
The Impact of Noise on the Scaling of
Collectives: The Nearest Neighbor Model

[Extended Abstract]

Nisheeth K.Vishnoi1

Computer Science Division
University of California Berkeley, CA 94720.

nisheeth.vishnoi@gmail.com

Abstract. This paper presents a theoretical study of the impact of noise
on the scaling of a cluster when the processors participate in “local”
collectives with their nearest neighbors. The model considered here is an
extension of that introduced in [9] for understanding the effect of noise
on the scaling of “global” collectives in large clusters. In this paper,
the scaling is studied with respect to three fundamental aspects: (1) the
distribution of noise: whether it is heavy or light tailed; (2) the temporal
independence of noise; (3) the topology of the cluster. When the noise
has a “light” tail and is temporally independent, it is shown that the
cluster scales well, i.e., the slowdown per phase is just proportional to
the (logarithm of the) maximum degree of the communication topology.
This implies that for popular topologies such as grids and toruses the
slowdown per phase is just a constant factor, which is independent of
the number of processors. In the light tailed case, assuming only a weak
temporal independence, a general upper bound is derived in terms of
an “expansion” parameter of the communication topology. For grid-like
graphs this establishes an exponential speedup compared to what was
shown for global collective operations in [9].

1 Introduction

Motivation. It has been observed by several researchers, see [1–3], that the
“throughput” of several high performance computing (HPC) clusters running
scientific applications drops as the number of processors in the cluster increases.
It has been suggested in [1, 2] that one of the main causes of this is the “noise”
in the processors of the cluster in the form of overheads such as daemons and
interrupts. Given the exorbitant amount of resources invested in building such
systems, it becomes extremely important to understand the reasons for this loss
in efficiency and, if possible, rectify it. As a first formal step towards achieving
this, the impact of noise on the scaling of these clusters was explained via a
stochastic model in [9]. They abstracted a typical scientific parallel application
in which each node in the cluster repeatedly performs a “phase” which con-
sists of a computation stage followed by a “global” collective stage. A collective

2

involves all processors coming to a common state once they are through with
their computation stage, from where on they resume the next phase. Hence, a
large amount of noise in one of the processor, which would result in an untimely
completion of the work assigned to it, may end up slowing down everyone. The
results of [9] showed, in particular, that even in the most favorable case when the
noise in each processor is distributed according to the exponential distribution,
the per phase throughput drops by a factor of Ω(lnN), where N denotes the
number of processors. Or, if each processor would do w work per phase when
there was no noise, it would end up doing only O(w/ lnN) work per phase.
Hence, as the number of processors tends to infinity, the throughput goes to
zero, somewhat defeating the purpose why such clusters are in place. The main
objective of such a study is to understand the problem of noise and the ways in
which it has the potential to degrade system performance. The end goal being to
reduce the impact of this necessary evil, and hence, to improve the performance
of HPC systems.

This Work. In this paper we study the impact of noise on the performance of a
cluster when the processors participate in “local” collectives, i.e., with their near-
est neighbors in the communication topology. We suitably extend the stochastic
model of [9] who did exactly this, albeit, for global collectives. Before we go on,
let us briefly (at the expense of being imprecise) outline the model.1 Consider a
parallel program with N threads running on a system with N processors. The
system is dedicated to running the same program repeatedly, each such run being
referred to here as a phase. Each phase consists of two stages (1) a computation
stage: In this stage each processor is supposed to do w amount of work. (2) A
communication stage: In this stage each processor communicates with a speci-
fied set of processors, referred to as its neighbors. This communication pattern is
referred to as the communication topology and is captured by a directed graph
on N processors: G. But, because of noise, each processor has to devote an over-
head time which in phase j for the i-th processor is δi,j and is assumed to be
distributed according to a random variable δ with mean wf, where f is a fixed
number in the interval [0, 1]. It can be safely assumed that the noise is indepen-
dent spatially, i.e., in the absence of coordinated OS policies, the noise across
different processors is uncorrelated. It sometimes may be difficult to argue, and
not true, that the noise is uncorrelated temporally, i.e., with j, although one
may expect noise to be uncorrelated in the short range and long range. In this
setup, we explore the scaling, or per phase work per processor with respect to
three fundamental aspects: (1) the tail of the distribution of noise: Pr[δ ≥ t];
(2) the temporal independence of noise: the correlation patterns of {δi,j} with
j; (3) the communication topology: G.

