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Abstract. We undertake to develop a general theory of two-dimensional shape by elucidating several principles 
which any such theory should meet. The principles are organized around two basic intuitions: first, if a boundary 
were changed only slightly, then, in general, its shape would change only slightly. This leads us to propose an 
operational theory of shape based on incremental contour deformations. The second intuition is that not all contours 
are shapes, but rather only those that can enclose "physical" material. A theory of contour deformation is derived 
from these principles, based on abstract conservation principles and Hamilton-Jacobi theory. These principles are 
based on the work of Sethian (1985a, c), the Osher-Sethian (1988), level set formulation the classical shock theory 
of Lax (1971; 1973), as well as curve evolution theory for a curve evolving as a function of the curvature and 
the relation to geometric smoothing of Gage-Hamilton-Grayson (1986; 1989). The result is a characterization 
of the computational elements of shape: deformations, parts, bends, and seeds, which show where to place the 
components of a shape. The theory unifies many of the diverse aspects of shapes, and leads to a space of shapes 
(the reaction/diffusion space), which places shapes within a neighborhood of "similar" ones. Such similarity 
relationships underlie descriptions suitable for recognition. 

1 Introduction 

Our visual world contains a vast arrangement of ob- 
jects, yet we are amazingly robust in recognizing them. 
This includes objects projected from novel viewpoints, 
or partially occluded objects. We are even able to de- 
scribe totally unfamiliar objects, or to recognize un- 
expected ones out of context. Examples include the 
shapes displayed in Fig. 1; even though they are hand- 
drawn, they are immediately recognizable. We seek a 
theory of shape sufficiently robust to support recogni- 
tion tasks such as this. 

While there is a sense in which the meaning of shape 
is effortlessly and intuitively understood, a formal def- 
inition has been elusive: there is currently no generally 
accepted definition of shape in either computational 
vision or psychology. Part of the difficulty is that dif- 
ferent representations may be appropriate for different 
tasks: what is required for navigation is not necessarily 
required for recognition, and what is required for recog- 
nition of generic object types may be different from 
what is required for recognizing particular instances of 

a given type. That is, recognizing the generic "person" 
or"car" in Fig. 1 is different than recognizing an image 
of your car from among several car images. 

Particular object recognition from among a pre- 
specified class of objects is amenable to a variety 
of template- and iconic-matching techniques (Fischler 
and Elschlager 1973; Ferrie, Levine and Zucker 1982; 
Solina and Bajcsy 1990). These are based on metric 
properties, and thus are inappropriate for the generic 
problem. A theory of generic object recognition must 
be robust to variations within scenes, e.g. due to 
the hand-drawn character of the images in Fig. 1, or 
(more realistically) to small changes in viewpoint, to 
the changing appearance of objects due to local mo- 
tion and emergent occlusions, as well as to variations 
within objects, e.g. due to flexibility, growth, and in- 
flation. We seek to develop a theory of generic object 
recognition that meets these needs. 

Many early visual processes contribute to shape: 
edges, texture, color, shading, and so on. We observe 
from the examples in Fig. 1, however, that the generic 
shape recognition problem is intuitively well defined 
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Fig. I. Despite the poor quality of these hand-drawn shapes, we are 
able to recognize the underlying objects effortlessly. What aspect of 
the geometry of these figures should be computed to allow robust 
reeognitiun? 

for two-dimensional outlines of objects, and it is on 
this problem that we focus. In particular, we derive a 
formal framework for our theory from a mathematical 
model of deformations, and, in so doing, consider the 
notion of curve evolution via partial differential equa- 
tions. The mathematical framework underlying this is 
based on the work of Sethian (1985a--c; 1989), Sethian 
and Osher (1988), and the fundamental Osher-Sethian 
level set algorithm (Osher and Sethian 1988)which 
has already proven to be of enormous use in image 
processing and interface motion. We should also add 
that while the mathematics is different, the spirit of 
our work was prefigured in many ways by Koenderink 
(1986) in his important paper on "dynamic shape" But 
we do not only want to emphasize the mathematics in 
such approaches: in an attempt to capture the intuitions 
underlying shape, we postulate a series of natural prin- 
ciples to which any such theory should be subject, and 
show how our theory is consistent with them. 

The paper is organized as follows. The next sec- 
tion motivates the need for a novel geometry for shape, 
and we introduce a basis for this which lies in the dif- 
ferential evolution of deformations. Although the 
mathematics of deformation are well studied, we here 
introduce them to the field of computer vision. We 
focus on a special class of uniform deformations, and 
show that they can be represented as the combination 
of two basis deformations: a constant deformation and 
a curvature deformation. To handle shapes with discon- 
tinuities in their outlines, we next abstract the mathe- 
matical framework considerably, by showing that the 
deformations are eqnivalent to a hyperbolic conser- 
vation law with viscosity as discussed extensively in 
(Sethian 1985b, c). This is significant because such 
nonlinear conservation laws lead to the formation of 
shocks and to a notion of entropy (Lax 1973; Sethian 

1985a). We are now finally able to close the loop back 
to shape, and to present the most novel results in the 
paper: namely, how different classes of shocks cor- 
respond to the computational components of generic 
shapes. Intuitively this connection between shocks 
and generic shapes is pleasing, because, just as shocks 
are the singular events in the continuum of geomet- 
ric variation, generic shapes are the singular ones (the 
categories, in the sense of Rosch (1976)) in the con- 
tinuum of physical objects. The remaining task is to 
define spaces of shapes, and to show how the notion of 
scale (or significance) arises within them. This leads 
to what we call the reaction/diffusion space, which 
induces a topology over "similar" shapes, and to a 
hierarchical description of a shape, with parts, protru- 
sions, and bends specified. The result is a mathematical 
framework for shape that unifies earlier approaches in 
a unique way, using the aforementioned mathematical 
techniques for their analysis. 

2 The Multidimensional Nature of Shape 

Shape is multifaceted, in that it involves a range of 
"dimensions" or aspects, and much of the earlier re- 
search on shape has been to elucidate one or another 
of them. This is certainly reasonable if the goal is se- 
lecting a particular shape from among members of a 
family, because the differences can be quantitatively 
expressed; an example is the "bent paper dip"  shapes 
studied by (Bulthoff and Edelman 1992), in which the 
differences are captured uniquely by sequences of an- 
gles. However, such differences are irrelevant for other 
tasks, such as classifying bananas, for which boundary 
curvature might be more relevant. It follows that a the- 
ory of generic shape must span these many individual 
dimensions, several of which are reviewed below. We 
later show how our approach accomplishes this. 

2.1 Bounding Contour vs Region 

Should a shape be represented by its bounding con- 
tour, or by its interior region (Ballard and Brown 
1982)? Physically the representations are different, 
in that boundaries arise when one substance interpen- 
etrates another, e.g., oil flowing into water, while inte- 
rior regions arise via growth processes. Conceptually 
the two approaches are equivalent in the sense that the 
interior is accessible via the boundary and vice versa. 
As such, most approaches concentrate on either repre- 
senting one or the other (see Table 1). Nevertheless, 
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Table 1. Most methods concentrate either on the boundary or on the interior of a shape. However to fully capture shape a simultaneous 
representation of both boundary and regional properties is needed. 

Boundary Region 

Strip tree (Ballard 1981) 
Chain code (Freeman 1974) 
Polygonal approximation (Ramer 1972) 
Deformable snakes (Kass et al. 1988) 
Fourier descriptors (Zaha and Roskies 1972; Granlund 1972; 

Persoon and Fu 1977; Wallace and Wintz 1980) 
Codon (~ehards and Hoffman 1985; Leyton 1988) 

Quad tree (Samet 1980) 
SAT (Blum 1973) 
Generalized ribbons (Brooks 1981) 
MDL (Leclerc 1989; Penfland 1989) 

Fourier descriptors (Gardenier et al. 1986) 
Superquadrics (Pentland 1987) 

representations make certain information explicit while 
implicitly encoding the remainder. For example, when 
a shape is represented by the boundary, the orientation 
information is explicit while closeness of points along 
the "necks" and symmetry are implicit. In contrast, in 
a region-based representation, the orientation of the 
boundary tangent is implicit while the closeness of 
points through the region and object symmetry is ex- 
plicit. A different trade-offmay arise when considering 
computational complexity: boundary representations 
are one-dimensional and therefore inexpensive to pro- 
cess, while two dimensional regional representations 
are more expensive. We submit that a simultane- 
ous representation of the boundary and the interior is 
needed for a full understanding of shape. While the dis- 
tinction is in part semantic, since one could always blur 
it by basing region computations on a global boundary 
function (e.g. by deriving an implicit characteristic 
function), there is an important technical aspect to the 
distinction, as will emerge subsequently. 

2.2 Local vs Global 

One method of shape classification is based on shape 
features, e.g., area, eccentricity, centroid, compactness, 
shape moments, and others (Ballard and Brown 1982; 
Rosenfeld and Kak 1982). These shape features cap- 
ture the shape by a few numbers and, as such, they are 
global approximations of the shape. In other words, 
information about the shape from all portions of it com- 
bine to form a global description. More powerful rep- 
resentations of shape can be global too. The Fourier 
representations (Zahn and Roskies 1972; Granlund 
1972; Persoon and Fu 1977; Wallace and Wintz 1980) 
are global, in that each Fourier descriptor is dependent 
on all portions of the shape. Bolles et al. introduced fo- 
cus features, in which global relationships of local fea- 
tures are represented (Bolles and Cain 1982). Hough 

transform techniques gather votes for certain features 
and, as such, can also be classified as global. 

The major problem with a global representation of 
shape occurs in the presence of occlusions. When 
an object is partially occluded, all global descriptors 
change drastically. As such, while they may work in 
a particular instance, they are not suitable for generic 
object recognition. Furthermore, a notion of approxi- 
mation in the global domain does not correspond to that 
in the shape domain. For example, the shapes corre- 
sponding to a set of Fourier descriptors with or without 
some higher-order terms do not resemble each other 
closely. Local features in isolation, on the other hand, 
do not give a global sense of shape and are sensitive to 
noise. The challenge is to capture the general shape of 
the object without losing its partial representations. For 
generic object recognition, the representation must de- 
grade gracefully as portions of the object are occluded. 

2.3 Primitives vs Transformations 

One way to characterize shape is to somehow define 
its constituent components. These components may 
be defined a priori as primitives that can either model 
the boundary, the region, or the three dimensional vol- 
ume enclosed by the object; see Table 2. An alterna- 
tive point of view is that shape is best characterized 
as a sequence of transformations from simpler shapes 
(Leyton 1988; 1989; 1987; Koenderink and van Doom 
1986; Koenderink 1990). How can one consolidate 
these seemingly conflicting approaches? We will show 
that our principles lead to a framework whose com- 
putational elements allow both compositions of arbi- 
trary parts and deformations of shapes. Our notion of 
"parts" is novel, and, we believe, more in agreement 
with our intuition. Similarly, deformations allow for 
general representations of form, e.g., biological form, 
where no natural a priori primitives exist. 
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Table 2. A review of shape primitives. 

Boundary-based Region-based Volume-based 
primitives primitives primitives 

Codons (Richards and Hoffman 1985) Generalized ribbons (Brooks 1981) 

Arcs of circles (Dudek 1990) 

Primitive Curvature Changes (Asada and 
Brady 1983) 

Polygons (Ramer 1972) 
MLD parts (Pendand 1989) 
SAT (Blum 1973) 

Generalized cylinders (Binford 1981; 
Marr and Nishihara 1978; 
Ulupinar and Nevatia 1990) 

Superquadrics (Pentland 1987; Solina and 
Bajcsy 1990) 

Geons (Biederman 1987) 
Polyhedra (Waltz 1975) 

2.4 Scale and a Hierarchy of Significance 

The remaining elusive property of generic shapes is 
their composite organization. On one side is the fact 
that shapes consist of arrangements of "sub-ordinate" 
shapes, and so on--just consider a body. The torso 
is the most significant component, in that it dominates 
the shape relative to the arms, which ifftum dominate 
the hands which in turn dominate the fingers. Thus 
there is a hierarchy of significance around shape (Marr 
and Nishihara 1978). However, such hierarchies are 
often confused with scale spaces, or hierarchies of im- 
age operators of different sizes (Witkin 1983), because 
the most significant components of a shape often have 
large image support. However, these notions become 
confused when the image smoothing properties of op- 
erator scale spaces are considered with respect to noise. 
It is key for shape that the significance hierarchy be tied 
to the object, and hence only indirectly to the image of 
the object. We conclude this paper with one such scale 
space, the reaction~diffusion space. 

In summary, previous approaches have highlighted 
certain aspects of shape. While each of these choices 
works well in some situations, it may fail in others. 
Since the challenge is to cover all situations, we seek 
to unify these approaches, and to simultaneously rep- 
resent the many facets of shape (Kimia et al. 1989; 
1990). 

3 The Need for a Novel Geometry of Shape 

Objects come in all forms. As they deform and grow 
incrementally, their shape does not change drastically. 
For example, our perception of a tree is not drastically 
altered each day as it grows, or as a flock of birds 
rests on it. That the primary perception is one of a 
generic object with modifications is so intuitive to us 

, j '  
Fig. 2. Shapes are categorized into equivalence classes despite their 
differences. This is partly due to our ability to abstract the shape of 
an object in the presence of occlusions, protrusions, chips, noise, and 
various degradations. We seek a theory capable of supporting such 
generic competence. 

that to mention it might appear redundant. Yet, it is es- 
sential that our computational representation of shape 
behave similarly, so that, e.g., an industrial tool that 
is slightly bent or chipped will be described as "a tool 
that was bent or chipped" Analogously, when objects 
deform with motion, growth, erosion, etc., our per- 
ception is only slightly modified, as Fig. 2 illustrates. 
There seems to be great stability with regard to such 
changes. 

