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Abstract

Problems in many different areas of mathematics reduce to questions about the zeros of
complex univariate and multivariate polynomials. Recently, several significant and seemingly
unrelated results relevant to theoretical computer science have benefited from taking this route:
they rely on showing, at some level, that a certain univariate or multivariate polynomial has
no zeros in a region. This is achieved by inductively constructing the relevant polynomial
via a sequence of operations which preserve the property of not having roots in the required
region. The goal of this article is to present this viewpoint and to convey why the study of
zeros is a natural, powerful, and versatile tool. It is meant to be a gentle introduction for the
essential techniques underlying these results, is largely self-contained and aimed at a broad
theory audience.
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1 Introduction
Consider the following results relevant in theoretical computer science:

1. The permanent of an n× n stochastic matrix is at least n!/nn, [6, 7, 20, 11]. (This has been
used to show that every k-regular graph on n vertices has a traveling salesman tour of length
at most (1+O(1/

√
logk))n, [23].)

2. The polynomial time approximation algorithm for the Traveling Salesman Problem on undi-
rected, unweighted graphs with approximation ratio 3/2− ε , for some constant ε > 0, [10,
16].

3. The seminal result by Lee and Yang [25] in statistical physics that shows the lack of phase
transition in the Ising model, and the mean magnetization of the Ising model and the average
size of a matching in the monomer-dimer model are both #P-hard to compute, [21].

4. For every d, there is an infinite sequence of d-regular bipartite Ramanujan graphs, whose
adjacency matrices have all nontrivial eigenvalues bounded by 2

√
d−1, [14].

5. Every transitive graph with m edges and n vertices can be partitioned into O(m/n) edge-
disjoint subgraphs of size O(n), each of which approximates the cuts of the original graph
up to a constant factor. This is a special case of a spectral discrepancy theorem about par-
titioning sets of vectors in Cn, which also resolves the Kadison-Singer problem in operator
theory, [15].

While the above problems and results seem unrelated, their solutions share a common thread:
they all rely on showing, at some level, that a certain univariate or multivariate polynomial has no
zeros in a region of Cn (e.g., the upper complex half-plane, or the unit disk). This is achieved by
inductively constructing the relevant polynomial via a sequence of operations which preserve the
property of not having roots in the required region.

For instance, when the coefficients of the polynomial are real and the region of no zeros is the
upper complex-half plane, the polynomial is called real stable and this property is preserved under
operations such as multiplication, taking derivatives and specialization to real values. While there
are extensive and difficult characterizations of real stable polynomials (see [2, 3, 17, 24]), the above
properties of real stable polynomials are rather simple to prove and, surprisingly, are sufficient for
the applications listed above. Moreover, when the polynomials are of combinatorial origin, these
operations have clear algebraic and combinatorial interpretations. Thus, there is a robust way to
encode many kinds of combinatorial objects as polynomials, and to draw useful conclusions from
their analytic properties. More generally, this serves as evidence against the stereotype that the
roots of polynomials are brittle and ill-behaved (which is the case under unnatural operations such
as perturbing the coefficients), and therefore difficult to exploit.

Roughly, these principles are evident in the applications listed above as follows: In [11], closure
of real stability under taking derivatives allows one to lower bound the value of the permanent
of a doubly stochastic matrix. In [10], using the fact that the polynomials corresponding to the
max-entropy probability distributions on spanning trees are real-stable, robust and novel negative
correlation and anti-concentration properties of them are established. The result in [21] relies on
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a stability result (w.r.t the unit disk) for derivatives of the partition function of the Ising model
and extends the famous Lee-Yang theorem [25, 12]. In [14], real stability allows one to relate the
behavior of one polynomial to the behavior of a sum of polynomials leading to a new existence
argument. Lastly, in [15], this theory allows the authors to control the evolution of roots of a
polynomial under the application of differential operators.

One may argue that some of the applications above have alternative proofs that do not require
this machinery. However, the fact remains that understanding the zeros of the relevant polynomials
is important, and, in certain cases, has led to major progress in problems of interest. Moreover, with
dramatic progress in the mathematics of this area, such techniques have recently reached a certain
maturity which makes them ripe for applications. Thus, we feel that there is need to communicate
the essential techniques underlying these results, in a largely self-contained manner, to a broad
theory audience, and that is the goal of this article. For more in depth exposition of techniques, the
reader is referred to the extensive surveys of [17, 24].

2 Basics
We are primarily concerned with univariate and multivariate polynomials f (z1, . . . ,zn)∈R[z1, . . . ,zn].
On occasion we may run into polynomials with complex coefficients. Of interest will be zeros of
such a polynomial which is always a subset of Cn. For a number z ∈ C, its real part is denoted by
ℜ(z) and its imaginary part by ℑ(z). Let H

def
= {z ∈ C : ℑ(z)> 0} denote the upper-half complex

plane.

2.1 Stability
A polynomial f (z1, . . . ,zn) is said to be stable with respect to (w.r.t.) a region Ω⊆Cn if no root of
f lies in Ω. Of particular interest is the region

H n = {(z1, . . . ,zn) ∈ Cn : ∀i, ℑ(zi)> 0}

and polynomials with no root in this region will be referred to as H -stable or simply stable. To
emphasize the fact that the coefficients of f are all real numbers, we often call such polynomials
real stable. When f is a univariate polynomial, real stability amounts to saying that all the roots of
f are real, or f is real-rooted. This is because of the following simple lemma which states that the
complex roots of a univariate polynomial with real coefficients appear as pairs and, hence, if there
is a complex root, there would be one with a positive imaginary part.

Lemma 2.1. For f ∈ R[z], if for a,b ∈ R f (a+ ιb) = 0, then f (a− ιb) = 0.

Proof. f (a+ ιb) = ∑i ai(a+ ιb)i = 0 = ∑i ai(a+ ιb)i = ∑i ai(a+ ιb)
i
= ∑i ai(a− ιb)i = f (a−

ιb).