Our Results. Our results can be informally summarized in the following points.
To see the precise technical statement, the reader is referred to the corresponding
theorem.

1 A detailed description of the model appears in Section 2.

3

1. For the case when the noise is temporally independent and light tailed, we
prove that time per phase is “sharply concentrated” around the quantity
w + wf(ln∆) + τ, here ∆ is exactly one more that the largest in-degree of
the communication topology G. (See Theorem 7.)

2. For the case when the noise is “weakly” temporally dependent, light tailed
and the growth rate of the topology is bounded, we prove that the time per
phase is upper bounded by the quantity w + wf(ln lnN) + τ. (See Theorem
8.)

3. For the case when the noise is heavy tailed and temporally independent,
we show that the topology has little effect and the time taken per phase is
almost the same as if the processors were involved in a global barrier. (See
Section 4.) This has been proved independently in [11].

4. We also prove sharp results when the communication patterns are multi-
round, such as a binary tree, or one that arises in the Fast Fourier Transform.
(See Theorems 9 and 10.)

Related Work. Our work is a natural follow-up to that of [9]. The work of [10]
takes an in-depth look into the theoretical model of the impact of noise on the
collectives studied in [9] by validating its accuracy against data collected from
production clusters. Recently, we came across the work of Lipman and Stout
[11] who have, independently of this work, considered a problem which reduces
to a similar stochastic problem considered in our paper. The main result of their
paper is a tight bound for the case when the noise is light tailed, temporally
independent and the topology is a directed cycle. This can be seen as a special
case of our first result.

The problem on how to alleviate the problem of noise has been looked by
several research teams [3–8]. Our theoretical understanding could potentially
be coupled with ideas from these works to alter the noise in the systems, as a
function of the communication topology, and help improve the performance of
these systems considerably.

Organization. In Section 2 we present a description of the model considered in
the paper. In Section 3 we analyze the model presented in Section 2. The re-
sults presented in Section 3 are general and rigorous. In Section 4 we describe
the results obtained in Section 3.2 for the light and heavy tailed distributions.
The canonical example of light tailed distribution we consider is the exponen-
tial distribution, while for the heavy tailed distribution, we consider the Pareto
distribution. In Section 5 we present the results pertaining to multiple commu-
nications per phase. For the lack of space, most of the proofs are deferred to the
full version of this paper.

2 The Setup

2.1 Modeling the Application

In this section we present the stochastic model considered in this paper. Since it
is an extension of the model presented in [9], we choose to keep the terminology

4

as similar as possible. The basic setup is a parallel program with N threads
running on a system with N processors. Typically, the system is dedicated to
running the same program repeatedly, each such run being referred to here as a
phase, albeit on different inputs every time. Each phase is a composition of two
kinds of stages:

– Computation stage: In this stage the processor does computation without
any message exchange or I/O activity.

– Communication stage: Once the processor has finished its computation stage,
it enters the communication stage. In this stage each processor communicates
with a specified set of processors, referred to as its neighbors. In this stage
there is negligible computation except that associated to communication.

For the sake of simplicity, as has been done in the previous papers on this,
we assume that for every processor, each phase just consists of a computation
stage followed by a communication stage. Later, we will consider the case of
FFT where this is not the case, and each phase comprises of a number of alter-
nations of computation stages with communication stages. Thus, every phase is
characterized by the amount of work assigned to each processor and the pattern
of communication that occurs between them. Formally, in phase j ≥ 1, let Wi,j

be the work assigned to processor 1 ≤ i ≤ N, which would be completed by it
in (deterministic) time wi,j was there no noise. The communication in phase j
can be captured by a directed graph (possibly with loops) Gj([N], Ej). Here, Ej

consists of the directed edges along which communication happens. We represent
an edge as (i1, i2), meaning that i1 communicates a message to i2. The time this
communication takes is ci1,i2,j . This completes the overview of a phase. Now we
proceed to a detailed quantitative description of a phase.

