to drug
design strategies countering them. Here the time it takes
for the population to reach a steady state is important
both for the estimation of the steady-state structure of
the population as well in the modeling of the treatment
strength and duration. Our result, that such populations
exhibit rapid mixing, makes both of these approaches
sound.

Technically, we make a novel connection between
Markov chains arising in evolutionary dynamics and
dynamical systems on the probability simplex. This
allows us to use the local and global stability properties
of the fixed points of such dynamical systems to
construct a contractive coupling in a fairly general
setting. We expect that our mixing time result would be
useful beyond the evolutionary biology setting, and the
techniques used here would find applications in bounding
the mixing times of Markov chains which have a natural
underlying dynamical system.

1 Introduction
Evolutionary dynamical systems are central to the sci-
ences due to their versatility in modeling a wide variety
of biological, social and cultural phenomena, see [11].
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Such dynamics are often used to capture the determin-
istic, infinite population setting, and are typically the
first step in our understanding of seemingly complex
processes. However, real populations are finite and often
lend themselves to substantial stochastic effects (such
as random drift) and it is often important to under-
stand these effects as the population size varies. Hence,
stochastic or finite population versions of evolutionary
dynamical systems are appealed to in order to study such
phenomena. While there are many ways to translate a
deterministic dynamical system into a stochastic one,
one thing remains common: the mathematical analysis
becomes much harder as differential equations are easier
to analyze and understand than stochastic processes.

Consider the example of the error-prone evolution
of an unstructured, asexual haploid population in
evolutionary biology; this is also the main motivation for
this work. Each individual in the population could be
one ofm types. An individual of type i has a fitness (that
translates to the ability to reproduce) which is specified
by a positive integer ai, and captured as a whole by
a diagonal m ×m matrix A whose (i, i)th entry is ai.
The reproduction is error-prone and this is captured
by an m ×m stochastic matrix Q whose (i, j)th entry
captures the probability that the jth type will mutate
to the ith type during reproduction.1 The population
is assumed to be infinite and its evolution deterministic.
The population is assumed to be unstructured, meaning
that only the type of each member of the population
matters and, thus, it is sufficient to track the fraction of
each type. One can then track the fraction of each type
at step t of the evolution by a vector x(t) ∈ ∆m (the
probability simplex of dimension m) whose evolution
is then governed by the difference equation x(t+1) =
QAx(t)

‖QAx(t)‖1
. Of interest is the steady state2 or the limiting

distribution of this process and how it changes as one
changes the evolutionary parameters Q and A. This
model was proposed in the pioneering work of Eigen and
co-authors [6, 7]. Importantly, this particular dynamical
system has found use in modeling rapidly evolving viral

1We follow the convention that a matrix if stochastic if its
columns sum up to 1.

2Note that there is a unique steady state, called the quasispecies,
when QA > 0.



populations (such as HIV), which in turn has guided
drug and vaccine design strategies. As a result, these
dynamics are well-studied; see [4, 17] for an in depth
discussion.

However, viral populations are generally not infinite
and show stochastic effects: e.g., the effective population
size of HIV-1 in infected individuals is approximately
103 − 106 [2, 8], which is believed to be responsible for
the strongly stochastic nature of its evolution. Several
researchers have studied stochastic versions of Eigen’s
deterministic evolution equations [1, 3, 10, 12–16, 19].
One such stochastic version, motivated by the Wright-
Fisher model in population genetics, was studied by
Dixit et al. [4]. Here, the population is again assumed
to be unstructured and fixed to a size N. Thus, after
normalization, the composition of the population is
captured by a random point in ∆m; say X(t) at time
t. How does one generate X(t+1) in this model when
the parameters are still described by the matrices Q and
A as in the infinite population case? To do this, in the
replication (R) stage, one first replaces an individual
of type i in the current population by ai individuals
of type i: the total number of individuals of type i in
the intermediate population is therefore aiNX(t)

i . In
the selection (S) stage, the population is culled back to
size N by sampling N individuals from this intermediate
population. In analogy with the Wright-Fisher model, we
assume in this paper that the N individuals are sampled
with replacement.3 Finally, since the evolution is error
prone, in the mutation (M) stage, one then mutates each
individual in this intermediate population independently
and stochastically according to the matrix Q. The vector
X(t+1) then is the normalized frequency vector of the
resulting population.

While this stochastic (RSM) model captures the
effect of population size, it is useful only if the mixing
time, or the time it takes for the population to reach
(close to) its steady state, is much smaller than the size
of the state space. For example, in simulations, samples
from close to steady state are needed and this is only
computationally feasible when the mixing time is small.
Moreover, the efficacy of drug design strategies depends
on the time it takes the population to evolve to steady
state – the mixing time therefore models the minimum
required duration of treatment. However, the number
of states in the RSM process is roughly Nm (when m
is small compared to N), and a mixing time that grows
too fast as a function of the size of the state space can
therefore be prohibitively large. For example, even for a

3Culling via sampling without replacement was considered
in [4], but the Wright-Fisher inspired sampling with replacement
is the natural model for culling in the more general setting that
we consider in this paper.

small constant m = 40 and a population of size 10, 000,
the number of states can grow to more than 2300!

The importance of obtaining rigorous bounds for
mixing time of RSM model was first pointed out in [4].
Rigorous mixing time results are far and few; they have
either ignored mutation, assumed that the model is
neutral (i.e., types have the same fitness), or moved to
the diffusion limit which requires both mutation and
selection pressure to be weak. Recently, the mixing time
was shown to be roughly logN for the m = 2 case (for
all Q and A) when all other parameters of the model are
constants when compared to N , see [18]. As discussed
in the technical overview, there are significant hurdles
to extend this result to m > 2 and this problem has
remained open since it was raised in [4].

1.1 Our contribution. In this paper we prove that
the mixing time of the RSM model on an unstructured
population of size N , parametrized by m×m matrices
Q and A is O (logN) when all other parameters of the
model are constants when compared to N .

Interestingly this result turns out to be a corollary
of a rapid mixing result for a more general class of
evolutionary dynamics in finite populations which should
have applicability beyond evolutionary biology. Before
we describe the result we present the setup: consider
an infinite population whose evolution is described by a
function f : ∆m 7→ ∆m where the population at time t,
captured by the vector x(t) ∈ ∆m, evolves according to
the rule x(t+1) = f(x(t)). Inspired by the Wright-Fisher
model, we convert an infinite population dynamics to a
finite one, say of size N, as follows: the fraction of each
type in the population at time t is captured by a random
vector X(t) ∈ ∆m and the population at time t + 1
is obtained by sampling N times independently from
the distribution f(X(t)). Our main result is that, under
mild assumptions on f, the mixing time is bounded by
O(logN) when all parameters involving f are assumed
to be constants when compared to N.

Theorem 1.1 (Informal statement - see Theorem
3.6). Let f : ∆m 7→ ∆m be an evolution function
which satisfies certain mild conditions explained below,
and consider the stochastic evolution guided by f on
a population of size N . Then, the stochastic evolution
converges to its stationary distribution in time O (logN).

We first explain the conditions on f required by the
theorem; see Definition 3.3 for a formal description. The
key conditions are 1) that f has a “unique fixed point”
τ which lies in the interior of ∆m, 2) that the unique
fixed point of f shows “contraction near the fixed point”
and 3) that f shows “convergence to fixed point”. While
it is clear what (1) and (3) mean, the second condition



roughly means that there is a k > 0 such that if J(x)
denotes the Jacobian of f at x, then for all x which
are near τ , ‖Jk(x)‖1 < 1. For technical reasons, we also
need that f is twice differentiable in the interior of ∆m.
While we would have liked the contractive condition to
hold for k = 1, unfortunately, there are simple examples
where this is false. As we shall see later, the fact that we
cannot take k = 1 is the main source of all the technical
difficulties that arise in our work.

While we do not prove that these assumptions on f
are necessary for the theorem to hold, there is some
intuitive justification for them as we discuss below.
Although the case of f having multiple fixed points
is interesting in its own right, one might expect the
stochastic population in this setting to exhibit slow
mixing, since it can get stuck close to one of the fixed
points. We therefore concentrate on the case where
there is a unique fixed point and leave it as an open
problem to study our theorem in the case of multiple
fixed points formally. The assumption that this fixed
point be located in the interior is motivated by the fact
that this is the case in most applications, e.g. Eigen’s
model has this property when Q > 0 and A > 0, entry-
wise. The “contraction near the fixed point” condition
ensures that the fixed point is indeed a steady state
of the deterministic evolution in the sense of being
asymptotically stable: once the evolution reaches close
enough to the fixed point, it converges to the latter.
Together with the “convergence to fixed point” condition
(which, again, is satisfied by models such as Eigen’s
model), this condition also ensures that the behavior of
the deterministic system is free of exotic features, e.g.
the presence of cycles, which may present a barrier to the
fast mixing of the stochastic evolution. The smoothness
condition is of a more technical nature, but models our
expectation that any evolutionary dynamics should not
be too susceptible to small changes in the population
profile.