The benefits of being real-rooted. In the univariate case, if the polynomial has coefficients that
are non-negative, then all its roots have to be non-positive. Thus, if f (z) = ∑

d
i=0 aizi is real-rooted
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with ai ≥ 0 for all i, it can be written as ad ∏
d
i=1(z+αi) where αi ≥ 0. For a moment, assume that

αi > 0 for all i. Thus, at any positive z = t, using the AM-GM inequality we obtain that

ad

d

∏
i=1

(t +αi)≤ ad

(
t +

∑i αi

d

)d

.

Since ∏i αi =
a0
ad
,

ad

d

∏
i=1

(t +αi) = a0

d

∏
i=1

(
1+

t
αi

)
≤ a0

(
1+

t
d ∑

i

1
αi

)d

= a0

(
1+

t f ′(0)
a0d

)d

.

Optimizing for t then shows that

f ′(0)≥
(

d−1
d

)d−1

inf
t>0

f (t)
t

.

Now, if some αi = 0, since f ′(0) = a1 ≥ 0, then f (0) = 0, and the above holds trivially. Note that
it was possible for us to apply the AM-GM inequality because all roots of the polynomial were
negative. Here, we used the fact that f has non-negative coefficients and is real-rooted. This fact,
summarized as the lemma below, was used by Gurvits [11] to lower bound the number of perfect
matchings in a k-regular bipartite graph with n vertices on each side by (k/e)n , see Section 3.

Lemma 2.2. Let f (z) = ∑
d
i=0 aizi with ai ≥ 0 for all i, then f ′(0)≥

(d−1
d

)d−1
inft>0

f (t)
t .

As another example of real-rootedness we derive an interesting property for probability distribu-
tions whose generating functions are real-rooted. For a probability distribution a0,a1, . . . ,ad over
{0,1, . . . ,d}, its generating function is defined to be the degree d polynomial g(z) def

= ∑
d
i=0 aizi.

Suppose p(z) is real-rooted. What does this say about the probability distribution itself? Start by
observing that if g(z) is real-rooted, then all its roots have to be non-positive as ai ≥ 0 for all i.

Thus, g(z) = ad ∏
d
i=1(z+αi) for non-negative αis. Let pi

def
= 1

1+αi
so that αi =

1−pi
pi

. Since αi ≥ 0,
0 < pi ≤ 1 for all i. Thus,

g(z) = ad

d

∏
i=1

(
z+

1− pi

pi

)
= ad ∑

S⊆[d]
z|S|∏

i 6∈S

1− pi

pi
=

ad

∏
d
i=1 pi

∑
S⊆[d]

z|S|∏
i6∈S

(1− pi)∏
i∈S

pi.

Note that, since, ∑
d
i=1 ai = 1,

g(1) = ad

d

∏
i=1

(1+αi) = ad

d

∏
i=1

1
pi

= 1.

Hence,

g(z) = ∑
S⊆[d]

z|S|∏
i 6∈S

(1− pi)∏
i∈S

pi =
d

∑
k=0

zk
∑

S⊆[d]:|S|=k
∏
i 6∈S

(1− pi)∏
i∈S

pi.
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Consider a sequence of independent random variables Y1, . . . ,Yd such that each Yi is 1 with proba-
bility pi and 0 with probability 1− pi. Further, let X def

= ∑
d
i=0Yi denote the number of 1s obtained if

we sample from each Yi. Then, Pr[X = k] = ∑S⊆[d]:|S|=k ∏i6∈S(1− pi)∏i∈S pi. Thus,

g(z) =
d

∑
k=0

zk Pr[X = k].

In other words, if the generating function of a probability distribution is real-rooted, then the
distribution corresponds to a sum of independent Bernoulli random variables. Thus, for a real-
rooted polynomial with non-negative coefficients, its coefficients are unimodal; this is the content
of Newton’s theorem 2.4.

When is a polynomial real-rooted? Given a polynomial, it is not obvious by looking at its coef-
ficients if it is real-rooted or not. So how would we ever know for a polynomial if it is real-rooted or
not? How robust is real-rootedness? For instance, if f is real-rooted, so are the polynomials f (cz)
for a real number c, and zd · f (1/z). A bit more non-trivially, so is the derivative of f : f ′(z). To see
this, recall from calculus that between any two roots of f there is exactly one root of f ′. Thus, if
all the d roots of f are real, then so are all the d−1 roots of f ′. Another way of stating this result is
that, if f is real-rooted, then the roots of f and f ′ alternate, or f and f ′ interlace, see Section 5 for
more on interlacing. This latter fact is a manifestation of the more general Gauss-Lucas theorem
which states that the convex hull of the set of roots of a real (or complex) polynomial f contains
the set of roots of f ′. To see a proof of this, write f (z) = ad ∏i(z−αi). Thus,

f ′(z)
f (z)

= ∑
i

1
z−αi

.

Thus, if β ∈C is such that f ′(β ) = 0 and f (β ) 6= 0, then ∑i
1

β−αi
= 0. This implies that ∑i

β̄−ᾱi
|β−αi|2

=

0. Thus, separating β̄ out and conjugating, we obtain ∑i piαi where pi
def
=

1
|β−αi|2

∑ j
1

|β−αi|2
. The Gauss-

Lucas theorem follows by noticing that pi ≥ 0 for all i and ∑i pi = 1.

Theorem 2.3 (Gauss-Lucas). Let f ∈ C[z], then all the roots of f ′(z) can be written as a convex
combination of the roots of f (z).

As a simple but useful application of this theorem, we prove what are called Newton’s identities.

Theorem 2.4 (Newton). If f (z) = ∑
d
i=0 aizi is real stable with ai ≥ 0, then the sequence {ai}d

i=0 is

ultra log-concave, i.e, for all 1≤ i≤ d−1, ai−1

( d
i−1)

ai+1

( d
i+1)
≤
(

ai

(d
i)

)2

.

