
A constant production hypothesis guides
leaf venation patterning
Pavel Dimitrov* and Steven W. Zucker*

Department of Computer Science, Program in Applied Mathematics, Yale University, New Haven, CT 06520

Communicated by Karl K. Turekian, Yale University, New Haven, CT, May 2, 2006 (received for review November 15, 2005)

We propose a theoretical mechanism that enables the elaboration
of veins to supply distant cells during leaf development. In contrast
to the more standard view that a signal (e.g., auxin) is produced at
isolated sites to stimulate growth, we determine the consequences
of the hypothesis that auxin is produced at a constant rate in every
cell. High concentration sites for auxin emerge naturally in a
reaction–diffusion model, together with global information about
leaf shape and existing venation. Because the global information
is encoded as auxin concentration and its gradient, those signals
provide individual cells with sufficient information to determine
their own fate. Unlike other models, a single substance suffices for
the reaction–diffusion at early, but not initial, stages of develop-
ment. Neither complex interactions nor predetermination are nec-
essary. We predict angiosperm areolation patterns in simulation,
and our model further implies the Sachs Canalization Hypothesis
and resolves a dilemma regarding the role of auxin in cell growth.

canalization hypothesis � emergent behavior � reaction–diffusion

Isolated sites of high auxin concentration have been observed
in developing leaves (1), and it has been assumed that auxin

production is dominant there. However, evidence (1, 2) is
emerging that production may be present at other sites. We
demonstrate that discrete regulated sites of synthesis need not
exist to develop a spatial pattern of discrete responses. Formally,
our ‘‘constant production hypothesis’’ holds that auxin is pro-
duced in all cells at the same constant rate. Mathematical
analysis of a schematic reaction diffusion model indicates that
high concentration sites emerge, which agrees with observations
(1) but also shows that distributions carry rich information about
the geometry of the leaf and its venation. This information can
be interpreted locally as a signal at the cell level, thereby
providing global cues. The concentration together with the
gradient of concentration have substantial predictive power
about vein formation (Fig. 1). Signals for initiating differentia-
tion are readily available locally, removing the need for complex
intercellular communication.

Our model differs from others that focus on local phenomena
(4–6). We seek to articulate those global pattern features that
emerge from purely local phenomena. Such structural questions on
a larger scale have, to our knowledge, only been considered in the
work of Meinhardt and Gierer (7, 8) and, more recently, in the
empirical models by Mündermann et al. (9) and Feugier et al. (10).
We show, contrary to Meinhardt (8) and certain current opinion
(11, 12), that a single substance traveling purely by diffusion [or its
equivalent (13)] is theoretically sufficient as a basis for a mecha-
nistic model of venation patterning when it is uniformly and
constantly produced (cf. ref. 10).

Motivation and Assumptions
We demonstrate how simple local behaviors, occurring simulta-
neously and independently at the cell level, can give rise to complex
global patterning. The local behaviors constitute four basic func-
tions that a plant cell will be allowed to perform in this model. Our
main result is to show how new venation forms within an areole as
a consequence.

Our choices are motivated by the transport of nutrients and a
basic tradeoff: although each cell should be provided with sufficient
resources, veins should be laid down sparingly because of the energy
required. Because this tradeoff must be in effect at all times during
leaf growth, especially in plant species with continuously expanding
leaves, new venation should be created only when some cells
become potentially short of resources. Identifying when this short-
age occurs, where these cells are, and how to correct it, are the
fundamental questions that we address. New veins should connect
the most deprived region to the existing network because nutrients
are delivered to the leaf through the petiole, and short connections
are more efficient than meandering ones.

How, then, might cells achieve such global behavior? Can they
achieve it by performing purely local functions? If so, how does a
cell detect that it is too far from the existing vascular network? By
what signal does a ground cell initiate the cascade of differentiation
processes to become vascular? How are connecting cells identified?
These are the operational versions of our fundamental questions.

Turing (14) first showed how chemical substances, by diffusing
and reacting together, could give rise to stable patterns. These
so-called reaction–diffusion systems inspired Gierer and Meinhardt
(7) to propose a technique for generating theories of biological
pattern formation. In particular, cells are assumed to produce and
assimilate substances that carry information through their peaks of
concentration. They postulated that at least two substances are
required for venation patterning (8) and showed how such a system
answers the above questions.