A Phase. Let tsi,j denote the time when the i-th thread begins phase j, and
let tfi,j denote the time when it ends the computation stage in the j-th phase.
Let Wi,j denote the amount of work carried out by thread i in the computation
stage of the j-th phase. If the system is noiseless, the time required by processor
i to finish work Wi,j in its j-th phase will be a deterministic quantity, which
we denote by wi,j . This quantity typically depends on several characteristics of
the processor such as its clock frequency, its architectural parameters, and the
state of the node (such as cache contents) just before the j-th phase is entered.
Therefore, tfi,j − tsi,j = wi,j . Due to the presence of noise, the time taken by
processor i to finish the work Wi,j is typically not a constant. There will be a
variable component that represents the time consumed to service the daemons
and other asynchronous events. This is captured by a random variable δi,j . More
precisely, tfi,j − tsi,j = wi,j + δi,j . Let fi,j ∈ [0, 1] be the fraction representing

the system overhead for the processor, i.e., let fi,j := E[δi,j]
wi,j

. Thus, we may

think of the noise as a random variable ηi,j := δi,j

fi,jwi,j
with mean one. Thus,

we may write the wall-clock time taken by processor i for the j-th phase as
tfi,j − tsi,j = wi,j (1 + fi,jηi,j) .

5

For j ≥ 1, phase j + 1 starts for the i-th processor when it has completed
phase j. The first phase starts at time zero for all processors. The j +1-th phase
ends for the i-th processor when it has completed its computation in the j +1-th
phase, as well as, all the processors i′ such that (i′, i) ∈ Ej+1 have ended the
computation in their j + 1-th phase. Define Nj(i) to be the set of processors
which have an edge directed towards i in Gj . With this notation, one can define
the time taken by the i-th processor to complete the j + 1-th phase, denoted by
Ti,j+1 as

max
{

Ti,j + wi,j(1 + fi,jηi,j), max
i′∈Nj+1(i)

{Ti′,j + wi′,j(1 + fi′,jηi′,j) + τi′,i}
}

(1)

Here, τi′,i denotes the communication time between processors i and i′. (We
assume this is symmetric and independent of j.) This completes a description of
a generic phase in the most general setting.

Performance Measure. Given this description of a phase, a natural measure
of performance is the amount of time taken by each processor to complete n
phases. More formally, given an ε > 0, to be thought of as very small, one
would be interested in ”eff”2 which is defined to be the smallest number such
that Pr

[
maxn

i=1{Ti,n}
n ≤ eff

]
≥ 1− ε. Thus, with probability at-least 1− ε, each

processor finishes n phases in time n · eff.

2.2 Simplifying Assumptions

Now we present some simplifications, which make the model amenable for the-
oretical analysis and, yet, not render it unrealistic. The justifications for these
assumptions are presented in detail in the paper [9], and we will only discuss
them here very briefly. Several assumptions have been verified for real systems
in [10]. Of course, one can make the model more and more real by removing
some of these assumptions, but then the theoretical analysis of the model also
becomes considerably difficult.
(1) Identical Communication. Gj = G are the same for all j ≥ 1. Also, as in [9],
we assume that each message transmission between a pair of processors takes
time τ, which is referred to as the one-way latency.
(2) Balanced Load. Wi,j = W for all i, j. This means that each thread is supposed
to do the same amount of work in its compute stage. For instance, each thread
is supposed to be multiplying two matrices of the same size.
(3) Identical Processors. wi,j = w for all i, j. This means that all the processors
are identical in their computational power. Hence, in the noiseless case, given
that Wi,j = W, wi,j = w for all processors.
(4) Stationary and Balanced Overheads. fij = f for all i, j. In a typical systems,
the processors are assigned an application for the lifetime of the application and
running any other application on the node is avoided. Thus, the only interference
2 This quantity, to be thought of as the efficiency of the system with respect to the

application, will depend on the application and ε .