Proof. If f (z) is real-rooted, then by Theorem 2.3, so is the polynomial f1(z)
def
= di−1

dzi−1 f (z). This

kills off any coefficients up to i−2. Trivially, the polynomial f2(z)
def
= zd−i+1 f1(1/z) is real-rooted.

Finally, the polynomial f3(z)
def
= dd−i+1

dzd−i+1 f2(z) is real-rooted, again by Theorem 2.3. But this differ-

entiation kills off any terms after i+ 1. Hence, observe that f3(z) = d!
2

(
ai−1

( d
i−1)

z2 + 2ai

(d
i)

z+ ai+1

( d
i+1)

)
.

However, a quadratic is real-rooted if and only if its discriminant is non-negative. This gives us the
conclusion of the theorem.
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2.2 Multivariate Polynomials
Recall that f (z1, . . . ,zn) is said to be real stable if f ∈ R[z1, . . . ,zn] and no root of it lies in H n.
It seems harder to show that a multivariate polynomial is real stable. The first lemma reduces the
problem of checking real stability of a multivariate polynomial to checking real-rootedness of a set
of univariate polynomials, and turns out to be quite effective.

Lemma 2.5. A multivariate polynomial f (z1, . . . ,zn) ∈ R[z1, . . . ,zn] is stable if and only if for all
v ∈ Rn and all u ∈ Rn

>0, the univariate polynomial f (v+ tu) is real-rooted.

Proof. Suppose that f (v+ tu) is real-rooted for all v ∈Rn and all u ∈Rn
>0, but f is not real stable.

The latter implies that there is an a = (a1, . . . ,an) ∈H n such that f (a) = 0. Let v def
= ℜ(a) and

u def
= ℑ(a). Since a ∈H n, ui > 0 for all i. But then f (a) = f (v+ ιu) = 0 and, hence, ι is a root of

f (v+ tu) which contradicts the real-rootedness of f (v+ tu).

For the other direction, suppose that there are v ∈ Rn and u ∈ Rn
>0 and a t = t1 + ιt2 such that

f (v+ tu) = 0. Since complex roots of a univariate polynomial appear in conjugates (Lemma 2.1),
we may assume that t2 > 0. Thus, the imaginary part of each component of v+tu is strictly positive
contradicting the fact that f is real stable.

Using the lemma above, several multivariate polynomials can be shown to be real stable. Per-
haps the simplest such polynomial (which can be seen to be real stable without appealing to the
lemma above) is ∑i aizi when ai ≥ 0 for all i. Since a root of a polynomial that is a product of two
polynomials is a root of at least one of those two polynomials, the polynomial ∏ j ∑i ai jzi is also
real stable. A bit more non-trivially, the following important class of polynomials arising from
determinants can be shown to be real stable.

Lemma 2.6. Let A1, . . . ,An ∈ Rm×m be positive definite matrices1 and B be a symmetric m×m
real matrix. Then the polynomial f (z1, . . . ,zn)

def
= det(z1A1 + · · ·+ znAn +B) is real stable.

Proof. By Lemma 2.5, it is sufficient to prove that for all v ∈ Rn and u ∈ Rn
>0, f (v+ tu) is real-

rooted. This is the same as showing that

det

(
B+

n

∑
i=1

viAi + t
n

∑
i=1

uiAi

)

is real-rooted. Since Ai � 0 and ui > 0 for all i, ∑
n
i=1 uiAi � 0. Thus, letting M def

= ∑
n
i=1 uiAi, we

need to show that

det

(
M−1/2

(
B+

n

∑
i=1

viAi

)
M−1/2 + tI

)
.

This latter is true because M−1/2 (B+∑
n
i=1 viAi)M−1/2 is symmetric and every real-symmetric has

all real eigenvalues. To see this, if A is a real symmetric matrix and λ is an eigenvalue with an
eigenvector v, then Av = λv. Conjugating both sides we obtain that v?A> = λv?, where v? is the
conjugate transpose of v. Hence, v?Av = λv?v, since A is symmetric. Thus, λ |v|2 = λ |v|2 which
implies that λ = λ . Thus, λ ∈ R.

1Semi-positive definite and positive definite matrices over reals are symmetric.
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The above lemma can be proved in the setting when Ais are positive semi-definite (PSD) as opposed
to being positive-definite. This is quite useful for applications. However, extending Lemma 2.6
requires the following theorem from complex analysis whose proof is beyond the scope of the
current article.

Theorem 2.7 (Hurwitz). Let { fk}k≥0 be a sequence of Ω-stable polynomials over z1, . . . ,zn for a
connected and open set Ω that uniformly converge to a polynomial f over compact subsets of Ω.
Then f is Ω-stable.

To use this theorem for a matrix Ai which is just guaranteed to be PSD one approximates each Ai by
a sequence of matrices Ai +

1
2k I which are positive definite and converge to Ai as k goes to infinity.

One can ask if all real stable polynomials arise from such determinants. This is the content of the
Lax Conjecture and the interested reader is referred to [13].

2.3 Closure Properties
What makes the stability theory particularly powerful is that many of the closure properties dis-
cussed in Section 2.1 hold in the multivariate setting as well. Thus, we can start with real stable
polynomials and prove stability for new ones. For us, the key closure properties will be closure
under inversion, specialization and differentiation.

Inversion. If f (z1, . . . ,zn) is real stable with the degree of zi in f being di, then the polynomial
f (1/z1, . . . ,1/zn)∏

n
i=1 zdi

i is also real stable. Suppose (a1, . . . ,an)∈H n be such that f (1/a1, . . . ,1/an)=

0. Since the coefficients of f are real, if f (1/a1, . . . ,1/an) = f (1/a1, . . . ,1/an) = 0. Since, if the imag-
inary part of ai is positive that of 1/ai is negative, the imaginary part of 1/ai is positive for each i.
This contradicts the real stability of f and establishes our first closure result.