Sachs (15), building on experiments, proposed that new vascular
strands form as the draining paths of auxin. His empirically derived
Canalization Hypothesis holds that improved transport along a path
enlarges a path’s capacity. This autocatalytic behavior was trans-
lated by Mitchison (4) into the idea that the diffusivity of a
membrane depends on the flux of the substance through it.
Mitchison (4) showed that the canalization hypothesis is sound, but
complete vein patterns were not explained (see also ref. 16).

In both cases, production of the controlling substances has eluded
experimental verification. The Meinhardt and Gierer proposal
awaits identification of the two substances, and the Sachs–
Mitchison model implicitly assumes isolated auxin production
without addressing where those sites should be. A completely
different approach, one where no substances are directly involved,
was suggested by Couder et al. (17). It is based on an analogy to
crack formation in materials, but it does not guarantee a unique
drainage point as required by the petiole in leaves.

We propose a different answer to our operational questions by
first considering where auxin might be produced and consumed.
Because growth requires nutrients, suppose a leaf may request
those resources that it needs. One conceptual request mechanism
could be for the leaf to produce a hormone s at a rate proportional
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to its size and, by using the vascular network, transport it to sites in
the plant capable of satisfying the request (e.g., roots). If s is
assimilated (or broken down) proportionally to the available re-
sources, then as soon as the capacity of the production sites or of
the transport system (the petiole, for example) is exceeded, the
hormone concentration will rise. Leaf growth ceases when hor-
mone levels become too high.

This mechanism can be implemented with simple local rules:
Each cell should produce s at a constant rate K, allow it to diffuse
through its membranes and walls, and measure concentration of s
to determine when to stop growing. This way, the collection of n
cells in the leaf produces s at a rate of n�K, which is proportional to
the overall size. Theoretically, this strategy extends far beyond
controlling leaf size, and these rules define our model almost
completely.

Model
A leaf is a collection of cells. We distinguish between ‘‘ground cells,’’
those that give rise to all others, and ‘‘vascular cells,’’ those that
comprise the venation pattern. We focus on early leaf development
and concentrate on establishing signals to initiate the cascade of
events that change ground cells into vascular cells within an
expanding areole. To keep matters tractable, a cell will be referred
to as ‘‘c-vascular’’ (cascade vascular) immediately after this cascade
is initiated. The subcollection of c-vascular cells may be thought of
as an early prepattern from which veins derive. Ground cells have
(essentially) homogeneous characteristics, and areoles are delim-
ited by more developed c-vascular (or mature vascular) cells.
Instead of assuming the prepattern is predefined, our model
establishes how it emerges from local operations. We refer to both
membranes and cell walls together as ‘‘cell interfaces’’ and assume
that they act as a single membrane. Each cell performs the following
basic cell functions (CFs) independently and simultaneously:

CF1. Produce substance s at the constant rate K.
CF2. Measure c, the concentration of s, inside it and �c, the

difference across cell interfaces.
CF3. Diffuse s through interfaces. C-vascular cells transport s

better. Active (polar) transport is abstracted as improved
diffusion (13).

CF4. Improve transport of s as triggered by c and �c.

Notice that the only means of communication among cells is
through CF2 because of CF1 and CF3; no other information-
exchange mechanism is assumed. The only distinction between
ground and c-vascular cells is in how well they transport substance
s. In effect, it is the interface between cells that changes perme-
ability. Cells are allowed to have several interfaces, one to each
neighboring cell, each with a different permeability to s. A cell will
be called c-vascular if at least one of its interfaces has high
permeability.

The first three rules are as required for stopping leaf growth. CF4
may be thought of as signaling when a ground cell should become
c-vascular. It is, as we show next, a consequence of the other rules.

Analysis
Consider the leaf blade as a collection of cells. If each of them
follows the cell functions listed above, veins emerge as required.
The key to understanding why and how this venation develops is in
the dynamics of s on a larger scale. In particular, the concentration
c of the substance viewed as a function over all cells contains all
relevant information. The structure of c is the direct consequence
of applying CF1 and CF3 everywhere independently, and it is very
sensitive to the way in which cells are organized in the collection,
that is, to their global pattern. We now develop this structure.

It is useful to think of c as a continuous function. Of course, there
are only finitely many cells in a leaf, and, because of CF2, we should
only define c for each cell: c(x, y), only where (x, y) is the position
of a cell. If, however, there were a large number of cells, then c
defined everywhere inside the leaf approximates the continuous c;
in fact, the larger the number of cells, the better the approximation.
It is in this sense that we will use c in a differential equation with
positional derivatives.