3.1 Standard Geometries and Shape 

Unfortunately, standard geometries of traditional and 
modem mathematics do not satisfactorily address these 
aspects of shape for the purposes of object recognition. 
Topology is so general that bounding contours of non- 
fractal physical objects (planar, closed, and simple) 
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Fig. 3. Standard geometries do not properly capture the natural 
topological and metric issues associated with shape, as becomes 
apparent when different shapes are compared to determine which are 
more similar. For example, does figure (B) or figure (C) look more 
similar to (A)? Our intuitions suggest that, for general, unfamiliar 
objects such as these, (A) and (B) are most similar, because (C) has a 
visually salient "spike" protruding from it. But the Euclidean metric 
places less emphasis on this perceptually significant protrusion than 
on the slight metric differences in the boundary of the main lobe. 
This is illustrated by the overlapped outlines on the right side of the 
figure, which shows that the area difference between (A) and (B) 
is larger than that between (A) and (C). Thus the Euclidean metric 
would give the counter-intuitive result that (A) is more different from 
shape (B) than it is from shape (C)! We seek to develop a geometry 
in which the descriptions of (A) and (B) will be most similar, and 
significantly different from (C). 

are equivalent. On the other hand, "Congruence ge- 
ometries, such as Euclidean, affine, and projective ge- 
ometries require an exact match, or some distance or 
area tolerance from it" (Blum 1973). Mumford ques- 
tioned the success of a theory of shape description for 
recognition and categorization tasks without having 
first defined what is meant by a "nearby" shape (Mum- 
ford 1987). In other words, what is needed is to define 
a space for shape, and then to impose a topology on it. 
It is clear, however, that the Euclidean metric is not nat- 
ural for shape, in the sense that certain "close" objects 
are perceived as different, and certain "distant" objects 
are visually indistinguishable (as in Fig. 3). A number 
of other metrics, e.g. the Hausdorff metric, have been 
considered. Koenderink and van Doom (1986) point 
out that useful notions of "partial order, similarity, and 
relatedness" have no equivalent in the usual geometri- 
cal shape theories. Indeed, without these notions, the 
task of object recognition seems impossible. 

These ideas point to the need for a language that 
makes the morphogenesis of shape explicit. 

3.2 Salient Singularities 

A second problem concerns the treatment of singulari- 
ties. Singularities have often been reduced to limits of 
highly bent structures. Attneave argued that the most 
salient portions of a shape are comers and high cur- 
vature points (Attneave 1954). However, singularities 
do occur in nature, and they play a different role than 
their smoothed versions (Link and Zucker 1987). Given 
our predisposition to highly developeA geometrical de- 
scriptions of curves and surfaces, it is not surprising 
that smooth curves and surfaces have been the common 
tools used in describing the visual world. Nevertheless, 
singularities must have an explicit place in a theory of 
shape, as well as in some other areas of vision. 

3.3 A Novel Framework for Shape 

What kind of geometry, then, do we require for shape? 
And, how does one define a metric and/or a topology 
for shape? What are our constraints and guidelines? 

Note that objects come in all forms and sizes result- 
ing in a dense varied collection of possible shapes. The 
task of generic object recognition is to ascribe a cate- 
gory to any given shape based on resemblance. Since 
the space of possible shapes is so varied, a language for 
representing it must be powerful enough to capture all 
the salient features. Moreover, shapes are not static 
in the world, since they are the projections of mov- 
ing, deforming objects going into changing occlusion 
relationships with other objects. Since these transfor- 
mations of shape are not discrete in nature, one can 
imagine a continuous space of shapes in which any 
shape is a point, and its transformation is a trajectory. 
Our task, then, is to discover how one might structure 
such a space through the relationship of a shape to its 
immediate neighbors. 

We claim that the key to discovering such a struc- 
ture is based on deformations. Observe that slight de- 
formations of the boundary of a shape induce only a 
slight change in the original shape. We will show how 
to characterize local deformations in the next section. 
The result is that they may be qualitatively described as 
a combination of two basis deformations. It is precisely 
the combinations of these deformations that span the 
reaction-diffusion space for a shape, i.e., a "manifold" 
sampling the structure of the shape space. 

A second key point concerns contours and shape. 
It is often assumed that a representation for a closed 
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contour is sufficient as a representation of shape. How- 
ever, three dimensional objects are bounded by surfaces 
enclosing "material" This translates into a two dimen- 
sional image consisting of a contour enclosing an inte- 
rior. Hence, not all contours are eligible to be projected 
boundaries of objects; see next section. This insepara- 
ble combination of boundary and region is a significant 
aspect of shape. As such, when deforming shapes we 
must not only assure that the boundary remains a "nice 
curve" but also that it encloses a "nice shape" 

Finally, we observe that in such spaces of continu- 
ously varying shapes, certain singular, or categorical, 
events will occur. Mathematically these singularities 
are called shocks, and we show how they define the 
generic components of shapes. Thus we are now in 
a position to explain the title of this paper: we study 
shapes by a process of curve evolution, during which 
singular "shock" events occur. These shocks within 
the space of deformed shapes define the categorical 
components of generic shapes. 

3.4 Preview of Results 

We close the introductory portion of the paper with a 
preview of our results, to provide a concrete focus for 
the ensuing theoretical discussion, and to show how 
they may be applied for object recognition. First, we 
illustrate the notion of deformation and how it leads to 
robust descriptions of parts. Figure 4 contains four im- 
ages of pears, presented by Richards et al. (1986), and 
which were intended as gross modifications of an object 
category (pear). The original shapes are across the top, 
and each column contains samples from a continuous 
sequence in which the bounding contour has evolved 
according to our deformation rules. The samples were 
chosen to illustrate how the deformation process elim- 
inates the noise (first row) to reveal the fundamental 
part structure for the pear (second row). This struc- 
ture is a pair of lobes, with the most significant one 
on the bottom. The relevant shocks in this case sig- 
nal the part structure, and correspond to the orientation 
discontinuities that develop on the evolving contour in 
ordered pairs. Note how the lobe structure, and the 
dominant lobe (bottom row) are comparable for each 
of these different pair images. The continuous space of 
shapes which supports such descriptions is called the 
Reaction-Diffusion Space. 

A second example illustrates the notion of hierarchy 
in more detail. An image of a doll was chosen to show 
how the different "parts" emerge according to our nat- 
ural intuitions about significance, Fig. 5. Note how 

0 0 0 0 
Fig. 4. An illustration of how our deformation approach to shape 
leads to natural descriptions despite large quantifies of noise and 
texture. Four pears were proposed by Hoffman and Richards as gross 
modifications of  a single object category (pear). The original shapes 
are across the top, in black. Each column contains samples from 
a continuous sequence in which the bounding contour has evolved 
according to our deformation rules. The samples were chosen to 
illustrate how the deformation process eliminates the noise (first row) 
to reveal the fundamental part structure for the pear (second row). 
This structure is a pair of lobes, with the most significant one on the 
bottom. The part structure is signaled by the shocks (discontinuities) 
that develop on the contour in opposing pairs. Note how the lobe 
structure, and the dominant lobe (bottom row)are comparable for 
each of these differentpair images, even though the noise and texture 
were so prominent. Details on how the shocks form are developed in 
the paper; the images were obtained by normalizing scale by running 
the reaction term backwards from the shocks. Thus in our framework 
the description for each of these pears is a variant of "a large bottom, 
a small middle and a very small top" 

hands and feet are less significant than limbs, which 
are in turn less significant than the torso. This example 
also illustrates that several different types of shocks 
arise within our system, with first-order shocks signal- 
hag deformations, second-order shocks signaling part 
connections, third-order shocks signaling bends, and 
forth-order shocks signaling part centers. Note that 
occlusion will not affect decomposition into parts, a 
desirable feature for recognition. 

4 Shape from Deformations 

We now begin the development of our framework for 
shape. Since any recognition strategy requires a notion 
of similarity between shapes, or of a "neighborhood" 
around each shape, we begin with the proposition that 
the .shape of an object should be intimately intercon- 
nected to "nearby" shapes. To illustrate, consider the 
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Fig. 5. a) The evolution of shocks leads to parts, protrusions, and bends. This figure shows the development of an image of a doll (National 
Research Council of Canada Laser Range Image Library CNRC9077 Cat No 422; 128 x 128). The contour shown in box N corresponds to 
increasing boundary evolution (time) steps. Observe that the "feet" partition from the "legs" (via second-order shocks) between frames 3 and 
4, and the "hands" from the "arms" between frames 2 and 3. Following these second-order shocks, first-order shocks develop as the "arms" 
are "absorbed" into the chest. Running this process in the other direction would illustrate how the arms '~protrude" from the chest, b) The 
hierarchical decomposition of a doll into parts. Selected frames were organized into a hierarchy according to the principle that the significance 
of a part is directly proportional to its survival duration. 

Fig. 6. These shapes seem to belong to the same group of objects. 
This concept of a neighborhood of "nearby" shapes is key to recog- 
nition. 

shapes in Fig. 6; these are readily seen as similar, and 
as variations within the category of  "peanuts" We 
capture this kind of  variation via deformations as char- 
acterized in differential geometry. Our approach is to 
apply arbitrary deformations to shapes and, through 
incremental change, to observe the emerging organi- 
zation of  the space of  shapes. In the first subsection, 
we will discuss a model which captures a number of  
key shape operations and which is spanned by two sim- 
ple deformations: constant deformations and curvature 
deformations. In the next subsection, a distinction is 
made between the evolution of  contours and the evo- 
lution o f  shapes. The entire development is guided 
by several principles that we take to be fundamental 
and self-evident. More formally, they are proposed 
to ensure that evolving curves remain "valid" shapes, 

i.e., possible projections of  three dimensional objects 
onto a two dimensional image. Then, we show that 
it is in the interaction between constant and curvature 
deformations that the contrasting and complementary 
properties o f  shape are captured. 

4.1 Shape from Deformations of Contours 

Much of  early vision is organized around inferring 
boundaries (Zucker et al. 1989). We therefore ask: 
How does the percept o f  a shape change as its boundary 
is modified slightly? We begin with the assertion that: 

PRINCIPLE 1. Slight changes in the boundary of an 
object cause only slight changes to its shape. 

Note that there are two different domains involved in 
this principle. The change in the boundary belongs in 
the domain of  planar geometry of  curves as measured 
by, say, the Hausdorff metric, or the domain of  differ- 
ential geometry as measured by the Euclidean metric. 
The change in shape, on the other hand, belongs in the 
space of  shapes as measured by a similarity metric. 

Thus we consider a shape represented by the curve 
Co(s) = (x0(s), yo(s)) undergoing a deformation, 
where s is the parameter along the curve (not nec- 
essarily the arclength), x0 and Y0 are the Cartesian 
coordinates and the subscript 0 denotes the initial 
curve prior to deformation. Now, let each point o f  
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B 

A 

Fig. Z The points on the initial curve A move to B to generate a 
new curve. The direction and magnitude of this motion is arbitrary 
in order to capture general deformations. However, with mild re- 
strictions appropriate to shape, one can classify this deformation to 
be a sum of constant deformation and curvature deformation along 
the normal. 

this curve move by some arbitrary amount in some 
arbitrary direction; see Fig. 7. This evolution is then 
described as 

{ OC = or(s, t)l" + fl(s, t)N 
Ot (1) 

C(s, O) = Co(s), 

where 2? is the tangent , /7  is the outward normal, s is 
again the parametrization, t is the time duration (mag- 
nitude) of  the deformation, and a ,  fl are arbitrary func- 
tions. This, by a reassignment (i.e. reparametrization) 
of  points, can be reduced to (Kimia 1990), 

oc = ~(s ,  t )f¢ 
(2) 

C(s, O) = Co(s), 

where/3 is again arbitrary, but not necessarily the same 
as that of  the previous equation. Now, we concentrate 
on intrinsic deformations 1 that depend only on the local 
geometry of  the curve at that point, namely those de- 
pendent on the curvature (do Carmo 1976), 

o-7 = t~(x(s, t))f¢ (3) 

C(s, O) Co(s), 

where x is the curvature. 
Since we have an evolution equation for shapes, we 

now address the time at which deformations are ap- 
plied. Recall that, since our deformations are intended 
to bring out the relationships among shapes, it is rea- 
sonable to require that the process relating shape 81 
to shape $2, is independent of  when it is applied to S1. 
For example, the way an ellipse relates to a circle in the 
space of  deformations should not be dependent on the 
time of  the deformation, but rather on the amount and 

nature of  the deformation itself. Hence our second prin- 
ciple concerns time-invariance and we propose that: 

PRINCIPLE 2. The class of contour deformations neces- 
sary to articulate shape consists of those deformations 
that do not depend on the time the deformation is ap- 
plied. 

Then from (3) we get, 

0 t  = / 3 ( K ( s ) ) N  (4) 

C(s, O) = Co(s). 

There are a number of  interesting possibilities to take 
for the function ft. In this paper, we will choose a 
simple "first-order" model which captures both mor- 
phological operations as well as smoothing for our 
study of shape. Explicitly, we consider the following 
deformation: 

a t  = (¢~o - ~ x ) ~  (5) 

C(s, O) Co(s). 