6

is due to the background processes or daemons. The amount of daemon activity
is not expected to change over time. Thus, we may assume fi,j = fi,j′ , for all i, j
and j′. We further assume that fi,j = fi′,j , for all i, i′ and j. (See [9] for more
on this assumption.)
(5) Identical Noise. ηi,j ∼ η for all i, j. Recall that we have arranged η and f
such that E[η] = 1.
(6) Spatial Independence. {ηi,j : 1 ≤ i ≤ N} are independent for each j. This
assumption is crucial to our results. This can be justified as, in a typical system
under consideration, there is no coordinated scheduling policy to synchronize
processes across different processors.
(7) t-Temporal Independence. For the simplest of our results, we will assume that
the the random variables {ηi,j}, are independent, i.e., apart from spatial inde-
pendence, there is temporal independence as well. This may not be necessarily
true as some of the daemons could be somewhat periodic, and we do expect weak
correlation patterns between these random variables across different phases. In
general we may only assume limited independence. To this effect, we say that
the process is t temporal independent, if for all 1 ≤ i ≤ N and j ≥ 1, the set
of random variables {ηi,j′ : j ≤ j′ ≤ j + t} are independent. Typically, we will
assume that t � N.

3 Analysis

3.1 The Simplified Problem

In this section we present the problem at hand with the simplifications made in
the previous section. Applying assumptions (1)-(5) to Equation (1), we obtain
that for j ≥ 0,

Ti,j+1 := max
{

Ti,j + w(1 + fηi,j), max
i′∈Nj+1(i)

{Ti′,j + w(1 + fηi′,j) + τ}
}

, (2)

where Ti,0 = 0 for all 1 ≤ i ≤ N. The communication graph G(V,E), and the
parameters w, f and τ are fixed for the rest of the paper. This graph contains
loop edges of the form (i, i) for all 1 ≤ i ≤ N. The graph does not contain
multiple edges in the same direction between a pair of vertices. Given ε > 0,
recall that the goal is to give tight estimate of the quantity “eff” such that
Pr

[
maxn

i=1{Ti,n}
n ≤ eff

]
≥ 1− ε. Since w, f and G are fixed, this quantity is just

a function of n, ε and η.

3.2 General Results

We proceed to give general bounds on this quantity as a function of the random
variable η. First we need a few definitions.

Definition 1 A walk W of length n in a directed graph G(V,E) consists of
a sequence of (possibly repeated) edges e1, e2, . . . , en such that, if ek = (ik, jk),

7

then for all 1 ≤ k < n, jk = ik+1. The starting vertex of a walk is i1 while
the ending vertex is jn. With abuse of notation, a walk W will be denoted by
i1, i2, . . . , in, in+1, where in+1 := jn.

The maximum in-degree of G is denoted by ∆ (this includes the self-loop at
each vertex). G is said to be ∆ regular if all vertices have in-degree ∆. Let Wi,n

denote the number of walks in G of length n that end at i, or W = i1, . . . , in+1

such that in+1 = i. It follows from the definitions that |Wi,n| ≤ ∆n, and if G is
∆ regular, then this is an equality.

Definition 2 For a vertex i in G, let B(i, d) denote the ball of radius d centered
at i. Formally, B(i, d) contains all vertices i′ such that there is a directed path
of length at-most d from i′ to i. For G(V,E), let BG(d) denote maxi∈V |B(i, d)|.

Definition 3 Let η be a random variable such that E[η] = 1, and let σ > 0
and n be given. Let {ηi}n

i=1 be n independent copies of η. Then η is said to be
p(η, n, σ)-tailed if Pr [

∑n
i=1 ηi ≥ σn] ≤ p(η, n, σ).

Let Md
η denote the the random variable which is distributed according to the

maximum of d independent copies of η.

Temporal Independence.Assuming that the random variables ηi,j are independent
for all i and j, we obtain the following results. The first follows from Equation
(2) via a direct application of union bound.

Theorem 4 (Upper Bound). For σ > 0 and n ≥ 1, let η be p(η, n, σ)-tailed,
and the maximum in-degree of a vertex in G be ∆. Then, with probability at-least
1− p(η, n, σ)∆n,

maxN
i=1{Ti,n}

n ≤ wfσ + w + τ.