Specialization. It is easy to see that if f (z1, . . . ,zn) is a stable polynomial, then f (a,z2, . . . ,zn)
is also stable if ℑ(a) > 0. However, if f (z1, . . . ,zn) is real, f (a,z2, . . . ,zn) may have complex
coefficients and, thus, may not be real stable. The following lemma, which relies on Hurwitz’s
theorem (Theorem 2.7), shows that if a ∈ R then f (a,z2, . . . ,zn) is real stable.

Lemma 2.8. If f (z1, . . . ,zn) is real stable, then for all a ∈ R (the closure of H ), f (a,z2, . . . ,zn) is
also real stable.

Proof. If a ∈H , then the proof follows from the discussion above. Thus, it is sufficient to prove
this lemma for a ∈ R. We will only sketch a proof here. Suppose, for sake of contradiction,
that f (a,a2, . . . ,an) = 0 with some a j such that ℑ(a j) > 0. It follows from the definition that

fk
def
= f (a+ι2−k,z2, . . . ,zn) is stable for any k> 0. The lemma now follows from Hurwitz’s theorem

since limk→∞ fk = f (a,z2, . . . ,zn) is stable and, being real, is real stable.

Differentiation. The next crucial closure property is closure of real stability under taking partial
derivatives. Following is some basic notation for partial derivatives of multivariate polynomials.
Let ∂i

def
= ∂/∂ zi. For a tuple α : [n] 7→ Z≥0, let ∂ α def

= ∏
n
i=1 ∂

αi
i .
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Lemma 2.9. Let f be real stable. Then, ∂1 f is also real stable.

Since the choice of the first variable is arbitrary, for any α : [n] 7→ Z≥0, ∂ α f is real stable. Thus,
the real stability of ∂ α f follows by an inductive application of this lemma.

Proof. Assume on the contrary that ∂1 f is not real stable and let a = (a1,a2, . . . ,an) ∈H n such

that ∂1 f (a1,a2, . . . ,an) = 0. Let g(z) def
= f (z,a2, . . . ,an). If g ≡ 0, then f (a1,a2, . . . ,an) = 0, con-

tradicting the stability of f . Hence, g 6≡ 0. Since f is real stable, so is g(z) by Lemma 2.8. By
the Gauss-Lucas theorem, the roots of g′(z) are in the convex hull of the roots of g(z) and, hence,
g′(z) is real stable. Since g′(z) = ∂1 f (z,a2, . . . ,an), g′(a1) = ∂1 f (a1,a2, . . . ,an) = 0 by assumption.
Thus, g′(a1) = 0 for a1 such that ℑ(a1)> 0, contradicting the stability of g′.

3 Lower Bounding the Permanent
As a simple but powerful application of the closure properties we show how, starting with simple
polynomials, we can argue about non-trivial (and computationally intractable) objects such as the
permanent of a matrix. For a matrix A = (ai j)i∈[n], j∈[n] with real entries, its permanent is defined to
be

per(A) def
= ∑

σ∈Sn

n

∏
i=1

aiσ(i).

Consider the polynomial fA(z1, . . . ,zn)
def
= ∏

n
i=1 ∑

n
j=1 ai jz j, and note that fA is clearly real stable.

Moreover, it follows from a repeated application of Lemma 2.8 and Lemma 2.9 that, for any
1≤ i < n, the polynomial

gi(z1, . . . ,zi)
def
= ∂

(i+1,...,n) fA(z1, . . . ,zi,0, . . . ,0)

is real stable. Note that g0 = ∂ (1,...,n) fA(0, . . . ,0) = per(A). If all entries of A are nonnegative, then
it follows from Lemma 2.2 and Lemma 2.8 that, for any fixed positive b1, . . . ,bi−1,

gi−1(b1, . . . ,bi−1) = ∂igi(b1, . . . ,bi−1,0)≥
(

di−1
di

)di−1 gi(b1, . . . ,bi)

bi
,

where di is the degree of the polynomial gi(b1, . . . ,bi−1,zi). Fixing s1,s2, . . . ,si−1, let si be defined
to be

arg inf
t>0

gi(s1, . . . ,si−1, t)
t

.

Thus, applying the above inequality for i = 0 to n− 1 and letting d def
= maxn

i=1 di, we obtain that
per(A) = g0, which is at least(

d−1
d

)d−1 g1(s1)

s1
≥ ·· · ≥

(
d−1

d

)(d−1)n gn(s1, . . . ,sn)

∏
n
i=1 si

=

(
d−1

d

)(d−1)n fA(s1, . . . ,sn)

∏
n
i=1 si

.

Since fA(s1,...,sn)
∏

n
i=1 si

≥ infb1>0,...,bn>0
fA(b1,...,bn)

∏
n
i=1 bi

, we need to calculate infb1>0,...,bn>0
fA(b1,...,bn)

∏
n
i=1 bi

. It turns
out that when A is a doubly stochastic matrix, then this quantity can be lower bounded by 1. Recall
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that a matrix A is said to be doubly stochastic matrix, i.e., ai j ≥ 0 and, ∑
n
i=1 ai j = 1 for all j and

∑
n
j=1 ai j = 1 for all i. To see the claim, observe that for any positive b1, . . . ,bn,

fA(b1, . . . ,bn) =
n

∏
i=1

n

∑
j=1

ai jb j

AM−GM; ∑ j ai j=1
≥

n

∏
i=1

n

∏
j=1

bai j
j =

n

∏
j=1

n

∏
i=1

bai j
j

∑i ai j=1
=

n

∏
j=1

b j.

Thus, when A is doubly stochastic, infb1>0,...,bn>0
fA(b1,...,bn)

∏
n
i=1 bi

≥ 1. Noting that
(d−1

d

)d−1 ≥ 1
e , we

have proved the van der Waerden conjecture.

Theorem 3.1. For a n×n doubly stochastic matrix A, per(A)≥
(1

e

)n
.

As a corollary, let G = (V,W,E) be a k-regular bipartite graph with |V |= |W |= n. Let A be the ma-
trix with rows indexed by V , columns by W , and ai j = 1 if (i, j)∈ E. Then, 1

k A is doubly stochastic
and, hence, per(A)≥

(k
e

)n
. Note that per(A) counts exactly the number of perfect matchings in G.