Suppose the leaf is endowed with a venation pattern, and focus
on an areole. As this aerole expands, new c-vascular strands need
to be created. Both the expansion and the formation of new
venation are constrained by our model. We now derive the more
specific behavior implied by CF4 as imposed by the first three
functions.

Fig. 1. Illustration that global signaling in-
formation for vein formation can be obtained
from constant hormonal production in every
cell. As developed in the text, the bottom of
thepetiole (baseoffigure)actsas sink,andthe
hormone diffuses with coefficient Dv through
vascular cells and D everywhere else (Dv � D).
Developmental time isquantized intotwodis-
crete stages for this illustration. (A) Image of
stained leaf of Arabidopsis from ref. 3. [Repro-
duced with permission from ref. 3 (Copyright
2004, Company of Biologists).] (Scale bar: 100
�m.) (B and C) Color-coded concentration lev-
els at stages 1 (B) and 2 (C). Observe how local
peaks ‘‘move’’ after creation of new strands.
(D) Gradient vectors of concentration in an
areole developed further in the work. Color-
coded magnitudes of vectors elsewhere in the
leaf are shown. (E and F) Color-coded magni-
tude of greatest possible �c with immediate
neighbors. Veins are in blue, and predictions
are ingreen.Predictionsstartatamaximumof
�c, follow vectors (e.g., see D), and stop at
minimum �c (see Supporting Text, which is
published as supporting information on the
PNAS web site). Stage 1 (B and E) was initial-
ized by tracing veins from A (shown in blue in
E). Stage 2 (C and F) was initialized using pre-
dictions (in blue in F) from stage 1.
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Cell functions CF1 and CF3 determine the equation governing
the distribution of s in the areole. C-vascular cells evacuate the
hormone much faster than ground cells. For analysis, assume that
s is drained fast enough so that the boundary of the areole may be
thought of as a sink for s. Therefore, the temporal change of the
concentration inside a region depends on how much is diffused out
plus how much is created; in symbols

ct � D�2c � K, [1]

where D is the diffusion constant of ground cells, �2c � cxx � cyy is
the Laplacian of concentration over cell position, and K is as in CF1.
Eq. 1 is a reaction–diffusion equation that has a steady state: after
sufficiently long time, the dynamical system is well approximated by
the steady-state ct � 0 (see Fig. 2) Observe that those cells that are
further from the boundary have higher concentrations. In fact, the
concentration profile is qualitatively similar to that of the function
assigning to each cell the shortest distance to a (c-)vascular cell: the
so-called ‘‘distance transform’’ (18).

When ct � 0, Eq. 1 becomes a Poisson equation. Given our
boundary conditions (c � 0 at veins), there is a unique c
satisfying it (19). From this equation, we calculate the following:

Result 1. Consider an areole and suppose that P is a ground cell that
is furthest from the c-vascular boundary. Let Q be a c-vascular cell that
is closest to P, and denote by L the distance between P and Q. Then

a. c(P) is proportional to (K�D)L2;
b. The change in c at the interface of Q nearest to P is proportional

to (K�D)L; and
c. �c is largest at an interface of the c-vascular boundary, larger

than for any ground cell, and is proportional to (K�D)L.

Therefore, by using Result 1a and CF2, a cell may determine
whether it has become further than L units from the closest
c-vascular (supply) cell by measuring its concentration. This mea-
surement, however, is not sufficient for determining whether the
cell should become c-vascular. The example in Fig. 2 shows that if

cells differentiated only when c exceeds a threshold, then isolated
islands of (pre-)vascular cells would form and never connect.
Because the veins must be connected for normal leaves [there are
exceptions (20)], a different strategy must be used.

CF2 also allows cells to measure the difference in c across
interfaces. In Fig. 2, we plot c and �c for a cross section of the
artificial areole. Observe that �c decreases as c increases and �c is
highest near existing venation where c is lowest (see Proposition 1
in Supporting Text for an explanation). In fact, Result 1b asserts that
�c at the venation is proportional to L�D and does not depend on
the value of c. It also gives the direction toward the furthest cell. This
result is sufficient to show that mechanisms for new strand creation
should adhere to the following schema.

Schema 1. Let DI be the diffusion constant across an interface I and
�c be the concentration difference through I. Then increase DI to a
higher value when �c � �(K�DI)L0. (� is a constant of proportion-
ality.) Alternatively, the flux � � DI�c � �KL0 may be used.