This theorem says that if for some σ, p(η, n, σ) goes to zero faster than 1/∆n,
then the per phase efficiency is at-most wfσ + w + τ with high probability.
Indeed, for light tailed distributions, such as exponential distribution, this is
true for σ = ln∆. In fact for such distributions, one can show that this is the
best we can hope for. We present a lower bound technique which, when applied
to the exponential distribution shows that each phase will take time wfσ+w+τ
on an average. (See Theorem 7.)

Now we present a general lower bound which is more convenient to state
for regular graphs. This can be generalized to the case when the graph is not
regular, but we omit it here.

Theorem 5 (Lower Bound). Let G be a ∆ regular graph, n ≥ 1 and for
1 ≤ j ≤ N, let Mj be i.i.d. M∆

η random variable. Then, for all 1 ≤ i ≤ N,
Ti,n ≥ wf

∑n
j=1 Mj + wn.

It is possible to incorporate the dependency of the lower bound on τ via a slightly
more involved argument. We omit the easy proofs of these theorems from this
version of the paper and focus on what they imply in Section 4.

Limited Temporal Independence. Consider now the case when the noise random
variables ηi,j t-temporally independent. In this case, Theorem 4 can no longer

8

be expected to hold. Here we provide an upper bound by a stochastic embedding
technique which takes into account the topology of the communication graph.
The basic idea is to consider t phases at a time, which we refer to as a meta-
phase. If the graph G has the property that a large delay at a node does not end
up affecting processors further than distance t from it, then the meta phase ends
much faster. Imagine the following stochastic process. Every processor draws
t samples from its noise distribution. Because of the spatial independence and
t-temporal independence, all these samples are i.i.d according to η. We denote
these noise distributions as ηi,j . The meta-phase ends when all processors have
finished t phases. Consider a node i, and recall that B(i, r) denotes the set
of processors from which i is reachable by a path of length at-most r. Recall
also that BG(r) denotes the size of the largest ball of radius r in G. Let ζj :=
maxi′∈B(i,r) ηi′,j , where ηi′,j are i.i.d. according to η. Let p(s) = Pr[

∑t
j=1 ζj ≥ s].

Hence, Pr[Ti,t ≥ wfs+wt+ tτ] ≤ p(s). Thus, using a union bound, one obtains
the following theorem.

Theorem 6 (Limited Independence Upper Bound). Let σ ≥ 0 and t ≥
1, r ≥ 0 be integers. Let η be the distribution of noise which is t-temporally
independent. Further, let Y1, . . . , Yt be i.i.d. according to M

BG(r)
η , and Y :=∑t

i=1 Yi. Then Pr
[

maxN
i=1{Ti,t}

t ≤ wfσ + w + τ
]
≥ 1−NPr[Y ≥ σt].

This theorem says that even in the case of limited temporal independence, as
long as the noise has the property that the sum of a small number of them have
a light tail, one can still upper bound the per phase time by something much
better than what one would expect in the global collective case. Of course, this
requires that the communication graph is not expanding in the sense that the
number of neighbors in a radius r grow slowly as a function of r for all the
processors. This is indeed true for d-dimensional grids and toruses for fixed d.

4 Results for Representative Distributions

In this section we explain Theorems 4, 5 and 6 for the context of light tailed and
heavy tailed distributions for noise. We pick the canonical examples of these two
cases: the exponential and the Pareto respectively.

4.1 Distributions

Exponential. An exponential distribution Exp(1) has the following distribution:
∀x ≥ 0, Pr[Exp(1) ≤ x] = 1−exp(−x). First we note some important properties
of this distribution. Let X1, . . . , Xn be i.i.d. according to Exp(1), then

1. Y :=
∑n

i=1 Xi is distributed according to Γ (n, 1) which has the following
p.d.f. f(x;n, 1) := xn−1 exp(−1)

(n−1)! , for x > 0. The moment generating function
is (1 − t)−n for t < 1. It follows from Chernoff Bounds that for all ∆ > 1,
for all 0 < δ ≤ δ0(∆), and all n ≥ n0(δ), Pr[Y ≥ (1 + δ)n ln∆] ≤ exp(−(1 +
δ/2)n ln∆).