4 Probability Measures and Real Stability
In this section we study probability distributions over {0,1}n by looking at their generating func-
tion. For a distribution µ, the generating function is the multivariate affine polynomial

gµ

def
= ∑

S⊆[n]
µ(S)∏

i∈S
zi = ∑

S⊆[n]
µ(S)zS.

If gµ is real stable, then one can derive a host of properties of µ by appealing to the closure
properties enjoyed by real stable polynomials. In this case, µ is said to be strongly Rayleigh.

Definition 4.1. A measure µ over {0,1}n is said to be strongly Rayleigh if its generating function
∑S⊆[n] µ(S)zS is real stable.

Strongly Rayleigh measures satisfy the strongest forms of negative dependence, a consequence
of which is the concentration of measure for a sum of random variables drawn from a such a
measure. As a starting point, we prove the pairwise negative correlation property of strongly
Rayleigh measures.

Definition 4.2. A measure µ is said to be pairwise negatively correlated if

∑
S:S⊇{i}

µ(S) ∑
T :T⊇{ j}

µ(T )≥ ∑
S:S⊇{i, j}

µ(S)

for all i 6= j. In terms of polynomials, this condition is equivalent to

∂igµ(1,1, . . . ,1)∂ jgµ(1,1, . . . ,1)≥ gµ(1,1, . . . ,1)∂ (i, j)gµ(1,1, . . . ,1). (1)

In fact, for strongly Rayleigh measures, one can show something stronger: the condition (1) holds
for all (a1, . . . ,an) ∈ Rn rather than just the vector (1, . . . ,1). This property, in fact, implies the
strong Rayleigh measures but we just prove the forward direction.
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Lemma 4.3. If f ∈ R[z1, . . . ,zn] is affine and stable, then

∂i f (a1, . . . ,an)∂ j f (a1, . . . ,an)≥ f (a1, . . . ,an)∂
(i, j) f (a1, . . . ,an)

for all (a1, . . . ,an) ∈ Rn.

Thus, the lemma implies that strongly Rayleigh measures are pairwise negatively correlated.

Proof. Fix (a1, . . . ,an) ∈ Rn and let g(s, t) def
= f (a1, . . . ,ai + s, . . . ,a j + t, . . . ,an). It follows from

Lemma 2.8 along with Theorem 2.7 that g(s, t) is stable. On the other hand, since f is affine,

g(s, t) = f (a1, . . . ,an)+ s∂i f (a1, . . . ,an)+ t∂ j f (a1, . . . ,an)+ st∂ (i, j) f (a1, . . . ,an).

Since g(s, t) is stable, for any s= s1+ ιs2 such that g(s, ι) = 0, s2≤ 0. If g(s, ι) = 0, then (dropping
(a1, . . . ,an) for the easy of reading),

f + s1∂i f − s2∂
(i, j) f = 0

s2∂i f +∂ j f + s1∂
(i, j) f = 0.

Multiplying the first equation by −∂ (i, j) f and the second by ∂i f and adding them, we obtain

− f ∂
(i, j) f + s2(∂

(i, j) f )2 + s2(∂i f )2 +∂i f ∂ j f = 0.

Since, s2 ≤ 0, this implies that f ∂ (i, j) f ≤ ∂i f ∂ j f completing the proof.

4.1 Closure Properties
We now show how certain measures derived from a strongly Rayleigh measure µ remain strongly
Rayleigh. Such measures include measures obtained by conditioning a strongly Rayleigh measure
µ on certain types of events, e.g., (µ|Xi = σ1) or (µ|∑n

i=1 Xi = k). This is a consequence of the clo-
sure properties of the associated real stable polynomials. Thus, these conditioned measures, being
strongly Rayleigh, also end up satisfying strong negative dependence properties. We emphasize
that, in most cases, deriving such properties about the measure without appealing to the closure
properties of real stability is not known. For an extensive discussion on the properties derivable for
strongly Rayleigh measures, the reader is referred to [4].

Fixations. Let µ be a strongly Rayleigh measure on {0,1}n, let i1, i2, . . . , ik be some indices in [n]
and let σ1, . . . ,σk ∈ {0,1}. Then the measure (µ|Xi1 = σ1, . . . ,Xik = σk) is strongly Rayleigh. The

proof follows from the repeated application of the observations that, if we define µ ′
def
= (µ|X1 = 1)

and µ ′′
def
= (µ|X1 = 0), then gµ ′ = ∂1gµ and gµ ′′ = gµ(0,z2, . . . ,zn). Here we have used Lemma 2.9

and Lemma 2.8 respectively.
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Ultra-Log-Concavity. For a probability measure µ on {0,1}n, consider the probability measure
on {0,1, . . . ,n} defined as:

pk
def
= Pr

(a1...,an)←µ

[
n

∑
i=1

ai = k

]
= ∑

S⊆[n]:|S|=k
µ(S).

Thus, if g(z) def
= gµ(z,z, . . . ,z), then g(z) = ∑

n
i=0 pizi. If µ is strongly Rayleigh then gµ is real

stable and, hence, g is a real-rooted polynomial with non-negative coefficients. Thus, it follows

from Theorem 2.4 that for all 1 ≤ i ≤ n−1, pi−1

( n
i−1)

pi+1

( n
i+1)
≤
(

pi

(n
i)

)2

. This is the same as saying that

{pk}k∈{0,1,...} is ultra-log-concave.

Ultra-log-concavity of a distribution implies that it is unimodal, i.e., the distribution has only
one peak. This property can then be used to show a concentration result of the following kind,
which is easily seen to be false in general and is useful in applications. If X is a random variable
that takes values in the set {0,1, . . . ,n}, and E[X ] ∈ [1.5,2.5], then Pr[X = 2] = Ω(1), see [10].
(Here the constants are arbitrary.)