Several other remarks are in order. 1) We treat
m, a bound on the derivatives of f, and the rate of
contraction as constants and, hence, we do not optimize
the dependence on these parameters in this paper. We
leave it as an open problem to determine to what
extent our results can be generalized when m is a
growing function of N. It would be quite interesting
to get a bound on the mixing time which depends
polynomially on m. In this paper, our emphasis instead
is on circumventing the obstacles that arose in previous
attempts to prove a mixing time of close to O(logN) for
general models: earlier works in this direction either put
stringent conditions on the parameters of the model (e.g.,
Dixit et al. had to place very strong conditions on the
matrices Q and A for their mixing time result to hold), or

were valid only when the number of genotypes was very
small (e.g. Vishnoi [18] required the condition m = 2).
2) It is not obvious that the desired mixing time result
for the RSM model is a corollary of the main theorem
and we give a proof in Section 3.2. This result should
be of independent interest in population genetics. 3) A
natural next step is to study the evolution of structured
populations. Roughly, this setting extends the RSM
model by introducing an additional input parameter, a
graph on N vertices. The graph provides structure to
the population by locating each individual at a vertex,
and the main difference from the RSM model is that at
time t+ 1, an individual determines its new vertex by
sampling with replacement from among its neighbors in
the graph at time t; see [9] for more details. Here, it
is no longer sufficient to just keep track of the fraction
of each type. The RSM model can be seen as a special
case when the underlying graph is the complete graph
on N vertices, so that the locations of the individuals
in the population are of no consequence. Our results
do not seem to apply directly to this setting and it is a
challenging open problem to prove bounds in the general
graph setting.

Finally, we give a quick comparison of our techniques
with that of [18] who proved a similar result for
m = 2. (See the technical overview below for a more
detailed discussion.) While [18] also used the underlying
deterministic process, it was only to bring two copies of
the Markov chain close enough (about a distance

√
1/N).

Subsequently, his argument involved the construction
of an ad-hoc coupling which contracts when m = 2.
However, there appear to be serious hurdles when one
tries to generalize this coupling for m > 2. We bypass
these obstacles by again resorting to the properties of f
listed above, however, in novel ways. We now move on
to illustrating our key techniques.

2 Technical overview
We analyze the mixing time of our stochastic process
by studying the time required for evolutions started at
two arbitrary starting states X(0) and Y (0) to collide.
More precisely, let C be any Markovian coupling of two
stochastic evolutionsX and Y , both guided by a smooth
contractive evolution f , which are started at X(0) and
Y (0). Let T be the first (random) time such that
X(T ) = Y (T ). It is well known that if it can be shown
that P [T > t] ≤ 1/4 for every pair of starting states
X(0) and Y (0) then tmix(1/4) ≤ t. We show that such a
bound on P [T > t] holds if we couple the chains using
the optimal coupling of two multinomial distributions
(see Section 3 for a definition of this coupling).

Our starting point is the observation that the
optimal coupling and the definition of the evolutions



implies that for any time t,

(2.1) E
[∥∥∥X(t+1) − Y (t+1)

∥∥∥
1

| X(t),Y (t)
]

=
∥∥∥f(X(t))− f(Y (t))

∥∥∥
1
.

Now, if f were globally contractive, so that the right
hand side of eq. (2.1) was always bounded above by
ρ′
∥∥X(t) − Y (t)

∥∥
1 for some constant ρ′ < 1, then we

would get that the expected distance between the two
copies of the chains contracts at a constant rate. Since
the minimum possible positive `1 distance between two
copies of the chain is 1/N , this would have implied
an O(logN) mixing time using standard arguments.
However, such a global assumption on f , which is
equivalent to requiring that the Jacobian J of f satisfies
‖J(x)‖1 < 1 for all x ∈ ∆m, is far too strong. In
particular, it is not satisfied by standard systems such
as Eigen’s dynamics discussed above.

Nevertheless, these dynamics do satisfy a more local
version of the above condition. That is, they have a
unique fixed point τ to which they converge quickly, and
in the vicinity of this fixed point, some form of contrac-
tion holds. These conditions motivate the “unique fixed
point”, “contraction near the fixed point”, and the “con-
vergence to fixed point” conditions in our definition of a
smooth contractive evolution (Definition 3.3). However,
crucially, the “contraction near the fixed point” con-
dition, inspired from the definition of “asymptotically
stable” fixed points in dynamical systems, is weaker
than the stepwise contraction condition described in the
last paragraph, even in the vicinity of the fixed point.
As we shall see shortly, this weakening is essential for
generalizing the earlier results of [18] to the m > 2
case, but comes at the cost of making the analysis more
challenging.

However, we first describe how the “convergence
to fixed point” condition is used to argue that the
chains come close to the fixed point in O(logN) time.
This step of our argument is the only one technically
quite similar to the development in [18]; our later
arguments need to diverge widely from that paper.
Although this step is essentially an iterated application
of appropriate concentration results along with the fact
that the “convergence to fixed point” condition implies
that the deterministic evolution f comes close to the
fixed point τ at an exponential rate, complications
arise because f can amplify the effect of the random
perturbations that arise at each step. In particular, if
L > 1 is the maximum of ‖J(x)‖1 over ∆m, then after
` steps, a random perturbation can become amplified
by a factor of L`. As such, if ` is taken to be too
large, these accumulated errors can swamp the progress

made due to the fast convergence of the deterministic
evolution to the fixed point. These considerations imply
that the argument can only be used for ` = `0 logN
steps for some small constant `0, and hence we are only
able to get the chains within Θ(N−γ) distance of the
fixed point, where γ < 1/3 is a small constant. In
particular, the argument cannot be carried out all the
way down to distance O(1/N), which, if possible, would
have been sufficient to show that the coupling time is
small with high probability. Nevertheless, it does allow
us to argue that both copies of the chain enter an O(N−γ)
neighborhood of the fixed point in O(logN) steps.

At this point, [18] showed that in the m = 2 case,
one could take advantage of the contractive behavior near
the fixed point to construct a coupling obeying eq. (2.1)
in which the right hand side was indeed contractive:
in essence, this amounted to a proof that ‖J‖1 < 1
was indeed satisfied in the small O(N−γ) neighborhood
reached at the end of the last step. This allowed [18] to
complete the proof using standard arguments, after some
technicalities about ensuring that the chains remained
for a sufficiently long time in the neighborhood of the
fixed point had been taken care of.

The situation however changes completely in the
m > 2 case. It is no longer possible to argue in general
that ‖J(x)‖1 < 1 when x is in the vicinity of the fixed
point, even when there is fast convergence to the fixed
point. Instead, we have to work with a weaker condition
(the “contraction to the fixed point” condition alluded
to earlier) which only implies that there is a positive
integer k, possibly larger than 1, such that in some
vicinity of the fixed point,

∥∥Jk∥∥1 < 1. In the setting
used by [18], k could be taken to be 1, and hence it
could be argued via eq. (2.1) that the distance between
the two coupled copies of the chains contracts in each
step. This argument however does not go through when
only a kth power of J is guaranteed to be contractive
while J itself could have 1 → 1 norm larger than 1.
This inability to argue stepwise contraction is the major
technical obstacle in our work when compared to the
work of [18], and the source of all the new difficulties
that arise in this more general setting.

As a first step toward getting around the difficulty of
not having stepwise contraction, we prove Theorem 4.1,
which shows that the eventual contraction after k steps
can be used to ensure that the distance between two
evolutions x(t) and y(t) close to the fixed point contracts
by a factor ρk < 1 over an epoch of k steps (where k
is as described in the last paragraph), even when the
evolutions undergo arbitrary perturbations u(t) and v(t)

at each step, provided that the difference u(t) − v(t)

between the two perturbations is small compared to the
difference x(t−1) − y(t−1) between the evolutions at the



previous step. The last condition actually asks for a
relative notion of smallness, i.e., it requires that
(2.2)∥∥∥ξ(t)

∥∥∥
1
··=
∥∥∥u(t) − v(t)

∥∥∥
1
≤ δ

∥∥∥x(t−1) − y(t−1)
∥∥∥

1
,

where δ is a constant specified in the theorem. Note
that the theorem is a statement about deterministic
evolutions against possibly adversarial perturbations,
and does not require u(t) and v(t) to be stochastic,
but only that they follow the required conditions on
the difference of the norm (in addition to the implied
condition that the evolution x(t) and y(t) remain close
to the fixed point during the epoch).

Thus, in order to use Theorem 4.1 for showing that
the distance

∥∥X(t) − Y (t)
∥∥

1 between the two coupled
chains contracts after every k iterations of eq. (2.1),
we need to argue that the required condition on the
perturbations in eq. (2.2) holds with high probability over
a given epoch during the coupled stochastic evolution
of X(t) and Y (t). (In fact, we also need to argue that
the two chains individually remain close to the fixed
point, but this is easier to handle and we ignore this
technicality in this proof overview; the details appear in
the formal proofs in Section 5.)

However, at this point, a complication arises from
the fact that Theorem 4.1 requires the difference ξ(t)

between the perturbations at time t to be bounded
relative to the difference

∥∥X(t−1) − Y (t−1)
∥∥

1 at time
t− 1. In other words, the upper bounds required on the
ξ(t) become more stringent as the two chains come closer
to each other. This fact creates a trade-off between
the probability with which the condition in eq. (2.2)
can be enforced in an epoch, and the required lower
bound on the distance between the chains required
during the epoch so as to ensure that probability (this
trade-off is technically based on Lemma 3.5). To take
a couple of concrete examples, when

∥∥X(t) − Y (t)
∥∥

1 is
Ω(logN/N) in an epoch, we can ensure that eq. (2.2)
remains valid with probability at least 1−N−Θ(1) (see
the discussion following Theorem 4.4), so that with
high probability Ω(logN) consecutive epochs admit a
contraction allowing the distance between the chains to
come down from Θ(N−γ) at the end of the first step to
Θ(logN/N) at the end of this set of epochs.