A comment on language is useful here. We refer to schema
rather than mechanism because the increase in DI may be due to
a cellular phenomenon such as the synthesis or reorientation of
substance carriers (e.g., PIN and AUX1 in the case of auxin) or
a (pro)vascular differentiation event that affects many such
cellular properties (wall composition, orientation of expansion,
etc.). Whatever the cellular mechanism, we require that the
transport properties of an interface be improved when �c is
large. In Schema 1 we summarize this condition with a simple
threshold, but cellular mechanisms are likely more elaborate.
Nevertheless, calculations with this threshold show that the
critical size may be regulated. Fig. 3 shows the sequence of
events. As a cell becomes c-vascular, it starts evacuating s more
rapidly, and �c increases. Shortly, one interface exceeds the
threshold and initiates conversion in the next cell. Because the
chain begins at a c-vascular cell, after each change the hormone
is readily drained. Also, because the process starts toward a
furthest ground cell P, it continues in that direction. Finally, the
draining of substance s induces a form of lateral inhibition.

Fig. 2. Hormone concentration inside an areole. (a) An artificial areole is illustrated with a rectangular boundary of c-vascular cells. Assuming c-vascular cells
are much more efficient at transporting s, the boundary may be taken as a sink, and c is governed by Eq. 1. (bA) c at near steady state, ct � 0. (bB) The values
of c and �c along a path (in black) across the areole in bA. Notice how the concentration peaks for cells furthest from the veins, whereas �c peaks near the vein.
(b C–E) Concentration geometry for the areole from Fig. 1D. (bC) Concentration. (bD) Magnitude of gradient. (bE) Gradient vector field. Observe how the gradient
vectors point toward largest concentration increase.
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This behavior is not specific to the constraints of our example.
In fact, Result 1 holds provided there is at least one point of
hormone assimilation. Typically, along c-vascular strands there
will be isolated maxima (i.e., the Q) each corresponding to an

isolated furthest ground cell (i.e., a P). Fig. 4 compares predic-
tions with observations. It is the collective behavior due to CF1
and CF3 that allows us to keep to a purely local criterion as
required by CF4. We now have an answer to both of our

Fig. 3. Creation of a new c-vascular strand. (A–D) Illustration of our model’s schema for creating a new strand. Four steps in time are shown for the left areole taken
from Fig. 1. Color codes are as in Fig. 1F. In general, new strands are initiated at a peak of gradient magnitude (i.e., minima of concentration) and proceed toward the
minima of magnitude but may stop before reaching them (see Fig. 6 and Movies 1–5, which are published as supporting information on the PNAS web site). (E–H)
Concentration of s inside the areole shown as height. Notice the developing groove as the incipient strand is elaborated: as transport improves, c decreases locally (the
groove). (I–L) Illustration of the developing strand in the direction of creation. Squares represent cells along green curve in D: ground cells are in white, and c-vascular
cells are in green. Blue curve above cells is initial concentration, and red curve tracks changes with time. Initially, the first cell has lowest concentration, but its interface
to the second cell achieves the largest �c of all interfaces. This value exceeds the threshold � and causes the interface to increase diffusivity (see Schema 1). The hormone
is drained, and the next interface (cell 2 to cell 3) has �c � � and the process repeats. Consequently, the interfaces change their D in sequence. This mechanism shows
how, contrary to Sachs’s conjecture (ref. 21, p. 205), the concentration gradient may be as relevant as the flux. Note how the strand is created in a rapid burst (three
cells in 15 steps), which slows down rapidly (115 steps for the remaining six).

Fig. 4. Illustration of model predictions of c-vascular formation in Liriodendron areoles. (A and E) Magnitude of gradient of c above a threshold (the plane).
The reference plane shows the boundary in blue. Red arrows point to peaks where new strands are initiated. Note that peaks are as expected from Result 1b.
(B and F) Magnitude of concentration. Color codes are as in Fig. 1C. Arrow points at peak where the strands end. (C and G) Magnitude of gradient of c (compare
with A and E). Color codes are as in Fig. 1F. Green curves are predicted new strands. (D and H) Actual areoles from Pray [Reproduced with permission from ref.
22 (Copyright 1955, The Botanical Society of America).]
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questions, selection and connection of a target cell, and it
involves a single substance s.

Substance s provides a local cue for growth: the concentration
gradient. From our model it is necessary and sufficient for growth
to be promoted by the magnitude of the gradient and inhibited by
the absolute concentration. Thus, where the gradient is low, the
concentration of s is high and expansion is slow; where the gradient
is high, c is low and expansion is fast. When the draining capacity
is reached, the concentration of s rises faster than cells expand. The
value of �c only depends on size, so it changes more slowly than c
itself, and, eventually, c becomes large enough to arrest expansion
even where �c is high.

