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The association of borders with ‘‘figure” rather than ‘‘background” provides a topological organizing prin-
ciple for early vision. Such global influences have recently been shown to have local effects, with neuronal
activity modulated by stimulus properties from well outside the classical receptive field. We extend the
theoretical analysis of such phenomena by developing the geometry of interaction between shading,
boundaries, and boundary ownership for smooth surfaces. The purely exterior edges of smooth objects
enjoy a fold-type relationship between shading and boundary, due to foreshortening, while the back-
ground is cut off transversely. However, at cusp points in the image mapping the exterior boundary ends
abruptly. Since such singular points are notoriously unstable, we conjecture that this process is regular-
ized by a natural quantization of suggestive contours due to physiological boundary-detection mecha-
nisms. The result extends a theorem about how contours must end to one that characterizes surface
(Gaussian) curvature in the neighborhood of where they appear to end. Apparent contours and their
interaction with local shading thus provide important monocular shape cues.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Nearly a century ago Rubin (1915) established the distinction
between figure and ground as an organizing principle for early vi-
sion, together with the correlative notion of border ownership, or
the tendency to assign the border to the ‘‘figure” rather than the
‘‘ground.” Both are illustrated with his powerful vase demonstra-
tion: as the figure shifts from the vase to the faces, the boundary
appears to shift as well. This effect is illustrated in Fig. 1 (left).

The subsequent Gestalt analysis of figure/ground sought to re-
late image properties to topological notions. The ‘‘one-sided or
asymmetrical function of the contour, as Koffka (1935, p. 184) puts
it, ‘‘can also be described by saying that contours have an ‘inside’
and an ‘outside.’ . . . The figure depends for its characteristics upon
the ground on which it appears.” In modern terms we speak of
boundaries separating image or textured regions, and of these fol-
lowing from occlusion in the scene domain.

More recent research in the neurophysiology of border owner-
ship and figure/ground relationships has revealed its signature in
both V1 and V2 (see Zhou et al., 2000; Lamme, 1995; Zipser
et al., 1996; Lee et al., 1998). There exists a local effect from global
pattern; in effect, cells respond more vigorously to edge stimuli
when they are part of the figure than when they are part of the
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ground, even though the portion of the stimulus within that cell’s
receptive field remains unchanged. Clearly there is an integrative
action-at-a-distance effect here (see Fig. 2). Our goal is, in effect,
to study certain signature patterns for the figure as it approaches
such an edge.

The modeling of border ownership involves building circuits
that not only involve how the elements of the border fit together,
e.g. by considering edge orientation, but also the requirement that
the figure remains consistently on the correct side of the bound-
ary. An early attempt to capture both of these requirements was
a system for dot pattern organization based on the Gestalt con-
cepts of (i) orientation good continuation, which dictated that
boundaries were to be smooth and (ii) closure, which dictated that
the boundary surrounded the cluster (see Zucker and Hummel,
1979). More recent modeling efforts follow this line of thinking,
with the figure requirement in the computation reduced to edge
polarity. That is, the circuit enforces the constraint that the direc-
tion of contrast across the edge is consistent (Sakai and
Nishimura, 2004; Sakai and Nishimura, 2006). Such consistency
in edge contrast is also relevant to shadow detection (Cavanagh
and Leclerc, 1989).

But there is much more to figure/ground organization than is
revealed by uniform colors or sign of contrast. The examples in
Fig. 1 indicate that surface as well as topological properties should
be considered, and recent research in stereo and its effect on orga-
nization confirms this (see e.g., Qiu and von der Heydt, 2005; Bakin
et al., 2000; Orban, 2008). However much of this analysis thus far
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has been limited to those scenes with step edges in depth and
sharp occlusions. Moreover, the complexity of natural scenes is of-
ten such that contrast can reverse along an edge.
1.1. Shape and shading

For smooth surfaces shading provides a powerful shape cue.
While shape-from-shading is a classical computation in computer
vision (Horn, 1975; Horn and Brooks, 1989), it is a global computa-
tion and involves solving a partial differential equation. Obtaining
stable, reliable solutions is a delicate numerical matter and pre-
sumes reliable information at the boundaries or elsewhere
(Oliensis, 1991). Texture has similiar structural issues (Garding,
1992). Local computer vision methods are very approximate and
can be highly biased (Pentland, 1984).

Nevertheless, humans are capable of inferring qualitative esti-
mates of shape information from shaded images (see e.g.,
Ramachandran, 1988; Todd and Mingolla, 1983; Mingolla and
Todd, 1986). Some data in this regard, from Koenderink’s labora-
tory (Kang and Koenderink, 2007), are reproduced in Fig. 3. Clearly
subjects were able to infer shape from shading information for this
furrow-shaped object, although they are not perfect. While there
have been neurobiological models of shape-from-shading (Lehky
and Sejnowski, 1988) and the psychophysical perception of shad-
ows (e.g., Knill et al., 1997), they neither achieve this level of per-
Fig. 2. Border ownership and border contrast. To illustrate the stimuli used in neurophy
ellipical receptive field. This edge can be part of the figure, as illustrated by (left) Gesta
Notice that the sign of edge contrast changes for the foreground square because it cove
contrast reversals can occur (right). Since this is common in natural images, we seek to
comparisons.

Fig. 1. Examples of boundaries around objects. (left) A Kanizsa-like display in which fi
figure, whether this is seen as the dark or the white columns. (middle) When shading is i
everywhere, even though they occlude one another. The perception of this type of inte
particular, how certain contours appear to end. (right) The mathematical possibilities for
contour proceeds to the interior of the shape. The exterior lobe, on the left side, has mu
formance nor explain the biases. We seek to make a step in that
direction in this paper.

1.2. Shape, boundaries and Koenderink’s theorem

Line drawings are another source of shape information, and re-
search in computer vision has also attempted recovery from them
(see e.g., Barrow and Tenenbaum, 1981; Malik, 1987). Again the
problem is delicate and not yet properly posed for our purposes.
It is helpful to consider this in more conceptual detail.

While edge contours can arise from many different surface/
viewer constraints (Fig. 4), we begin by considering those points
in images that arise from the projection of places on a smooth, so-
lid shape at which the tangent plane folds away from the viewer;
in particular, at points on the surface where the viewing vector is
orthogonal to the surface normal. This is a classical definition of
the edge of an object. The corresponding curve on the surface is
called the contour generator. Special structure arises when the tan-
gent to the contour generator aligns with the view vector: these
are the places at which the edge contour in the image appears to
end, because the solid body of the object obstructs the contour
generator from the viewer.

In a seminal series of papers (reviewed more formally later),
Koenderink showed how the curvature of the (edge) contour in
an image, its apparent curvature, carries information about surface
curvature. His central result is that the sign of the apparent curva-
siological experiments, a bright/dark edge at the same orientation is shown with an
lt closure considerations, while (middle) shows an apparent occlusion relationship.
rs two background surfaces. However, when non-constant contrasts are used such
extend the relationship between shading and boundaries beyond absolute contrast

gure/ground shift spontaneously. Notice how the boundary tends to belong to the
ntroduced, much of the ambiguity is removed. Now smooth surfaces appear almost
raction between smooth surfaces, in projection, is studied in this paper. Notice, in
smooth surfaces are illustrated by this image of a Klein bottle, in which the exterior
ch in common with the thumb in the middle image.



Fig. 3. Human performance in inferring shape from shading information. The gray areas indicate portions of the surface that are elliptic, or locally egg-shaped, while black
areas indicate areas that are hyperbolic, or saddle-shaped. Such measures relate to surface curvature and will be important in our subsequent analysis. The white (parabolic)
curves separate these two domains on the surface. Notice that, when the figure is in certain orientations, subjects can provide good qualitative estimates of shape, but there
are biases. The perceived furrow (a and b), for example, often extends out of the hyperbolic region. Furthermore, when viewed straight on, the furrow indentation appears to
shift with lighting (c and d). The theoretical challenge, therefore, is not only to predict the qualitative ability at estimating shape but to also explain the apparent biases. Data
and figure from Kang and Koenderink (2007).

1

6

2

3

5

4

Fig. 4. Categories of points on a surface as they could project into an image: (1) a
regular point, (2) a fold point, (3) a cusp, (4) a shadow point, (5) a crease point, (6) a
boundary point. The viewpoint is taken to be at the upper left. If the surface is
viewed from this position and a single light source also placed there, the fold (solid
line) and the fold shadow (dashed line) appear aligned. In this paper we concentrate
on points (2), folds, and (3), cusps, and study the interaction between the shading
and the boundary in their neighborhood.
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ture is the same as the sign of the Gaussian curvature for the sur-
face at that point. This, basically, is what defined the gray and black
regions in Fig. 3. Regions of positive Gaussian curvature are ellip-
soidal, or shaped like a portion of an egg; regions of negative
Gaussian curvature are saddle-shaped. The parabolic lines that
separate them, under projection into the image, become points of
inflection when they land on visible contours.

If we define image contours to be ideal edges; i.e., to be pre-
cisely those contours that arise when the surface normal is orthog-
onal to the vector pointing toward the viewer, then there is an
important corollary to Koenderink’s result that dictates the way
contours should end, provided this is in an area of negative Gauss-
ian curvature: they should end in a concavity that corresponds to
the change in curvature caused by entering the saddle-shaped area.
They should not, in particular, end by remaining strictly convex.