Ideally, we would have liked to continue this argu-
ment till the distance between the chains is Θ(1/N)
and (due to the properties of the optimal coupling)
they have a constant probability of colliding in a single
step. However, due to the trade-off referred to ear-
lier, when we know only that

∥∥X(t) − Y (t)
∥∥

1 is Ω(1/N)
during the epoch, we can only guarantee the condi-
tion of eq. (2.2) with probability Θ(1) (see the discus-
sion following the proof of Theorem 4.4). Thus, we

cannot claim directly that once the distance between
the chains is O(logN/N), the next Ω(log logN) epochs
will exhibit contraction in distance leading the chain to
come as close as O(1/N) with a high enough positive
probability. To get around this difficulty, we consider
O(log logN) epochs with successively weaker guaranteed
upper bounds on

∥∥X(t) − Y (t)
∥∥

1. Although the weaker
lower bounds on the distances lead in turn to weaker con-
centration results when Theorem 4.4 is applied, we show
that this trade-off is such that we can choose these pro-
gressively decreasing guarantees so that after this set of
epochs, the distance between the chains is O(1/N) with
probability that it is small but at least a constant. Since
the previous steps, i.e., those involving making both
chains come within distance O(N−γ) of the fixed point
(for some small constant γ < 1), and then making sure
that the distance between them drops to O(logN/N),
take time O(logN) with probability 1 − o(1), we can
conclude that under the optimal coupling, the collision
or coupling time T satisfies

(2.3) P [T > O(logN)] ≤ 1− q,

for some small enough constant q, irrespective of the
starting statesX(0) and Y (0) (note that here we are also
using the fact that once the chains are within distance
O(1/N), the optimal coupling has a constant probability
of causing a collision in a single step). The lack of
dependence on the starting states allows us to iterate
eq. (2.3) for Θ (1) consecutive “blocks” of time O(logN)
each to get

P [T > O (logN)] ≤ 1
4 ,

which gives us the claimed mixing time.

3 Preliminaries and formal statement of results
In preparation for formally stating our main result, we
now discuss some preliminary notation, definitions and
technical tools that will be used later on. We then
formally state our main theorem in Sections 3.1 and 3.2.

Notation. We denote the probability simplex on
a set of size m as ∆m. Vectors in Rm, and probability
distributions in ∆m are both denoted in boldface, and
xj denotes the jth co-ordinate of a given vector x. Time
indices are denoted by superscripts. Thus, a time indexed
scalar s at time t is denoted as s(t), while a time indexed
vector x at time t is denotes as x(t). The letters X and
Y (with time superscripts and co-ordinate subscripts,
as appropriate) will be used to denote random vectors.
Scalar random vectors and matrices are denoted by other
capital letters. Boldface 1 denotes a vector all whose
entries are 1.

Operators and norms. For any square matrix
M , we denote by ‖M‖1 its 1 → 1 norm defined as



max‖v‖1=1 ‖Mv‖1, by ‖M‖2 its operator norm defined
as max‖v‖2=1 ‖Mv‖2, and by sp (M) its spectral radius
defined as the maximum of the absolute values of its
eigenvalues. The following theorem, stated here only in
the special case of the 1→ 1 norm, relates the spectral
radius with other matrix norms.

Theorem 3.1 (Gelfand’s formula, specialized to
the 1→ 1 norm). For any square matrix M , we have

sp (M) = lim
l→∞

∥∥M l
∥∥1/l

1 .

Derivatives. Let g : Rm → Rm be any differ-
entiable function, whose co-ordinates are denoted as
gi : Rm → R. The Jacobian J(x) of g at a point x ∈ Rm

is the m ×m matrix whose (i, j) entry is ∂gi(x)
∂xj

. The
Hessian of a twice differentiable function h : Rm → R at
a given point x is the m×m symmetric matrix whose
(i, j) entry is ∂2h(x)

∂xi∂xj
. We use the following special case

of Taylor’s theorem.

Theorem 3.2 (Taylor’s theorem, truncated). Let
g : Rm → Rm be a twice differentiable function, and let
J(z) denote the Jacobian of g at z. Let x,y ∈ Rm be
two points, and suppose there exists a positive constant
B such that at every point on the line segment joining
x to y, the Hessians of each of the m co-ordinates gi of
g have operator norm at most 2B. Then, there exists a
v ∈ Rm such that

g(x) = g(y) + J(y)(x− y) + v,

and |vi| ≤ B ‖x− y‖22 for each i ∈ [m].

Couplings and mixing times. Let p, q ∈ ∆m be
two probability distributions on m objects. A coupling
C of p and q is a distribution on ordered pairs in
[m] × [m], such that its marginal distribution on the
first co-ordinate is equal to p and that on the second
co-ordinate is equal to q. A simple, if trivial, example of
a coupling is the joint distribution obtained by sampling
the two co-ordinates independently, one from p and the
other from q.

Couplings allow a very useful dual characterization
of the total variation distance, as stated in the following
well known lemma.

Lemma 3.3 (Coupling lemma). Let p, q ∈ ∆m be
two probability distributions on m objects. Then,

‖p− q‖TV = 1
2 ‖p− q‖1 = min

C
P(A,B)∼C [A 6= B] ,

where the minimum is taken over all valid couplings C
of p and q.

Moreover, the coupling in the lemma can be ex-
plicitly described. We use this coupling extensively in
our arguments, and hence we record some of its useful
properties here.

Definition 3.1 (Optimal coupling). Let p, q ∈ ∆m

be two probability distributions on m objects. For each
i ∈ [m], let si ··= min(pi, qi), and s ··=

∑m
i=1 si. Sample

U, V,W independently at random as follows:

P [U = i] = si
s
, P [V = i] = pi − si

1− s ,

and P [W = i] = qi − si
1− s , for all i ∈ [m].

We then sample (independent of U, V,W ) a Bernoulli
random variable H with mean s. The sample (A,B)
given by the coupling is (U,U) if H = 1 and (V,W )
otherwise.

It is easy to verify that A ∼ p, B ∼ q and
P [A = B] = s = 1− ‖p− q‖TV. Another easily verified
but important property is that for any i ∈ [m]

P [A = i, B 6= i] =
{

0 if pi < qi,
pi − qi if pi ≥ qi.

Definition 3.2 (Mixing time). LetM be an ergodic
Markov chain on a finite state space Ω with stationary
distribution π. Then, the mixing time tmix(ε) is defined
as the smallest time such that for any starting state
S(0), the distribution of the state S(t) at time t is within
total variation distance ε of π. The term mixing time is
also used for tmix(ε) for a fixed values of ε < 1/2. For
concreteness, in the rest of this paper, we use tmix to
refer to tmix(1/e) (though any other constant smaller
than 1/2 could be chosen as well in place of 1/e without
changing any of the claims).

A standard technique for obtaining upper bounds
on mixing times is to use the Coupling Lemma above.
Suppose S(t)

1 and S(t)
2 are two evolutions of an ergodic

chainM such that their evolutions are coupled according
to some coupling C. Let T be the stopping time
such that S(T )

1 = S
(T )
2 . Then, if it can be shown

that P [T > t] ≤ 1/e for every pair of starting states
(S(0)

1 , S
(0)
2 ), then it follows that tmix ··= tmix(1/e) ≤ t.

Concentration. We now discuss some concentra-
tion results that are used extensively in our later argu-
ments. We begin with some standard Chernoff-Hoeffding
type bounds.

Theorem 3.4 (Chernoff-Hoeffding bounds [5]).
Let Z1, Z2, . . . , ZN be i.i.d Bernoulli random variables
with mean µ. We then have



1. When 0 < δ ≤ 1,

P

[∣∣∣∣∣ 1
N

N∑
i=1

Zi − µ

∣∣∣∣∣ > µδ

]
≤ 2 exp

(
−Nµδ2/3

)
.

2. When δ ≥ 1,

P

[∣∣∣∣∣ 1
N

N∑
i=1

Zi − µ

∣∣∣∣∣ > µδ

]
≤ exp (−Nµδ/3) .

An important tool in our later development is the
following lemma, which bounds additional “discrepancies”
that can arise when one samples from two distribution
p and q using an optimal coupling. The important
feature for us is the fact that the additional discrepancy
(denoted as e in the lemma) is bounded as a fraction
of the “initial discrepancy” ‖p− q‖1. However, such
relative bounds on the discrepancy are less likely to
hold when the initial discrepancy itself is very small,
and hence, there is a trade-off between the lower bound
that needs to be imposed on the initial discrepancy
‖p− q‖1, and the desired probability with which the
claimed relative bound on the additional discrepancy
e is to hold. The lemma makes this delicate trade-off
precise.

Lemma 3.5. Let p and q be probability distributions
on a universe of size m, so that p, q ∈ ∆m. Consider
an optimal coupling of the two distributions, and let
x and y be random frequency vectors with m co-
ordinates (normalized to sum to 1) obtained by taking N
independent samples from the coupled distributions, so
that E [x] = p and E [y] = q. Define the random error
vector e as

e ··= (x− y)− (p− q).

Suppose c > 1 and t (possibly dependent upon N) are
such that ‖p− q‖1 ≥

ctm
N . We then have

‖e‖1 ≤
(

2√
c

)
‖p− q‖1

with probability at least 1− 2m exp (−t/3).

Proof. The properties of the optimal coupling of the
distributions p and q imply that since the N coupled
samples are taken independently,

1. |xi − yi| = 1
N

∑N
j=1Rj , where Rj are i.i.d.

Bernoulli random variables with mean |pi− qi|, and

2. xi − yi has the same sign as pi − qi.

The second fact implies that |ei| =
||xi − yi| − |(pi − qi)||. By applying the concen-
tration bounds from Theorem 3.4 to the first fact, we
then get (for any arbitrary i ∈ [m])

P

[
|ei| >

√
t

N |pi − qi|
· |pi − qi|

]
≤ 2 exp (−t/3) ,

if t

N |pi − qi|
≤ 1, and

P
[
|ei| >

t

N |pi − qi|
· |pi − qi|

]
≤ exp (−t/3) ,

if t

N |pi − qi|
> 1.