9

2. Let Y := max∆
i=1 Xi. Then Y is distributed according to the random vari-

able
∑∆

i=1
1
i Xi. (Lemma 1 below). It follows that E[Y] = Var[Y] = H∆ :=∑∆

i=1
1
i . Hence, it follows from Chebyshev’s Inequality that if Y1, . . . , Yn are

distributed according to Y, are pairwise independent, then for any 0 < δ < 1,
Pr[

∑n
i=1 Yi ≥ (1 − δ)nH∆] ≥ 1 − 1

δ2nH∆
. It follows from the inequality

that 1
2∆+2 ≤ |H∆ − ln∆ − γ| ≤ 1

2∆ (where γ > 0 is the Euler-Mascheroni
constant) that, for all 0 < δ ≤ δ0(∆), and all n ≥ n0(δ), Pr[

∑n
i=1 Yi ≥

(1− δ/2)n ln∆] ≥ 1− 1
δ2nH∆

.

Lemma 1. Let X1, . . . , Xk be i.i.d. according to Exp(1). Then maxk
i=1 Xi has

the same distribution as
∑k

i=1
Xi

i .

Spatial and Temporal Independence. The fact (1) above implies that for all δ > 0
small enough, when η ∼ Exp(1), p(η, n, (1 + δ) ln ∆) ≤ 1

∆(1+δ/2)n . Hence, by

Theorem 4, with probability at-least 1−∆−nδ/2,
maxN

i=1{Ti,n}
n ≤ wf(1+δ) ln ∆+

w + τ. While the fact (2) above combined with Theorem 5 implies that for all
δ > 0 small enough, with high probability, every processor finishes n phases in
time at-least (1− δ/2)n ln∆. These together imply the following theorem.

Theorem 7. For all δ > 0 small enough, for η ∼ Exp(1), and when the com-
munication topology is given by a (regular) digraph G with in-degree ∆, with
high probability, the efficiency or the maximum average time per phase for each
processor lies between wf(1− δ/2) ln ∆ + w + τ and wf(1 + δ) ln∆ + w + τ.

Thus, for standard communication topologies such as toruses or meshes, this
result is optimal.

Limited Temporal Independence. Now we show that assuming O(lnN)-temporal
independence, and the fact that for r = O(lnN), the communication graph is
not expanding, i.e., BG(O(lnN)) = O((lnN)O(1)), lnN phases will finish in
time O(lnN ln lnN). Thus giving an efficiency of O(ln lnN) per phase with high
probability. Compare this to the case when each phase takes Θ(lnN) time in
the case of global collectives [9]. Formally, we have the following theorem.

Theorem 8. Let c1, c2 > 0 be large constants. Let the communication graph
G have the property that for all r ≤ c1 lnN, BG(r) ≤ (lnN)c2 . If the noise is
distributed according to Exp(1) and is lnN -temporally independent, then with
probability at-least 1 − 1/N100 each processor finishes lnN phases in time at-
most 100 ln N(wf ln lnN + w + τ). Thus, the average time per phase for each
processor is at-most 100wf ln lnN + w + τ with high probability.

The proof of this theorem relies on Theorem 6 and the measure concentration
inequality for the random variable distributed according to the maximum of
exponential distributions and we will include it in the full version of this paper.
This is a significant speed-up compared to lnN per phase and assumes that noise
is temporally independent for only about ln N phases. It would be interesting to
see if this is indeed observed for real systems.

10

Pareto. In this section we consider the case when the noise has a heavy tail.
This is unlike the exponential case and the noise looks more like the uniform
distribution. A natural and very popular way to model data which has heavy
tail is the so-called Pareto distribution. The Pareto random variable Xa

par with
parameter a has the following distribution: ∀x ≥ 1, Pr[Xa

par ≤ x] = 1− 1
xa . The

Pareto distribution has mean a
a−1 . To make this random variable with unit mean,

we let η be a−1
a Xa

par. The reason why when the noise is distributed according to
Pareto the system will invariably slow down is very simple. After t ≤ N phases,
a processor i starts depending on processors which are connected to it by a
directed path of length t. Thus, the number of independent copies of η after t
phases on which i-th processor depends is P (i, t) :=