Conditioning. As mentioned before that if µ is strongly Rayleigh over {0,1}n, then it has many
nice properties, e.g., it is negatively associated. What about the measure obtained by conditioning
µ on events such as (µ|∑n

i=1 Xi = k)? We show that such a measure is also strongly Rayleigh and,
hence, has equally nice properties. To prove this, consider the polynomial f (z1, . . . ,zn,y) which is
the homogenization of gµ(z1, . . . ,zn) and defined as

f (z1, . . . ,zn,y)
def
= ∑

S⊆[n]
µ(S)zSyn−|S| = ∑

S:|S|=k
µ(S)zSyn−k =

n

∑
k=0

gµ,k(z1, . . . ,zn)yn−k.

Thus, to show that (µ|∑n
i=1 Xi = k) is strongly Rayleigh, we need to show that gµ,k is real stable. To

see this we construct a sequence of polynomials: let f1
def
= dn−k f

dyn−k . f2
def
= (∏n

i=1 zi)yk f1(1/z1, . . . ,1/zn,1/y).

Thus, observe that gµ,k =
dk f2
dyk . Since gµ is real stable, so is f . The real stability of f1 follows from

that of f and the Gauss-Lucas theorem. The real stability of f2 follows from closure under inver-
sion. Finally, the real stability of gµ,k is obtained by again appealing to the Gauss-Lucas theorem.

This proof readily extends to showing that measures (µ|p ≤ ∑
n
i=1 Xi ≤ q) remain strongly

Rayleigh if |p−q| ≤ 1.

Negative Association. Perhaps the most important property, from the point of view of applica-
tions, satisfied by strongly Rayleigh measures is that they are negatively associated. A probability
measure µ is said to be negatively associated if for any monotonically non-decreasing functions
g1,g2 on {0,1}m, on disjoint sets of variables

Eµ [g1(X1, . . . ,Xn)]Eµ [g2(X1, . . . ,Xn)]≥ Eµ [g1(X1, . . . ,Xn)g2(X1, . . . ,Xn)].

Negative association is important as it implies Chernoff bounds: if (X1, . . . ,Xn) is drawn from a
negatively associated measure µ, then ∑

n
i=1 Xi is concentrated around its mean. While we do not
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prove that strongly Rayleigh measures are negatively associated in this article, following a proof
of [8], it can be shown to be a consequence of Lemma 4.3 and the closure properties of strongly
Rayleigh measures mentioned earlier.

In fact, for strongly Rayleigh measures, an even stronger form of Chernoff bound was shown in
[18] which is not known to be true for negatively associated random variables: if f : {0,1}n 7→R be
a function with Lipschitz constant 1, and if (X1, . . . ,Xn) is drawn from a strongly Rayleigh measure
µ, then f (X1, . . . ,Xn) is concentrated around E[ f (X1, . . . ,Xn)].

4.2 Determinantal Measures
But how do we show that for a measure µ, pµ is real stable? One important class of measures
for which we can prove real stability of the corresponding generating functions are determinantal
measures. For a matrix n×n matrix A and a set S⊆ [n], let AS,S denote the matrix obtained from A
by picking rows and columns corresponding to S.

Definition 4.4. A measure µ on {0,1}n is said to be determinantal if there exists an n×n matrix
A such that ∀S⊆ [n],

∑
T :T⊇S

µ(T ) = det
(
AS,S

)
.

Lemma 4.5. If µ is determinantal w.r.t. the matrix A which satisfies 0 � A � I, then pµ is real
stable.

Proof. We show this result when 0≺A≺ I and the lemma follows from an application of Hurwitz’s
theorem (Theorem 2.7). Let Z be the diagonal matrix where the (i, i)th entry is zi. We claim that
pµ = det(I − A + AZ). Assuming this claim, the stability of pµ follows from Lemma 2.6 and
Hurwitz’s theorem. since pµ = det(A)det(A−1− I+Z). To prove that pµ(z1, . . . ,zn) = det(I−A+
AZ), we need to show that ∑T :T⊇S µ(S) = det(AS,S). Let ZS denote the diagonal matrix derived
from Z by setting all variables not in S to 1. Then the coefficient of ∏i∈S zi in det(I−A+AZS) is
exactly ∑T :T⊇S µ(S). The matrix AZS−A has zeros in every entry in any column corresponding
to S. Hence, I +AZS−A is identity on the rows and columns indexed by S and 0 on the rows
corresponding to S and columns corresponding to S. Thus, det(I−A+AZS)= det(IS,S+AS,S(ZS,S−
IS,S)). The coefficient of ∏i∈S zi in this is exactly det(AS,S). Since all matrices involved are positive
(A−1− I � 0), all determinants are positive and, hence, the determinants are positive.

The Spanning Tree Measure. Let G = (V,E) be a graph with n vertices, m edges, and edge

weights λ : E 7→ R≥0. Consider the measure on subsets of edges of E defined by λ (T ) def
=

∏e∈T λ (e). We are interested in the case when T is a spanning tree in G. Let T be the set of
all spanning trees in G. Consider the probability measure

µ(T ) def
=

λ (T )
∑T∈T λ (T )

.

This measure can be shown to be determinantal and we end this section by describing the matrix
whose sub-determinants give rise to this measure. Let Λ be an m×m diagonal matrix with Λ(e,e) =
λ (e). Orient the edges of G arbitrarily such that every edge has a head and a tail. For this fixed
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orientation, let B be an m×n matrix such that Be,v = 1 if v is the head of e,−1 if v is the tail of e and

0 otherwise. The combinatorial Laplacian of G is then defined to be L def
= B>ΛB and is independent

of the orientation. Further, let L+ denote the inverse of L restricted to its image. Define the matrix
Π

def
= BL+B>. A generalization of the matrix-tree theorem proves that the measure µ defined above

is determinantal w.r.t the matrix ΛΠ. (Note that Π is a projection matrix and all its eigenvalues are
either 0 or 1.)