One of the two bounds applies to every i ∈ [m] (except
those i for which |pi−qi| = 0, but in those cases, we have
|ei| = 0, so the bounds below will apply nonetheless).
Thus, taking a union bound over all the indices, we see
that with probability at least 1−2m exp (−t/3), we have

‖e‖1 =
m∑
i=1
|ei| ≤

√
t

N

m∑
i=1

√
|pi − qi|+

tm

N

≤
√
tm

N

√
‖p− q‖1 + tm

M
(3.4)

≤
(

1√
c

+ 1
c

)
‖p− q‖1 .(3.5)

Here, eq. (3.4) uses the Cauchy-Schwarz inequality to
bound the first term while eq. (3.5) uses the hypothesis
in the lemma that ctm

N ≤ ‖p− q‖1. The claim of the
lemma follows since c > 1.

3.1 Main theorem. We are now ready to state our
main theorem. We begin by formally defining the
conditions on the evolution function required by the
theorem.

Definition 3.3 (Smooth contractive evolution). A
function f : ∆m → ∆m is said to be a (L,B, ρ) smooth
contractive evolution if it has the following properties:

Smoothness f is twice differentiable in the interior
of ∆m. Further, the Jacobian J of f satisfies
‖J(x)‖1 ≤ L for every x in the interior of ∆m,
and the operator norms of the Hessians of its co-
ordinates are uniformly bounded above by 2B at
all points in the interior of ∆m.

Unique fixed point f has a unique fixed point τ in
∆m which lies in the interior of ∆m.

Contraction near the fixed point At the fixed
point τ , the Jacobian J(τ ) of f satisfies

sp (J(τ )) < ρ < 1.



Convergence to fixed point For every ε > 0, there
exists an ` such that for any x ∈ ∆m,∥∥f `(x)− τ

∥∥
1 < ε.

Remark 3.1. Note that the last condition implies that
‖f t(x)− τ‖1 = O(ρt) in the light of the previous con-
dition and the smoothness condition (see Lemma A.1).
Also, it is easy to see that the last two conditions im-
ply the uniqueness of the fixed point, i.e., the second
condition. However, the last condition on global con-
vergence does not by itself imply the third condition
on contraction near the fixed point. Consider, e.g.,
g : [−1, 1] → [−1, 1] defined as g(x) = x − x3. The
unique fixed point of g in its domain is 0, and we have
g′(0) = 1, so that the third condition is not satisfied. On
the other hand, the last condition is satisfied, since for
x ∈ [−1, 1] satisfying |x| ≥ ε, we have |g(x)| ≤ |x| (1−ε2).
In order to construct a function f : [0, 1]→ [0, 1] with the
same properties, we note that the range of g is [−x0, x0]
where x0 = 2/(3

√
3), and consider f : [0, 1] → [0, 1]

defined as f(x) = x0 +g(x−x0). Then, the unique fixed
point of f in [0, 1] is x0, f ′(x0) = g′(0) = 1, the range
of f is contained in [0, 2x0] ⊆ [0, 1], and f satisfies the
fourth condition in the definition but does not satisfy
the third condition.

Given an f which is a smooth contractive evolution,
and a population parameterN , we can define a stochastic
evolution guided by f as follows. The state at time t
is a probability vector x(t) ∈ ∆m. The state x(t+1)

is then obtained in the following manner. Define
y(t) = f(x(t)). Obtain N independent samples from
the probability distribution y(t), and denote by z(t) the
resulting frequency vector over [m]. Then

x(t+1) ··=
1
N
z(t).

Theorem 3.6 (Main Theorem). Let f be a (L,B, ρ)
smooth contractive evolution, and consider the stochastic
evolution guided by f on a population of size N . Then,
there exists c0 and N0 depending upon L,B and ρ and
f such that for any N > N0, the mixing time tmix(1/e)
of the stochastic evolution is at most c0 ((logN)).

3.2 The RSM model as a special case. We now
show that the Eigen or RSM model discussed in the
introduction is a special case of the abstract model
defined in the last section, and hence satisfies the mixing
time bound in Theorem 3.6. Our first step is to show that
the RSM model can be seen as a stochastic evolution
guided by the function f defined by f(p) = (QAp)t

‖QAp‖1
,

where Q and A are matrices with positive entries, with Q
stochastic (i.e., columns summing up to 1), as described

in the introduction. We will then show that this f
is a smooth contractive evolution, which implies that
Theorem 3.6 applies to the RSM process.

We begin by recalling the definition of the RSM
process. Given a starting population of size N on m
types represented by a 1/N -integral probability vector
p = (p1, p2, . . . , pm), the RSM process produces the
population at the next step by independently sampling
N times from the following process:

1. Sample a type T from the probability distribution
Ap
‖Ap‖1

.

2. Mutate T to the result type S with probability QST .

We now show that sampling from this process is exactly
the same as sampling from the multinomial distribution
f(p) = QAp

‖QAp‖1
. To do this, we only need to establish

the following claim:

Claim 3.7. For any type t ∈ [m], P [S = t] =∑
j
QtjAjjpj∑
j
Ajjpj

= (QAp)t
‖QAp‖1

.

Proof. We first note that ‖QAp‖1 =
∑
ij QijAjjpj =

(
∑
iQij) · (

∑
j Ajjpj) =

∑
j Ajjpj = ‖Ap‖1, where in

the last equality we used the fact that the columns of Q
sum up to 1. Now, we have

P [S = t] :=
m∑
i

Qti ·
(Ap)i
‖Ap‖1

=
∑
i=1QtiAiipi∑
j Ajjpj

= (QAp)t
‖QAp‖1

.

From Claim 3.7, we see that producing N indepen-
dent samples from the process described above (which
corresponds exactly to the RSM model) produces the
same distribution as producing N independent samples
from the distribution (QAp)

‖QAp‖1
. Thus, the RSM process

is a stochastic evolution guided by f(x) := QAx
‖QAx‖1

. We
now proceed to verify that this f is a smooth contractive
evolution. We first note that the “smoothness” condi-
tion is directly implied by the definition of f . For the
“uniqueness of fixed point” condition, we observe that
every fixed point of QAx

‖QAx‖1
in the simplex ∆m must

be an eigenvector of QA. Since QA is a matrix with
positive entries, the Perron-Frobenius theorem implies
that it has a unique positive eigenvector v (for which
we can assume without loss of generality that ‖v‖1 = 1)
with a positive eigenvalue λ1. Therefore f(x) has a
unique fixed point τ = v in the simplex ∆m which is in
its interior. The Perron-Frobenius theorem also implies
that for every x ∈ ∆m, limt→∞(QA)tx/λt1 → v. In
fact, this convergence can be made uniform over ∆m



(meaning that given an ε > 0 we can choose t0 such that
for all t > t0, ‖(QA)tx/λt1 − v‖1 < ε for all x ∈ ∆m)
since each point x ∈ ∆m is a convex combination of
the extreme points of ∆m and the left hand side is a
linear function of x. From this uniform convergence, it
then follows easily that limt→∞ f t(x) = v, and that the
convergence in this limit is also uniform. The “conver-
gence to fixed point” condition follows directly from this
observation.

Finally, we need to establish that the spectral radius
of the Jacobian J ··= J(v) of f at its fixed point is
less than 1. A simple computation shows that the
Jacobian at v is J = 1

λ1
(I − V )QA where V is the

matrix each of whose columns is the vector v. Since QA
has positive entries, we know from the Perron-Frobenius
theorem that λ1 as defined above is real, positive, and
strictly larger in magnitude than any other eigenvalue of
QA. Let λ2, λ3, . . . , λm be the other, possibly complex,
eigenvalues arranged in decreasing order of magnitude
(so that λ1 > |λ2|). We now establish the following claim
from which it immediately follows that sp (J) = |λ2|

λ1
< 1

as required.
Claim 3.8. The eigenvalues of M ··= (I − V )QA are
λ2, λ3, . . . , λm, 0.
Proof. Let D be the Jordan canonical form of QA, so
that D = U−1QAU for some invertible matrix U . Note
that D is an upper triangular matrix with λ1, λ2, . . . , λm
on the diagonal. Further, the Perron-Frobenius theorem
applied to QA implies that λ1 is an eigenvalue of
both algebraic and geometric multiplicity 1, so that
we can assume that the topmost Jordan block in D is
of size 1 and is equal to λ1. Further, we can assume
the corresponding first column of U is equal to the
corresponding positive eigenvector v satisfying ‖v‖1 = 1.
It therefore follows that U−1V = U−1v1T is the matrix
e11T , where e1 is the first standard basis vector.

Now, since U is invertible, M has the same eigenval-
ues as U−1MU = (U−1−U−1V )QAU = (I−e11TU)D,
where in the last line we use UD = QAU . Now, note
that all rows except the first of the matrix e11TU are
zero, and its (1, 1) entry is 1 since the first column of
U is v, which in turn is chosen so that 1Tv = 1. Thus,
we get that (I −e11TU)D is an upper triangular matrix
with the same diagonal entries as D except that its (1, 1)
entry is 0. Since the (1, 1) entry of D was λ1 while its
other diagonal entries were λ2, λ3, . . . , λm, it follows that
the eigenvalues of (I − e11TU)D (and hence those of
M) are λ2, λ3, . . . , λm, 0, as claimed.

We thus see that the RSM process satisfies the
condition of being guided by a smooth contractive
evolution and hence has the mixing time implied by
Theorem 3.6.

4 Perturbed evolution near the fixed point
As discussed in Section 2, the crux of the proof of our
main theorem is analyzing how the distance between
two copies of a stochastic evolution guided by a smooth
contractive evolution evolves in the presence of small
perturbations at every step. In this section, we present
our main tool, Theorem 4.1, to study this phenomenon.
We then describe how the theorem, which itself is
presented in a completely deterministic setting, applies
to stochastic evolutions.