Consequences and Predictions
Dynamics of Vein Creation. New strands emanate from existing ones
and extend toward the ground cells furthest from them. Fig. 1 shows
how sites of high concentration (i.e., low magnitude of gradient)
appear to ‘‘pull’’ new strands toward them. Incipient strands deplete
the region of substance s and eliminate concentration hot spots.
Leaf growth then creates new hot spots, and the process continues
until maturity. This behavior was reported in ref. 1 for Arabidopsis
leaves where s is auxin. The authors propose that moving sites of
high auxin production are responsible for the observed phenomena
but do not explain why those sites move. We showed that the sites
of high concentration are due to substance accumulation (not
production), and apparent movement of such sites is accounted for
by the dynamics of our model.

Observe that new strands are created in bursts (Fig. 3), giving rise

to (essentially) straight segments, which locally approximate the
requirement that efficient veins be short and that connections form
incrementally. Other comments are in Supporting Text.

Whole-Leaf Interactions. The simulations in Fig. 4 involved isolated
areoles in which both K and D were uniformly constant and a single
threshold on �c was sufficient. At the scale of a leaf, however, there
are gradients of cell division frequency (23), which suggests that
production, diffusion, and differentiation may also vary. We exam-
ine this variation in terms of our model, assuming uniformity at the
areole level but allowing parameters to differ from areole to areole.

The three parameters of our model: K, D, and the threshold �,
could theoretically vary in any combination from areole to areole.
Result 1 and Schema 1 relate them functionally, so we may fix one
and study the other two. Suppose, then, that � is uniform through-
out the leaf. Fig. 5 A and B then shows that keeping K and D
uniform will not produce the same strands as observed in Fig. 1A.
If, however, K and D differ from areole to areole (Fig. 5 C and D,
and E and F), then we do obtain good agreement. The logic behind
this parameter variation is as follows.

Suppose cell division occurs only when a cell reaches a reference
size, type A, to result in two daughter cells, type B, (roughly) of
equal size. Thus, the space occupied by n type A cells will be
occupied by at most 2n type B cells. If each type B cell produces
substance s at the same rate as a type A cell, then the concentration
change in time due to production within a type B cell is KB � 2KA
because the same amount of material is produced by a cell of half
the size. Similarly, the same space will contain at most twice the

Fig. 5. Experiments with the model suggest a variation of parameters across different areoles. We work with the central four areoles from Fig. 1A. Begin by
assuming, for a moment, that all parameters (K, D, �) are uniformly constant. Notice how in A and B, peaks arise to trigger c-vascular differentiation in the upper
areoles (� and �) more vigorously than in the lower ones (� and 	), unlike data in Fig. 1A. More generally, it is impossible to reproduce the observed patterns.
However, when the parameters differ in (�, �) relative to (�, 	) very realistic patterns are obtained (C and E) with a single threshold �. Comparing areole 	 between
A and C illustrates how vascular development in � varies the gradient peaks in 	. This illustrates areole–areole timing interactions as well. Such parameter
variation across areoles is consistent with gradients of cell division frequency (23). (A and B) All parameters uniformly the same. (C and D) Nonuniform parameters.
K� � K� � (1��1.65)K�, D� � D� � �1.65D� and K	 � (1��1.15)K�, D	 � �1.15D�. (E and F) Nonuniform parameters using new strands from C. K� � K� �
(1��3.73)K�, D� � D� � �3.73D� and K	 � K�, D	 � D�. (A, C, and E) Four areoles (labeled �, �, �, 	) from Fig. 1A with predicted new strands. Color codes are
as in Fig. 1F. (B, D, and F) Magnitude of gradient of c above threshold. Other parameter variations are available in Fig. 7, which is published as supporting
information on the PNAS web site.
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number of interfaces. A region will mostly have type B cells if cell
proliferation is high and type A cells if it is low. In our simulations,
type A cells occupy two units, and type B cells occupy one unit of
space. Thus, if a region of only A cells has substance production of
KA and diffusion coefficients of DA per unit, then a region of type B
cells should roughly be bounded KB 
 2KA and DB �

1
2
DA for each

unit of space. More generally, if A is a region of slow or no division
and B of fast division, then (KA�DA) 
 (KB�DB) 
 4(KA�DA). Our
model thus predicts a longitudinal gradient for the values of K and
D in Arabidopsis thaliana leaves consistent with empirical evidence
(23, 24) (see Supporting Text).