The remaining terms in a Taylor expansion of  an ana- 
lytic fl involving odd higher orders of  tc qualitatively 
resemble tc for the purposes of  shape (Kimia 1990), 
or are not stable at high curvature points. We should 
note that this case has been extensively studied in (Os- 
her and Sethian 1988; Sethian 1985a, b; Sethian and 
Osher 1988; Sethian 1985c; 1989). 

The above equation contains two terms. The first 
term describes a deformation that is a constant motion 
along the normal, or constant deformation. The sec- 
ond term, describes a deformation that is proportional 
to the curvature along the normal, or curvature defor- 
mation. Such deformations will be fundamental to our 
framework, and will provide the basis for forming a 
topology over shape. 

4.2 Shape Deformation vs Contour Deformation 

Our next principles relate to the observation that not 
all contours are valid shapes. Recall that, informally, 
shape derives from the projection of three-dimensional 
objects, or volumes of  material, onto two-dimensions. 
What kinds of  contours, then, can represent shapes, 
and what kinds cannot? A "figure eight," for example, 
cannot possibly represent the occluding boundary of an 
object: Even though a twisted paper clip may project 
to a figure eight, any clip composed of physical mate- 
rial projects to a region. The basic constraint is thus 
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that for contours to represent shapes they must be (the 
projection of) boundaries which could enclose "mate- 
rial". This notion also seems to hold psychophysically 
(Elder and Zucker 1993). 

The next principles articulate different aspects of this 
constraint that are necessary to restrict curve evolu- 
tion to shape contours. First, we ask" what if, during 
the process of deformation, two remote points of the 
boundary touch each other? This would occur in the 
process of pinching a ball of clay. At the point when 
the two extremaI points of the object come together, 
the object falls apart into two pieces. 

PRINCIPLE 3. If, during the process of deformation, 
distinct points of the boundary touch at a single point, 
then the evolved shape splits into two subshapes. 

It follows, of course, that once a shape has split it 
cannot be joined together again by continuing the pro- 
cess of deformation: 

PRINCIPLE 4. During the process of deformation the 
boundary of the shape must not cross over itself. 

This principle had an earlier expression in the grass- 
fire transformation of Blum (1973), who observed that 
grass could not bum twice. 

What other properties exclude contours as projec- 
tions of objects? Again, as volumes containing mate- 
rial, objects must project to closed contours. In other 
words, open curves cannot contain material. There- 
fore, 

PRINCIPLE 5. The boundary of a shape must remain 
closed during the process of deformation. 

How do singularities of the contour, such as cor- 
ners and cusps, affect it as a valid candidate for shape? 
Since objects often have sharp edges, bends, etc,, these 
project to comers and cusps in the contour. In fact, 
as was argued previously, these are among the salient 
points of a shape and deserve an explicit representation. 
However, there cannot be infinitely many such singu- 
larities, or for that matter extrema in curvature, because 
physical objects are composed of materials with a finite 
grain size and are observed by devices with finite res- 
olution limits. This implies a finite total undulation in 
the two dimensional shape, and such total variation may 
be measured by total absolute curvature as defined by 

fo 27r ~(t) := Itc(s,t)lg(s,t)ds, 

where g(s, t) is the length metric along the curve: 

0C i 
g(s,t) := ~s  = [xs2 -b y2] 1/2 

Note that this definition allows for the representation of 
curves with tangent discontinuities, e.g., a square, for 
the infinite curvature can be countered by infinitesimal 
speed (Kimia 1990). Therefore, 

PRINCIPLE 6. During the process of deformation the 
boundary of the shape must remain of finite total abso- 
lute curvature. 

Notice that closed curves evolving by Eq. (5) must 
remain closed (as long as the classical solution z exists). 
Moreover, from the maximum principle for parabolic 
equations, one can show (see e.g., (Angenent 1988)), 
that 

THEOREM 1. Simple closed curves evolving by Eq. 
(5) remain simple and closed (as long as the classical 
solution exists). 

Also see (Kimia et al. 1994) for further detail. 

4.3 Shape Deformation and Preservation 
of Similarity 

This next principle relates the deformation process to 
the change in similarity. 

PRINCIPLE 7. The deformation of shape is required to 
preserve similarity. 

In particular, given two shapes which differ by a 
rigid Euclidean motion (rotations and translations), 
they must deform in such a way that the resulting shapes 
at any fixed later time t differ by the same motion. This 
is an invariance principle with respect to the Euclidean 
group. In recent work, this principle has been ex- 
tended to other groups of interest, e.g., affine group 
(Alvarez et al. 1992; Sapiro and Tannenbaum 1994; 
1993). More generally, the intuition is that, if two 
shapes are very similar and are then deformed accord- 
ing to the same evolutionary process, their similarity 
shall be retained. This is a simple stability criterion 
indicating that our deformations are designed to bring 
out connections through convergence, not divergence. 
Another interpretation relates this principle to Princi- 
ple 1: A shape which obtained from a slight change of 
another, should quickly converge to it in the process of 
deformation. 
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5 Constant Deformation versus Curvature 
Deformation 

We have obtained an important class of deformations 
of shape that can be viewed as the combination of two 
basis deformations: constant deformation and curva- 
ture deformation. These deformations have drastically 
different properties. While constant deformation will 
often lead to singularities in shape, curvature defor- 
mation will smooth shapes (Gage and Hamilton 1986; 
Grayson 1989). While constant deformation operates 
primarily through the region, the curvature deforma- 
tion needs boundary information. Sethian (1985c) has 
shown that the curvature evolution equation under the 
above motion corresponds to a reaction diffusion equa- 
tion, where constant deformation is the reaction part 
and curvature motion is the diffusion part. Thus in the 
differential equation representation, constant deforma- 
tion will be referred to as reaction or the hyperbolic 
part of the equation, while the curvature deformation 
will be referred to as diffusion or the parabolic part of 
the equation. We will see below that curvature defor- 
mation leads to a quasi-linear equation in certain coor- 
dinates. A key distinction between the hyperbolic and 
parabolic components of the deformation is that con- 
stant deformation is local, while curvature deformation 
is instantaneously global. We now show that our frame- 
work formally unifies aspects of two of the common 
techniques in computer vision: Smoothing and Math- 
ematical Morphology. Also, constant and curvature 
deformations can be viewed as opposing forces, the in- 
teraction of which captures certain physical analogies 
for shape. 

5.1 Curvature Deformation and Nonlinear Diffusion 

Curvature deformation of a shape is a (non-linear) ana- 
logue to (linear) Gaussian smoothing of the boundary 
coordinates (Gage and Hamilton 1986; Grayson 1989): 

THEOREM 2. Consider the family of curves C(s, t) = 
(x(s, t), y(s, t)) satisfying 

aC = -r(s, t)/~ 

C(s, O) = Co(s), 
(6) 

where CO(s) = (x0(s), yo(s)) is the initial curve, s is 
some arbitrary parameter along the curve, t is time, r is 
curvature, and N is the normal Then the coordinates 

satisfy the diffusion equation 

Ox 02x 
O--t = OS 2 X(s,O) =Xo(S ) 

Oy 02y 
0-7 = 0~ 2 y(g' 0) = Yo(g), 

(7) 

where ~ is the arclength parameter along the curve. 

PROOF. The proof is very simple, and is based on 
the classical Frenet formulas. For the convenience of 
the reader, we give the details. (All the facts from 
elementary differential geometry we use may be found 
in (do Carmo 1976). As above, we denote by T the 
t~agent, and by N the outward normal. 

f = C ~ .  

Then T.  T = 1. Thus differentiating the latter expres- 
sion with respect to g, we get that 

f .  c~ = o. 

We thus have that C~ is orthogonal to T, and it is easy 
to check that it points in the inward normal direction 
(the curve is parametrized so that the interior is on the 
left in the direction of increasing g). Thelength of C~ 
by definition is the curvature ~c. Since N denotes the 
outward normal, we have that 

as required. 

This equation has been called the geometric heat 
equation. It is a parabolic diffusion equation. In fact, 
by a remarkable result due to Grayson (1989), any em- 
bedded curve shrinks to a circular point under the ge- 
ometric heat equation. Thus, it smooths shapes. The 
equation is nonlinear since the arclength ~ is a function 
of time. 

In classical computer vision and image processing, 
one uses convolution with the Gaussian for smoothing 
(Rosenfeld and Kak 1982; Witkin 1983). Since the 
Gaussian is the kernel for the diffusion (heat) equation 
(Widder 1975), this is equivalent to running the shape 
through the linear heat equation. Thus the geometric 
heat equation may be regarded as a nonlinear Gaussian 
smoothing process. In fact, it gives an anisotropic 
smoothing in the sense of Perona and Malik (1990), 
and thus has a number of advantages in image process- 
ing, e.g., in edge detection (Alvarez et al. 1992). 

For shape, a scale space was proposed by 
(Mokhtarian and Maekworth 1986) in which shapes 
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are increasingly smoothed and whose inflection points 
are tracked for matching. It follows from the above 
theorem that this scale-space is a special case of the 
one we shall derive using the full reaction-diffusion 
system. 

Finally, we should note that the geometric heat equa- 
tion is Euclidean invariant. Recently, it has been shown 
how to write heat type-flows invariant with respect 
to a given Lie group acting on the plane (Sapiro and 
Tannenbaum 1994). From the point of view of vision, 
an important flow is that which is affine invariant. It 
turns out that, in this case, the affine invariant geomet- 
ric heat equation is given by 

Ct = -161/3N. 

See (Sapiro and Tannenbaum 1994; 1993; Alvarez et al. 
1992) for the details. 

5.2 Constant Deformation and Mathematical 
Morphology 

Constant motion acts in a complementary fashion to 
curvature motion. While curvature motion introduces 
the singularity-removing linear Gaussian Smoothing, 
constant motion captures nonlinear smoothing as in 
mathematical morphology (Serra 1982; 1988; Vincent 
1991); it introduces singularities. The development of 
the curve evolution paradigm has enabled mathemat- 
ical morphology to be viewed as the solution of an 
evolutionary partial differential equation, in effect giv- 
ing a continuous implementation of classical discrete 
morphology (Brockett and Maragos 1992; Sapiro et al. 
1992; Arehart et al. 1993; Alvarez et al. 1992). The 
approach of these works is based on the following ele- 
mentary observation: 

THEOREM 3. 
(X(S, t), y(s, t)) satisfying 

C(s, 0) = C0(s), 

where Co(s) = 

Consider the family of  curves C(s, t) = 

(8) 

(x0(s), yo(s)) is the initial curve, s 
is some arbitrary parameter along the curve, t is 
time, 30 is the coefficient determining speed and in- 
ward/oum, ard direction, and N is the normal Then 
the interior of  the shape evolves by the mathematical 
morphology operations of  erosion/dilation with a ball 
as the structuring element. The size of  the ball is 30. 

6 Hyperbolic Conservation Laws 

What is most intriguing about our basis of local defor- 
mations is that an arbitrary combination of these de- 
formations satisfies a conservation law with viscosity 
as was pointed out and analyzed in (Sethian 1985a-c). 
(For the classical theory of hyperbolic conservations 
laws and the associated theory of shocks, see (Lax 
1971; 1973).) To formulate this connection, however, 
the mathematical model of conservation of matter, en- 
ergy, etc. is first reviewed. This material is classical; 
see (Smoller 1993) and the references therein. How- 
ever, for the convenience of the reader, we include it 
to motivate our use of these concepts in the theory of 
shape. Following this, the notions of shock and entropy 
and their role in these models are explained. We will 
then be able to examine its relevance to shape. 

6.1 Conservation in Nature 

Hyperbolic conservation laws appear frequently in 
physical sciences. Examples include conservation of 
matter, energy, electric charge, and heat, among oth- 
ers. To illustrate, consider the conservation of matter: 
"the net amount of matter that flows into a volume is 
exactly the amount of increase of matter within that 
volume?' In other words, "matter is neither created 
nor destroyed?' To derive an equation expressing the 
conservation of a quantity u, such as heat, consider the 
volume G with boundary OG. The total quantity of u in 
the volume is f~ udv, where do is the volume element, 
and the total quantity passing through the boundary is 
fa6 udS; where dS is the surface element. Then, con- 
servation holds if 

 fffoudo=-ff f(u).ndS, (9) 

where f is the flux. Using the Divergence Theorem, 
the right hand side is simply f f f 6  V .  f ( u )  dr,  so that 

(10) 

Since this holds for any volume G, 

Ou 
a-"t + V .  f ( u )  = 0, (11) 

which is the differential equation representing the 
above integral equation. Such an equation represents a 
hyperbolic conservation law. 
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Fig. 8. This figures illustrates how characteristics clash and shocks form. Note that after the shock forms, it travels as a shock. Therefore, 
singularities are explicitly represented in the context of generalized functions. 