5 Real Stability and Interlacing
In this section we show how real stability can be used to show that a bound on the largest root
of a sum of a certain family of polynomials implies the same bound on the largest root of one
polynomial in the family. This novel technique is central to the proof of the existence of Ramanujan
graphs of all degrees [14], and the resolution of the Kadison-Singer problem [15].

More formally, the family of polynomials we consider is { fσ (z)}σ∈{−1,1}n where each polyno-
mial in the family is of the same degree and has a positive leading coefficient. For p=(p1, . . . , pn)∈
[0,1]n, we define a random polynomial f(X1,...,Xn) where Xi is an independent Bernoulli random
variable which is 1 with probability pi and −1 with probability 1− pi. Assume, the seemingly
strong hypothesis, that this family polynomials satisfies, for every p ∈ [0,1]n the polynomial
E(p1,...,pn)[ f(X1,...,Xn)] is real-rooted. Such a family is shown to have the property that if the largest
root of ∑σ fσ is bounded by ρ, then there is a σ such that the largest root of fσ is also bounded by
ρ. This is captured in the following theorem.

Theorem 5.1. [14] Suppose { fσ (z)}σ∈{−1,1}n is a family of real-rooted polynomials with positive
leading coefficients where all have the same degree. Then, there is a σ such that the largest root of
fσ (z) is at most the largest root of ∑σ∈{−1,1}n fσ (z).

While we do not go into the the proof of the hypothesis for any specific family in this article,
we mention that the real-rootedness of E(p1,...,pn)[ f(X1,...,Xn)] is shown by constructing a suitable
starting multivariate polynomial that is real stable (using Lemma 2.6) and then applying a carefully
chosen sequence of closure properties such as the ones presented in Section 2.2. We start the
proof of Theorem 5.1 for a family which satisfies the above hypothesis by observing the following
implication of the hypothesis.

Lemma 5.2. Under the hypothesis, for any fixing σ1, . . . ,σk any convex combination of

∑
σk+1,...,σn

fσ1,...,σk,1,σk+1,...σn and ∑
σk+1,...,σn

fσ1,...,σk,−1,σk+1,...σn

are real-rooted.

Proof. For a parameter λ ∈ [0,1], set pk+1
def
= λ and pk+2 = · · ·= pn = 1/2 and pi

def
= 1+σi

2 for 1≤ i≤
k. It follows that E(σ1,...,σn)←µp[ fσ (z)]= λ ∑σk+1,...,σn fσ1,σ2,...,σk,1+(1−λ )∑σk+1,...,σn fσ1,σ2,...,σk,−1,
which is real-rooted by the hypothesis.

The conclusion of the above lemma is interesting because if any convex combination of two uni-
variate polynomials with leading positive coefficients is real-rooted, then they have a common
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interlacing. Two real-rooted polynomials f (z) and g(z) of the same degree (d) are said to interlace
if their roots alternate. More formally, if a1 ≤ ·· · ≤ ad are roots of f and b1 ≤ ·· · ≤ bd are the
roots of g, then

a1 ≤ b1 ≤ a2 ≤ b2 ≤ ·· · ≤ ad ≤ bd or b1 ≤ a1 ≤ b2 ≤ a2 ≤ ·· · ≤ bd ≤ ad.

Further, if there is a polynomial which interlaces with both f (z) and g(z), we say that they have
a common interlacing. The following lemma can be proved by showing that, if one looks at the
intervals corresponding to the successive roots of each polynomial and order them from left to
right, the corresponding intervals have non-empty intersection. This is a consequence of the fact
that two interlacing polynomials with positive leading coefficients cannot differ in the number of
roots they have in any interval of the form [a,∞) by more than 1. We omit the elementary but
somewhat tedious proof, see [9, 5].

Lemma 5.3. Let f (z) and g(z) be two real polynomials of the same degree with positive leading
coefficients such that every convex combination of them is real-rooted. Then f (z) and g(z) have a
common interlacing.

Finally, we need the following lemma which shows that if two polynomials have a common inter-
lacing, then largest root of one of the polynomials is at most the largest root of the sum of the two
polynomials.

Lemma 5.4. Let f (z) and g(z) be two real polynomials of the same degree that have a common
interlacing and positive largest coefficients. Then, the largest root of both f (z) and g(z) cannot be
larger than the largest root of f (z)+g(z).

Proof. Let h(z) be polynomial which interlaces with both f (z) and g(z), let ad be the largest root
of f (z), bd be the largest root of g(z) and cd be the largest root of h(z). Then cd ≤ ad and cd ≤ bd.
Since f ,g have positive leading coefficients they both go to infinity as z goes to infinity. Thus,
f (z)+g(z)> 0 for all z≥max{ad,bd}. Moreover, since the second largest roots of f (z) and g(z)
are both at most cd, f (cd) ≤ 0 and g(cd) ≤ 0. Thus, f (z)+ g(z) ≤ 0 for all z ∈ [cd,min{ad,bd}].
Thus, at least on of ad or bd is at most the largest root of f (z)+b(z).

The proof of Theorem 5.1 now follows easily by iteratively applying Lemma 5.3 and Lemma 5.4.
We just show the first step.

Proof. (of Theorem 5.1) Assume that the family { fσ (z)}σ∈{−1,1}n satisfies the hypothesis of The-
orem 5.1. Start by writing

∑
σ1,...,σn

fσ1,...,σn = ∑
σ2,...,σn

f1,σ2,...,σn + ∑
σ2,...,σn

f−1.σ2,...,σn−1.

Combining Lemma 5.2, Lemma 5.3 and Lemma 5.4, we obtain that the largest root of at least
one of the two polynomials on the r.h.s. of the equality above is no larger than the largest root
of the polynomial ∑σ1,...,σn fσ1,...,σn. The theorem follows from inducting on the polynomial which
satisfies this property.
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6 Stability w.r.t. the Unit Disk: The Lee-Yang Theorem
In this section we move away from real stability and present a result due to Lee and Yang [12]
that may be considered one of the founding results in multivariate stability theory: the roots of the
partition function of the Ising model on any connected graph lie on the unit circle (for any fixed
temperature between 0 and 1). Lee-Yang used this theorem to show that the Ising model indeed
does not show a phase transition with respect to the external field at any non-zero value of the field,
see [22].