Various examples of ending contours are shown in Fig. 5. They
have been obtained by a variety of techniques, from strictly local
‘‘edge detector” computational analysis (Iverson and Zucker,
1995), which works for very smooth, artificial surfaces, to a
curve-inference system thought to model V1 (Ben-Shahar et al.,



Fig. 5. Example images containing edge contours that end. They were obtained by different methods. On the top row, edge contours (in black) were computed with a local
edge detector. In the folded cloth (upper left) the contour appears to end in a manner consistent with Koenderink’s corrollary, but for the furrow shape (upper right) it appears
to end in an inconsistent manner. (This furrow shape is a rotated verson of the one in Fig. 3.) In the Paolina edge map (middle), the contours were computed by a model for
curve detection that is consistent with long-range horizontal connections in visual cortex. Note that now there is a mixture: some contours obey the Koenderink corrollary
and others do not. (bottom) Three example drawings of contours indicating the furrow shape which end properly (left) or improperly (middle, right) among these bottom
drawings, which ones appear incorrect? Correct? What is the effect of varying the length? Our goal in this paper is to understand which aspects of visual shape are informed
by such computed and drawn contours.
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2003; Ben-Shahar and Zucker, 2003). From these it is clear that
computed contours may differ substantially from the requirements
of Koenderink’s Corollary: sometimes they appear to terminate at a
direct convexity.

Such deviations could, of course, simply be numerical and
quantization artifacts. It may be that the contours are ending
properly, except that their extension into the image is so short
that the pixelization process collapses the apparent curvature of
this portion of the contour to the wrong value. But this somehow
goes against our intuitions, because artists so rarely end contours
‘‘correctly.”

Another possibility is that the contour is not ending at the cor-
rect location. Since Fig. 5 (top, left) was composed from a math-
ematically-defined surface, we know exactly where the contour
should end: at the cusp point where the surface just stops occlud-
ing itself. However, and most importantly, only rarely do com-
puted contours end at this point. To the extent that these
computed contours match perceived contours, we can conclude
that further analysis is necessary to move the contour ending
away from the cusp and into the shape. This is precisely our goal
in this paper.

1.3. Overview of the paper

We seek to integrate the processing of surface shading informa-
tion with apparent contour information to derive constraints that
could be active in shape inference. Such integration of edge and
shading information is classical in computational vision, provided
the world is simple (e.g., blocks (Waltz, 1975)). We seek to accom-
plish this integration in a neurobiologically-plausible fashion for
smooth surfaces. As such, it is necessary to combine several seem-
ingly disparate pieces together.

The key to combination is geometrical analysis. This follows a
line of research in which orientation selectivity in visual cortex is
abstracted in differential-geometric terms, with preferred orienta-
tion at a point corresponding to the tangent at that point. If we are
dealing with boundaries, this tangent is to a curve; if shading, this
tangent is to an isophote (a level set in the intensity distribution.)



(a) (b)

Fig. 6. Illustration of shading flow in the neighborhood of an edge. When a shaded surface is viewed such that an edge appears, the shading flow field takes on different
appearances depending on the nature of the edge. A fold occurs (a) when the surface bends smoothly away from the viewer (the typical occlusion case), and the shading flow
field appears tangent to the edge. A fold occurs when the view direction ðĉÞ lies in the tangent plane (T) to the surface. At a cut (b), the surface is discontinuous (or occluded),
and shading flow is generally non-tangent to the edge.
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For shading, then, there is a field of tangents, called the shading
flow field. While these constructs are defined more carefully in
the next Section, for now we illustrate their power with a few
examples.

In Fig. 6 we illustrate how the shading flow must approach the
edge of a smooth surface in a tangential fashion; for a non-smooth
break in the surface orientation, or for a portion of the background
which has been occluded, the shading flow approaches the bound-
ary in a transverse fashion. These claims have been confirmed psy-
chophysically (Palmer and Ghose, 2008) and are developed in
detail in the next Section.

While both contours and shading distributions have a lift into
(position, orientation)-space, or orientation columns, they enjoy
very different spatial frequency representations. Contours are
essentially high-frequency; although extended in length, their en-
ergy in the other direction is concentrated within small spatial ex-
tents. Shading distributions, on the other hand, are more spread
out in two-dimensions; they are much lower in their spatial fre-
quency content. Thus we exploit the large spatial frequency range
of representations in cat (Issa et al., 2000) and primate (Silverman
et al., 1989). It has been observed that individual neurons can re-
spond with substantial selectivity to stimulus position, orientation,
and spatial frequency (Geisler and Albrecht, 1997; Bradley et al.,
1987); we take this to be the basis for the representation of con-
tours and shading flows. In Fig. 7 we demonstrate that this kind
of representation can guide perceived surface structure and
appearance.

Since local information in natural images is ambiguous about
both contours and shading, models for integrating such informa-
tion over local, overlapping neighborhoods are developed accord-
ing to the principle that their neural substrate consists in the
visual cortical machinery of columnar organization with long-
range horizontal connections. Such models, taken individually,
Fig. 7. Three examples of the Kanizsa-type display with shading, increasing in three-dim
(b) The white area is shaded so that it meets the boundary transversally – notice how fl
boundary tangentially at some points. (d) The shading flow in the white area meets the
have predicted connection structure through second order
(Ben-Shahar and Zucker, 2003). However, because the shading
flows involve area connections rather than linear ones, they can
spread into background areas unless properly contained. We there-
fore show how to introduce boundary conditions from the contour
system to constrain the spead of shading flows. This permits them
to grow to the occluding boundary but no further (unless war-
ranted by strong contextual support).

Thus far the material described is a review of earlier work, inte-
grated around the theme of border ownership and the relationship
between boundaries and shading for smooth surfaces. But as noted
earlier, external boundaries may move into a shape and end at cusp
points, and their analysis is the new contribution in this paper. In
particular, viewing edge contours as the boundary conditions for
shading, cusps are then those places where the edge contour ends;
ideal edge contours, then, cannot limit the shading beyond the
cusp. But there is a relationship between the shading and the con-
tour dictated by the underlying surface geometry, and it suggests
thinking about image contours in a broader sense. We now explain.

Stereoscopic vision provides information about surface struc-
ture by exploiting slight differences in viewpoint (Li and Zucker,
2006), and dynamically changing viewpoints is a classical tech-
nique in active computer vision (e.g., Kutulakos and Dyer, 1994).
A related idea has now been developed in a clever computer graph-
ics application to produce non-photorealistic renderings of scenes
(DeCarlo et al., 2004). In particular, given a complete three dimen-
sional model of an object, once the viewing position is given the
edge contours can be computed exactly as the projection of those
surface points at which the viewing vector is orthogonal to the sur-
face normal. However, in practice this edge map is very unsatisfy-
ing – it neither produces a firm impression of surface structure nor
resembles artists’ renderings. These ideal physical edges just seem
too abbreviated.
ensality from left to right. (a) Figure/ground reversals are common with no shading.
at it appears. (c) The white area is shaded with a vertical gradient. This meets the
boundary tangentially; this appears the most rounded.
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De Carlo et al.’s (2004) idea is to extend the exact edges with
those suggestive edges that would be visible from certain nearby
viewpoints, as if the viewer had moved slightly or the surface had
rotated slightly. Technically this amounts to relaxing the orthogo-
nality requirement between the view vector and the surface normal
to something ‘‘close” to orthogonal. (Appropriate definitions are in
Section 6.1.) The result is much more pleasing graphically.

The concept of a suggestive edge is relevant in the neighbor-
hood of a cusp point, because it provides for a regularization –
an extension – of the contour ending at it. But two questions arise
and both are addressed (see Fig. 8).

First, how far should the suggestive contour be extended?
Mathematically this is a difficult question to answer, since it
amounts to asking how small a number should be so that it is
‘‘equivalent” to zero. (That is, since the surface normal is no long-
er precisely orthogonal to the view direction, how much can it be
allowed to deviate?) We instead treat the question operationally,
by evaluating these quantization limits through the edge detec-
tion process. Within surfaces of the sort we are illustrating, for
a suggestive contour to exist there must still be some surface cur-
vature, so that the orthogonality requirement can be met with a
Fig. 8. How far should a suggestive contour extend? (top left) The idea edge contour (bla
surface normal are orthogonal. Notice the deep shading that extends from the edge; an
parabolic curve (in white). The cusp point is where they meet for this example. (bottom)
they suggest about the underlying surface? Although this example shows the suggestiv
Gaussian curvature is what is important and we study it later in the paper (for this exa

Fig. 9. Example on horse image with suggestive and computed contours. (top left) Zoom
contours in blue and parabolic lines in red. Notice how the parabolic lines meander over
contours. (bottom left) Suggestive contours: where should they end? (bottom right) Com
the agreement between suggestive and parabolic lines. More generally, such computed
interpretation of the references to colour in this figure legend, the reader is referred to
small movement. Our edge detection systems in effect ‘‘detect”
this foreshortening even though the formal edge condition is
not met. As examples show, the results are quite natural
(Fig. 9). Our thesis in this paper is that such computed lines
and edges provide information about the geometry of the under-
lying surface, and it is this geometry that is exploited by the vi-
sual system.

The second question asks what surface information can be in-
ferred in the neighborhood of these extended edges? Working from
a local model, we show how a corollary to Koenderink’s result can
be formulated across the suggestive contour.