6.2 The Formation of Shocks and the Role 
of  Entropy 

The hyperbolic conservation laws (including those we 
consider in vision) are nonlinear equations and, as such, 
will frequently lead to singularities, even when the 
initial data are smooth. (It is these singularities, of 
course, that will be important for expressing the con- 
nection between curve deformation and categories of 
shapes.) Mathematically this is important because the 
usual spaces of differentiable, or even continuous func- 
tions, no longer contain the physical solutions beyond 
the development of a singularity. Thus we need to con- 
sider spaces of generalized functions (Smoller 1993), 
but this introduces the additional problem that there are 
too many solutions in this space satisfying the above 
partial differential equation with the initial condition. 
Since a single physically-realized solution obviously 
exists, we must face the question of how to determine 
it. The answer lies in the notion of entropy (Lax 1971; 
Oleinik 1957), which in the case of gas dynamics re- 
duces to "entropy of the particles must increase as they 
cross a shock front" We will formulate an entropy 
condition for shape in Section 7. 

To illustrate the notions of shock and entropy, let us 
consider the characteristics of Eq. (11), 

dx df 
~ -  = ~u" (12) 

To recall, characteristics are trajectories in the (x, t), 
or space and time domain, over which u satisfying Eq. 
(11) remains constant. Consider then, a well-studied 
example of a hyperbolic conservation law, the Burgers' 
equation (Hopf 1950), where f ( u )  = ½u 2, leading to 

dx / dt = u. Given initial condition 

1 i f x  < 0  
u0(x) = 1 - x  i f 0 < x < l  (13) 

0 i f l  < x ,  

all points on the negative x-axis will move to the fight 
with speed 1, all points with x > 1 stay put, while all 
points with 0 < x < 1 will move to the fight with in- 
termediate speeds. It is clear from Fig. 8 that for t < 1 
the function u(x, t) remains single valued. However, 
for t > 1, the characteristics clash, and there exists the 
potential for the formation of a shock. At this point, the 
two characteristics enforce two different values for u, 
which is clearly not possible. The dilemma of which 
of the two values is physically meaningful is solved by 
enforcing conservation at the shock, leading to the so- 
called jump condition (or the Rankine-Hugoniot con- 
dition in gas dynamics.) 

S(Ur - ut) = fr -- ft, (14) 

where 1 and r denote left and fight, respectively, and s 
is the speed with which the shock moves. For the case 
of Burgers' flux, the shock will move with the average 
speed of the two incoming characteristics. 

A second problem arises when we consider diverging 
characteristics. Consider the initial condition 

/ 0 i fx  < 0 
uo(x) (15) / 1 i f 0  < x 

where there will be points whose value can not be 
determined. The gap may be filled using the jump 
condition, however we find that many solutions exist 
in conjunction. The entropy condition rules out the 



above example as a possible discontinuous solution by 
imposing that characteristics always flow into the dis- 
continuity (Lax 1971; Oleinik 1957; Smoller 1993). A 
discontinuity satisfying both the jump condition and 
the entropy condition is called a shock. The impor- 
tant theorem is provided by Lax, who shows that a 
generalized solution of (11), which has only shocks 
as discontinuities, exists and is unique (Lax 1973; 
1957). 

7 Conservation and Shape: The Role of Shocks 
and Entropy 

The relevance of conservation laws to shape is sub- 
tle. First, there is an intuitive connection in which 
our deformations leave certain aspects of the shape 
conserved----e.g., contour orientation. The second rel- 
evant connection is technical: the conservation laws 
allow our deformation models to continue beyond the 
formation of singularities (Sethian 1985a-c). We pro- 
ceed by first deriving conservation laws for shape. We 
then show that in the process of deformation corners, 
or orientation discontinuities, can and often do form. 
These singularities, as we will show, are among the 
shocks of shape. It is in this context that the role of the 
conservation law and entropy become clear. 

We note that the conservation concepts that we are 
introducing here are different from the classical no- 
tions of invariance (affine, projective, Euclidean) that 
are commonly used in computer vision (Blake and 
Zisserman 1987). Invariance refers to properties which 
are preserved under rigid transformation groups while 
conservation, as used in our sense, is dynamic. That 
is, conservation refers to properties that are preserved 
under shape deformations. Having clarified this dis- 
tinction, we further note that all our conservation laws 
are Euclidean invariant. 

7.1 Conservation of Orientation 

To begin we study how the orientation of an infinites- 
imal piece of a curve changes as it evolves according 
to Eq. (5). It is straightforward to show that deforma- 
tion of orientation is governed by (Gage and Hamilton 
1986; Grayson 1989): 

O0 - 1  a[fl(r)_~__]] 
at g as 
oo 
-ff;s = Kg ,  

(16) 
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where 0 is the orientation of the curve in some Cartesian 
coordinate frame, i.e., the an~le the curve's tangent 
makes with the x axis, i . e . , / (T ,  Y), and where g(s, t) 
denotes length along the curve 

I~. _ 2"11/2 g ( s , t ) =  OC =[x  2 + ysj (17) 

Therefore, when fll = 0, i.e., when there is pure con- 
stant motion, we have 

0t = 0 (18) 

In words, the orientation of a curve at a point does not 
change as the curve evolves; orientation is conserved 
when a local piece of the curve is viewed locally and 
intrinsically. 

It is perhaps more interesting to examine how an in- 
finitesimal piece of curve changes its orientation when 
viewed externally. To motivate, recall our discussion 
of Subsection 6.1, in which matter is conserved in the 
sense that the amount of matter flowing into a small 
piece of pipe is precisely equal to that which flows out 
plus that which stays in. Similarly then, consider a 
small piece of the external x-axis coordinate, the in- 
terval (x, x + Ax). This infinitesimal interval can be 
regarded as a small section of a "pipe" through which 
"orientation flows" We show below that orientation is 
not annihilated or created by this flow for curves evolv- 
ing according to Eq. (5) with fll = 0, i.e., orientation is 
conserved. When/31 ~ 0, viscosity is introduced into 
the system (Sethian 1985a, b; Sethian and Osher 1988; 
Sethian 1985c; 1989): 

THEOREM 4, Orientation of a curve deformed by con- 
stant deformation satisfies 

aO 
O--t + 7-lo (O)x = 0, (19) 

where ~o(0) = cos(0) is the flux of orientation flow, 
- z r /2  < 0 <_ ;,r/2; clearly a hyperbolic conservation 
law for orientation O. 

Intuitively, the "pipe" through which orientation 
"flows" is then each coordinate frame's horizontal axis. 
The conservation law asserts that in this process ori- 
entation does not annihilate or regenerate. Rather, it 
flows from one section to another, governed by a flux 
7-(o(0) = cos(0). Adding curvature motion, on the 
other hand, adds viscosity to the system: 



202 Kimia, Tannenbaum and Zucker 

THEOREM 5. Orientation of a curve deformed by a 
combination of constant motion and curvature motion 
satisfies 

o, +/3o[7-to(0)]~ =/3~ cos2(O)O~, (20) 

where H0 (0) = -cos(0),  namely a viscous hyperbolic 
conservation law for orientation O. 

PROOF. We sketch a proof; see (Sethian 1985c; Osher 
and Sethian 1988). 

^ 

Treat x as the independent variable and let O(x, t) = 
O(s, t), where x is the first coordinate in C(s, t) = 
(x (s, t), y (s, t)). Then, differentiating both sides with 
respect to t, 

Ox .xt + 0t = 0,. (21) 

Note from Eq. (4) that 

(xt, Yt) =/3(K)N. (22) 

Since N = (s in(0) , -cos(0)) ,  we have xt = 
fl(r)sin(O). Therefore, substituting in Eq. (2t), we 
obtain 

t~,./3(x) sin(0) + 0t = Ot. (23) 

Now, specializing to curves evolving by Eq. (5), namely 
where/3(X) = 130 -- fllK, 

0x" (/3O --/31~C) sin(0) + 0t =/31 ~ .  (24) 
g 

where Ot was computed using Eq. (16). Rearranging, 

0t + (/3o -/31tc)[-cos(g)k =/31 ~ ,  (25) 
g 

or, 

0t +/3o[-COS(0)]x =/31z.  [-cos(0)]x +/31 ~ ,  (26) 
g 

Now, we need to replace all the above terms with terms 
x, = cos(0) and involving 0. First, note that g 

Xs 
xg 

Xs 
Kg 

- g cos(~) 
K 

cos(O) (27) 

so that X = COS(0)0x = [sin(0)]x. Similarly, 

t<~ = {[sin(t~)]~}s 
^ 

= [sin(0)]~ • x~. 

Hence, 

(28) 

K s  ^ • _ _  
- -  = [sin(0)]xx xs 
g g 

= [sin(0)]xx- cos(0). (29) 

As such Eq. (26) simplifies as 

O, + ~o[-cos(O)]~ 

= /31K" [--COS(O)lx + fllKS 
g 

= /31 eos(O)Ox, sin(O)Ox + fll[sin(O)]xx, cos(O) 

= /31 sin(O)cos(O)Ox 2 + fll[eos(O)~Jx]x- cos(O) 

=/31 sin(O) cos(O)O~ 

+ fll [-sin(O)O 2 + cos(O)Ox~], cos(O) 

= /31 sin(t~)cos(0)0x 2 + - i l l  sin(0)02 cos(0) 

+/31 cos2(0)Ox~ 
= /31 cos2(0)OXx • (30) 

This completes the proof of both Theorems. 

Note that, when fll = 0, this gives the conservation 
law. When/31 # 0, viscosity in the form of second 
order terms is added to the system. 

Viscosity, or "diffusion," changes the character of the 
deformation. Whereas before, deformations conserved 
the local orientation identity of each piece, with dif- 
fusion the local orientation of each piece is "blended" 
with that of neighbors. Informally, one view of the con- 
stant deformation and curvature deformation trade-off 
is that of area versus length or region versus boundary. 

Other quantities are conserved as well. For example, 
one can also show that a conservation law holds for the 
curvature-metric, or the product of curvature and metric 
as shown in (Kimia 1990), Specifically if x denotes 
curvature and g the Euclidean metric, then (xg)t = 0. 

7.2 The Formation of Shocks 

In addition to their intuitive appeal, the conservation 
laws have a very significant role: they show how the 
original process of deformation, as defined by Eq. (4), 
a local differential model, can be extended to handle 
singularities using an "integral" form of the law and 
the notion of "weak" solutions. 
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Fig. 9. Curve evolution is not shape evolution. Note that in the process of deformation of the curve, local portions of the boundary may cross 
over each other, like the comer of the square. Similarly, remote portions of the boundary may cross over each other. Since shapes are curves 
that are filled with material as required by principles 4 and 5, the local curve deformation does not always lead to shape deformation. To resolve 
this dilemma, the interior must be represented explicitly. 

Time 

( a )  

Time Time 

A L , , a A  

( c )  

4)  F o r m a t i o n  o f  S h o c k s  

( b )  and R o l e  o f  E n t r o p y  

Fig. 10. N•n•inearpr•cessescantransf•rminitial•ysm••thfuncti•nst•functi•nswithsingu•arities. (a)showsacurvewithanegativecurvature 
extremum which, when evolved by constant motion along the normal, leads to a singularity. This evolution can be based entirely on boundary 
information until the singularity arises. However, at this point the entropy condition is required to tin,her control evolution, so that the curve 
does not cross over itself and the swallowtail configuration can be properly handled (b). The entropy condition is region-based, and controls 
how interior information interacts with the boundary. It plays another key role in controlling topological evolution, by globally managing the 
splitting of a single boundary into two closed boundaries (c). In both cases the entropy condition dictates that the solution does not include the 
"dashed" portions of the contour--these annihilate into the shock. 

To motivate the p rob lem consider  Fig. 9 which 
depicts si tuations where  curves represent ing shapes 

of  objects now evolve to curves that cannot  possi- 
b ly  represent  the occlus ion boundar ies  of  real objects. 
These situations violate Principles (4) and (5), even 
though they follow the local  differential model.  To 
illustrate that this s i tuat ion is not  exclusive to shapes 
with init ial  singularities,  consider  Fig. 10, taken from 
Sethian (1985c), where  ini t ial ly smooth shapes develop 

singularities.  Since the differential model  can be uti- 
l ized at all points except singularities,  the quest ion 

arises o f  how to cont inue  the deformat ion  once  shocks 
form. This  si tuation is analogous to the example  of  
Burgers equat ion in Section 6, where the smooth ini-  
tial condi t ion  (13) deforms according to the differential  
Eq. (11), up to the point  where  a s ingulari ty forms in 
the solution. F rom this point  onward,  however, the dif- 
ferential equat ion in its classical form is no  longer  valid 
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at such points; yet the principle of conservation as rep- 
resented by its integral form (9) remains in force. The 
integral form is the manifestation of the conservation 
principle for the domain of weak solutions. While in 
the case of the Burgers equation the intergal form of the 
equation could be derived based on the original phys- 
ical principles of conservation, what is the "integral 
form" of Eq. (5)? 

To summarize, when the boundary is smooth, the 
local differential model is in force for the process of 
deformation. However, beyond the time of formation 
of singularities, the law is no longer valid and an alter- 
native must be sought. 

As a first attempt toward a solution to this problem, 
one might simply decompose the problem into the in- 
dependent local deformation of pieces of contour be- 
tween some arbitrary points, say high curvature points 
or singularities. While this may be done arbitrarily for 
smooth shapes, for singular shapes this unfortunately 
generates non-valid shapes as Fig. 9 illustrates. How 
then can the process of deformation continue beyond 
this point? 

