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Loss FunctionIntroduction

Two-Branch Decoder

Goal: Learn a function                    to recover the scene from a single image

Recovering 3D geometry from a single image is an ill-posed problem
We must rely on a prior e.g. piecewise smoothness
We formulate this as an energy minimization problem:
where       denotes data fidelity,       regularization, and      a static scalar

To better modulate the amount of regularity imposed:      should be adaptive
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where the block in orange denotes a bilinear sampler and purple the loss layer

Exploiting stereo pairs and view synthesis loss for training
Given a single image we predict its left and right disparities

Data-fidelity terms:      photometric (       ) and illumination invariant           (      )
Regularization:  local smoothness (        ) and bilateral cyclic consistency (      )   

         and        are adaptively weighted by a spatially and training time varying 

Adaptive Regularization
As           biases the solution based on an assumption about    ,
we should only impose regularity if          is met; hence, we want     to vary for: 

● each position           of     depending on the residual of
● each time step of training 

for local residual                                        and global residual
          begins low, and                   as global residual decreases

 where 

 where                                                     and 

Results

    relies on data-fidelity residual. To ensure we 
have the necessary features to satisfy         :
Dedicate one branch to minimizing just the 
data-fidelity term 
Give its features and coarse prediction to a 
second branch to minimize entire loss
idisp for minimizing :                                             
rdisp for minimizing :

We use rdisp as our final output 
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