Fix any (L,B, ρ)-smooth contractive evolution f on
∆m, with fixed point τ . As we noted in Section 2, since
the Jacobian of f does not necessarily have operator
(or 1→ 1) norm less than 1, we cannot argue that the
effect of perturbations shrinks in every step. Instead,
we need to argue that the condition on the spectral
radius of the Jacobian of f at its fixed point implies that
there is eventual contraction of distance between the two
evolutions, even though this distance might increase in
any given step. Indeed, the fact that the spectral radius
sp (J) of the Jacobian at the fixed point τ of f is less
than ρ < 1 implies that a suitable iterate of f has a
Jacobian with operator (and 1 → 1) norm less than 1
at τ . This is because Gelfand’s formula (Theorem 3.1)
implies that for all large enough positive integers k′,∥∥Jk(τ )

∥∥
1 < ρk.

We now use the above condition to argue that after k
steps in the vicinity of the fixed point, there is indeed
a contraction of the distance between two evolutions
guided by f , even in the presence of adversarial pertur-
bations, as long as those perturbations are small. The
precise statement is given below; the vectors ξ(i) in the
theorem model the small perturbations.

Theorem 4.1 (Perturbed evolution). Let f be a
(L,B, ρ)-smooth contractive evolution, and let τ be its
fixed point. For all positive integers k > k0 (where k0 is
a constant that depends upon f) there exist ε, δ ∈ (0, 1]
depending upon f and k for which the following is true.
Let

(
x(i))k

i=0 ,
(
y(i))k

i=0, and
(
ξ(i))k

i=1 be sequences of
vectors with x(i),y(i) ∈ ∆m and ξ(i) orthogonal to 1,
which satisfy the following conditions:

1. (Definition). For 1 ≤ i ≤ k, there exist vectors
u(i) and v(i) such that

x(i) = f(x(i−1)) + u(i), y(i) = f(y(i−1)) + v(i),

and ξ(i) = u(i) − v(i).

2. (Closeness to fixed point). For 0 ≤ i ≤ k,∥∥x(i) − τ
∥∥

1 ≤ ε and
∥∥y(i) − τ

∥∥
1 ≤ ε.



3. (Small perturbations). For 1 ≤ i ≤ k,
∥∥ξ(i)

∥∥
1 ≤

δ
∥∥x(i−1) − y(i−1)

∥∥
1.

Then, we have∥∥∥x(k) − y(k)
∥∥∥

1
≤ ρk

∥∥∥x(0) − y(0)
∥∥∥

1
.

In the theorem, the vectors x(i) and y(i) model the
two chains, while the vectors u(i) and v(i) model the
individual perturbations from the evolution dictated by
f . The theorem says that if the perturbations ξ(i) to the
distance are not too large, then the distance between the
two chains indeed contracts after every k steps.

Proof. As observed above, we can use Gelfand’s formula
to conclude that there exists a positive integer k0
(depending upon f) such that we have

∥∥J(τ)k
∥∥

1 < ρk

for all k > k0. This k0 will be the sought k0 in the
theorem, and we fix some appropriate k > k0 for the
rest of the paper.

Since f is twice differentiable, J is continuous on
∆m. This implies that the function on ∆k

m defined by
z1, z2, . . . ,zk 7→

∏k
i=1 J(zi) is also continuous. Hence,

there exist ε1, ε2 > 0 smaller than 1 such that if
‖zi − τ‖ ≤ ε1 for 1 ≤ i ≤ k then

(4.6)

∥∥∥∥∥
k∏
i=1

J(zi)

∥∥∥∥∥
1

≤ ρk − ε2.

Further, since ∆m is compact and f is continuously
differentiable, ‖J‖1 is bounded above on ∆m by some
positive constant L, which we assume without loss of
generality to be greater than 1. Similarly, since f
has bounded second derivatives, it follows from the
multivariate Taylor’s theorem that there exists a positive
constant B (which we can again assume to be greater
than 1) such that for any x,y ∈ ∆m, we can find a vector
ν such that ‖ν‖1 ≤ Bm ‖x− y‖

2
2 ≤ Bm ‖x− y‖

2
1 such

that

(4.7) f(x) = f(y) + J(y)(x− y) + ν.

We can now choose

ε = min
{
ε1,

ε2
4Bmk(L+ 1)k−1

}
≤ 1, and

δ = 2Bmε ≤ 1.

With this setup, we are now ready to proceed with the
proof. Our starting point is the use of a first order
Taylor expansion to control the error x(i)−y(i) in terms
of x(i−1)−y(i−1). Indeed, eq. (4.7) when applied to this
situation (along with the hypotheses of the theorem)

yields for any 1 ≤ i ≤ k that

x(i) − y(i) = f(x(i−1))− f(y(i−1)) + ξ(i)

= J(y(i−1))(x(i−1) − y(i−1)) + (ν(i) + ξ(i)),(4.8)

where ν(i) satisfies
∥∥ν(i)

∥∥
1 ≤ Bm

∥∥x(i−1) − y(i−1)
∥∥2

1.
Before proceeding, we first take note of a simple
consequence of eq. (4.8). Taking the `1 norm of both
sides, and using the conditions on the norms of ν(i) and
ξ(i), we have∥∥∥x(i) − y(i)

∥∥∥
1
≤
∥∥∥x(i−1) − y(i−1)

∥∥∥
1

·
(
L+ δ +Bm

∥∥∥x(i−1) − y(i−1)
∥∥∥

1

)
.

Since both x(i−1) and y(i−1) are within distance ε of τ
by the hypothesis of the theorem, the above calculation
and the definition of ε and δ imply that∥∥∥x(i) − y(i)

∥∥∥
1
≤ (L+ 4Bmε)

∥∥∥x(i−1) − y(i−1)
∥∥∥

1

≤ (L+ 1)
∥∥∥x(i−1) − y(i−1)

∥∥∥
1
,

where in the last inequality we use 4Bmε ≤ ε2 ≤ 1. This,
in turn, implies via induction that for every 1 ≤ i ≤ k,

(4.9)
∥∥∥x(i) − y(i)

∥∥∥
1
≤ (L+ 1)i

∥∥∥x(0) − y(0)
∥∥∥

1
.

We now return to the proof. By iterating eq. (4.8),
we can control x(k) − y(k) in terms of a product of k
Jacobians, as follows:

x(k) − y(k) =
(
i=k∏
i=1

J(y(k−i))
)(

x(0) − y(0)
)

+
k∑
i=1

j=k−i−1∏
j=0

J(y(k−j))

(ξ(i) + ν(i)
)
.

Since
∥∥y(i) − τ

∥∥
1 ≤ ε by the hypothesis of the theorem,

we get from eq. (4.6) that the leftmost term in the above
sum has `1 norm less than (ρk − ε2)

∥∥x(0) − y(0)
∥∥

1.
We now proceed to estimate the terms in the

summation. Our first step to use the conditions on
the norms of ν(i) and ξ(i) and the fact that ‖J‖1 ≤ L
uniformly to obtain the upper bound

k∑
i=1

Lk−i
(∥∥∥x(i−1) − y(i−1)

∥∥∥
1

· (Bm
∥∥∥x(i−1) − y(i−1)

∥∥∥
1

+ δ)
)
.



Now, recalling that x(i) and y(i) are both within an ε
`1-neighborhood of τ so that

∥∥x(i) − y(i)
∥∥

1 ≤ 2ε, we
can estimate the above upper bound as follows:

k∑
i=1

Lk−i
(∥∥∥x(i−1) − y(i−1)

∥∥∥
1

· (Bm
∥∥∥x(i−1) − y(i−1)

∥∥∥
1

+ δ)
)

≤ (L+ 1)k−1
∥∥∥x(0) − y(0)

∥∥∥
1

·
k∑
i=1

(Bm
∥∥∥x(i−1) − y(i−1)

∥∥∥
1

+ δ)

≤ k(L+ 1)k−1(2Bmε+ δ)
∥∥∥x(0) − y(0)

∥∥∥
1

≤ ε2
∥∥∥x(0) − y(0)

∥∥∥
1
,

where the first inequality is an application of eq. (4.9),
and the last uses the definitions of ε and δ. Combining
with the upper bound of (ρk−ε2)

∥∥x(0) − y(0)
∥∥

1 obtained
above for the first term, this yields the result.

Remark 4.1. Note that k in the theorem can be chosen
as large as we want. However, for simplicity, we fix some
k > k0 in the rest of the discussion, and revisit the
freedom of choice of k only toward the end of the proof
of the main theorem (Theorem 3.6) on page 14.

4.1 Evolution under random perturbations. We
now explore some consequences of the above theorem for
stochastic evolutions. Our main goal in this subsection is
to highlight the subtleties that arise in ensuring that the
third “small perturbations” condition during a random
evolution, and strategies that can be used to avoid them.
However, we first begin by showing the second condition,
that of “closeness to the fixed point” is actually quite
simple to maintain. It will be convenient to define for
this purpose the notion of an epoch, which is simply the
set of (k + 1) initial and final states of k consecutive
steps of a stochastic evolution.

Definition 4.1 (Epoch). Let f be a smooth contractive
evolution and let k be as in the statement of Theorem 4.1
when applied to f . An epoch is a set of k+ 1 consecutive
states in a stochastic evolution guided by f . By a slight
abuse of terminology we also use the same term to refer
to a set of k+ 1 consecutive states in a pair of stochastic
evolutions guided by f that have been coupled using the
optimal coupling.