We believe that a natural solution lies in Princi- 
ple 7 and the introduction of a notion of entropy for 
shape. Such an entropy condition has been introduced 
by Sethian (1985a); Sethian and Osher (1988) for prop- 
agating fronts. (For general discussions of entropy and 
the connection to hyperbolic conservation laws, see 
Lax (1957; 1971; 1973) and Smoller (1993).) Since 
the conservation law for orientation, which we de- 
rived from the local differential model, is valid even 
beyond the point when singularities form, we can pos- 
tulate the principle of conservation as the fundamental 
principle underlying the deformation of shape. This is 
in agreement with the situation of the Burgers exam- 
ple: as Fig. 11 illustrates, the shape evolution can con- 
tinue beyond the formation of "comers" Note that the 
"shock" remains sharp past its formation and that the 
extra dashed lines resulting from independent evolution 
of each curve segment on either side of the discontinu- 
ity are not present. Informally, the entropy condition, 
which abstractly forces characteristics to lean into a 
shock, translates into the condition of removing the 
dashed portions of the curves for shape. These dashed 
segments are portions of the curve which cross over 
each other. Similar effects occurred in the Burgers 
example, when particles traveling at unit velocity had 
to "reach an agreement" with stationary ones. This 
agreement was the formation of a shock moving with 
a compromise velocity depending on the form of the 
flux (in the case o f  Burgers' flux, this speed is exactly 

the average of the two speeds). Clearly, certain parti- 
cles annihilate into a shock. In our case, the dashed 
lines would be present if each portion could evolve in- 
dependently. However, given the collision a similar 
"agreement" must be reached. Now the crossed-over 
portions--the dashed lines--annihilate into a shock. 
Since the dashed segments are points over which the 
boundary has crossed already, the following definition 
of entropy for shape is appropriate: 

DEFINITION 1 (Entropy Condition). In the process of 
inward deformation, once a point is dislodged from a 
shape, it remains disjoint from it forever. Similarly, 
in the process of outward deformation, once a point 
becomes part of a shape, it remains part of it forever. 

This entropy condition is a reformulation of the one 
given by Sethian (1985a, c) for the propagation of flame 
fronts. Namely, the propagating flame front satisfies 
the entropy condition if once a particle bums, it re- 
mains burnt. It is also reminiscent of the "grass fire" 
algorithms introduced to vision by Blum. 

The entropy condition is one of three related ways of 
picking out a physically meaningful solution to a hy- 
perbolic conservation law, and each of them provides 
a different perspective on understanding the solution; 
they are reviewed in the Appendix. To summarize 
briefly, the entropy condition above relates to shock 
waves in dynamics, and to the burning interface around 
an island of fuel. More abstractly, it is well-known 
mathematically that the type of hyperbolic conserva- 
tion laws we are considering have a Hamilton-Jacobi 
formulation (see (Smoller 1983) and our discussion 
below). In fact, it is this formulation which is the 
key for the numerical implementation of curve evo- 
lution equations which was introduced in the funda- 
mental work of Osher-Sethian (1988), and which will 
be explicated below. We now note the second way 
of viewing solutions, which was introduced by Cran- 
dall and Lions (1983): Informally, the viscosity solu- 
tion of a conservation law is the one obtained in the 
limit as viscosity is reduced to zero. The beautiful 
connection established by Barles (1985) is that the en- 
tropy solution of the conservation law given above is 
precisely the viscosity solution of the corresponding 
Hamilton-Jacobiequation. Thus, froma practicalpoint 
of view, it is precisely the viscosity solutions of the cor- 
responding Hamilton-Jacobi equations which are im- 
plemented. 

We finally note that there is a third equivalent ap- 
proach to the "weak" solutions of conservation laws 
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Fig. II. The shock as depicted for the Burgers equation in Fig. 8 is now applied to shape. Recall that orientation satisfies a conservation law 
which produces a similar shock (left column). On the other hand, the deformation in the shape domain is constant motion along the normal. 
Note that with time, the circular arc will dissolve into one point, leaving the orientation of the boundary discontinuous. The continuation of the 
deformation keeps the shock intact. 

and the Hamilton-Jacobi equation; namely, the theory 
of nonsmooth analysis from optimal control (Clarke 
1989). Here certain generalized gradients can be de- 
fined to allow the "differentiation" of certain singular 
functions. The value function in optimal control the- 
ory is also the solution of a Hamilton-Jacobi equation, 
which in this case inherits its interpretation from dy- 
namic programming. Historically, viscosity solution 
theory and nonsmooth analysis developed from the fact 
that the value function usually has singularities as well. 
Barles' connection, noted above, again connects them. 
(See also (Crandall et aL 1992) for an extensive list of 

references on this methodology). Each of these ideas 
is illustrated in the Appendix. 

7.3 Physical Analogies 

The study of shape is not only interesting when viewed 
as a visual entity, but also when viewed as an in- 
terface separating one material from another. Under 
such a view, the theory of shape description and 
evolution is relevant to many physical problems, for 
example, crystal growth (Langer 1980), flame propaga- 
tion (Sivashinsky 1977; Sethian 1985c), the oil-water 
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boundary problem, and the deterioration of the shapes 
of stones (Firey 1974). Typically, in a class of mod- 
els for these physical phenomena, a reactive term is in 
conflict with a diffusive term. To illustrate, consider 
the case of crystal growth in which the growth pattern 
of a solidification front is determined by the interac- 
tion of two forces: the driving force of the instability 
due to heat diffusion and the restabilizing force due to 
surface tension (Smith 1981). Common to these mod- 
els is a reactive force which corresponds to our constant 
motion and a diffusive force depending on surface cur- 
vature which corresponds to our curvature motion. For 
an application of these reaction-diffusion models see 
(Smoller 1993). 

There is yet another connection between the entropy 
condition and the Huygens' principle and eikonal equa- 
tions that is relevant. Namely: the entropy solutions 
are exactly those constructed by the Huygens' princi- 
ple, say as a solution in geometric optics as illustrated 
by Barles (1985); for a specific example, see Appendix. 

7.4 Embedding Curve Evolution 
in a Higher-Dimensional Space 

While the conservation law formulation resolves the 
first of the two problems depicted in Fig. 9, i.e. the 
local collision of the boundary and the consequent for- 
marion of singularities, this is not the only problem 
that invalidates the curve evolution as shape evolution. 
As the peanut shape of Fig. 9 evolves in time, remote 
portions of the boundary collide and pass over each 
other. This collision does not manifest itself in either 
the local curve deformation model of Eq. (4) or the 
more general conservation model of Eq. (20). What 
additional constraints are needed to restrain this be- 
havior so that the curve evolution can claim to model 
shape evolution? The missing ingredient is a notion of 
"interior." To recall our discussion of Section 2.1, a 
comprehensive understanding of shape involves both 
the notion of its boundary and its interior. Up to 
this point, however, our formulation has been focused 
mostly on the evolution of the boundary of the shape. 
The current problem as illustrated above not only con- 
firms the distinction but also points to the solution: 
an explicit role for the region bounded by the bound- 
ary. This region represents the material that "glues" 
the various portions of the boundary together, in dis- 
tinction to a thin wire. Our approach, then, is to 
allow for this extra "dimension" of information by con- 
sidering an evolution in a higher-dimensional space, 
e.g., the evolution of a two-dimensional surface in a 

three-dimensional space constrained to embed the orig- 
inal problem. We should add that this approach is 
also essential to the computer implementations of the 
curve evolution equations. The algorithms based on 
this embedding concept have been derived in the ele- 
gant work of Osher-Sethian (1988); Sethian and Osher 
(1988). 

To motivate these ideas, let us consider the field of 
fluid dynamics and the two formulations capturing the 
regions bounded by the flow of fluids, a problem not 
unlike ours. In the Lagrangian formulation, equations 
of motion are based on the flow of particles, whereas 
in the Eulerianformutation the physical quantities are 
constrained as a function of their position. One may 
view the first framework as local and boundary-based, 
and the latter as global and region-based. To accom- 
modate the regional and global attributes, points distant 
along the boundary but close through the region may 
have to be connected. The solution lies in explicitly 
representing the regional information as a surface or a 
"tent" built around the boundary. The boundary, then, 
is the zero level set of the surface, which represents the 
interior. Consider, then, the shape as the zero level set 
of some function z = ~b(x, y, t), where ~b represents 
some physical quantity e.g., density, intensity, depth, 
etc., which indicates where the region of interest, i.e., 
shape, is located. The simplest scheme is to consider all 
points for which q~(x, y, t) > 0 as belonging to the re- 
gion. In shape representation, Koenderink has utilized 
the characteristic function of some region as an indi- 
cator of the shape (Koenderink 1984; Koenderink and 
van Doom 1986). Similar representations have been 
proposed for the propagation of flame fronts (Sethian 
1985b; Barles 1985). 

What principles govern the evolution of the surface 
z = ~b(x, y, t), and what equations model it? First, 
note that the surface is initially only constrained by its 
zero level set. As such, one degree of freedom exists in 
choosing the initial surface. Second, observe that the 
evolution of this initial surface is underdetermined as 
the only constraint is on the evolution of its zero level 
set. Namely, the zero level set of the evolving sur- 
face ought to be precisely the curve evolution defined 
by Eqs. (4) and more specifically (5), or their integral 
form of Eq. (20). (Practically, in the computer imple- 
mentations, the surface is constructed over the evolving 
curve via the distance function.) 

We now reproduce, in the rest of this section, 
the level set formulation introduced in Osher-Sethian 
(1988). To mathematically capture the constraint that 
"the surface evolution be consistent with the original 
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curve evolution," consider the surface defined by 

z = (b(x, y, t). (31) 

This constraint requires that the zero level set of the 
surface, namely, 

(b(x, y, t) = 0 (32) 

be exactly the trace of the curve C(s,t) = (x(s , t ) ,  
y(s, t)) defined by F~. (4). Note that by differentiating 
Eq. (31) we have 

(bxXs + (byYs ----- 0, (33) 

or equivalently, 

((bx, (by)" (xs, Ys) = 0. (34) 

Since the vector (xs, Ys) is along ~e  tangent T, the 
vector ((bx, (by) is along the normal N. Therefore, up 
to a change of sign, 

~ , =  1 
+(b2v),/2 • ((bx, (by). (35) 

Next, differentiating Eq. (31) with respect to t, we have 

(bxXt + (byYt + (bt = 0, (36) 

or equivalently, 

((bx, (by)" (xt, Yt) + (bt = 0. (37) 

Since G = (xt, Yt), for deformations defined by 
Eq. (4), we have 

((bx, ~by). fl(K(x, y))N + (bt = 0, (38) 

or equivalently, 

((bx, (by)" I~(K(X, y)) 

Thus, we see that 

1 +(by )l/2 ((bx,(br)+(b, = 0  

(39) 

(bt + fl(tc(x, y))((bx 2 + dpzy) t/2 = O. (40) 

Finally, since IV(bl = ( ~  + (by2)1/2, 

(b, +/~(x)pT(bt = 0. (41) 

The expression of sc for points on the zero level set of 
surface, (b, is easily seen to be 

K(x, y) = ((bxx~2 - 2(bxy(bx(by + (byy(b2x) 
(q~2 + (by2) 3/2 , (42) 

for all points (x, y) which satisfy (b(x, y) = 0. 
Specializing to the case of Eq. (5) where 3(K) = 

~0 - ¢t1K, and using Eq. (42), we have 

(bt"l-{/~0--/~l[' ((bxx(b2--2(bxy(bx(br+(bYY(b2)((b1+(b2)3/2 ]}  

. ((b2 + (b2)1/2 = 0, (43)  

or, 

2 2 1/2 + + 

~_ ~1[ (~)XX~2y -- 2~xy(bx~)Y'31-(bYY~'2) ] 
(44) 

+ 

Finally, 

(bt+/~01V~bl =/~1 ] 
L 

( (bxx (b 2 -- 2 (bx y (bx (b y .~_ (b y y (b 2 ) 1 
j, 

(45) 
for all points (x, y) which satisfy (b (x, y, t) = 0, i.e., 
are on the zero level set. This is precisely what our 
earlier constraint implies for the evolution of the sur- 
face, i,e., it determines the evolution of the points on 
the zero level set. 

The above constraint restricts the evolution of points 
on the zero level set only. How should other points 
evolve? For simplicity, we opt to move each level set 
according to the same process. In other words, all 
points (x, y) should evolve according to Eq. (45). This 
constraint, together with an initial definition for the 
surface, defines the surface evolution such that it is 
consistent with the curve evolution problem. 

Recapping, consider a surface z = (b (x, y, t) evolv- 
ing according to Eq. (45), with the initial condition z = 
(b(x, y, 0) = ~b0(x, y). If the explicit representation of 
~b0(x, y) = 0 is denoted by C0(s) = (xo(s), yo(s)), 
then the (x, y, t) satisfying (b(x, y, t) = 0 also satisfy 
evolution Eq. (5). 

7.5 Hamilton-Jacobi Equations and Conservation 
Laws 

In the last section, we showed following Osher-Sethian 
(1988); Sethian (1985b, c) that in order to embed the 
curve evolution problem in a higher dimension, i.e., as 
the evolution of the zero level set of the surface, the 
surface is required to evolve according to Eq. (45) at 
all the points. This equation may be rewritten as 

(bt(x, y, t) + ~oT-lo((bx, (by, t) 

= fltT"h(q~xx, (byy, (bx, (by, t), (46) 
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a first-order Hamilton-Jacobi equation with a parabolic 
fight hand side, where in our case, 

~o(q~x, ~y, t) = [,~2.4- rh2~ 1/2 (47) 
u r x  - -  " ry l  

and, 

~1 (4'xx, 4 ' . ,  4~x, 4'y, t) 

= (q~xx~2 -- 2q~xyqbxq~Y -4" q~YYt~x2) (48) 
~2 2 3/2 ( x+@ 

A Hamilton-Jacobi equation is a first-order partial 
differential equation of the form 

+ 7-t(t, x, ,Tx) = 0, (49) 

where ~ in analytical dynamics is known as the Hamil- 
tonian, or the total energy of the system (Garabedian 
1964). 