Although the basics of the models we describe could be imple-
mented in the earlier cortical visual areas, they may certainly in-
volve higher-level areas and feedback and feedforward as well as
lateral, horizontal connections. There is certainly evidence that
higher-level areas could be involved ((Caplovitz and Tse, 2007;
Pasupathy and Connor, 2002). And, while influences beyond those
considered here may matter, such as haptics (Gepshtein and Banks,
2003), attention (Craft et al., 2007)) and others (Kersten and
Schrater, 2002), the relationship between viewing geometry and
surface geometry is fundamental.
ck) on the furrow shape, given by those positions at which the view vector and the
d the fact that it is line-like. (top right) The actual edge contour extended with the
Three extensions of the suggestive contour. Which one appears ‘‘correct?” What do

e contour coinciding with the parabolic curve, this does not generally happen. The
mple it is zero at that point).

on region of horse image rich in ending contours (see insert). (top right) Suggestive
the surface, although there are places at which they agree well with the suggestive
puted edges (green) and lines (red). Notice how their location highlights aspects of
lines and edges provide information about the underlying surface structure. (For

the web version of this article.)
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2. Folds

Occlusion edges arise from discontinuities in depth. In the case
of smooth objects these discontinuities arise from singularities in
the projective mapping from object surfaces to the image plane
(Koenderink and van Doorn, 1976).

Let R be a smooth ðC2Þ surface, i.e., locally R : X � R2 ! Y � R3,
where X is the space of parameters of the surface and Y is a portion
of Euclidean space in which the surface is embedded, and let ĉ 2 S2

(the unit sphere) be the viewing direction. If Pĉ is orthographic
projection (Pĉ : Y ! Z � R2, where Z is the image domain), then
the surface to image mapping is Pĉ � R, which is from R2 to R2

(note that for what follows, the choice of orthographic projection
can easily be generalized).

This implies, via a theorem of Whitney (1955), that the only sta-
ble singularities (i.e., points where the Jacobian is not of full rank)
are folds (type 2 points in Fig. 4) and cusps (type 3 points in Fig. 4).
In this section we consider folds and then, with this in place, move
on to cusps.

The fold is the set of points in the image where:

� the mapping Pĉ � R is singular and
� R is smooth.

Complementary to folds are cuts, or the set of image points
where image intensity is discontinuous and the projective map-
ping is regular (non-singular). This includes image edges arising
from surface boundaries (e.g., the edge of a sheet of paper), surface
normal discontinuities (e.g., polyhedral edges), reflectance changes
and shadows.

Edges around smooth objects thus have a structure which is
fold on one side (the occluding side) and cut on the other (the oc-
cluded side). This difference between folds and cuts results in an
observable photometric difference (Rieger, 1990; Koenderink and
van Doorn, 1993; Koenderink, 1990). If we define the shading flow
field to be the vector field of tangents to isoluminance contours in
the image (Breton and Zucker, 1996), we can differentiate be-
tween the fold and cut neighborhoods of edges as follows. On
the fold side of an edge, the shading flow field is tangent to the
occluding contour, while on the cut side of an edge the field is
transverse (non-tangent) (see Fig. 6). Furthermore it has been
proven that this is the generic case (Dufour, 1983; Huggins and
Zucker, 2001).

At an edge point p of occluding contour c in an image we can
define two semi-open neighborhoods, NA

p and NB
p , where the surface

to image mapping is continuous in each neighborhood. To enumer-
ate the different arrangements around a fold (Huggins and Zucker,
2001) we classify p as follows:

1. fold–cut: The shading flow is tangent to c at p in NA
p and the

shading flow is transverse to c at p in NB
p , with exception at iso-

lated points.
2. cut–cut: The shading flow is transverse to c at p in NA

p and in NB
p ,

with exception at isolated points.
3. fold–fold: The shading flow is tangent to c in NA

p and in NB
p , with

exception at isolated points.

In general, occlusion edges are the only edges that will appear
as fold–cut, where the fold side corresponds to the foreground
and the cut side to the background. Other edge types will appear
as cut–cut, including edges such as shadows and reflectance dis-
continuities; these may be further classified (Witkin, 1982; Breton
and Zucker, 1996; Zhang and Bergholm, 1997). We note that the
third class, fold–fold, is accidental, or non-generic (Freeman,
1994), in that it requires a precise alignment of two folds.
This categorization, while useful, is qualitative. Appearance
over light-source variation is quantitative.

2.1. The appearance of folds for a model surface patch

The local appearance of a fold in an image can be modeled given
simple (though easily generalized) assumptions about surface
geometry, reflectance, and lighting; this enables us to analytically
compute the relation of the shading flow field to the occluding con-
tour. We are especially concerned with how this appearance varies
as a function of lighting. Our results show that the shading flow is
not only tangent to the occluding contour, but is also on average
parallel to the occluding contour in a neighborhood around it. This
parallelism is stable with respect to illumination variation. Fur-
thermore we show that the magnitude of the image gradient also
serves to indicate the presence of a fold. Related image gradients
will be important later when we move on to the analysis of cusps
and suggestive contours.

Consider a surface patch ðRÞ viewed such that it exhibits a fold.
Let the surface patch be approximated by its second-order Taylor
expansion about the origin, where the z-axis direction is the sur-
face normal direction at the origin, the x-axis direction ðx̂Þ and
the y-axis direction ðŷÞ are the principal directions of the surface
at the origin, and a and b are the corresponding principal curva-
tures with a > b (R is a Monge patch)

z ¼ 1
2

ax2 þ 1
2

by2 þ Oððx; yÞ3Þ: ð2:1Þ

Let the origin appear as a fold in the image; i.e., we assume that
the view direction ðĉÞ lies in the x—y plane and subtends an angle
of h with x̂.

Let the surface be Lambertian with constant albedo (without
loss of generality we set the albedo to unity), and let the light
source be a point light source at infinity in the direction l (these
assumptions are easily generalized). The radiance of a point on
the surface is then given by

L ¼ n̂ � l; ð2:2Þ

where n̂ is the unit surface normal at a point, defined as

n̂ ¼ � @z
@x
;� @z

@y
;1

� ��
1þ @z

@x

2

þ @z
@y

2
 !1

2

:

Given the framework set up previously, we now compute the
shading flow field (s); recall the shading flow field is defined as
the vector field of tangents to the isoluminance contours in the im-
age, i.e., if I is image irradiance, then s is orthogonal to rI. To do
this we first compute the gradient of scene radiance, expressed
in terms of a local coordinate frame on the surface. We define û
and v̂ to be the principal directions (if v is a vector, than
v̂ ¼ v=kvk)

û ¼ 1� a2

2
x2

� �
x̂� a2b

ja� bj xy
� �

ŷ þ ðaxÞẑ;

v̂ ¼ � b2a
jb� aj yx

 !
x̂� 1� b2

2
y2

 !
ŷ � ðbyÞẑ:

ð2:3Þ

The corresponding principal curvatures, ju and jv , are

ju ¼ a� 3
2

a3x2 � 1
2

ab2y2;

jv ¼ b� 3
2

b3y2 � 1
2

ba2x2:

ð2:4Þ

The radiance gradient in the û—v̂—n̂ coordinate frame is then

rL ¼ lujuûþ lvjv v̂; ð2:5Þ
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where l ¼ ðlu; lv ; lnÞ in the û—v̂—n̂ frame.
We now assume a view centered coordinate frame such that

x̂ ¼ ĉ. The transformation from the Monge patch coordinate sys-
tem to the view centered coordinate system is simply a rotation
by �h about the z-axis.

Assuming radiometric calibration of the lens, the image irradi-
ance at a point p in the image can be found as the projection of
the surface radiance onto the y—z plane

IðpÞ ¼ L P�1
x̂ ðpÞ

� �
: ð2:6Þ

The shading flow field in the image is the projection of the vec-
tor field that is orthogonal to the radiance gradient onto the y—z
plane

s ¼ Px̂ððrLÞ?Þ
¼ ð�lvjvuy þ lujuvyÞŷ þ ð�lvjvuz þ lujuvzÞẑ; ð2:7Þ

where ðrLÞ? is the vector orthogonal to rL on the surface. This
expression gives the shading flow field in terms of our model.

To compare the shading flow field orientation to the edge orien-
tation, we compute the slope of the shading flow field in the image
(computing slope as opposed to orientation simplifies the analy-
sis). The slope of the image shading flow field is

x ¼ �lvjvuz þ lujuvz

�lvjvuy þ lujuvy
: ð2:8Þ

Since the view direction is in the x—y plane, the slope of the
occluding contour at the origin is zero.

In later computations it will be convenient to express lv in
terms of x and lu

lvðx; luÞ ¼ lu
ju

jv

� �
vz � vyx
uz � uyx

� �
: ð2:9Þ

Now that we have computed a description of the shading flow
field, we consider its appearance under variable illumination. We
are interested in the orientation of the shading flow field relative
to the orientation of the occluding contour, specifically in whether
the tangency described in Section 2 is observable, and, if so,
whether or not it is stable.