Suppose we want to apply Theorem 4.1 to a pair of
stochastic evolutions guided by f . Recall the parameter
ε in the statement of Theorem 4.1. Ideally, we would
likely to show that if both the states in the pair at the

beginning of an epoch are within some distance ε′ < ε of
the fixed point τ , then (1) all the consequent steps in the
epoch are within distance ε of the fixed point (so that the
closeness condition in the theorem is satisfied), and more
importantly (2) that the states at the last step of the
epoch are again within the same distance ε′ of the fixed
point, so that we have the ability to apply the theorem
to the next epoch. Of course, we also need to ensure that
the condition on the perturbations being true also holds
during the epoch, but as stated above, this is somewhat
more tricky to maintain than the closeness condition, so
we defer its discussion to later in the section. Here, we
state the following lemma which shows that the closeness
condition can indeed be maintained at the end of the
epoch.

Lemma 4.2 (Remaining close to the fixed point).
Let w < w′ < 1/3 be fixed constants. Consider a
stochastic evolution X(0),X(1), . . . on a population of
size N guided by a (L,B, ρ)-smooth contractive evolution
f : ∆m → ∆m with fixed point τ . Suppose α > 1 is
such that

∥∥X(0) − τ
∥∥

1 ≤
α
Nw . If N is chosen large

enough (as a function of L,α,m, k, w,w′ and ρ), then
with probability at least 1− 2mk exp

(
−Nw′/2

)
we have

•
∥∥X(i) − τ

∥∥
1 ≤

(α+m)(L+1)i
Nw , for 1 ≤ i ≤ k − 1.

•
∥∥X(k) − τ

∥∥
1 ≤

α
Nw .

To prove the lemma, we need the following simple
concentration result the proof of which is deferred to
Appendix B.

Lemma 4.3. Let X(0),X(1), . . . be a stochastic evo-
lution on a population of size N which is guided by a
(L,B, ρ)-smooth contractive evolution f : ∆m → ∆m

with fixed point τ . For any t > 0 and γ ≤ 1/3, it holds
with probability at least 1− 2mt exp (−Nγ/2) that∥∥∥X(i) − f i(X(0))

∥∥∥
1
≤ (L+ 1)im

Nγ
for all 1 ≤ i ≤ t.

Proof of Lemma 4.2. Lemma 4.3 implies that with prob-
ability at least 1− 2mk exp

(
−Nw′/2

)
we have

(4.10)∥∥∥X(i) − f i(X(0))
∥∥∥

1
≤ (L+ 1)im

Nw′
, for 1 ≤ i ≤ k.

On the other hand, the fact that max ‖J(x)‖1 ≤ L
implies that∥∥∥f i+1(X(0))− τ

∥∥∥
1

=
∥∥∥f i+1(X(0))− f(τ )

∥∥∥
1

≤ L
∥∥∥f i(X(0))− τ

∥∥∥
1
,



so that ∥∥∥f i(X(0))− τ
∥∥∥

1
≤ Li

∥∥∥X(0) − τ
∥∥∥

1

≤ αLi

Nw
, for 1 ≤ i ≤ k.

(4.11)

Combining eqs. (4.10) and (4.11), we already get the
first item in the lemma. However, for i = k, we can
do much better than the above estimate (and indeed,
this is the most important part of the lemma). Recall
the parameter ε in Theorem 4.1. If we choose N large
enough so that

(4.12) (α+m) (L+ 1)k

Nw
≤ ε,

then the above argument shows that with probability at
least 1−2mk exp

(
−Nw′

)
, the sequences y(i) = f i(X(0))

and z(i) = τ (for 0 ≤ i ≤ k) satisfy the hypotheses of
Theorem 4.1: the perturbations in this case are simply
0. Hence, we get that

(4.13)
∥∥∥fk(X(0))− τ

∥∥∥
1
≤ ρk

∥∥∥X(0) − τ
∥∥∥

1
≤ αρk

Nw
.

Using eq. (4.13) with the i = k case of eq. (4.10), we
then have ∥∥∥X(k) − τ

∥∥∥
1
≤ (L+ 1)km

Nw′
+ ρkα

Nw
.

Thus, (since ρ < 1) we only need to choose N so that

(4.14) Nw′−w ≥ (L+ 1)km
α(1− ρk)

in order to get the second item in the lemma. Since
w > 0 and w′ > w, it follows that all large enough N
will satisfy the conditions in both eqs. (4.12) and (4.14),
and this completes the proof.

4.2 Controlling the size of random perturba-
tions. We now address the “small perturbations” con-
dition of Theorem 4.1. For a given smooth contractive
evolution f , let α,w,w′ be any constants satisfying the
hypotheses of Lemma 4.2 (the precise values of these
constants will specified in the next section). For some
N as large as required by the lemma, consider a pair
X(t),Y (t) of stochastic evolutions guided by f on a
population of size N , which are coupled according to
the optimal coupling. Now, let us call an epoch decent
if the first states X(0) and Y (0) in the epoch satisfy∥∥X(0) − τ

∥∥
1 ,
∥∥Y (0) − τ

∥∥
1 ≤ αN−w. The lemma (be-

cause of the choice of N made in eq. (4.12)) shows that
if an epoch is decent, then except with probability that
is sub-exponentially small in N ,

1. the current epoch satisfies the “closeness to fixed
point” condition in Theorem 4.1, and

2. the next epoch is decent as well.

Thus, the lemma implies that if a certain epoch is decent,
then with all but sub-exponential (in N) probability, a
polynomial (in N) number of subsequent epochs are also
decent, and hence satisfy the “closeness to fixed point”
condition of Theorem 4.1. Hypothetically, if these epochs
also satisfied the “small perturbation” condition, then
we would be done, since in such a situation, the distance
between the two chains will drop to less than 1/N within
O(logN) time, implying that they would collide. This
would in turn imply a O(logN) mixing time.

However, as alluded to above, ensuring the “small
perturbations” condition turns out to be more subtle.
In particular, the fact that the perturbations ξ(i) need
to be multiplicatively smaller than the actual differences∥∥x(i) − y(i)

∥∥
1 pose a problem in achieving adequate

concentration, and we cannot hope to prove that the
“small perturbations” condition holds with very high
probability over an epoch when the staring difference∥∥X(0) − Y (0)

∥∥
1 is very small. As such, we need to break

the arguments into two stages based on the starting
differences at the start of the epochs lying in the two
stages.

To make this more precise (and to state a result
which provides examples of the above phenomenon and
will also be a building block in the coupling proof), we
define the notion of an epoch being good with a goal g.
As before let X(t) and Y (t) be two stochastic evolutions
guided by f which are coupled according to the optimal
coupling, and let ξ(i) be the perturbations as defined
in Theorem 4.1. Then, we say that a decent epoch
(which we can assume, without loss of generality, to start
at t = 0) is good with goal g if one of following two
conditions holds. Either (1) there is a j, 0 ≤ j ≤ k − 1
such that

∥∥f(X(j))− f(Y (j))
∥∥

1 ≤ g, or otherwise, (2)
it holds that the next epoch is also decent, and, further∥∥∥ξ(i)

∥∥∥
1
≤ δ

∥∥∥X(i) − Y (i)
∥∥∥

1
for 0 ≤ i ≤ k,

where δ again is as defined in Theorem 4.1. Note
that if an epoch is good with goal g, then either the
expected difference between the two chains drops below
g sometime during the epoch, or else, all conditions of
Theorem 4.1 are satisfied during the epoch, and the
distance between the chains drops by a factor of ρk.
Further, in terms of this notion, the preceding discussion
can be summarized as “the probability of an epoch being
good depends upon the goal g, and can be small if g is
too small”. To make this concrete, we prove the following
theorem which quantifies this trade-off between the size



of the goal g and the probability with which an epoch is
good with that goal.
Theorem 4.4 (Goodness with a given goal).
Let the chains X(t), Y (t), and the quantities
N,m,w,w′, k, L, ε and δ be as defined above, and let
β < (logN)2. If N is large enough, then a decent epoch
is good with goal g ··= 4L2mβ

δ2N with probability at least
1− 2mk

(
exp(−β/3) + exp(−Nw′/2)

)
.

Proof. Let X(0) and Y (0) denote the first states in
the epoch. Since the current epoch is assumed to be
decent, Lemma 4.2 implies that with probability at least
1 − 2mk exp(−N−w′/2), the “closeness to fixed point”
condition of Theorem 4.1 holds throughout the epoch,
and the next epoch is also decent. If there is a j ≤ k− 1
such that

∥∥f(X(j))− f(Y (j))
∥∥

1 ≤ g, then the current
epoch is already good with goal g. So let us assume that∥∥∥f(X(i−1))− f(Y (i−1))

∥∥∥
1
≥ g

= 4L
δ2 ·

βm

N
for 1 ≤ i ≤ k.

However, in this case, we can apply the concentration
result in Lemma 3.5 with c = 4L2/δ2 and t = β to get
that with probability at least 1− 2mk exp(−β/3),∥∥∥ξ(i)

∥∥∥
1
≤ δ

L

∥∥∥f(X(i−1))− f(Y (i−1))
∥∥∥

1

≤ δ
∥∥∥X(i−1) − Y (i−1)

∥∥∥
1
for 1 ≤ i ≤ k.

Hence, both conditions (“closeness to fixed point” and
“small perturbations”) for being good with goal g hold
with the claimed probability.

Note that we need to take β to a large constant, at
least Ω(log(mk)), even to make the result non-trivial.
In particular, if we take β = 3 log(4mk), then if N is
large enough, the probability of success is at least 1/e.
However, with a slightly larger goal g, it is possible to
reduce the probability of an epoch not being good to
oN (1): if we choose β = logN , then a decent epoch is
good with the corresponding goal with probability at
least 1−N−1/4, for N large enough. In the next section,
we use both these settings of parameters in the above
theorem to complete the proof of the mixing time result.
As described in Section 2, the two settings above will be
used in different stages of the evolution of two coupled
chains in order to argue that the time to collision of the
chains is indeed small.