Reconnections After Vein Damage. Sachs (14) argues that there is
no predetermined pattern in which vascular tissue appears and
provides experimental evidence (21) that new vascular strands
are induced by wounds incurred on the existing venation. Our
model is consistent with these empirical observations when
carried to the leaf. In Fig. 8, which is published as supporting
information on the PNAS web site, we simulate the removal of
three vascular cells. After wounding, the structure of c changes
to become the state shown. Notice how the flow of substance s
is rearranged so that reconnecting strands form around the
wound as in Sachs’s experiments.

Growth and the Role of Auxin. There is a dilemma in the literature
regarding the role of auxin in leaf expansion. On one side, appli-
cation of the hormone appears to accelerate growth, e.g., leaf
expansion (25) or branching and phyllotaxis (26). On the other,
increased concentration of the substance on the leaf due to
transport inhibition limits leaf blade expansion (27, 28). Our model
predicts both types of experimental results on leaves, thereby
removing the dilemma.

Within our framework, the above experiments should be ana-
lyzed by considering the difference of concentration from cell to cell
as well as its value in a cell; clearly, applying auxin changes both. In
the transport inhibition experiments, only the diffusion coefficients
changed, and not the endogenous production of substance s (here
auxin). The value of �c is proportional to the distance from the
neediest cell, but it is inversely proportional to the diffusion
coefficient D (Result 1b). Hence, a lower D will, in effect, increase
�c for shorter distances, and c-vascular strands will be shorter (see
Schema 1). Also, the transport capacity of the veins will be
diminished and reached sooner, so the final organ will be smaller.

In experiments where auxin is externally applied the profile of c
is affected. The exogenous auxin concentration exceeds that pro-
duced endogenously. Thus, application on a region of the devel-
oping blade creates large concentration differences around the
boundary of that region, and cells expand more rapidly there even
though c is higher.

In effect, the external intervention inverts the relationship be-
tween c and �c around the region: It makes them increase together
instead of with opposite signs. The application of a single drop of
auxin illustrates this behavior (see Fig. 9, which is published as

supporting information on the PNAS web site). Diffusion causes
the drop to change c, and at the instant of application the greatest
�c is observed around the point of application. Slowly, the spread
increases, and the greatest �c moves away from the point of
application radially with the value of this maximum decreasing until
it becomes insignificant.

Discussion
Adopting an axiomatic approach, we developed a theoretical model
for leaf venation patterns in which all functions are performed by
cells acting on information available locally. The constant produc-
tion and (diffusive) transport of a single substance was sufficient to
coordinate local behavior and provide global information. As a
result, the simple rules of our model gave rise to emergent phe-
nomena of leaf vein patterning and provide important cues for
shape formation and, possibly, participate in communication be-
tween the leaf and the rest of the plant.

Our analysis showed that, within the constraints of the model,
there is a schema (Schema 1), which biological mechanisms should
follow to create the venation pattern. Although this schema is a
form of the Sachs Canalization Hypothesis (21), we derived it from
totally different assumptions. We demonstrated that �c or the flux
D�c can be used to create new c-vascular strands.

New veins appear efficiently as a consequence of local rules and
the constraints that they impose, new strands emanate from existing
venation toward the furthest region from the network. Thus, the
newest c-vascular element is always as short as possible. More
generally, our model suggests that the interplay between vein
formation and cell expansion is responsible for leaf morphology,
because the structure of c may be used as a cue for growth.

Our proposal is schematic in that we have abstracted the known
transport apparatus (cell wall, membrane, and auxin carriers) and
demonstrated effects that a mechanistic model should exhibit.
Because we are concerned with the earliest stages of pattern
formation, the cell wall and membrane were assumed to have
uniform influence in all directions and transport to be purely
diffusive. Carriers such as PIN and AUX1 have not been shown to
have well defined orientation at those stages of development, so we
have neglected their effects. Our analysis suggests that this orien-
tation is given by the scheme we have developed and that the
carriers play a more important role reinforcing the pattern instead
of defining it.

Even though the model was very abstract, it was sufficient to
demonstrate that a type of reaction–diffusion system, with a single
substance and constant kinetics, could account for a number of
developmental processes in a leaf. The fact that constant produc-
tion with diffusion is mathematically sufficient may have implica-
tions for the early evolution of plants as well as the growth control
of the whole plant (Fig. 2a).
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