A straightforward numerical computation yields the mean and
variance of the shading flow field at every point on a surface patch,
Fig. 10. The statistics of a fold. A plot of the mean orientation of the shading flow
field (shown as vectors) and its variance (indicated by intensity), for one instance of
our model. Observe how the shading flow aligns with the fold (located at the top of
the image) as the fold is approached and how the variance of this alignment
decreases as well, indicating that this alignment is a stable image feature.
per our model, assuming the light source direction l is a random
point on the hemisphere centered on ẑ (see Fig. 10). The computa-
tion shows that the mean shading flow field is not only tangent to
the occluding contour, but also parallel to it in a large neighbor-
hood. Furthermore, the variance of the shading flow field is small
close to the contour and gradually increases away from it. Thus
the observed parallelism is stable in the neighborhood of the con-
tour with respect to variable illumination.

Given the observed parallelism of the shading flow to the
occluding contour, we restrict our analysis to image points normal
to the edge point under consideration. In what follows we take the
origin to be our occluding edge and we consider the statistics of the
shading flow field at image points normal to the edge, i.e., surface
points in our model satisfying y ¼ 0.

If in a given image we observe an edge and the shading flow
field normal to the edge, we would like to be able to use the rela-
tive orientation of the shading flow field to the edge as evidence of
the edge’s type: e.g., if the shading flow field on one side of the
edge is roughly parallel to the edge we might label that side of
the edge as a fold.

Towards this, we compute the probability density of shading
flow field slope under variable illumination. We assume a given
surface viewed from a given direction, with a distribution on light
sources that is uniform over light source directions and falls off in
magnitude. Choosing simply a Gaussian, the probability density of
light sources is

qlðlÞ ¼
1

ð
ffiffiffiffiffiffiffi
2p
p

rÞ3
e�

1
2r2 l2xþl2yþl2zð Þ: ð2:10Þ

We acknowledge that there are many choices for qlðlÞ, some of
which may arguably be more appropriate. In the context of examin-
ing appearance under variable illumination, we choose our distribu-
tion so as not to favor any particular light source direction.

The probability density of the slope of the image shading flow
field can be obtained by combining this result with Eq. (2.9)

qxðx; z; a; b; hÞ ¼ 1
2pr2

Z 1

�1
e�

1
2r2 l2uþlv ðx;luÞ2ð Þ @ðlu; lvÞ

@ðx; luÞ

����
����dlu; ð2:11Þ

where z is the distance to the occlusion edge in the image, a and b
are the principal curvatures of the Monge patch, and h is the angle
between the viewing direction and the first principal direction.

The resulting family of probability density functions is plotted
in Fig. 11a. The most prominent feature of qx is the ridge close
to x ¼ 0, which indicates that the shading flow is on average par-
allel to the occluding contour. The sharpness of the ridge indicates
the stability of this parallelism with respect to illumination varia-
tion. As expected from the tangency of the shading flow to the con-
tour, the function qx approaches a Dirac delta function dðxÞ when
z! 0. The observed ridge is always present in qx, though its
spread and position are modulated by the view direction and the
curvatures.

Since we do not know the viewing angle in advance, it is also
important to look at the marginal density of the slope
qxðx; z; a; b; hÞ integrated over the viewing angle h

qh
xðx; z; a; bÞ ¼

Z p
2

�p
2

qxðx; z; a; b; hÞdh: ð2:12Þ

We present numerical results in Fig. 11b. qh
x has the same qual-

ities as qx; the observed ridge is centered on x ¼ 0 and remains
quite sharp, especially near the occluding contour.

A further observation about folds is that the image irradiance
gradient magnitude depends on foreshortening: a radiance gradi-
ent on the surface will be amplified by the foreshortening that oc-
curs as the fold is approached. In the limit, the foreshortening will
give rise to an infinite image irradiance gradient. This foreshorten-
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Fig. 11. (a) The family of probability density functions for the slope of the shading flow field ðqxðxÞÞ. (b) qh
xðxÞ, (a) integrated over viewing directions. (c) The expectation of

the image gradient magnitude ðE½krIk�Þ. In all plots Distance is measured in the image plane normal to the contour. The surface parameters are a ¼ 1 and b ¼ 0:3. In (a) and (c)
h ¼ �p=6. The plots are clipped for display purposes.

Fig. 12. (left) An experimental subject: a toy rubber duck. (right) Images of the duck
under illumination from 64 different point sources.

Fig. 13. The mean shading flow field, E½ŝ�, in the neck region of the duck
(highlighted region of Fig. 5), shown as vectors, superimposed on its variance,
V½ŝ�. Observe the parallelism between the shading flow field on the fold side of the
occluding contour and the contour itself, and the accompanying low variance.
Compare with Fig. 10.
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ing is maximal when the radiance gradient is in the direction of the
tilt of the surface near the fold, i.e., when the shading flow field is
parallel to the occluding contour. Thus we expect the image irradi-
ance gradient magnitude as a function of shading flow field slope
to correlate with the probability density function of slope.

The image irradiance gradient is

rI ¼ krLk
Px̂

rL
krLk

	 

� ŝ

��� ��� x̂� ŝ: ð2:13Þ

Using Eqs. (2.13) and (2.10), we calculate the expectation of the
magnitude of the image gradient

E½krIk� ¼ 1ffiffiffiffiffiffiffi
2p
p

r

Z 1

�1
krIke�

1
2r2 l2u dlu; ð2:14Þ

where lv is given by Eq. (2.9).
Fig. 11c shows the mean magnitude of the image irradiance gra-

dient. It is clearly correlated with the observed parallelism of shad-
ing flow field. In this sense, the gradient magnitude can be seen as
an indicator of where in the distribution (Fig. 11a) a particular in-
stance of shading flow field orientation lies.

The above analysis suggests that the alignment of the shading
flow with the contour of the fold is stable in the neighborhood of
the occluding contour. It is insensitive to the lighting conditions,
the geometry of the surface, and the view direction. We now pro-
ceed to verify the conclusions of our model with real images.

2.2. Measuring the appearance of folds

We need to evaluate the results of the previous section in the
context of real images. The model discussed in the previous section
does not capture all of the variability present in real images: albe-
dos vary, surfaces are often non-Lambertian, small scale surface
structure can significantly affect image measurements, and the
imaging process is noisy. Given these factors, how robust is the
parallelism between the shading flow field and the occluding con-
tour, which we observed in the model, in real images?

We show two experiments in answer to this question. First, for
a very simple object, we evaluate the statistics of the shading flow
field and the gradient in images taken under variable illumination.
For simple objects we show that these agree well. However in
viewing a scene one does not have access to the statistics over illu-
mination, so we need to consider what a single image yields for
shading flow. This, it turns out, is not well behaved when it is mea-
sured only locally.

2.2.1. Average appearance over lighting
We measured the statistics of a simple object (a toy duck) under

variable illumination. Sixty-four images were taken, each illumi-
nated by a single distinct flash. The flashes were uniformly distrib-
uted over the hemisphere centered over the object. This array of
point light sources is effectively a sampling of the theoretical uni-
form distribution we considered in the previous section. Fig. 12
shows the images captured for this object.

We computed the mean and variance of the shading flow field
and the irradiance gradient in the image. Some care needs to be ta-
ken in these computations. Consider the shading flow field mea-
sured at a point in image i illuminated by light source direction
li ¼ ðlu; lv ; lnÞ; if the light source illuminating image j is
lj ¼ ð�lu;�lv ; lnÞ, then the shading flow vectors in images i and j
will cancel one another at that point, even though in some sense
their orientation is the same. Thus we define orientation to be
p-periodic in our computations.

The expected shading flow field is then

E½ŝ� ¼ \�1
2

Z
l2S2
\�2ðŝÞkl� ẑkdl

� �
; ð2:15Þ
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where \�2 and \�1
2

map vectors to double- and half-angled vectors,
respectively. We define the variance of the shading flow field as

V½ŝ� ¼
Z

l2S2
k\�2ðŝÞ � \�2ðE½ŝ�Þk2kl� ẑkdl: ð2:16Þ

Fig. 13 shows the expected shading flow field for the duck im-
age set (Fig. 12), in a region of the image centered on the back of
the duck’s neck. The alignment of the shading flow field with the
occluding contour on the fold side of the edge is clear. In contrast,
the shading flow field on the cut side of the edge exhibits no such
alignment. Furthermore, on the fold side of the edge the variance is
low, thus the observed parallelism is robust with respect to illumi-
nation variation, while the variance is high on the cut side, and so
even if there exist lighting conditions where the shading flow field
here appears parallel to the occluding contour, those situations oc-
cur with low probability. These statistics agree nicely with those of
our model (Fig. 10).

Fig. 14a shows V½ŝ� for the rubber duck. The regions of low var-
iance are where the shading flow field is stable; these are most
notably the folds and the reflectance edges (the eye of the duck).
In regions where the fold is smooth (i.e., the curvature of the sur-
face in the view direction is low), such as the wing of the duck, the
shading flow is stable over a greater extent.

As we saw in the previous section, the magnitude of the image
gradient is usually largest at the occluding contour and, on the fold
side of the contour, decreases as the distance from the contour in-
creases. We define the expected gradient similarly to the expecta-
tion of the shading flow field (Eq. (2.15))

E½rI� ¼ \�1
2

Z
l2S2
\�2ðrIÞkl� ẑkdl

� �
; ð2:17Þ
Fig. 14. Statistics for the rubber duck images. (a) Shading flow field variance, V½ŝ�,
where dark/bright indicates low/high variance. The shading flow field is clearly
stable at folds. The gradient magnitude amplifies the appearance of the folds, as can
be seen in (b) the magnitude of the mean image irradiance gradient, kE½rI�k.

