An algebraic proof of Alon's Combinatorial Nullstellensatz *

Nisheeth K. Vishnoi †

Abstract

In [1], Alon proved the following: Let k be a field and $f \in k[x_1, x_2, \ldots, x_n]$. Given non-empty subsets $S_1, \ldots, S_n \subset k$, for $1 \le i \le n$, define $g_i(x_i) = \prod_{s \in S_i} (x_i - s)$. If f vanishes on $S_1 \times \cdots \times S_n$, then $f = \sum_{i=1}^n h_i g_i$, for some $h_i \in k[x_1, \ldots, k_n]$, $1 \le i \le n$. In this note we give an algebraic proof of the same fact which uses some basic ideas from commutative algebra.

1 Introduction

Let k be a field and let $f \in k[x_1, x_2, ..., x_n]$. In [1], Alon proved the following important result which has surprising applications.

Theorem 1. (Combinatorial Nullstellensatz [1]) Given nonempty subsets $S_1, \ldots, S_n \subset k$, for $1 \leq i \leq n$, define $g_i(x_i) = \prod_{s \in S_i} (x_i - s)$. If f vanishes on $S_1 \times \cdots \times S_n$, then $f = \sum_{i=1}^n h_i g_i$, for some $h_i \in k[x_1, \ldots, k_n]$, $1 \leq i \leq n$.

The numerous applications of this Theorem motivated us to give another proof. Notice that the Theorem is a stronger form of Hilbert's nullstellensatz for the specific case (refer [2]). Before we proceed to give the algebraic proof of Theorem 1, we need some preliminary definitions. Let A be a commutative ring with identity. An ideal I of a ring A is a subset of A which is an additive subgroup of A and, if $a \in A$ and $x \in I$, then $ax \in I$. An ideal M of a ring A is said to be maximal if $M \neq A$ and there is no proper ideal U of A which strictly contains M. If I, J are ideals of A. Then the sum, product and radical ideals are defined as follows

$$I + J := \{ a + b \mid a \in I, b \in J \}, \tag{1}$$

^{*}Presented in 32nd Southeastern Conference on Combinatorics, Graph Theory and Computing, LSU.

[†]College of Computing, Georgia Institute of Technology, Atlanta, GA 30332. Email: nkv@cc.gatech.edu

$$IJ := \left\{ \sum_{i=1}^{m} a_i b_i \mid a_i \in I, b_i \in J, \text{ for some } m \ge 0 \right\}, \qquad (2)$$

$$\sqrt{I} := \left\{ f \mid f^m \in I, m \ge 0 \right\}.$$

These can be seen to be ideals of A. If $I = \sqrt{I}$, then I is called a radical ideal. If I + J = A, then I and J are said to be coprime. Note that two distinct maximal ideals are coprime.

Proposition 2. Let A be a ring, if I_1, \dots, I_m are pairwise coprime, then

$$I_1 I_2 \cdots I_m = I_1 \cap \cdots \cap I_m$$
.

The proof of this can be found in [2]. If k is a field, and given a set of polynomials $h_1, \ldots, h_m \in k[x_1, \ldots, x_n]$, denote by $V(h_1, \ldots, h_m)$, the variety or the set of common zeros of h_1, \ldots, h_m in k^n and by $\langle h_1, \ldots, h_m \rangle$, the ideal generated by h_1, \ldots, h_m .

2 The algebraic proof

Proof of Theorem 1. Let k, S_i, g_i , for $1 \leq i \leq n$ and f be as in Theorem 1. Denote by $\Omega = V(g_1, \ldots, g_n) = S_1 \times \cdots \times S_n$. We are given that $\Omega \subset V(f)$. Let $a := (a_1, \ldots, a_n) \in \Omega$ and the maximal ideal associated to it in $k[x_1, \ldots, x_n], M_a = \langle x_1 - a_1, \cdots, x_n - a_n \rangle$. For $a \in \Omega$, if f is not in M_a then there exists $P_1, P_2 \in k[x_1, \cdots, x_n]$ such that $P_1 f + P_2 M_a = 1$. Then $(P_1 f + P_2 M_a)(a_1, \cdots, a_n) = 0 \neq 1$, a contradiction. Thus $f \in M_a, \forall a \in \Omega$. Thus $f \in \cap_{a \in \Omega} M_a$. By proposition $2, \prod_{a \in \Omega} M_a = \cap_{a \in \Omega} M_a$. Thus $f \in \prod_{a \in \Omega} M_a$. We claim that

$$\prod_{a \in \Omega} M_a \subseteq \langle g_1(x_1), \ldots, g_n(x_n) \rangle.$$

By definition

$$\prod_{a\in\Omega}M_a=\left\{\sum_{j=1}^m\prod_{a\in\Omega}h_a^{(j)},\quad ext{for some}\quad m\geq 0
ight\},$$

where each $h_a^{(j)}$, for $a=(a_1,\ldots,a_n)$, is of the form

$$h_a^{(j)}(x_1,\ldots,x_n)=p_1^{(j)}(x_1-a_1)+\cdots p_n^{(j)}(x_n-a_n),$$

for $p_j^{(i)} \in k[x_1,\ldots,x_n]$. Let $p \in \prod_{a \in \Omega} M_a$. Then $p = \sum_{j=1}^m \prod_{a \in \Omega} h_a^{(j)}$. It will be sufficient to show that for any $1 \le j \le m$,

$$\prod_{a \in O} h_a^{(j)} \in \langle g_1(x_1), \dots, g_n(x_n) \rangle.$$

We drop the superscript (j) for simplicity. Let $h = \prod_{a \in \Omega} h_a$. It is easy to see as in the expansion of h, each term must be of the type

 $qg_i(x_i)$ for some i and some $q \in k[x_1, \ldots, x_n]$. Thus $h \in \langle g_1, \ldots, g_n \rangle$. Hence

$$f \in \cap_{a \in \Omega} M_a = \prod_{a \in \Omega} M_a \subseteq \langle g_1, \dots, g_n \rangle.$$

Note that we have shown that $\langle g_1, \ldots, g_n \rangle$ is a radical ideal.

References

- [1] N. Alon, Combinatorial Nullstellensatz, Combinatorics, Probability and Computing (1999) 8, 7-29.
- [2] M.F. Atiyah, I.G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, 1969.