There is an interesting connection between first- 
order Hamilton-Jacobi equations and hyperbolic con- 
servation laws. Recall the conservation law of Eq. (11) 
in the one-dimensional case: 

ut + f (u)x = 0. (50) 

Informally, as in conservative systems of the analytical 
mechanics analogy, external forces can be derived from 
a potential function giving rise to a Hamiltonian, and 
the connection between conservation laws and the first- 
order Hamilton-Jacobi equation. Formally, using the 
transformation 

u = Jx, (51) 

C 2 solutions of Eqs. (49) and (50) are the same 
(Garabedian 1964; Hopf 1950; Lax 1957). 

REMARK. In fact, using a formula of Lax-Oleinik 
(1985; 1981), we get the viscosity solution for the cor- 
responding Hamilton-Jacobi equation of a conserva- 
tion law of the form (50). Namely, the Hamilton-Jacobi 
equation is 

Ut + f (Ux) = O, 

where u = Ux, and the viscosity solution is given by 

g ( t ' x ) = m i n { U ° ( y ) + t f * ( ~ - - ~ ) }  

for initial function U0, where 

f*(w) := max{uw - f(u)}, 

a 

b 

C 

Fig. 12. This figure depicts the case when two points of a shape 
(A) that are distant along its boundary come together during an arbi- 
trary deformation (B). How should the deformation proceed beyond 
this point? A pointwise deformation along the normal would pro- 
duce the dashed-tines, which clearly violate Principle (4) since they 
do not correspond to an actual object. 

is the conjugate function (we assume that f is convex 
here). The entropy solution may then be immediately 
derived from this. (This is the basis of Barles proof 
(1985) of the equivalence of entropy and viscosity; see 
Appendix.) 

Now, we are in a position to consider the signifi- 
cance of the Hamilton-Jacobi formulation as applied 
to the case of Fig. 12. To restate, the problem is that in 
the local boundary-based model of evolution, remote 
portions of the shape as measured along the bound- 
ary may be close and in fact pass through each other as 
shown in Fig. 12. By introducing a surface to represent 
the interior, this information becomes explicit. Invok- 
ing the entropy condition as presented in Definition 
1, when portions of the shape's boundary collide and 
pass over each other, the shape is segmented into two 
disjoint subshapes, each evolving separately, accord- 
ing to Principle 4. In this way, topologically connected 
shapes like that in Fig. 12.A, and those with two disjoint 
components, like that in Fig. 10.C, become neighbors 
in a deformation process and therefore are similar. 

In summary, solutions of Eq. (46) satisfying the en- 
tropy condition 1 are the proper "physical" solutions in 
the viscosity sense. 
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Although this is not the paper to discuss numerical 
implementations, we do observe that Sethian (1990) 
proved that simple, Lagrangian, difference approxima- 
tions require an impractically small time step in order 
to achieve stability for Hamilton-Jacobi equations. The 
algorithm proposed by Osher-Sethian (1988); Sethian 
and Osher (1988), which is based on Haml"lton-Jacobi 
theory (and therefore optimal control), has provided 
reliable numerical solutions to these problems. 

8 The Reaction-Diffusion Space 

In the previous section we showed how shocks formed 
in the course of evolution of shapes. In this section, we 
classify these shocks and show how they lead to our pro- 
posal for the elements of shape: parts, protrusions, and 
bends. These shocks occur for various combinations 
of constant deformation and curvature deformation, or 
reaction and diffusion. The space generated by these 
combinations and by time is referred to as the reaction- 
diffusion space. It is in the context of this space that 
shocks will be related to shape. 

Before providing a formal definition of the reaction- 
diffusion space, a kind of physical analogy might help 
to focus intuitions about what is being developed. 
Imagine a particular shape, say a peanut, made out 
of material such as wax. Among the uniform (with re- 
spect to the boundary) operations that are possible on 
the peanut, two are especially important. First, mate- 
rial can be added to, or withdrawn from, the peanut, 
to simulate growth. Second, the temperature can be 
varied to simulate melting, or deformation. These two 
operations correspond, of course, to the reaction and 
diffusion terms in our boundary evolution equations. 
Now, to build the reaction-diffusion space, imagine a 
collection of peanut-shapes in a row. We shall uni- 
formly add (or withdraw) material to (from) to each 
of the peanuts, but of increasing temperatures along 
the row. Observe that the conservation law dictates 
that these changes (addition/withdrawal of material and 
melting) take place as uniformly as possible; i.e., con- 
serving the shape as much as possible. On the colder 
end of the scale, "folds" or shocks will form, while, on 
the warmer, more viscous end of the scale, the wax will 
tend to flow together and the shape will be smoother. 
Pure melting, of course, will result in a round pud- 
dle of wax. Thus, the space of shapes generated by 
the peanut-shape is spanned by the ratio of reaction 
to diffusion (the "temperature" scale), and time (the 
"temporal" scale indicating the duration of evolution, 

orthe quantity of material added or withdrawn). This is 
our reaction-diffusion space for the peanut. Reaction- 
diffusion spaces for more complex shapes require a 
temporal ordering of events, which describes when a 
seed for a part is born (for material being added) or 
annihilated (for material being withdrawn). This tem- 
poral ordering, of course, is the significance hierarchy. 

The different aspects of shape are well represented in 
the reaction-diffusion space. For example, pure reac- 
tion is a region process, in that "area" determines what 
is significant for survival over time. Pure diffusion, on 
the other hand, is a boundary process, and "length" is 
the critical feature. In addition, pure reaction is a pro- 
cess that is local with regard to the time of deformation, 
while pure diffusion is global. 

& l The Reaction-Diffusion Space 

In order to define the reaction-diffusion space, we need 
to quote the following result from (Kimia et al. 1992): 

THEOREM 6. Consider a C 2 embedded curve Co 
evolving through a function of curvature as in (3). (We 
regard our curves as mappings from the unit circle S i 
to the plane R2.) Let G(s) = C(s,t) be a classical 
solution for t ~ [0, t']. Then, 

lim G = C*, (52) 
t - +  t ~ 

in the Hausdorff metric where curve C* has finite to- 
tal curvature. Moreover, d* is locally the graph of a 
H6lder continuous function with exponent 1/2. 

With this result, we can define now the reaction- 
diffusion space: 

DEFINITION 2. Let S denote the space of all images 
of embedded C 2 curves regarded as mappings from 
S 1 --+ R 2. We will call these shapes. The representa- 
tion of a shape, 8, in all possible time and all possible ra- 
tios 10/ i l  (ill < 0) is called the REACTION-DIFFUSION 
SPACE for that shape. 

In other words, the reaction-diffusion space for a 
shape S is the set of all shapes S' generated by 

7gD(a,t) S ~-* 8', (~ E (--oo, oo), t E [0, oo)). 

(53) 

where 7¢D is the deformation with ot as the ratio of 
constant motion to curvature motion magnitudes and t 
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C i r c l e  D e f o r m a t i o n  F i n a l  Shape 

F o r m a t i o n  o f  S i n g u l a r i t y  
( F i r s t  O r d e r )  

R e c o v e r y  oF D e f o r m a t i o n  

Fig. 13. The shape on the right is perceived as a circle with a de- 
formation. While a number of other interpretations are possible, this 
interpretation seems to be favored naturally. How can this deforma- 
tion be recovered? 

is time. From the theorem stated above, S r is the space 
of all curves which are images of mappings S t --+ 
R 2 which are locally the graphs of HSlder continuous 
functions 3 of exponent 1/2. This space therefore spans 
all combinations of reaction and diffusion, and time. 
Note that #1 > 0 represents the heat equation running 
backward in time and f l l  = 0 represents the case of no 
diffusion; a nonrealistic situation. 

Notice that the reaction-diffusion space leads to a 
topological notion of path-connectedness in the space 
of shapes. Namely, two shapes lie in the same con- 
nected component if one can be deformed to the other 
in the reaction-diffusion space. 

In the reaction-diffusion space, the formation of 
shocks is key to its representation. The shock for- 
mation process is governed differently as the ratio of 
reaction to diffusion is altered. Also, the time of for- 
mation of a shock is related to its significance. This 
two-dimensional space affords a much richer analysis 
than the representation of a single curve in isolation, 
Figs. 18, 19, 20 and 21. It is in the context of this space 
that we analyze shocks, as follows (Kimia 1990). 

8.2 First-Order Shocks 

Consider the shape in Fig. 13 which is formed by push- 
ing a portion of a circle outwards. It wotdd not be 
uncommon to describe this shape as a "circle with a 
protrusion." While other descriptions, e.g. a half cir- 
cle glued on a half deformed rectangle, are possible, 

nevertheless our perception is clear (unless we have 
been primed to another category previously). Now, let 
us consider the effect of  a constant motion type of defor- 
mation on this shape. Recall that in Fig. (13), constant 
motion produces a single isolated orientation disconti- 
nuity from a negative curvature minimum. Adhering 
closely to the terminology of classical conservation 
laws, then, let us preserve the term shock and define: 

DEFINITION 3. A FIRST-ORDER SHOCK is a disconti- 
nuity in orientation of the boundary of a shape. 

THEOREM 7. In the process of evolution by constant 
motion, each local curvature extremum leads to a first 
order shock, provided that only this local portion of the 
curve evolves. 

PROOF. For constant motion of evolution Eq. (5), 
/~0(r) = 1, so that the evolution of the metric, or 
length along the curve g, and curvature r is governed 
by (Grayson 1989; Osher and Sethian 1988) 

ag 
- -  = t o g ,  
at 

a f_x = _x2. (54) 
at 

These equations can be solved explicitly by noting that 

x(s, 0) 
x(s, t) -- 1 + x(s, O)t' (55) 

and then substitute to solve for the metric equation 

ag 
= x(s, t)g(s, t) 

at 
gt tc (s, O) 
g 1 + r(s, O)t 

a In(g) x(s, O) 

at 1 + r(s, O)t 
a ln(g) a 

= ~t  [ln(1 + x(s, 0)t)] a---~---- 

ln(g(s, t) - ln(g(s, 0)) = ln(1 + to(s, 0)t) - In(l) 

ln(g(s, t) = ln(g(s, 0)) 

+ln(1 + r (s ,  0)t) 

g(s, t) = g(s, 0)(1 + x(s, O)t) (56) 

Hence, the metric changes linearly in time with a cur- 
vature dependent coefficient. As such, for points of 
negative curvature, as to --~ ~ ,  the metric will tend 
to zero, while curvature will tend to negative infin- 
ity; this is exactly when the first order shock forms. 
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Fig. 14. RIGHT: Illustration of how curvature concentrates to form first-order shocks. Once a shock is formed, the information contained in 
the section of the curve which mapped to the shock in the forward direction (between dashed lines) is now lost forever. Note that the removal 
of information is local, and nonlinear. An attempt to reconstruct the original signal by running the reaction term backwards in time would 
yield a circular arc for the section that mapped to the shock. LEFT: This is an illustration of the significance hierarchy imposed by shocks: 
less significant shocks corresponding to protrusions get absorbed into more significant shocks describing a more global portion of the shape of 
the object. Reconstruction (by running reaction backwards in time) again gives the same circular arc as in (RIOHT), even though the section 
mapping to the shock is now more complicated. 

Clearly, the smaller the negative curvature at a point, 
the smaller this time, to. Then, negative curvature min- 
ima will first reach first-order shocks, provided remote 
portions of  the boundary do not interfere. 

In summary then, first order shocks are associated 
with protrusions (indentations) in absence of  other 
shocks. They arise because curvature accumulates 
most rapidly at extrema. Note that several smaller pro- 
trusions may merge to form one at a larger "scale" as 
in Fig. 14. 

8.3 Second-Order Shocks 

A second kind of  shock forms, not due to curvature 
build-up as in the first type, but due to a collision of  
boundaries. Consider the shape in Fig. 12. As the 
shape (A) evolves in time due to a constant deforma- 
tion, portions o f  the boundary collide and give rise to 
two cusps (B). These cusps are discontinuities, not in 
tangent, but in curvature. We call these second-order 
shocks. Note the change of  connectivity at the instant 
it forms. Beyond this instant, portions of  the bound- 
aries cross each other (the dashed lines). The role of  
entropy in this case is to remove portions of  the bound- 
ary that have reached a previously visited point (C). 
Formally, 

DEFINITION 4. When in the process of  deformation 
two distinct non-neighboring boundary points join and 
not all the other neighboring boundary points have col- 
lapsed together, a SECOND-ORDER SHOCK is formed. 

The second-order shocks define parts of a shape. 
This notion of parts is different than that proposed in 
(Hoffman and Richards 1985), where parts were de- 
fined by negative minima of  curvature. Our parts are 
more intuitive e.g. consider the examples in Figs. 15 
and 16. These ideas have been extended in (Siddiqi and 
Kimia 1994; Siddiqiet al. 1992) toinclude neck-based 
and limb-based parts. 