Fig. 15. Local estimate of the shading flow for a single image. The estimate was obtaine
equivalent to a linear model for a simple cell, tuned to a low spatial frequency, providing
the local shading flow is. White: local shading flow vectors. Black: local edge vectors.
In Fig. 14b we show kE½rI�k. The folds appear accentuated as the
gradient magnitude gives more weight to aligned shading flow
vectors, as discussed in Section 2.1. The results suggest that the
gradient magnitude is a useful measure of the significance of a par-
ticular orientation measurement.

2.2.2. An individual image
The previous analysis showed that information for diagnosing

fold-type edges exists in the shading, but when averaged
across lighting for an artificial object. In the natural world reflec-
tances are rarely as consistent as for manufactured plastics; and
dirt, dust, and detritus may lead to individual variation. We
therefore examine a more natural scene in Fig. 15. It is clearly
the case that local information does not suffice. Since we do
not have access to multiple lighting images to compute averages,
we seek to exploit contextual interactions within the single
image.

3. Inferring shading flow fields

Given that the initial measurements of a visual flow field may
contain spurious or missing values (see Fig. 15), we refine the flow
field to counteract these effects. Interpolating and fitting (Rao and
Jain, 1992), smoothing (Perona, 1998), and diffusing (Tang et al.,
2000) the orientation function hðx; yÞ corresponding to the flow
are commonly used approaches to achieving this goal, but they
are also prone to affect the underlying geometry of the flow in
undesirable ways. In particular, they can distort flow singularities
that must be preserved to correctly interpret visual scenes
(Ben-Shahar and Zucker, 2003).

To overcome this problem we process the visual flow by enforc-
ing local coherence, that is, by ensuring that each local measure-
ment of the flow field is consistent with its neighboring
measurements. Toward this we first examine the differential
geometry of visual flows.

3.1. The differential geometry of visual flows

A natural representation of a visual flow which highlights its
intrinsic geometry is its frame field (O’Neill, 1966). A local frame
fET ; ENg is attached to each point q of the flow, with ET tangent
and EN normal to the flow. Small translations in direction V from
the point q rotate the frame, a change which is characterized
through the covariant derivativesrV ET andrV EN of the underlying
pattern (see Fig. 16). Cartan’s connection equation (O’Neill, 1966)
expresses these covariant derivatives in terms of the frame field
itself:
d by evaluating the image gradient over a small neighborhood and rotating; this is
maximum response (over all possible orientations). Notice how noisy and imperfect
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Fig. 16. The frame field representation of visual flows. The local behavior of the
frame is described by its covariant derivatives rV ET and rV EN which are always
normal to ET and EN , respectively. Since the connection form – the operator that
describes the frame’s rotation for any direction V – is linear, it is fully characterized
by two numbers computed as projections on two independent directions. In the
basis of the frame this yields the curvatures jT and jN .
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rV ET

rV EN

� �
¼

0 w12ðVÞ
�w12ðVÞ 0

� 

ET

EN

� �
: ð3:1Þ

The connection form w12ðVÞ is a linear function of the tangent
vector V and can thus be represented by two scalars at each point.
In the basis fET ; ENg these scalars are defined as jT,w12ðETÞ and
jN,w12ðENÞ, which we call the tangential curvature and the normal
curvature – they represent the rate of change of the flow’s domi-
nant orientation in the tangential and normal directions, respec-
tively. In terms of hðx; yÞ and its differential, these curvatures
become:

jT ¼ dhðETÞ ¼ rh � ET ¼ rh � ðcos h; sin hÞ;
jN ¼ dhðENÞ ¼ rh � EN ¼ rh � ð� sin h; cos hÞ:

ð3:2Þ

Knowledge of ET ; EN; jT , and jN at a point q enables us to con-
struct a local approximation to the flow which has the same orien-
tation and curvatures at q; we call such an approximation an
osculating flow field. The osculating flow field is important in that
it predicts flow values in the neighborhood of q. Comparing these
predictions to the measured flow values indicates how consistent
the measured values of the flow at q are with those at its neighbors
and suggests how to update them to be consistent. This is analo-
gous to refining curve measurements using cocircularity (Parent
et al., 1989; see also Sarti et al., 2008).

There are an infinite number of possible osculating flow fields to
choose from. However, there exist criteria for ‘‘good” osculating
Fig. 17. Examples of right helicoidal visual flows, both in ðx; y; hÞ space (left) and the ima
cross) produces qualitatively different coherent behaviors in its neighborhood.
flow fields. One such criterion is the minimization of the harmonic
energy E½h� ¼

R R
krhk2dxdy associated with the orientation func-

tion of the flow, as is used in orientation diffusion (Tang et al.,
2000). Viewing the orientation function as a surface in R2 �S1,
however, suggests that the osculating flow field should minimize

the surface area A½h� ¼
R R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ h2
x þ h2

y

q
dxdy. Finally, the duality

of the curvatures jT and jN suggests that the osculating flow field
should exhibit unbiased curvature covariation. Surprisingly, there
is a unique osculating flow field which satisfies all of these criteria
simultaneously (Ben-Shahar and Zucker, 2003). In the space
R2 �S1 of orientations over the image plane it takes the form of
a right helicoid (Fig. 17): In particular, we have the following result
(Ben-Shahar and Zucker, 2003).

Assume (w.l.o.g) that a visual flow hðx; yÞ satisfies q ¼ ð0;0Þ and
hðqÞ ¼ 0; jTðqÞ ¼ KT , and jNðqÞ ¼ KN . Of all possible orientation
functions hðx; yÞ around q that satisfy these constraints, the only
one that extremizes both E½h� and A½h�, and has curvature functions
that covary identically (i.e., jT ðx;yÞ

jNðx;yÞ
¼ const ¼ KT

KN
) is the right helicoid

hðx; yÞ ¼ tan�1 KT xþKN y
1þKN x�KT y

	 

.

With this model of the local structure of visual flow we are in a
position to compute a globally coherent flow, the procedure for
which is described in the next section.

3.2. Computing coherent visual flows from a single image

The advantage of having a model for the local behavior of visual
flow lies in the ability to assess the degree to which a particular
measurement is consistent with the context in which it is embed-
ded. This, in turn, can be used to refine noisy measurements, re-
move spurious ones, and fill in ‘‘holes” so that global structures
become coherent. A framework in which one can pursue this task
by iteratively maximizing the average local consistency over the
domain of interest is relaxation labeling (Hummel and Zucker,
1983). We have developed such a network for the organization of
coherent visual flows (Ben-Shahar and Zucker, 2003). The follow-
ing is a short overview of that system.

A direct abstraction of the relaxation process for visual flow
should involve an image-based 2D network of nodes i ¼ ðx; yÞ
(i.e., pixels) whose labels are drawn from the set

K ¼ fno-flowg [ ðh;jT ;jNÞjh 2 �p
2
;
p
2

	 i
; jT ;jN 2 ½�K;K�

n o
after the appropriate quantization. To allow for the representation
of either ‘‘no-flow” or multiple flows at a pixel, we replace this
abstraction with a 5D network of nodes i ¼ ðx; y; h;jT ;jNÞ whose la-
bels are either TRUE ðTÞ or FALSE ðFÞ. For each node i; piðTÞ denotes
the probability that a visual flow of orientation h and curvatures
jT ; jN passes through pixel ðx; yÞ. Since piðFÞ ¼ 1� piðTÞ we need
to maintain and update the probability of only one label at each
node.

The geometrical compatibilities rijðk; k0Þ that drive our relaxa-
tion process are computed from the osculating flow field as defined
ge plane. Note that tuning to different curvatures at the origin (point marked with a



V1

Fig. 18. Examples of compatibility structure (for different values of h; jT and jN) projected onto the image plane (brightness represents degree of compatibility, black
segments represent an inhibitory surround). As is illustrated on the right, these structures are closely related to long-range horizontal connections between orientation
columns in V1 (Ben-Shahar and Zucker, 2003).
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by the right helicoid. Measurement quantization implies that every
possible node i represents an equivalence class of measurements,
each of which induces a field of compatible labels in the neighbor-
hood of i. In the continuum, the union of all these fields forms a
consistent 5D ‘‘volume” that after quantization results in a set of
excitatory labels (see Fig. 18).

With the network structure, labels, and compatibilities all de-
signed, one can compute the support siðkÞ that label k at node i
gathers from its neighborhood. siðkÞ is typically the sum of the indi-
vidual support of all labels j in the neighborhood of i

siðkÞ ¼
X

j

X
k0

rijðk; k0Þpjðk0Þ: ð3:3Þ

Having computed the support for a label, siðkÞ is then used to
update the confidence piðkÞ by gradient ascent, followed by non-
linear projection. Under the 2-label paradigm and the appropriate
weighing of negative ðFÞ versus positive ðTÞ evidence (Ben-Shahar
and Zucker, 2003), the projection operator takes a particularly con-
venient form and the update rule reduces to

piðkÞ  P1
0ðpiðkÞ þ dsiðkÞÞ; ð3:4Þ

where P1
0ðxÞ projects its operand to the nearest point on the interval

[0,1] and d is the step size of the gradient descent.
While the relaxation labeling network described is an abstrac-

tion to perform an inference based on the differential geometry
of flow fields, it is motivated by the architecture of the primary vi-
sual cortex. The columnar structure of V1 clearly lends itself to the
representation of orientation fields (Hubel and Wiesel, 1977), and
θ,κ  ,κT N
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(a) Maximal expected support

Fig. 19. Practical stability of the relaxation labeling process at line discontinuities in the
node i; smax is determined by integrating the support gathered from a full confidence, c
accepted support smin of a flow of some minimally accepted confidence qmin < 1 (depicted
is capable of the necessary curvature computations (Dobbins et al.,
1987). Considerable speculation surrounds the functional signifi-
cance of long-range horizontal connections (Gilbert, 1992) be-
tween orientation columns; we posit that they may play a role
not unlike the compatibility structures of our network (Fig. 18,
right panel). In related work we have shown that, in fact, these
compatibility structures are consistent with the population statis-
tics of long-range horizontal connections through second order
(Ben-Shahar and Zucker, 2004). Furthermore, the relaxation com-
putation has been reduced to cliques of pyramidal cells (Miller
and Zucker, 1992; Miller and Zucker, 1999), a construct recently
found by Yoshimura et al. (2005).