5 Proof of the main theorem: Analyzing the
coupling time

Our goal is now to show that if we couple two stochastic
evolutions guided by the same smooth contractive

evolution f using the optimal coupling, then irrespective
of their starting positions, they reach the same state in a
small number of steps, with reasonably high probability.
More precisely, our proof would be structured as follows.
Fix any starting states X(0) and Y (0) of the two chains,
and couple their evolutions according to the optimal
coupling. Let T be the first time such thatX(T ) = Y (T ).
Suppose that we establish that P [T < t] ≥ q, where t and
p do not depend upon the starting states (X(0),Y (0)).
Then, we can dovetail this argument for ` “windows”
of time t each to see that P [T > ` · t] ≤ (1 − q)`: this
is possible because the probability bounds for T did
not depend upon the starting positions (X(0),Y (0)) and
hence can be applied again to the starting positions
(X(t),Y (t)) if X(t) 6= Y (t). By choosing ` large enough
so that (1−q)` is at most 1/e (or any other constant less
than 1/2), we obtain a mixing time of `t. We therefore
proceed to obtain an upper bound on P [T < t] for some
t = Θ(logN).

As discussed earlier, we need to split the evolution
of the chains into several stages in order to complete
the argument outlined above. We now describe these
four different stages. Recall that f is assumed to be
a (L,B, ρ)-smooth contractive evolution. Without loss
of generality we assume that L > 1. The parameter r
appearing below is a function of these parameters and k
and is defined in Lemma A.1. Further, as we noted after
the proof of Theorem 4.1, k can be chosen to be as large
as desired. We now exercise this choice by choosing k to
be large enough so that

(5.15) ρk ≤ e−1.

The other parameters below are chosen to ease the
application of the framework developed in the previous
section.

1. Approaching the fixed point. We define Tstart
to be the first time such that∥∥∥X(Tstart+i) − τ

∥∥∥
1
,
∥∥∥Y (Tstart+i) − τ

∥∥∥
1
≤ α

Nw

for 0 ≤ i ≤ k − 1,

where α ··= m+ r and w = min
(

1
6 ,

log(1/ρ)
6 log(L+1)

)
. We

show below that

(5.16) P [Tstart > tstart logN ]

≤ 4mkto logN exp
(
−N1/3

)
,

where tstart ··= 1
6 log(L+1) . The probability itself is

upper bounded by exp
(
−N1/4) for N large enough.



2. Coming within distance Θ
(

logN
N

)
. Let β0 ··=

(8/ρk) log(17mk) and h = 4L2m
δ2 . Then, we define

T0 to be the smallest number of steps needed after
Tstart such that either∥∥∥X(Tstart+T0) − Y (Tstart+T0)

∥∥∥
1
≤ hβ0 logN

N

or ∥∥∥f(X(Tstart+T0))− f(Y (Tstart+T0))
∥∥∥

1
≤ hβ0 logN
N(1 + δ) .

We prove below that when N is large enough

(5.17) P [T0 > kt0 logN ] ≤ 1
Nβ0/7

,

where t0 ··= 1
k log(1/ρ) .

3. Coming within distance Θ(1/N). Let β0 and
h be as defined in the last item. We now define
a sequence of `1 ··=

⌈
log logN
k log(1/ρ)

⌉
random variables

T1, T2, . . . T`. We begin by defining the stopping
time S0 ··= Tstart +T0. For i ≥ 1, Ti is defined to be
the smallest number of steps after Si−1 such that
the corresponding stopping time Si ··= Si−1 + Ti
satisfies either∥∥∥X(Si) − Y (Si)

∥∥∥
1
≤ hρikβ0 logN

N

or ∥∥∥f(X(Si))− f(Y (Si))
∥∥∥

1
≤ hρikβ0 logN

N(1 + δ) .

Note that Ti is defined to be 0 if setting Si = Si−1
already satisfies the above conditions. Define βi =
ρikβ0. We prove below that when N is large enough

(5.18) P [Ti > k + 1] ≤ 4mk exp (−(βi logN)/8) ,
for 1 ≤ i ≤ `1.

4. Collision. Let β0 and h be as defined in the last
two items. Note that after time S`1 , we have∥∥∥f(X(S`1))− f(Y (S`1))

∥∥∥
1

≤ Lhβ`1 logN
N

= Lhβ0ρ
k`1 logN
N

≤ Lhβ0

N
.

Then, from the properties of the optimal coupling
we have thatX(S`1 +1) = Y (S`1 +1) with probability
at least

(
1− Lhβ0

2N

)N
which is at least exp (−Lβ0h)

when N is so large that N > hLβ0.

Assuming eqs. (5.16) to (5.18), we can complete the
proof of Theorem 3.6 as follows.

Proof of Theorem 3.6. Let X(0), Y (0) be the arbitrary
starting states of two stochastic evolutions guided by f ,
whose evolution is coupled using the optimal coupling.
Let T be the minimum time t satisfying X(t) = Y (t).
By the Markovian property and the probability bounds
in items 1 to 4 above, we have (for large enough N)

P [T ≤ tstart logN + kt0 logN + (k + 1)`1]
≥ P [Tstart ≤ tstart logN ] · P [T0 ≤ kt0 logN ]

·

(
`1∏
i=1

P [Ti ≤ k + 1]
)
· e−Lβ0h

≥ e−Lβ0h
(

1− exp(−N1/4)
)

(1−N−β/7)

·
`1∏
i=1

(
1− 4mk exp(−(ρikβ0 logN)/8)

)
≥ exp (−Lβ0h− 1)

·

(
1− 4mk

`1∑
i=1

exp(−(ρikβ0 logN)/8)
)

where the last inequality is true for large enough N .
Applying Lemma C.1 to the above sum (with the
parameters x and α in the lemma defined as x =
exp(−(β0 logN)/8) and α = ρk ≤ 1/e by the assumption
in eq. (5.15)), we can put a upper bound on it as follows:

`1∑
i=1

exp(−(ρikβ0 logN)/8) ≤ 1
exp(ρkβ0/8)− 1

= 1
17mk − 1 ≤

1
16mk ,

where the first inequality follows from the lemma and
the fact that log logN

k log(1/ρ) ≤ `1 ≤ 1 + log logN
k log(1/ρ) , and the last

inequality uses the definition of β0 and m, k ≥ 1. Thus,
for large enough N , we have

P [T ≤ c logN ] ≥ q,

where c ··= 2(tstart+kt0) and q ··= (3/4) exp (−Lβ0h− 1).
Since this estimate does not depend upon the starting
states, we can bootstrap the estimate after every c logN
steps to get

P [T > c` logN ] < (1− q)` ≤ e−q`,

which shows that
c

q
· logN

is the mixing time of the chain for total variation distance
1/e, when N is large enough.



We now proceed to prove the claimed equations,
starting with eq. (5.16). Let t ··= tstart logN for
convenience of notation. From Lemma A.1 we have∥∥∥f t(X(0))− τ

∥∥∥
1
≤ rρt.

On the other hand, applying Lemma 4.3 to the chain
X(0),X(1), . . . with γ = 1/3, we have∥∥∥f t(X(0))−X(t)

∥∥∥
1
≤ (L+ 1)tm

N1/3

with probability at least 1− 2mt exp(−N1/3). From the
triangle inequality and the definition of t, we then see
that with probability at least 1− 2mt exp

(
−N1/3), we

have ∥∥∥X(t) − τ
∥∥∥

1
≤ m

N1/6 + r

N tstart log(1/ρ)

≤ m+ r

Nw
= α

Nw
,

where α,w are as defined in item 1 above. Now, if we
instead looked at the chain starting at some i < k, the
same result would hold for X(t+i). Further, the same
analysis applies also to Y (t+i). Taking an union bound
over these 2k events, we get the required result.

Before proceeding with the proof of the other two
equations, we record an important consequences of
eq. (5.16). Let w,α be as defined above, and let w′ > w
be such that w′ < 1/3. Recall that an epoch starting
at time 0 is decent if both X(t) and Y (t) are within
distance α/Nw of τ .

Observation 5.1. For large enough N , it holds with
probability at least 1−exp(−Nw′/4) that for 1 ≤ i ≤ kN ,
X(Tstart+i),Y (Tstart+i) are within `1 distance α/Nw of
τ .

Proof. We know from item 1 that the epochs starting
at times Tstart + i for 0 ≤ i < k are all decent. For large
enough N , Lemma 4.2 followed by a union bound implies
that theN consecutive epochs starting at T+j+k` where
` ≤ N and 0 ≤ j ≤ N are also all decent with probability
at least 1− 2mk2N exp(−Nw′/2), which upper bounds
the claimed probability for large enough N .

We denote by E the event that the epochs starting
at Tstart + i for 1 ≤ i ≤ kN are all decent. The above
observation says that P (E) ≥ 1− exp(−N−w′/4) for N
large enough.

We now consider T0. Let g0 ··= hβ0 logN
N(1+δ) , where

h is as defined in items 2 and 3 above. From
Theorem 4.4 followed by an union bound, we see
that the first t1 logN consecutive epochs starting at
Tstart, Tstart + k, Tstart + 2k, . . . are good with goal g0

(they are already known to be decent with probability at
least P (E) from the above observation) with probability
at least

1− 2mkt1
(
N−β0/(3(1+δ)) + exp(−Nw′/4)

)
logN

− P (¬E),

which is larger than 1−N−β0/7 for N large enough (since
δ < 1). Now, if we have

∥∥f(X(i))− f(Y (i))
∥∥

1 ≤ g
for some time i during these t1 logN good epochs
then T0 ≤ kt1 logN follows immediately. Otherwise,
the goodness condition implies that the hypotheses of
Theorem 4.1 are satisfied across all these epochs, and
we get∥∥∥X(Tstart+kt1 logN) − Y (Tstart+kt1 logN)

∥∥∥
1

≤ ρkt1 logN
∥∥∥X(Tstart) − Y (Tstart)

∥∥∥
1

≤ ρkt1 logN α

Nw
≤ g0 ≤

hβ0 logN
N

,

where the second last inequality is true for large enough
N .