We should note that shocks o f  the first and second 
orders are generic. "Generic" means in the sense that 
such singularities cannot be removed by a small per- 
turbation. "Small perturbation" is in the sense of  the 
theory of  singularities of  smooth mappings. For de- 
tails, see Appendix C. 

8.4 Third-Order Shocks 

A third type of  shock is generated when distinct bound- 
ary points are brought together as in second-order 
shocks, but unlike the second-order shock, the neigh- 
boring boundary points on each side have also joined 
with other distant boundary points. Formally, 

DEFINITION 5. When in the process of  deformation 
two distinct non-neighboring boundary points join in 
a manner such that neighboring boundaries of  each 
point also collapse together, a THIRD-ORDER SHOCK 
is formed. 

As defined above, third-order shocks cannot possi- 
bly change the topological connectivity of  the shape. 
Rather, they indicate a symmetric axis, as in the case of  
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Fig. 15. Partitioning of a two-dimensional shape requires not only boundary, but also region information. We show two shapes (top row) and 
the un-natural part structure implied by (Hoffman and Richards 1985). Our theory leads to much more natural descriptions (bottom row). 

Hov f f a n y  P a r t s  Does  a S n a k e  H a v e ?  

Ho f f m a n - R  i c h a r d s  
R e c o g n i t i o n  o f  P a r t s  
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Our  R p p r o a c h  
R e a c t i o n - D i f f u s i o n  S p a c e  

o 

9 P a r t s  2 P a r t s  

Fig. 16. Basing a partitioning theory on only the boundary information, may confuse "bent" bars with parts as the SNAKE example illustrates. 
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Third-Order Shocks 

Fig. 1Z The snake shape forms third-order shocks when distant 
points of the boundary come together not in isolation, but rather in 
conjunction with neighbors. Third-order shocks indicate the "bend- 
ing" of an object. The interpretation of the snake therefore is as a 
"bent stick". 

an ellipse. However, this axis is not composed of first- 
order shocks where portions of the boundary collapse 
into a single point. Rather, this axis is the result of a 
region collapsing into points, Fig. 17. Therefore, the 
locus of these points indicates a bending of an extended 
region, rather than a protrusion of the boundary. 

8.5 Fourth-Order Shocks 

In the process of inward evolution of a shape, regions 
shrink and form shocks. In time, remaining regions 
finally shrink to a point and disappear due to the en- 
tropy condition. All parts of a shape must eventually 
annihilate to a point, since the shape may be entirely 
embedded inside some circle of radius R which will, in 
--~ units of time, disappear. These are the fourth-order ~0 
shocks and are the seeds for shape. 

DEFINITION 6. When in the process of deformation a 
closed boundary collapses to a single point, a FOtmTn- 
ORDER SHOCK is formed. 

8.6 Examples 

We now illustrate the reaction-diffusion space and the 
formation of shocks within it. To recall, the reaction- 

diffusion space is the collection of all deformations of 
a shape for all combinations of reaction,/~0, diffusion, 
fit, and time t. Since of these three variables only two 
are independent, we keep time and the ratio of reaction 
to diffusion, ~o/fll as the two variables which span the 
space. This choice is motivated by the fact that there is 
always some amount of diffusion present in any numer- 
ical implementation, so that the vertical lines at infinity 
on the x-axis are associated with pure reaction and the 
y-axis is associated with pure diffusion. Furthermore, 
the case of pure diffusion is a natural seam between 
inward and outward reaction; see Fig. 19. 

To interpret our reaction-diffusion convention, then, 
each vertical line at x is a deformation of the original 
shape with the ratio ~0//~l = x (the absolute values of 
/~o and ~1 are not relevant in that they are absorbed in 
time t). Note that for/~t = 0.0, or pure reaction, some 
diffusion manifests itself in the numerical implemen- 
tation, so that shapes along this line diffuse minimally. 
The vertical dimension of the line represents time, or 
the amount of deformation. This vertical axis is con- 
veniently depicted on a logarithmic scale and the nu- 
merals indicate the time frame of the computation from 
which the image was taken. However, note that there 
is no inherent "vertical topology" in this space and that 
the space is intended to generate a topology in both 
dimensions; this is a visual choice for representing this 
space. 

There is an interesting connection between the 
reaction-diffusion and the symmetric axis transform 
(SAT): the locus of points at which shocks form and 
move under "pure" reaction defines axes that corre- 
spond to the loci of the symmetric axis transform. Since 
SAT is susceptible to noise, various smoothing algo- 
rithms have been proposed (Dill et al. 1987; Pizer 
et al. 1987). In our framework, however, diffusion 
is naturally part of the deformations. As such, the 
description of axes resulting from our shock provides 
a "coloration" of the symmetric axis into meaningful 
portions, and it also imposes a measure of significance 
on each; these ideas are developed in (Siddiqi et al. 
1993). 

Another interesting connection is that the reaction- 
diffusion space, under the pure reaction axes, embeds 
the mathematical morphology operations of erosion 
and dilation with a bali structuring element. The 
smoothing of these operations can now be viewed 
as annihilation of information through shocks. This 
information-theoretic view of mathematical morphol- 
ogy relates to the shape not only as a set, but also as 
a boundary. Furthermore, the reaction-diffusion space 
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Fig. 18. This figure illustrates the right half of the reaction-diffusion space for the DOLL image. The DOLL image was taken from a range 
image collection of the National Research Council of Canada's Laser Range Image Library CNRC9077 Cat No 422. The image was thresholded 
and stored as a 128 x 128 image. The numbers on the x-axis are indicative of the two values fl0, t31 in relation to time. Note that even in such 
low resolution the algorithm is robust and the trade-offs between reaction and diffusion are made clear: Diffusion "melts" the boundary of the 
shape by propagating and amalgamating boundary information to finally converge on a circular point (Grayson 1989); Reaction, on the other 
hand, is a rigid process which breaks the shape into pieces. 
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Fig. 19. This figure is an example of a reaction diffusion involving both inward and outward deformation. Note the formation of shocks with 
outward reaction. Also, observe that outward reaction may be thought of an inward reaction when the role of figure and ground is reversed. 

can now be viewed as extending the mathematical mor- 
phology framework by adding a notion of significance 
through a diffusion process (Arehart et aL 1993; Sapiro 
et al. 1992). Finally, our algorithms are robust even for 
low resolution images (128 x 128) and may be viewed 
as a new method for numerically implementing math- 
ematical morphology for a ball structuring element. 

Shape representation is perhaps most important to 
object recognition. Any object matching method em- 
ploys a similarity metric, whether it is explicit or 
implicit in the algorithm. As we have seen, the for- 
mation of shocks in the reaction-diffusion space and 
their classification yields a complete representation 
of the shape. These shocks as discrete events rep- 
resent the shape not only statically, but also dynam- 
ically in relation in to its "nearby" shapes (compare 
(Koenderink and van Doom 1986)). 4 Since these de- 
formations simplify shapes in time, the longer it takes 
two shapes to become similar under these deforma- 
tions, the more dissimilar they are. Therefore, the 

degree of similarity of the shock-based representation 
of shapes in the reaction-diffusion space is indicative 
of their degree of similarity for object recognition. 
Also, the discrete property of the shocks captures the 
generic categorical classification of shapes. These 
ideas will be described in more detail in a future 
paper. 

An important concern in object recognition is occlu- 
sion. A representation of shape that is robust with oc- 
clusion is necessarily organized such that half the shape 
gives half the representation, leading to the need for a 
stable partitioning of shapes. Figure 5 illustrates how 
second-order shocks of the reaction-diffusion space in 
conjunction with the entropy scale space reconstruction 
give a hierarchy of parts for the doll. See (Siddiqi and 
Kimia 1994; Siddiqi et al. 1992) for first steps toward 
partitioning shapes. 

Finally, the images are chosen to illustrate the 
reaction-diffusion space for a number of shapes and 
features: The CAT is a hand-drawn image (Gombrich 
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Fig. 20. The right half of the reaction-diffusion space of the CAT image. Note the tail as the shape undergoes the various deformations: 
reaction breaks the tail off (iterations 8 to 14 show this clearly), while diffusion melts the tail into the rest of the shape, resulting in a pointed 
deformation that persists over many iterations. 

1956) consisting of  simple geometric shapes; the 
DOLL is the binary version of  the range image of  a 
doll which is an example o f  an object with a hierarchy 
of  body parts; the don Quixote image (NOI41) is a 

scan of  a Picasso drawing; the F16 image is another 
man-made object representable as a collection of  sim- 
ple geometrical parts; and finally the HAND image is 
representative of  biological shapes. 
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Fig. 21. The fight half of the reaction-diffusion space for the HAND image. Note how each digit maps to a set of shocks. The shocks in the 
reaction-diffusion space support a description of a band as five elongated blobs attached onto a central blob. 

9 Conclusion 

Determining whether two shapes are similar to one an- 
other is almost immediate for us, and certainly is related 
to our spectacular ability to recognize arbitrary objects. 
However, while computers can be easily programmed 
to determine whether two shapes are metrically iden- 
tical (a task of significant difficulty for us!), they have 
been very poor at general object recognition. This dif- 

ference is more than an academic curiosity, because 
of the role that recognition plays in applications of 
computer vision. 

Central to recognition is determining which shapes 
are similar, and we have begun to develop a theory of 
shape from which this can be determined. The founda- 
tions for the theory stand on two basic ideas. First, we 
observe that, if a boundary were changed only slightly, 
then, in general, its shape would change only slightly. 
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This leads us to propose an operational theory of shape 
based on incremental contour deformations, and to an 
analysis of the associated differential geometry. Con- 
tour deformations are characterized via two special 
ones: a deformation constant along the normal and 
another one that varies in proportion to the curvature, 
and much of the paper was devoted to analyzing and 
understanding these two deformations. 

As long as the normal exists at every point along a 
contour, the deformation is classical. However, dis- 
continuities naturally arise, and, if evolution is unre- 
stricted, contour segments can pass over one another. 
The first of these problems causes mathematical diffi- 
culties, and the latter is awkward from a shape perspec- 
tive. Our second basic observation about shapes: that 
they are not arbitrary contours, but rather are those 
contours which can enclose "physical" material, is 
therefore introduced to guide the development. Con- 
servation laws are obtained for shape in analogy to the 
way they operate in mathematical physics using ideas 
from (Osher and Sethian 1988; Sethian 19855a, c). 
Special care is taken to introduce a number of prin- 
ciples that we take to be intuitive and self evident, 
and which formally guide the development of the the- 
ory. The mathematical delicacies are organized by an 
entropy principle, and Hamilton-Jacobi theory is in- 
troduced to computer vision. The discontinuities, or 
shocks, are shown to be much more than mathemat- 
ical difficulties--they reveal the singular events that 
can arise during the process of shape deformation. It 
is these shocks that are the computational elements 
of shape; they provide the language in which to de- 
scribe shapes. They include (i) first-order shocks, or 
deformations; (ii) second-order shocks, or parts; (iii) 
third-order shocks, or bends; and, finally (iv) fourth- 
order shocks, or the seeds for shapes. The type of 
shocks, the "time" at which they arise during defor- 
mation (their significance), and their spatial relation- 
ships provide the description of shape that we shall 
use for recognition. The entire theory is consistent 
with our intuitive principles, and suggests a mecha- 
nism for capturing the categorical nature of generic 
shapes. 

In this paper, we have attempted to unify several 
of the competing aspects of shape. Special cases of 
the deformation geometry correspond to (a type of) 
Gaussian blurting and mathematical morphology, and 
the loci of points traced out by the shocks are related 
to skeletons. Local and global aspects of shape, as 
well as boundary vs. interior issues, are brought to- 
gether. Finally, we develop a space of shapes, the 

reaction-diffusion space, in which "similar" shapes are 
arranged according to the different axes of deforma- 
tion. In subsequent papers we shall show how these 
ideas lead to approximation and (non-linear) simplifi- 
cations of shapes, and to a topology over shapes. We 
believe that this will begin to provide the foundation 
for general shape recognition. 
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A Entropy and Viscosity Solutions 

In this appendix, for the convenience of the reader, we 
collect some standard facts about entropy solutions to 
conservation laws and their relation to viscosity theory 
of the Hamitton-Jacobi equation. Full details can be 
found in (Barles 1985; Lions 198 t; Crandall and Lions 
1983; Fleming and Soner 1993). 

A.1 Weak Solutions of Conservation Laws 

In this section, we discuss a weak form of a solution 
for a hyperbolic conservation law of the form 

ut+ f(U)x=O, u(x,O)=uo. (57) 

Suppose that u in fact is a strong classical solution 
of (57). Let C~ denote the set of continuously differ- 
entiable functions with compact support on R x R +. 
(Here R + denotes the set of real numbers > 0.) Let 

~ Co 1. We suppose that the support of ap is contained 
in the rectangle R = Ix1, x2] x [0, T] with Ix1 t, Ix2h T 
chosen sufficiently large so that 

~(xl ,  t) = ~(x2, t ) =  ~(x,  T) = 0, Vt E R +, x ~ R. 