3.3. Stability at discontinuities

In computing coherent visual flows it is important to respect its
discontinuities, as these often correspond to significant physical
phenomena. The relaxation process described above does not de-
stroy these structures because in the high dimensional space in
which it operates the flow structures that meet along a line discon-
tinuity, either in orientation or curvature, are separated and thus
do not interact. However, without proper tuning, the relaxation
process will quickly shrink or expand the flow in the neighborhood
of boundaries. It is this behavior we seek to suppress.

To achieve stability we normalize the compatibility function,
and thus the support function siðkÞ, to account for reduced support
in the neighborhood of a discontinuity. Given the compatibility
volume Vi which corresponds to a particular node i, we compute
θ,κ  ,κT N
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flow can be achieved through the normalization of the support function. (a) At each
ompatible flow that traverses the entire compatibility volume Vi. (b) The minimal

here by the brighter surface intensity) that terminates along a line that intersects i.



Fig. 20. Visual flow organization based on right helicoidal compatibilities. Shown (left to right) are: Tree bark image and a region of interest (ROI), perceptual structure
(drawn manually), initial flow measurements (gradient based filter), and the relaxed visual flow after few iterations of relaxation labeling with the right helicoidal
compatibilities. Compare the latter to the perceptual structure and note how the non-flow region was rejected altogether.

D

A
B

C

θ

x

y

Fig. 21. Edge-flow interactions for boundary stability. Assume the flow structure in
the image plane is bounded by the indicated edge. Flow cell A is connected to a set
of other cells (B and C) which are a part of the same coherent flow. Although A is not
active (there is no flow in its corresponding retinotopic position), its facilitory
interaction with the cells on the other side of the edge may eventually raise its
activity level. To prevent cell C from affecting A, an active edge cell D blocks the
facilitory inputs from C, thus effectively limiting A’s context to cell B only. Unless
enough of these cells are also active, A will not reach its activation potential, and
thus will not signal any flow.
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the maximal support a node can receive, smax, as the integral of the
compatibility coefficients assuming a consistent flow traverses Vi

with all supporting nodes at full confidence (Fig. 19). It is clear that
the closer i is to a flow discontinuity, the less context supports it. At
the discontinuity, the flow should neither grow nor shrink, leading
us to define the minimal level of support for which no change in
confidence occurs, smin. Observe that smin depends on both the
geometry of the discontinuity and the minimally accepted confi-
dence of the supporting nodes. For simplicity we assume the dis-
continuity (locally) occurs along a straight line. The support from
neighboring nodes of minimally accepted average confidence qmin

(Fig. 19) can be approximated as smin ¼ qminsmax
2 . Normally qmin would

be set to 0.5, which is the minimal confidence that cannot be dis-
ambiguated as the TRUE label. In the context of the two-label relax-
ation labeling paradigm and the gradient ascent update rule
(Eq. (3.4)), a decrease in the confidence of a label occurs only if
si < 0. Thus, it remains to normalize the support values by map-
ping the interval ½smin; smax� to the unit interval [0,1] via the trans-
formation si  si�smin

smax�smin
before applying the update rule.

The result of the normalized relaxation process is usually very
good (Fig. 20). Nevertheless, the fact that both the support func-
tion (Eq. (3.3)) and the normalization are linear creates a delicate
balance: while better noise resistance suggests smaller smin, it
also implies that at discontinuities the flow will eventually grow
uncontrollably. Some solutions to this problem are discussed in
Ben-Shahar and Zucker (2003). However, in the case of shading
flow fields, discontinuities are intensity edges and thus can be
explicitly identified by edge detection. As we discuss below,
this information can be directly embedded into the network to
decouple the handling of discontinuities from the support
normalization.

3.4. Edges as shading flow boundaries

We are now ready to incorporate edges into the shading flow
computation. As we discussed earlier, the relationship between
the edge and the shading flow field in the neighborhood of the
edge can be used to identify the physical cause of the edge, so
we need to be careful not to damage that relationship. For example,
for a smooth surface the shading flow field is continuous across an
edge caused by an abrupt albedo change (Breton and Zucker,
1996). We remain concerned with finding folds, where the shading
flow field is generically tangent to the edge.

As discussed earlier, an edge can be thought of as dividing the
shading flow field domain into distinct regions, implying that the
computation of the shading flow on either side of the edge can
and should be done separately. This is an intuitive but powerful
argument: incorporating edges into the relaxation labeling
network to regulate the growth of flow structure obviates the
trade-off between high resistance to noise and strict stability along
discontinuities we mentioned in Section 3.2.
To implement this idea we require a specialized set of interac-
tions between edge nodes and nearby shading flow nodes. These
interactions would block the flow input if it comes from across
the edge. With this input blocked, and so long as smin is positive,
the flow on one side of the edge will not extend across the edge,
because the total support contributed to the other side will never
exceed zero. This frees the selection of smin from stability consider-
ations and allows us to determine it solely on the basis of noise
resistance and structural criteria. A cartoon illustrating these inter-
actions appears in Fig. 21. A non-linear veto mechanism that is
reminiscent of the one proposed here also exists in the form of
shunting inhibition (Borg-Graham et al., 1998).

We have tested this adaptive network on a variety of synthetic
and natural images, two of which are shown in Fig. 22. We used the
Logical/Linear (Iverson and Zucker, 1995) and the Canny (Canny,
1986) edge detectors and the shading flow fields were measured
using standard differential operators.

4. Cusps

Apart from folds, cusps are the only other generic singularity in
the mapping of smooth surfaces onto smooth surfaces; all other
singularities are killed by small viewer motions. A cusp occurs
when the view direction ĉ is tangent to the contour generator, i.e
when ĉ has second order contact with the surface. At such a point,



Fig. 22. Examples of shading flow field relaxation with edges as boundary conditions. Shown are (left to right) image and ROI, initial shading flow (thin segments) and edges
(thick segments), relaxation without boundaries, and relaxation with boundaries. Note that while both relaxations compute correct flow structure, the one without
boundaries extends the flow beyond the edge, making classification more difficult. On the other hand, edge classification and occlusion relationship is trivial based on the
result using edges as boundary conditions.
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the tangent vector to the contour generator grazes and penetrates
the surface. Generically cusps only occur in regions of non-positive
Gaussian curvature (Koenderink, 1990). To simplify our analysis,
we concentrate on those surface patches that are well character-
ized by a third-order Monge patch description and leave out the
mathematical oddities. At a cusp point, then, the view vector lies
along an asymptotic line of the surface; there are no asymptotic
lines in regions of positive Gaussian curvature.

Formally, cusps are the set of points where

� the mapping Pĉ � R is singular;
� R is smooth; and
� ĉ lies along an asymptotic line of R.

At a cusp the ideal edge contour ends; before this the contour is
a fold and, as such, is defined by those points at which the surface
normal is orthogonal to the view vector. In general, for smooth sur-
faces, if a contour ends then, generically, it either ends at a cusp or
at a T-junction. On the contour side of the cusp, the usual fold sta-
tistics apply. On the other side of the cusp there is no contour in the
formal geometric sense. However, the shading flow extends be-
yond the cusp in a stable manner and this can be characterized.
It is related to a curve called the suggestive contour (DeCarlo
et al., 2003).

4.1. Suggestive contours

Suggestive contours were introduced in computer graphics to
improve line drawings for non-realistic rendering (DeCarlo
et al., 2003). They share many properties with the ending con-
tours found in artistic drawings and provide, in a sense, the nat-
ural extension of the apparent contour beyond the visual cusp.
Intuitively they represent ‘‘almost contours,” to use a phrase from
DeCarlo et al.

The suggestive contour is defined in terms of inflections of cur-
vature in the direction of the view vector projected onto the sur-
face (tangent plane); following DeCarlo we denote the projected
view vector w.1
1 There are several definitions for the suggestive contour, for full detail see DeCarlo
et al. (2003).
Formally, the suggestive contour is the locus of points such that
the following two conditions hold. Denote the radial curvature by jr;

jr 	 w � rwn̂ ¼ IIðw;wÞ ¼ 0 ð4:1Þ
and

rwðjrÞ > 0; ð4:2Þ

where IIðu;vÞ is the second fundamental form.
Equivalently the suggestive contour is all zeros of curvature in

the plane spanned by the view vector and surface normal. This im-
plies that the suggestive contour can only exist in regions of
non-positive Gaussian curvature, although we focus on regions of
negative Gaussian curvature (saddles). In those regions, the sug-
gestive contour consists of all points where w lies along one of
the asymptotic directions of the surface.

