Fast and Accurate k-means for
Large Data Sets

Michael Shindler Alex Wong Adam Meyerson

08“ Google

IIIIIIIIII

K-means Clustering

“facilities” or
“centers” or
“means”

Algorithms for solving k-means

e Standard Algorithm (Lloyd 57)

— Can have cost arbitrarily worse than optimal
(Arthur and Vassilvitskii, 07)

— Can take exponential time (Vattani, 11)

e Polynomial time algorithms for k-means
— Bound ratio of (algorithm cost) / (optimal cost)
— Best ratio is 9+ & due to (Kanungo et al, 02)

 These do not work for streaming setting

K-means for Large Datasets

* Want good k-means solution
— Without random access to full data
— Without using much memory

— Without using much time

Streaming k-means

When done:
If more than k facilities,
Use normal k-means to consolidate

Improvements/Contributions

Braverman et al This Work
(SODA 2011)

Memory 1623 k log n Any Q(k log n)
Requirement (including 1 k log n)
Cost Guarantee O(1) O(1)

(cost ratio against 60,498 17

best)

If too many Complicated matching Simple re-evaluation

facilities before

finishing stream?

Optimized O(nk log n) o(nk)

runtime Large lead constant Less than 6(nk)

More relevant algorithms for
streaming k-means

e Divide and Conquer (Ailon, Jaiswal, and Monteleoni, NIPS 09)
— Read M points into memory
— Compute and store weighted representative points
— Repeat until stream exhausted
— Compute k-means on stored representatives

* StreamKM++ (Ackermann et al, ALENEX 10)
— Compute a weighted representative sample of stream
— Solve k-means on sample

— Based on core set paradigm
* For current best theoretical treatment, see (Chen 09)

Experimental Setup

 Compare to others with equal memory
* Metrics:

— Cost of solution (squared error)
— Time to compute solution

* Examples in this talk are from UCI “Census
1990” dataset

— 2,458,285 points in 68 dimensions
— Seeking A=12 clusters

Time to Compute SGeebias

ds

A
o
!

Time (Secon

10000

[y
o
o

10 -

1260 2520 3780 5040 *5430 6300

Memory Available

Ours-~ fastest

O D&C
@ StreamKM++
@ Ours

Cost (Summed Squared [y enough

8.00E+18

7.00E+18

6.00E+18

5.00E+18

7]

3.00E+18 - I

2.00E+18

1.00E+18

0.00E+00 -~

O 4.00E+18 | |
o

memory,
Ours is best

1260 2520 3780 5040 *5430 6300

Memory Available

10

Bottleneck in Algorithm Runtime

4 |
/
/
U
U
/

(if k facilities)

Choose Random
Vector we [0,1) Td

Identify Two
Nearest Neighbors
O(logx)

Compute Actual Distance to Those
Neighbors

,/l
N
/ \
S
K 1
1

\

\

\

\

\

\

1

\

\

1

-
-
-
-

O

12

Substantially Faster

Time (Seconds)

10000

1000

100

10

1260 2520 3780 5040

Memory Available

*5430

6300

@D&C

O StreamKM++
B Ours

@ Ours+ANN

13

Cost change is (usually) minor

9.00E+18

8.00E+18

7.00E+18

6.00E+18

5.00E+18

Cost

4.00E+18 -

3.00E+18 -

2.00E+18 -

1.00E+18 -

0.00E+00 -

1260

2520

3780 5040
Memory Available

*5430

6300

@D&C

O StreamKM++
@ Ours

@ Ours+ANN

14

Conclusion

* Fast streaming k-means algorithm
— Substantial Speedup

* Provides good quality clustering

— Best O(1) cost guarantee among poly-time
streaming algorithms

* Source Code available from
http://web.engr.oregonstate.edu/~shindler/

Acknowledgments

* Meyerson and Shindler were partially
supported by NSF CIF Grant CCF-1016540

e Shindler is supported by DARPA under
Contract W911NF-11-C-0088.

— Any opinions, findings and conclusions or
recommendations expressed in this material are
those of the author(s) and do not necessarily
reflect the views of the DARPA, the Army
Research Office, or the US government.

Additional Slides

Room for Improvement

e [BMO+11] should be fast and straightforward

* However:
— Actual memory requirements are high
* O(k log n) memory great in limit
 Facility cap of k =1623 k log n
— Constant approximation bound is high

e Constant is tens of thousands

— End-of-phase conditions are complicated

End-of-phase conditions

 End-of-phase in [BMO+11]
— “Phase” is reading data until f too low
— When done, need to re-evaluate facilities and increase f
— Performed maximal matching as part of this
— Guaranteed no more than /4 logn phases

* Simpler phase transitions
— Transition only on facility count
— Increase f
— Push facilities (weighted) back to stream
— Continue reading stream, starting at those
— Faster, no guarantee of phase count

Memory Requirement

[BMO+11] : facility cap of 1623 k log n
Great as an asymptotic bound

Quite large in practice

Instead, we will allow any « facilities

Facility count k can be any in Q(k log n)

Will demonstrate that k = k log n works well

Approximation Bound

e Ratio of cost of solution vs optima
e Approximation factor in [BMO+11] is 60,498
 We achieve a bound of 17

Algorithm: Spot the Bottleneck

Increase “weight” of

| nearest

| Do not “remember”
this point

A

Consolidate facilities

R int?
Return final kK means el s gl

Measure 6 =

There is one P distance to nearest
facility

Make it a new
facility

Push weighted
facilities to stream

€——yes

Have « facilities?

Probability 6/f?

Algorithm: Spot the Bottleneck

Consolidate facilities
Return final kK means

Push weighted
facilities to stream

<ves

Read next point?

There is one

Make it a new

Have « facilities? -
facility

€——ves

Increase “weight” of
| nearest
Do not “remember”
this point

A

Probability 6/f?

23

Bottleneck: Finding Nearest Facility

* Use approximate nearest neighbor algorithms

* To achieve guarantee:
— Techniques from hashing and metric embedding

— Look up is O(log n(log k + loglog n))
* MAIN RESULT:

— Algorithm runtime is o(nk) for most values of k
— (Computing cost given solution takes O(nk))

Bottleneck: Finding nearest Facility

* Fast practical implementation:
— Select random point @€ [0,1)7d
— Store facilities sorted by inner product with @

— To find “nearest” facility to x:
* Find a, b:

—axwo<XxX*wo<b*w

e Use closer of (a,b)

Speed close to competitors’

10000

1000

Time (Seconds)

10 A

100 -

1260

2520

3780 5040
Memory Available

*5430

6300

@O StreamKM++
@ Ours

26

Bottleneck in Algorithm Runtime

Full distance