Then multiplying (57) by ~p and integrating, we see 
that 

f S f o  ° ° (u t+f (u )x )~dxd too  

= [l ' (ut  + f(u)x)~pdxdt = O. 
ddR 
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The trick is now to integrate by parts: 

f ; 2  Lrut~pdxdt  

= [u(x, T)~t(x, T) -- u(x, O)~(x, 0)]dx 
1 

f? ¢:¢ = -uo (x )7 : (x ,  O)dx - u~Itdxdt. 
o~ J x l  J O  

Similarly, 

¢:¢ /o' g(U)x~dxdt = [ f (u (x2 ,  t))~r(x2, t)  
Jx I JO 

-- f (u(xl, t))~P(xl, t)]dt 

¢? f ( u ) ~ d x d t  
- -  J O  J x l  

¢? f (u)~dxdt .  
- -  JO J x i  

Hence, we derive the weak form of the conservation 
law (57): 

:io= i: (u~kt + f (u)~,)dxdt + uo~dx = O. 
oo 

(58) 
The point is that (58) makes sense for u(x, t) 

bounded and measurable (with hounded measurable 
initial data u0), for all ~p ~ C~. Thus such functions 
u(x, t) which satisfy (58) for all ~p ~ C~ are called 
weak solutions. Finally, it is easy to show that if a con- 
tinuously differentiable function u satisfies (58) for all 
~p ~ Co 1, then ~p is a classical solution of (57). 

B Hamilton-Jacobi  Equat ion 

In this section, we review the connection of Hamilton- 
Jacobi theory with optimal control in order to motivate 
the definition of "viscosity solution" The discussion 
we give below can be applied more generally to the 
Hamilton-Jacobi-Bellman equation, but we are only 
interested in outlining the main ideas here. For more 
details, see the recent book (Fleming and Soner 1993) 
as well as (Lions 1981). 

Let us begin by studying the calculus of variations 
problem on the fixed interval [t, tl]. Set 

U := L°°([t, tl]; Rn). 

Consider the dynamical system 

dx 
- -  = u ( s ) ,  u ~ U (59) 
ds 

that is x(s) is the state variable and u(s) is the con- 
trol We require the boundary conditions x(t) = x, 
and x(q) ~ Q where Q C R n is closed. (We 
should note that one can take more general functions 
g (s, x (s), u (s)) on the right-hand side of (59). We have 
chosen just to consider the simplest classical case in or- 
der to motivate our treatment of the Hamilton-Jacobi 
equation via control principles.) Then the problem is 
to minimize the integral (cost functional) 

J := 12(s, x(s), u(s))ds + ~b(X(tl)), (60) 

subject to the constraint (59) over all Lipschitz contin- 
uous curves x: [t, q] ---> R" which satisfy the endpoint 
conditions. 

The associated Hamiltonian function is 

~( t ,  x, p) := max { - v .  p - 12(t, x, v)}. (61) 
v E R  n 

The dual formula is 

12(t, x, p) := max { - v .  p - 7-/0, x, p)}. (62) 
p e r  n 

The extremal points where the maximum is taken on 
in (61) and (62) are related by 

p = -Lv ,  v = -7-/p (63) 

(the Legendre transformation). This duality between 
z2 and 7-I is basically that of the Lagrangian and Hamil- 
tonian formulations of classical mechanics where v is 
velocity and p is momentum. 

Define the value function or the optimal return 

V(t, x) := inf J(t, x; u). (64) 
u ~ U  

Then for continuously differentiable V, one may 
show using dynamic programming that V satisfies the 
Hamilton-Jacobi equation 

aV 
- 0---t- + 7-t(t, x, Vx V) = 0. (65) 

(Note that Vx denotes the gradient computed with re- 
spect to the space variables x.) Assuming that Q = R", 
we get the boundary condition 

V(q, x) = ~b(x). (66) 

(See a sketch of the derivation of Eq. (65) below.) 



220 Kimia, Tannenbaum and Zucker 

One can also show that one gets the same Hamilton- 
Jacobi equation as (65) for the following exit time prob- 
lem: Minimize 

J := £(s, x(s), 2(s))ds + ~(te, x(t.)), 

where te is the exit time of the "state trajectory" 
(s, x(s)) from [to, h] x X, where X E 11 n is closed, 
and q~ is a function such that 

i f ( t ,  x) i f  (t, x) ~ [to, tl) x R n, 
• (t, x) := / q~(x) if (t, x) e {tl} x R ". 

(67) 

REMARK. The problems considered above are called 
finite horizon problems. There is a related class of 
optimization problems called infinite horizon. Suppose 
that we have a dynamical system of the form 

dx 
- -  = g(x(s), u(s)), 
ds 

x(O) = :co. 

The cost in this case is given by a functional of the form 

J(x, u) := e-~S£(x(s), u(s))ds + e-'~tqS(x(t)). 

A Hamilton-Jacobi theory with associated value func- 
tions can be developed in this setting as well. 

One needs to introduce generalized solutions to 
the Hamilton-Jacobi Eq. (65) in case V is not dif- 
ferentiable. A standard example for the exit time 
problem may be constructed as follows: We let the 
"Lagrangian" 

!) 2 

£(t ,  x ,  1)) :=  1 + T '  

------ 0, X := [ -1 ,  1], [to, tl] = [0, 11. So we want to 
minimize 

t, x(s)2 ]ds .  f{m+  
The optimal control in this case for given initial condi- 
tion (t, x) can be computed to be 

O i fx  _< - t ,  
Uopt :=  if txl < t, 

i fx  > t. 

The corresponding value function is 

1 - t i f  Ixl < - t ,  
V( t , x ) := l - I x [  i f l x l > t .  

V is not differentiable for t = Ix I. Note however that V 
satisfies the corresponding Hamilton-Jacobi equation 

av(t,x) ( o v ( t , x ) )  2 
0 - - - - - ~ + \  ~x-x - 1 = 0  

except when t = [x[. 
In fact, this illustrates the general fact that the value 

function satisfies the Hamilton-Jacobi at all points 
where it is differentiable. Let us call ~; a generalized 
solution of the Hamilton-Jacobi Eq. (65) ifV is locally 
Lipschitz and satisfies (65) almost everywhere. Then 
one may show that the value function is a generalized 
solution in this sense. (See our discussion in the next 
section.) The problem is that typically there are many 
generalized solutions. We therefore want to pick out 
one "natural" solution. We show how to do this next. 

B.1 Viscosity Solutions 

The above discussion motivates the introduction of vis- 
cosity solutions. Viscosity solutions were introduced 
by Crandall and Lions (1983). For another approach 
to the generalized solutions of Hamilton-Jacobi using 
techniques from nonsmooth analysis, see (Clarke 1989) 
and the references therein. 

We set Coo = Coo (R n x (0, oo)). Let V~ be a classical 
solution of (65) and let w e C°% Suppose that (x~, t~) 
is a local maximum of VE -- w. Then via the maximum 
principle, 

0 V '  
(x~, t~) = 

0w 
- ~  (x,, t,), 

VxV,(x~, t,) = VxW(X,, t,), 

AV,(x,,  t,) _< Ao~(x,, t,). 

Thus we see from (65) that for all oJ ~ C °°, we have 

0w 
- - - ( x , ,  t,) - E A~o(x,, t,) 

0t 
+ 7-t (x,, t,, Vx 09 (x,, t,)) < 0. (68) 

Similarly, playing the same game for a local minimum, 
we get that for w ~ C °°, 

0co 
(x,, t,) - E Aco(x,, t,) 

+ 7-/(x,, t,, Vxw(x,, t,)) > 0. (69) 

Now if V¢ converges uniformly on compact subsets 
to V: R n x (0, oo) ~ R continuous, and if we take ~o 
C w, and assume that V - 09 has a strict local maximum 
(x0, to), then there exists (x~, rE) which converges to 
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(x0, to) such that each (xE, t~) is a local maximum point 
of V~ - a~. Hence (68) is satisfied, and we can pass to 
the limit. We therefore make the following definition: 

DEFINITION 7. 
OUS. 

1. 

. 

. 

Let V: R n x (0, oo) ~ R be continu- 

V is a viscosity subsolution of (65) if for any given 
to e C °°, at each local maximum point of V - to, 
say (x0, to), we have 

Oto 
~-~ (xo, to) + 7-t(xo, to, Vxto(xo, to)) < O. 

V is a viscosity supersotution of (65) if for any given 
to e C ~,  at each local minimum point of V - to, 
say (x0, to), we have 

Ow 
-~ (xo, to) + 7~(xo, to, Vxto(Xo, to)) > O. 

V is a viscosity solution of (65) if it is both a vis- 
cosity subsolution and supersolution. 

A beautiful fact is that the value function defined by 
(64) is the unique viscosity solution of (65). For the 
eikonal equation (the "prairie fire" model of computer 
vision) this has an especially neat form. 

B.2 EikonalEqua6on 

Barles (1985) noticed that the entropy solution of a hy- 
perbolic conservation law is equivalent to the viscosity 
solution of the corresponding Hamilton-Jacobi equa- 
tion. We will outline his argument for the classical 
eikonal equation which appears in geometric optics. 

Consider the eikonal equation 

- a-S- + n T;x = 0, (70) 

V(x,  o) = Vo(x), 

where the Hamiltonian is given by 

H(p) := v/ i-+ p2. 

Then one can show (Lions 1981) in this case that the 
value function which gives the unique viscosity solu- 
tion of (70) is given by the Lax-Oleinik formula 

V(t,x):Ilfin[Vo(y)+tH*(~)].y (71, 

Here H* is the conjugate function of H defined by 

H*(w) = max[uw - H(u)]. 

Barles showed that this is closely related to the en- 
tropy condition introduced by Sethian in relation to 
the prairie fire model of flame propagation (Sethian 
1985a). We work in R 2 for simplicity. 

Let 

C = {(x. y) e 112: y = q~(x)}, 

where ~b is any continuous function. We assume that the 
particles below C are burnt, and the region above C is 
filled with a combustible fluid. We assume that the front 
propagates in the normal direction with constant speed 
one. Sethian (1985a) describes the motion of the flame 
front even when singularities develop by introducing 
the following entropy condition: 

"Once a particle is burnt, it remains burnt." 
Let 

y = V ( x , t ) ,  t > 0  

denote the position of the prairie fire when evolving ac- 
cording to this law. Then one may prove the following 
(Barles 1985): 

PROPOSITION t (Barles). Notation as above. Then 
the position of the prairie fire is given by y = V (x, t), 
where V is the (unique) viscosity solution of the eikonal 
Eq. (70) with boundary condition 

V(x,  O) = 4~(x). 

PROOF. The proof is very easy. One may show using 
the above description of the prairie fire evolution that 
the front is given by 

V(x, t) = max {q~(z) + ~/t 2 - [z - xl2}. 
lz-xl<_t 

It is then easy to check that this is the Lax-Oleinik 
(value function) formula (71) given above. 

C Generic Singularities 

In this appendix, we would like to use Arnold's (1989) 
classification of singularities to show that shocks of 
type 1 and 2 are generic. We will do this for the grass- 
fire evolution in the plane, givenby the parallel evolu- 
tion Ct = - N ,  where as above N denotes the outward 
normal. In order to do this, we must realize this flow 
as defining a (non-singular) surface in R 4. 
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Let C C R 2 denote a plane curve. We associate to C, 
the curve C C R 4 given by 

2 t, C : =  {(x, y, px, py):(x, y) E C, p 2 + p r  = 

Px(~ - x )  + p y ( o -  y) = 1} 

where (~, r/) is the point on the (outward) normal to 
the curve at (x, y), at distance 1. We now use the treat- 
ment of Hamilton's equations and the calculus of vari- 
ations from Arnold (1989), Chapter 3 and the Huygens 
principle, Chapter 9 (see pages 248-252). Accord- 
ingly, we consider the Hamiltonian H(x, y, Px, Py) := 
1/2(p2 + py2), and using the equations from (Arnold 
1989) page 65, we arrive at the following system of 
first-order equations: 

2 = p x  
= py  

px=0 
/~y = 0.  

We evolve C under this system of equations. Let 
S := {C(t)} C R 4 denote the resulting surface. Let 
zr:R 4 --+ R 2 denote the projection ~r(x, y, Px, Py) := 
(x, y). Then zr(g(t)) := C(t) is the solution to 

C,=-~ 

at time t > 0. Notice that surface S always remains 
smooth. 

Now we can use Arnold's classification of generic 
singularities, i.e., singularities which are preserved un- 
der small perturbations. Indeed, let (xl, x2) denote lo- 
cal coordinates on the surface S. Then we can (locally) 
express zr: S --+ R 2 as ~r(xl, x2) = (yl, Y2). One can 
write down normal forms for the mapping zr I 8. Indeed, 
there are three normal forms. Only two are relevant for 
the classification of generic shocks. The first normal 
form is 

Yl = Xl, Y2 = X2. 

This corresponds to a transversal intersection shock in 
the evolution Ct = - N ,  that is, a shock of type 1. The 
second normal form is the Whitney tuck, that is, 

Yl = XlX2--X31, Y2 ~-X2" 

This will give a semi-cubical cusp in the evolution Ct = 
- N ,  that is a singularity of the form y3 = x 2 which is 
a type 2 shock. 

By the Arnold theory, these are the only possible 
generic shocks. 

Notes 

1. i.e. Deformations that do not depend on the coordinate system. 

2. A classical or strong solution to a partial differential equation 
is one whose derivatives exists and satisfy the equality. A non- 
classical or weak solution requires a treatment in the sense of 
distributions and equality in the integral form of the equation 
since derivatives do not exist (see appendix). 

3. A function is said to be Ht~lder continuous of order ot if there 
exists M > 0 such that 

tlf(x) - f(Y)ll -< MUx - Yll c'. 

4. As a preview, see the shapes arranged in the entropy scale space 
illustrated in Fig. 19 (Kimia et al. 1994). 
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