An example is shown in Fig. 23. Most importantly, notice how
the actual edges and lines computed from the image extend be-
yond the cusp point and convey similar surface properties as the
extended contour.

4.2. Properties of suggestive contours

Suggestive contours, when they exist, have several properties of
interest. First, they extend contours beyond their formal endpoint
(DeCarlo et al., 2003). In fact, ending contours can be defined as
the intersection of the contour generator and the suggestive con-
tour. Second, they anticipate contours. A surface or viewer rotation
can turn a suggestive contour into a cusp. Simply rotate the surface
so that the projected view vector w and the view vector ĉ are the
same. This is a rotation of the surface normal about the the ĉ� n̂
plane. At the cusp, this rotation changes the cusp to a suggestive
contour or it is occluded.

In theory, the movement of a cusp under viewer motion or sur-
face rotation can be used to define a chart on the surface. By fol-
lowing them it is possible to characterize shape in a
neighborhood around the cusp (Cipolla et al., 1995; Cipolla et al.,
1997). However, in practice, it is quite difficult to find cusps pre-
cisely in images because cusps extend shading flow stability much
like contours. In the case of cusps, this stability leads to line-like
shading that extends the contour, often obscuring the cusp, and ex-
tends the apparent edge well beyond it; see the edge extension in
Fig. 23 (right).



Fig. 23. Illustration of the suggestive contour and its relationship to edges. (left) A Lambertain horse illuminated with a single point light source. (middle) Lambertian horse
with contours (green) and suggestive contours (blue). Note how the suggestive contours complement the actual edge contours and result in a more intuitive rendering of the
underlying surface structure. (right) Edge detection (black) and line detection (blue) on horse image. Note how they agree with the suggestive contours and extend beyond
the cusp. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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4.3. Modeling the appearance of cusps

The shading flow exhibits stability around ending contours; i.e.,
around cusps of the visual map. On one side there is the stability
around the fold approaching the cusp; on the other the shading
flow is stable along an extension of the contour beyond the cusp.
We analyze this by extending the earlier analysis of folds.

Let a surface patch ðRÞ be viewed such that it exhibits a cusp.
The patch is given by its third-order Taylor expansion at the origin,
where the z-axis is the surface normal direction at the origin. As-
sume orthographic projection and let the view vector ðv̂Þ point in
the �x-axis direction ð�x̂Þ. This restricts R to the following Monge
patch form:

z ¼ a1xyþ a2y2 þ b0x3 þ b1x2yþ b2xy2 þ b3y3 þ Oððx; yÞ4Þ: ð4:3Þ

As before let the surface be Lambertian with albedo of unity,
and let the light source be a point source at infinity in the direction
l. Then the covariant derivative of the radiance on the surface is

rwI ¼ rwðn̂ � l̂Þ ¼ ðrwn̂Þ � ðlt þ lnÞ þ ðrwl̂Þ � n̂ ¼ IIðw; ltÞ;

where l is decomposed into lt in the tangent plane and ln which lies
along the normal.

To find the gradient, as an orthogonal basis on the surface we
choose the suggested view vector and any vector orthogonal to
it. Therefore the surface gradient can be written as follows:

rI ¼ ðrwIÞŵþ ðrw?IÞŵ?: ð4:4Þ

From the surface gradient, the statistical analysis of shading
flow over lighting positions can be followed. However, since this
stability manifests itself as line and edge-like shading, it is also
possible to look at the stability of edge detectors beyond the cusp;
see Figs. 24 and 25.

4.4. Motion of cusps under viewer motion

Both the contour generator and suggestive contour ‘‘slide” over
the surface under changes in viewer position (Cipolla et al., 1995,
1997). From the motion of cusps it is possible to determine local
surface information. However, this relies on the ability to accu-
rately find the cusp, a task that we believe to be quite difficult.
Any viewer motion can be broken into a component that leaves
Fig. 24. Appearance of a cusp under different lighting conditions. While the surface
geometry remains the same, the image appearance can shift drastically with
changes in light position. Nevertheless, notice the relative stability of the ending
contour and the isophotes around it.
n̂ � ĉ unchanged, and a component that leaves ŵ � rŵn̂ unchanged,
plus an essentially irrelevant rotation. These are orthogonal viewer
motions, and they represent rotations of the surface about n̂ and
n̂� ĉ, respectively. Therefore the cusp slides along the (moving)
suggestive contour and contour generator. It is possible to use this
motion to set up a coordinate system on the surface, allowing
shape information to be derived from known viewer motion. How-
ever, we are interested in the shape information contained in a sta-
tic image.

It can be shown that the velocity of the cusp along the sugges-
tive contour under viewer motion is proportional to 1ffiffiffi

K
p where K is

the Gaussian curvature (Cipolla et al., 1995). However, at the cusp
point it can also be shown that the derivative of the foreshortening
along the suggestive contour is proportional to

ffiffiffiffi
K
p

.2 In regions of
high foreshortening, small changes in viewing position will rapidly
move the cusp along the contour. In other words, if small viewer
motion would make a point a contour, it will look like a contour.

4.5. Cusps under special lighting conditions

There is one special lighting condition under which the shading
flow is exceptionally well behaved. For a Lambertian surface and a
point light source at infinity, the intensity at a given point is given
by IðpÞ ¼ n̂ � l̂ where n̂ is the surface normal and l̂ is a vector point-
ing along the light path. We let w ¼ projðĉÞ and choose the
ðŵ; ŵ?; n̂Þ frame. Then l̂ ¼ ðlw; lw?; lnÞ and we calculate:

rwI ¼ rwðn̂ � l̂Þ ¼ ðrwn̂Þ � ðlnn̂þ lwŵþ lw?ŵ?Þ þ ðrwl̂Þ � n̂
¼ lwIIðw;wÞ þ lw? IIðw;w?Þ ¼ lwjþ lw?s; ð4:5Þ

where j ¼ IIðw;wÞ and s ¼ IIðw;w?Þ. Following (DeCarlo et al.,
2003) we call j the radial curvature and s the geodesic torsion. This
radial curvature is an extension of Koenderink’s notion of radial cur-
vature along a contour (Koenderink, 1984). Therefore when the
light source lines up with w then it is clear that rwI ¼ 0 when
j ¼ 0 which is along the suggestive contour. Since the suggestive
contour is an inflection of curvature in the direction of maximum
foreshortening, this corresponds to a bright or dark peak in the
intensity. Therefore we would expect to see a bright or dark line re-
sponse that extends the contour. Note that ln is irrelevant for the
covariant derivative of the shading flow. DeCarlo et al. exploit this
property in their image space algorithm for finding suggestive con-
tours (DeCarlo et al., 2003).

4.6. Cusps under general lighting conditions

For general lighting conditions the shading flow is not as well
behaved. Under general lighting conditions, the suggested contour
is not a maximum or minimum of brightness. However, the behav-
ior of isophotes around the suggested contour is dominated by the
foreshortening effect. The shading flow is stable in much the same
fashion that it is stable around a contour, and this stability extends
2 (5.5), where a1 ¼
ffiffiffiffi
K
p

.



Fig. 25. Estimation of the probability of an edge over all lighting positions. Panels left to right: 1. Original surface patch with the light at a typical position. The cusp is located
at 0.0 on the x-axis. 2. The suggestive contour in red. Notice that it begins at the cusp. 3. The probability of an edge at any location, calculated as before. Notice how the edge
probability extends well beyond the cusp point. 4. Variance of surface vector orientation in image plane under orthographic projection. Notice the stability near the edges and
beyond the cusp at x ¼ 0.
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beyond the cusp. This is the sense in which the suggestive contour
is ‘‘almost” a contour.

Along with the shading flow stability the foreshortening boosts
the gradient across the suggested contour. Every small patch of
surface is compressed along the projection of the view vector onto
the surface. The isophotes are surface curves, so they are similarly
compressed. This boosts the gradient in the projection of the view
vector, or equivalently, in the direction of tilt as the slant increases
(Stevens, 1983). In the special case above, a maximum or minimum
of brightness occurred along the suggested contour. This was com-
pressed into a line-like image feature. In general, both edge-like
and line-like features occur; which feature appears depends on
the lighting direction.

5. Curvature of suggestive contour and gaussian curvature

The suggestive contour in the image plane provides useful
information about the surface. First, for a cusp to arise the contour
generator must be tangent to the view vector. The view vector then
has third-order contact with the surface, which cannot occur in a
region of positive Gaussian curvature. We focus on those neighbor-
hoods with negative Gaussian curvature since, in these cases, the
suggestive contour extends the (fold) edge contour. Furthermore,
such suggestive contours often have a line-like appearance, since
the shading flow is compressed in a neighborhood around it.
Viewed through finitely-sized receptive fields, the suggestive con-
tour is thus often indistinguishable from physical edges or lines.
This raises the basic question of whether suggestive contours pro-
vides similar shape information to the physical edge contour.

We know, from a theorem of Koenderink (1984), that the sign of
curvature of an apparent edge contour will give the sign of Gauss-
ian curvature. We now show that the curvature of the suggestive
contour varies with the derivative of Gaussian curvature across
the suggestive contour. Since the suggestive contour tends to lie
near parabolic lines (DeCarlo et al., 2003), this provides very simi-
lar information.