The Ising Model. We begin by looking at the partition functions of the Ising model: given a
graph G = (V,E) with |V |= n, the Ising model is a probability distribution over spin assignments
σ :V→{−1,1} to the vertices. The temperature of the system is modeled by a parameter β ∈ (0,1]
(the temperature is − logβ ), and the preference for particular spins (the magnetic field) through an
activity parameter λ in the following way: the probability of a spin assignment (or configuration)
σ is proportional to its weight w(σ) which is defined to be w(σ)

def
= β d(σ)λ m(σ), where d(σ) is

the number of edges e = {u,v} such that σ(u) 6= σ(v) and m(σ) is the number of vertices which
are assigned a positive spin by σ . The partition function of the Ising model is then defined as
ZG,β (λ )

def
= ∑σ w(σ). More generally, we can consider a setting where λ is different for each

vertex. We denote the corresponding partition function by ZG,β (λ1, . . . ,λn). The Lee-Yang circle
theorem can now be stated as follows:

Theorem 6.1 (Lee-Yang). Let G be an undirected graph and suppose β ∈ (0,1). Then the zeros of
ZG,β (λ ) all lie on the unit circle.

The proof given here is due to Asano [1], who simplified the original proof by Lee and Yang [12]
while proving a version of the Lee-Yang theorem for the quantum Ising model. As is usual when
proving stability results, it helps to consider the more general case of the multivariate partition
function. We prove the following generalization of the Lee-Yang theorem.

Theorem 6.2 (Multivariate-Lee-Yang). Let G be an undirected graph and suppose β ∈ (0,1).
Suppose (λi)i∈V are complex numbers then ZG,β (λ1, . . . ,λn) 6= 0 if |λi|> 1 for all i.

Setting λi = λ for each i, we obtain that, if β ∈ (0,1), then the zeros of ZG,β (λ ) all lie on the unit
circle, Theorem 6.1.

Proof. The main idea used in the proof is often called the Asano contraction (see for example,
Ruelle’s article [19], whose presentation we loosely follow). Consider a graph H on n vertices,
and identify two vertices v1 and v2 in G that are not connected by an edge. Let λ1,λ2 be variables
representing the vertex activities at v1 and v2. The vertex activities of the other vertices in H are
denoted by λ3,λ4, . . . ,λn.

We say that a graph G satisfies the Lee-Yang property if the partition functions of all the induced
subgraphs of G satisfy the conclusion of the Theorem 6.2 (that is, whenever all the vertex activities
have magnitude greater than 1, the partition function is non-zero). The reason for considering the
partition functions of all induced subgraphs is technical and will become clear later in the proof.
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Now suppose that a graph H satisfies the Lee-Yang property. The Asano contraction lemma
states then that the graph H ′ obtained by contracting the vertex v1 and v2 into a single vertex v also
obeys the Lee-Yang property. To see this, we first ignore the issue of the induced subgraphs and
consider the partition functions of H and H ′ themselves. We can write the partition function of H
as

Aλ1λ2 +Bλ1 +Cλ2 +D, (2)

where A,B,C,D are polynomials in the other vertex activities λ3, . . . ,λn. The first, and crucial,
observation is that the partition function of the new graph H ′ is then simply

Aλ +D, (3)

which follows from a consideration of the definition of the Ising model partition function.

Now, consider any fixing of values of λ3, . . . ,λn such that they are all greater than 1 in magni-
tude. We would be done if we can show that this implies that the expression in (3) is non-zero for
|λ |> 1. Now, since the expression in eq. (2) satisfies the Lee-Yang property, we see by substituting
these values into (2) and setting λ1 = λ2 = z that the quadratic equation Az2 +(B+C)z+D = 0
has no solution with |z| > 1. In particular, this implies that the product of its zeros, D/A, must
have magnitude at most 1. But this implies that for the expression in (3) to be zero, we must have
|λ | = |D/A| ≤ 1, which is what we wanted to prove.2 A similar argument applies to the partition
functions of the induced subgraphs of H ′; we omit the details.

We now proceed to the proof of Theorem 6.2 for a given graph G. We first consider the case
of a graph with just one vertex; in this case, the partition function is simply 1+λ1, and hence the
Lee-Yang property is trivially satisfied. We now consider the first important case, that of a single
edge. In this case, the partition function is 1+β (λ1 +λ2)+λ1λ2. Now suppose |λ1|> 1. For the
partition function to be 0, we must have

|λ2|=
∣∣∣∣1+βλ1

β +λ1

∣∣∣∣< 1, (4)

where the last equation uses the fact that for β < 1, the above fraction is a Möbius transformation
that takes the exterior of the unit disk to its interior. These two observations show that a single
edge has the Lee-Yang property.

We now notice that if two graphs G1 and G2 on disjoint sets of vertices have the Lee-Yang
property, then so does the graph G′ = G1∪G2. This follows simply because the partition function
of G′ is the product of the partition functions of G1 and G2 (and a similar argument applies to
their subgraphs). Now, to prove that a given graph G with m edges has the Lee-Yang property, we
start with a disjoint union of m edges, each corresponding to one of the edges of G; note that this
“graph” has the Lee-Yang property. At each stage, we take the end-points of two edges which are
supposed to be incident to the same vertex in G, and merge these end-points. Note that this process
culminates with the graph G. By the Asano contraction lemma, the resulting graph after each of
these steps continues to have the Lee-Yang property, and hence G must also have the Lee-Yang
property.

2We implicitly assumed in the above argument that for our fixed values of λ3, . . . ,λn, we have A 6= 0. This techni-
cality can be avoided by noting that A can be seen as the partition function of the Ising model on the induced subgraph
of H obtained by removing v1 and v2, and hence satisfies the Lee-Yang property. We omit the details in this article.
This is the reason why we needed the stronger hypothesis that involves all sub-graphs.
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