∑t
r=0 |BG(i, r)|. It follows

from the distribution of the maximum of Pareto distribution that, with high
probability, there is one of these which will be at-least Ω(P (i, t)1/a). Hence, the
i-th processor will take time at-least Ω(1

t P (i, t)1/a) on an average per phase. If
P (i, t) = Ω(tβ) for some β > a, then this quantity is at-least Ω(tβ/a−1). When
G is a ring, as noted in [11], β = 2, and hence, for 1 < a < 2, the slowdown is
Ω(N2/a−1). We do not discuss it further here as the main idea already appears
in the paper of Lipman and Stout [11].

5 Multiple Communications per Phase

In this section we consider two cases of a complex communication pattern per
phase. The first is the complete binary tree and the second is Fast Fourier Trans-
form (FFT). Both are very natural. The binary tree will arise in any divide and
conquer type of application, e.g. Merge Sort, while FFT is a standard benchmark
for HPCC. For the sake of clarity we would consider the case when the communi-
cation delays are negligible. This is just to highlight the impact of noise, and all
results can be suitably modified to incorporate the communication component.

5.1 Binary Tree

Consider the case when N = 2k, where the processors are labeled {0, 1, . . . , 2k−
1}. Each phase consists of k rounds. In the i-th round (1 ≤ i ≤ k), processors j

and j +2i−1 communicate for j = 0 ·2i, 1 ·2i, 2 ·2i, . . . ,
⌊

2k−1
2i

⌋
·2i. An example of

such a communication pattern is given in Figure 1. We assume that the one way
latency τ ∼ 0, and hence, only focus on the delay due to synchronization. Let
ηi,j be the random variable denoting the noise incurred by processor i in the j-th
round. Assume {η}i,j are i.i.d. according to Exp(1), let w be the work by each
processor done per round, and the overhead factor per round is f. Thus, time
taken to complete one phase is the random variable wk+wf maxP

∑
(i;j)∈P ηi,j .

Here the maximization is over all paths that go from a leaf to the root of the
binary tree. There is a path corresponding to each leaf, which is just a processor,
and there are exactly 2k of them. Hence, the quantity that we need to estimate
is Bk := maxP

∑
(i;j)∈P ηi,j . We prove the following theorem which establishes

a remarkable threshold phenomena in the completion time of each phase.

11

Theorem 9. Let cL = 2.678 . . . be a solution to the equation ln 2+ln x−x+1 =
0. Then Bk/k → cL almost surely as k →∞. (Here Bk is as defined above when
ηi,j are i.i.d. according to Exp(1).) Thus, the time to complete each phase is
almost surely (1 + fcL)w log2(N + 1).

The upper bound proof involves a tight approximation to the distribution ob-
tained by summing k independent copies of the exponential random variable.
The lower bound proof is technically interesting as it uses a result from the
theory of branching processes on the behavior of a supercritical Galton-Watson
process. It is worth noting that the lower bound argument given earlier for the
general case (Theorem 5) does not give the optimal constant, and one needs to
appeal to theory of branching processes to obtain the optimal constant. Also, a
close look at the proof of Theorem 9 yields that a similar threshold result can
be obtained when ηi,j are i.i.d. according to any distribution for which there is
a large deviation inequality.

5.2 Fast Fourier Transform

In this section we consider the communication pattern for an application comput-
ing the FFT. Here, each phase consists of k rounds. In the i-th round, 1 ≤ i ≤ k,
processors j and 2i−1 + j communicate with each other, where 0 ≤ j < 2k. The
communication pattern for one processor is a binary tree, as depicted in Figure
1. A phase consists of a binary tree for each processor, except that these binary
trees share edges. For instance, the binary tree for processes j and 2k−1 + j are
the same for all j. Let Hk denote the time taken for a phase to complete when
each processor does w work per round, f is the noise overhead, and the noise
in each round is distributed according to Exp(1). Then we have the following
theorem on Hk.