Assume orthographic projection (this assumption can be gener-
alized). Our surface around the cusp can be locally parameterized
as rðx; zÞ ¼ ðx; y; zðx; yÞÞ where zðx; yÞ ¼ a1xyþ a2y2 þ b0x3þ
b1x2yþ b2xy2 þ b3y3 þ Oððx; yÞ4Þ.3 As before assume a view vector
of �x̂ (viewer at þ1). Under this setup and at the cusp the second
fundamental form becomes simply

IIðu;vÞ ¼ ½urx ury �
0 a1

a1 2a2

� � vrx

vry

" #
;

where u and v are vectors in the tangent plane, in terms of the basis
rxry. Let the suggestive contour be the curve sðtÞ for some parame-
terization. We want to find _sð0Þ

k _sð0Þk.
The suggested contour is defined as the locus of points
3 We can always rotate the surface to kill off the a0x2 term. We must do so to bring
one asymptotic line of the surface in line with the x-axis, where we assume the view
vector lies. One could choose to line up the other asymptotic line, but it needlessly
complicates the analysis.
L ¼ fp 2 R : IIðwp;wpÞ ¼ 0 and rwpjr > 0g;

where wp ¼ ĉ� ðĉ � n̂pÞn̂p. In our Monge form at the cusp4

rwpjr ¼ rwp IIðwp;wpÞ ¼ 6b0: ð5:1Þ

Since w is a vector in the tangent plane it can be written in
terms of ðrx; ryÞ. In this basis the shape operator can be written as

II ¼
rxx � n̂ rxy � n̂
rxy � n̂ ryy � n̂

" #
: ð5:2Þ

Therefore L is the locus of points such that:

½wrx wry �
rxx � n̂ rxy � n̂
rxy � n̂ ryy � n̂

" #
wrx

wry

" #
¼ 0: ð5:3Þ

We can then use the implicit function theorem to take implicit
derivatives of this equation with respect to y, and then solve at the
origin. We find that at the origin, the tangent vector
_sð0Þ / � b1

3b0
1

h i>
¼ t in the basis rx; ry. Then:

IIðtÞ ¼
0 a1

a1 2a2

� 
 � b1
3b0

1

" #
; ð5:4Þ

¼
a1

2a2 � a1b1
3b0

" #
: ð5:5Þ

Then the curvature in the image plane is

IIðt; tÞ ¼ � b1
3b0

1
h i a1

2a2 � a1b1
3b0

" #
¼ 2a2 �

2a1b1

3b0
: ð5:6Þ

We stress that t is not a unit vector on the surface. Rather, we
are interested in a unit step in the image plane.

We can therefore identify the first term of (5.5) with a rotation
of the normal toward the viewer. Therefore the decrease in fore-
shortening is proportional to the Gaussian curvature. It can also
be shown the curvature of the suggested contour in the image
plane is related to the derivative of the Gaussian curvature in the
viewer direction. In fact, from (5.3) and (4.3) one can show that

rĉK ¼ 12a2b0 � 4a1b1: ð5:7aÞ

By comparing (5.1), (5.6) and (5.7a) it is clear that

japp 
 rĉjr ¼ 2a2 �
2a1b1

3b0

� �

 6b0; ð5:7bÞ

rĉK ¼ japp 
 rĉjr: ð5:7cÞ

Since rĉjr > 0 it is possible to determine the sign of rĉK from
the apparent curvature of the suggested contour. This result can be
extended along the entire suggested contour by taking the third-
order Taylor approximation along the suggested contour.5

For illustration, see Figs. 26 and 27.
4 Note this puts a further restriction on the form of our Monge patch, b0 > 0.
5 This will add a x term to the Taylor approximation to the cusp. This makes the

calculations significantly more unpleasant but (5.7c) holds.



Fig. 26. Several cusps shown with (columns starting at left and proceeding right) Lambertian lighting, suggestive contour (in red), w/Logical/Linear edge detection (in blue),
Gaussian curvature ðKÞ and rwK . The suggestive contour has positive, negative, and zero apparent curvature in the first three rows, while the last row of images has an
inflection point. Notice that japp > 0!rwK > 0. Notation: In this last two columns, dark intensity indicates negative and light intensity positive values. Quantization
artifacts courtesy of Mathematica, v.6. (For interpretation of the references to colours in this figure legend, the reader is referred to the web version of this paper.)

Fig. 27. The view-vector/normal ðĉ; n̂Þ plane along the suggestive contour (1), at the
cusp (2), and along the contour (3). Notice in (1) that the view vector is not
orthogonal to the surface normal. The suggestive contour runs along the inflection
points of the plane/surface intersections.
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6. Connections to contour theorems

The suggested contour is connected to two theorems of
Koenderink. The first (and most famous) relates the apparent cur-
vature of the contour to the Gaussian curvature at the contour. In
orthographic projection the theorem reduces to

K ¼ jr 
 japp; ð6:1Þ

where K is the Gaussian curvature, jr is the surface curvature in the
view vector–normal plane, and japp is the curvature of the projec-
tion of the contour into the image plane. Note that our definition
of the radial curvature agrees with this definition along the contour,
but extends it beyond. One could take the directional derivative of
the Koenderink result along the projected view vector to derive
the following:

rĉK ¼ ðrĉjrÞjapp þ jrrĉjapp: ð6:2Þ

However, this is not particularly enlightening along the contour,
as only japp is clearly accessible from an image. Naively extending
this result to the suggestive contour is significantly more instruc-
tive as jr ¼ 0. Then (6.2) and (5.7b) take the same form, with
japp representing the curvature of the contour and suggestive con-
tour in the image plane. This provides the strongest evidence that
the suggestive contour is in a sense the most natural extension of
the contour.

One consequence of this result is that the sign of curvature of
the contour gives the sign of Gaussian curvature along the contour
generator. We found that the curvature of the suggestive contour
gives information about the derivative of Gaussian curvature
across the cusp. In addition, since the suggestive contour hugs
the parabolic lines, the derivative of Gaussian curvature very
nearly gives the sign change across the parabolic lines. Therefore
the suggestive contour holds similar information to the contour.

A corollary result of Koenderink states that contours always end
in a convexity (Koenderink and van Doorn, 1982). This is a conse-
quence of contours ending in regions of negative Gaussian curva-
ture. Locally this is a hyperbolic patch, so contours adopt the
convexity of the patch. The suggestive contour shares no such
restriction. Since the suggestive contour continues the contour in
a smooth ðC1Þ fashion, it extends the actual contour beyond the
cusp visually; nearby cusps it follows line-like features in the pro-
jected shading. It is therefore a very plausible explanation for why
artists choose to draw ‘‘impossible” ending contours. These con-
tours accurately reflect they way that contours appear to end. Fur-
thermore, they contain important curvature information. It is easy
to draw ending contours that have the ‘‘wrong”, or mathematically
impossible curvature, but appear correct and reasonable. In fact,
the ‘‘correct” curvature can seem quite odd, or can drastically
change the apparent shape. Under these circumstances, the sug-
gested contour curvature seems to match our intuitive notion of
the curvature of ending contours, particularly where the suggestive
contour is near the parabolic lines and therefore extends quite far.

6.1. Revisiting the psychophysics

In Fig. 3 we showed several examples of human shape estimates
from different figures. With the material on cusps, the apparent
extension of boundaries, and the curvature estimates along the
suggestive contour, we are now in a position to revisit those data.

In Fig. 3a and b were two instances of a shape under different
lighting configurations; in both cases all subjects extended the
hyperbolic region well beyond the cusp. This is consistent with
both the probability that an edge will be extended beyond a cusp
(Fig. 25) and the computed edges (Fig. 23). It remains to make
these predictions quantitative but for now their qualitative agree-
ment can be seen in Fig. 28.



Fig. 28. Evaluating how contours influence shape. (left) The furrow image with true
edges (green) and a length of suggestive contour (blue). The cusp point is where
they meet. (right) Detected edges (black) superimposed on the furrow shape. Notice
how it is extended well beyond the cusp. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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7. Conclusions

Contours and shading both carry information about shape, and
integrating them into a coherent representation is a basic step in
understanding their neural implementation. In this paper we de-
scribed three aspects of this integration. First, regarding qualita-
tive shape features, we defined folds and cuts in terms of how
the shading flow field approached the boundary. This analysis
was generic mathematically, and was shown to hold in a statisti-
cal sense over different lighting configurations. However for vi-
sion applications only single images are available, and local
estimates of both boundaries and shading are notoriously noisy.
Therefore our second contribution was in the inference of consis-
tent shading flow fields, at which a second interaction between
shading and boundaries emerged: edges serve as the boundary
conditions for limiting the growth of shading (and other surface)
properties. Finally, for many lobed shapes viewed from many
viewpoints, cusp configurations arise in the surface and exterior
edges move interior to the shape and end. This implies a fold con-
figuration on one side of the edge, and a cut on the other; and the
shading flow field has a singularity right there. We show how
apparent contours arise there as well, often extending the edge
beyond the precise cusp and suggesting further details of the
shape.

Local orientation representations coupled through curvature-
based connections underlie all of these computations. In this sense
they are consistent with neural structure in several retinotopically-
organized visual areas, which makes it difficult to predict their
precise neural substrate. They may well be distributed across a
number of visual areas. But our models do explain psychophysical
data on the perception of surfaces, which encourages us to believe
that their neural realization will eventually be identified.
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