Finally, we analyze Ti for i ≥ 1. For this, we need to
consider cases according to the state of the chain at time
Si−1. However, we first observe that plugging our choice
of h into Theorem 4.4 shows that any decent epoch is
good with goal gi ··= hβi logN

N(1+δ) with probability at least

1−2mk
(

exp(−(βi logN)/(3(1 + δ))) + exp(−Nw′/4)
)
,

which is at least 1− 2mk exp(−(βi logN)/7) for N large
enough (since δ < 1). Further, since we can assume via
the above observation that all the epochs we consider
are decent with probability at least P (E), it follows that
the epoch starting at Si−1 (and also the one starting at
Si−1 + 1) is good with goal gi with probability at least

p ··= 1− 2mk exp(−(βi logN)/7)− P (¬E)
≥ 1− 2mk exp(−(βi logN)/8),

where the last inequality holds whenever βi ≤ logN
and N is large enough (we will use at most one of
these two epochs in each of the exhaustive cases we
consider below). Note that if at any time Si−1 + j
(where j ≤ k + 1) during one of these two good epochs
it happens that

∥∥f(X(Si−1+j))− f(Y (Si−1+j))
∥∥

1 ≤ gi,
then we immediately get Ti ≤ k + 1 as required. We
can therefore assume that this does not happen, so that
the hypotheses of Theorem 4.1 are satisfied across these
epochs.

Now, the first case to consider is∥∥X(Si−1) − Y (Si−1)
∥∥

1 ≤
hβi−1 logN

N . Since we are



assuming that Theorem 4.1 is satisfied across the epoch
starting at Si−1, we get

(5.19)

∥∥∥X(S+i−1+k) − Y (Si−1+k)
∥∥∥

1

≤ ρk
∥∥∥X(Si−1) − Y (Si−1)

∥∥∥
1

≤ ρk hβi−1 logN
N

= hβi logN
N

.

Thus, in this case, we have Ti ≤ k with probability at
least p as defined in the last paragraph.

Even simpler is the case∥∥f(X(Si−1))− f(Y (Si−1))
∥∥

1 ≤ hβi logN
N in which

case Ti is zero by definition. Thus the only remaining
case left to consider is

hβi logN
N

<
∥∥∥f(X(Si−1))− f(Y (Si−1))

∥∥∥
1

≤ hβi−1 logN
N(1 + δ) .

Since h = 4L2m
δ2 , the first inequality allows us to use

Lemma 3.5 with the parameters c and t in that lemma
set to c = 4/δ2 and t = βiL

2 logN , and we obtain∥∥∥X(Si−1+1) − Y (Si−1+1)
∥∥∥

1

≤ (1 + δ)
∥∥∥f(X(Si−1))− f(Y (Si−1))

∥∥∥
1

≤ hβi−1 logN
N

,

with probability at least 1− 2m exp
(
−(βiL2 logN)/3

)
.

Using the same analysis as the first case from this point
onward (the only difference being that we need to use the
epoch starting at Si−1 + 1 instead of the epoch starting
at Si−1 used in that case), we get that

P [Ti ≤ 1 + k] ≥ p− 2m exp
(
−(βiL2 logN)/3

)
≥ 1− 4mk exp (−(βi logN)/8) .

since L, k > 1. Together with eq. (5.19), this completes
the proof of eq. (5.18).
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A Proofs omitted from Section 3.1
Lemma A.1 (Exponential convergence). Let f be
a smooth contractive evolution, and let τ and ρ be as
in the conditions described in Section 3.1. Then, there
exist a positive r such that for every z ∈ ∆m, and every
positive integer t,∥∥f t(z)− τ

∥∥
1 ≤ rρ

t.

Proof. Let ε and k be as defined in Theorem 4.1. From
the “convergence to the fixed point” condition, we know
that there exists an ` such that for all z ∈ ∆m,

(A.1)
∥∥f `(z)− τ

∥∥
1 ≤

ε

Lk
.

Note that this implies that f `+i(z) is within distance ε of
τ for i = 0, 1, . . . , k, so that Theorem 4.1 can be applied
to the sequence of vectors f `(z), f `+1 (z) , . . . , f `+k(z)
and τ , f(τ ) = τ , . . . , fk(τ ) = τ (the perturbations are
simply 0). Thus, we get∥∥f `+k(z)− τ

∥∥
1 ≤ ρ

k
∥∥f `(z)− τ

∥∥
1 ≤

ρkε

Lk
.

Since ρ < 1, we see that the epoch starting at `+ k also
satisfies eq. (A.1) and hence we can iterate this process.
Using also the fact that the 1→ 1 norm of the Jacobian
of f is at most L (which we can assume without loss of
generality to be at least 1), we therefore get for every
z ∈ ∆m, and every i ≥ 0 and 0 ≤ j < k∥∥f `+ik+j(z)− τ

∥∥
1 ≤ ρ

ki+j L
j

ρj
∥∥f `(z)− τ

∥∥
1

≤ ρki+j+`L
j+`

ρj+`
‖z − τ‖1

≤ ρki+j+`L
k+`

ρk+` ‖z − τ‖1

where in the last line we use the facts that L > 1, ρ < 1
and j < k. Noting that any t ≥ ` is of the form `+ki+j
for some i and j as above, we have shown that for every
t ≥ ` and every z ∈ ∆m

(A.2)
∥∥f t(z)− τ

∥∥
1 ≤

(
L

ρ

)k+`
ρt ‖z − τ‖1 .

Similarly, for t < `, we have, for any z ∈ ∆m∥∥f t(z)− τ
∥∥

1 ≤ L
t ‖z − τ‖1

≤
(
L

ρ

)t
ρt ‖z − τ‖1(A.3)

≤
(
L

ρ

)`
ρt ‖z − τ‖1 ,(A.4)

where in the last line we have again used L > 1, ρ < 1
and t < `. From eqs. (A.2) and (A.4), we get the claimed

result with r ··=
(
L
ρ

)k+`
.

B Proofs omitted from Section 4
Proof of Lemma 4.3. Fix a co-ordinate j ∈ [m]. Since
X(i) is the normalized frequency vector obtained by
taking N independent samples from the distribution
f(X(i−1)), Hoeffding’s inequality yields that

P
[∣∣∣X(i)

j − f(X(i−1))j
∣∣∣ > N−γ

]
≤ 2 exp

(
−N1−2γ)

≤ 2 exp (−Nγ) ,

where the last inequality holds because γ ≤ 1/3. Taking
a union bound over all j ∈ [m], we therefore have that
for any fixed i ≤ t,
(B.5)

P
[∥∥∥X(i) − f(X(i−1))

∥∥∥
1
>

m

Nγ

]
≤ 2m exp (−Nγ) .

For ease of notation let us define the quantities s(i) ··=∥∥X(i) − f i(X(0))
∥∥

1 for 0 ≤ i ≤ t. Our goal then
is to show that it holds with high probability that
s(i) ≤ (L+1)im

Nγ for all i such that 0 ≤ i ≤ t.
Now, by taking an union bound over all values of

i in eq. (B.5), we see that the following holds for all i
with probability at least 1− 2mt exp (−Nγ):

s(i) =
∥∥∥X(i) − f i(X(0))

∥∥∥
1

≤
∥∥∥X(i) − f(X(i−1))

∥∥∥
1

+
∥∥∥f(X(i−1))− f i(X(0))

∥∥∥
1

≤ m

Nγ
+ Ls(i−1),

(B.6)

where the first term is estimated using the probabilistic
guarantee from eq. (B.5) and the second using the upper
bound on the 1→ 1 norm of the Jacobian of f . However,
eq. (B.6) implies that s(i) ≤ m(L+1)i

Nγ for all 0 ≤ i ≤ t,
which is what we wanted to prove. To see the former
claim, we proceed by induction. Since s0 = 0, the claim
is trivially true in the base case. Assuming the claim is
true for s(i), we then apply eq. (B.6) to get

s(i+1) ≤ m

Nγ
+ Ls(i) ≤ m

Nγ

(
1 + L(L+ 1)i

)
≤ m

Nγ
· (L+ 1)i+1.

C Sums with exponentially decreasing
exponents

The following technical lemma is used in the proof of
Theorem 3.6.

Lemma C.1. Let x, α be positive real numbers less than
1 such that α < 1

e . Let ` be a positive integer, and define



y ··= xα
` . Then

∑̀
i=0

xα
i

≤ y

1− y .

Proof. Note that since both x and α are positive and
less than 1, so is y. We now have

∑̀
i=0

xα
i

=
∑̀
i=0

xα
`−i

= y
∑̀
i=0

yα
−i−1

≤ y
∑̀
i=0

yi log(1/α),

since 0 < y ≤ 1 and α−i ≥ 1 + i log(1/α),

≤ y
∑̀
i=0

yi, since 0 < y ≤ 1 and α < 1/e,

≤ y

1− y .


	1 Introduction
	1.1 Our contribution.

	2 Technical overview
	3 Preliminaries and formal statement of results
	3.1 Main theorem.
	3.2 The RSM model as a special case.

	4 Perturbed evolution near the fixed point
	4.1 Evolution under random perturbations.
	4.2 Controlling the size of random perturbations.

	5 Proof of the main theorem: Analyzing the coupling time
	A Proofs omitted from sec:results
	B Proofs omitted from sec:pert-evol-near
	C Sums with exponentially decreasing exponents