Theorem 10. Let cL = 2.678 . . . be a solution to the equation ln 2 + lnx− x +
1 = 0, and cU = 3.692 . . . be a solution to 2 ln 2 + lnx − x + 1 = 0. Then the
following hold: (1) lim supk→∞Hk/k ≤ cU almost surely. (2) lim infk→∞Hk/k ≥
cL almost surely. Thus, the time to complete each phase is almost surely bounded
between (1 + fcL)w log2(N + 1) and (1 + fcU)w log2(N + 1).

This theorem establishes that in the case of FFT, inspite of the dependencies
among the binary trees of the processors, each phase finishes in time O(log N).

Remark 1. We conjecture that Hk also has threshold behavior as Bk in Theorem
9. The current techniques do not seem powerful enough to resolve this question.

Acknowledgment. I would like to thank Rahul Garg for suggesting to look at
this model involving local collectives and Daniel Stefankovic for collaborating
on this paper at an early stage.

12

1

2

3

4

5

6

7

0

W6,1

W7,1

W6,2

W5,1

W4,1 W4,2

W2,2

W0,2 W0,3W0,1

W1,1

W2,1

W3,1
W4,3

Fig. 1. The communication pattern for a binary tree and a single node in FFT

References

1. R. Gioiosa, F. Petrini, K. Davis, and F. Lebaillif-Delamare, “Analysis of System
Overhead on Parallel Computers,” in The 4th IEEE International Symposium on
Signal Processing and Information Technology (ISSPIT 2004), (Rome, Italy), Dec.
2004.

2. T. R. Jones, L. B. Brenner, and J. M. Fier, “Impacts of Operating Systems on
the Scalibility of Parallel Applications,” Tech. Rep. UCRL-MI-202629, Lawrence
Livermore National Laboratory, Mar. 2003.

3. F. Petrini, D. J. Kerbyson, and S. Pakin, “The Case of the Missing Supercomputer
Performance: Achieving Optimal Performance on the 8,192 Processors of ASCI Q,”
in ACM/IEEE Conference on Supercomputing (SC’03), (Phoenix, Arizona, USA),
Nov. 2003.

4. E. Frachtenberg, F. Petrini, J. Fernandez, S. Pakin, and S. Coll, “STORM:
Lightning-Fast Resource Management,” in ACM/IEEE Conference on Supercom-
puting (SC’02), (Baltimore, Maryland, USA), Nov. 2002.

5. A. Hori, H. Tezuka, and Y. Ishikawa, “Highly Efficient Gang Scheduling Imple-
mentation,” in ACM/IEEE Conference on Supercomputing (SC’98), (Orlando, FL,
USA), Nov. 1998.

6. T. Jones, S. Dawson, R. Neely, W. Tuel, L. Brenner, J. Fier, R. Blackmore, P. Caf-
frey, B. Maskell, P. Tomlinson, and M. Roberts, “Improving the Scalability of Par-
allel Jobs by adding Parallel Awareness to the Operating System,” in ACM/IEEE
Conference on Supercomputing (SC’03), (Phoenix, Arizona, USA), Nov. 2003.

7. E. Frachtenberg, D. Feitelson, F. Petrini, and J. Fernández, “Flexible Coscheduling:
Mitigating Load Imbalance and Improving Utilization of Heterogeneous Resources,”
in International Parallel and Distributed Processing Symposium 2003 (IPDPS03),
(Nice, France), Apr. 2003.

8. S. Agarwal, G. S. Choi, C. R. Das, A. B. Yoo, and S. Nagar, “Co-ordinated
Coscheduling in Time-Sharing Clusters through a Generic Framework,” in IEEE In-
ternational Conference on Cluster Computing (CLUSTER’03), (Hong Kong), Dec.
2003.

9. S. Agarwal, R. Garg and N. Vishnoi, “The Impact of Noise on the Scaling of Col-
lectives: A Theoretical Approach”, in HiPC, 2005.

10. R. Garg, P. De, “Impact of Noise on Scaling of Collectives: An Empirical Evalua-
tion”, in HiPC , 2006.

11. J. Lipman, Q.F. Stout, “A performance analysis of local synchronization”, in Symp.
Parallelism in Algorithms and Architectures (SPAA), 2006.

