
Fast	and	Accurate	k-means	for	
Large	Data	Sets	

Michael	Shindler								Alex	Wong 						Adam	Meyerson	

K-means	Clustering	

2	

F1	

F2	

F3	
“faciliBes”	or	
“centers”	or	
“means”	

	

𝑐𝑜𝑠𝑡(𝐹)= ∑𝑖 ∈𝑋↑▒​​min┬𝑗∈𝐹 ​‖​𝑋↓𝑖 
− ​𝑋↓𝑗 ‖↑2  ⁠   	

Algorithms	for	solving	k-means	

•  Standard	Algorithm	(Lloyd	57)	
– Can	have	cost	arbitrarily	worse	than	opBmal	
(Arthur	and	Vassilvitskii,	07)	

– Can	take	exponenBal	Bme	(VaPani,	11)	

•  Polynomial	Bme	algorithms	for	k-means	
– Bound	raBo	of	(algorithm	cost)	/	(opBmal	cost)	
– Best	raBo	is	9+𝜀	due	to	(Kanungo	et	al,	02)	

•  These	do	not	work	for	streaming	seUng	

3	

K-means	for	Large	Datasets	

•  Want	good	k-means	soluBon	
– Without	random	access	to	full	data	
– Without	using	much	memory	
– Without	using	much	Bme	

4	

Streaming	k-means	

5	5	

When	done:	
If	more	than	k	faciliBes,	

Use	normal	k-means	to	consolidate	

Probability	∝	distance	

Improvements/ContribuBons	
Braverman	et	al	
(SODA	2011)	

This	Work	

Memory	
Requirement	

1623	k	log	n	 Any	Ω(k	log	n)	
(including	1	k	log	n)	

Cost	Guarantee	
(cost	raBo	against	
best)	

O(1)	
60,498	

O(1)	
17	

If	too	many	
faciliBes	before	
finishing	stream?	

Complicated	matching		 Simple	re-evaluaBon	

OpBmized	
runBme	

O(nk	log	n)	
Large	lead	constant	

o(nk)	
Less	than	θ(nk)	

6	

More	relevant	algorithms	for	
streaming	k-means	

•  Divide	and	Conquer	(Ailon,	Jaiswal,	and	Monteleoni,	NIPS	09)	

–  Read	M	points	into	memory	
–  Compute	and	store	weighted	representaBve	points	
–  Repeat	unBl	stream	exhausted	
–  Compute	k-means	on	stored	representaBves	

•  StreamKM++	(Ackermann	et	al,	ALENEX	10)	
–  Compute	a	weighted	representaBve	sample	of	stream	
–  Solve	k-means	on	sample	
–  Based	on	core	set	paradigm	

•  For	current	best	theoreBcal	treatment,	see	(Chen	09)	

7	

Experimental	Setup	

•  Compare	to	others	with	equal	memory	
•  Metrics:	
– Cost	of	soluBon	(squared	error)	
– Time	to	compute	soluBon	

•  Examples	in	this	talk	are	from	UCI	“Census	
1990”	dataset	
– 2,458,285	points	in	68	dimensions	
– Seeking	𝑘=12 clusters	

8	

Time	to	Compute	SoluBon	

9	

Ours≈ 	fastest	

Cost	(Summed	Squared	Distances)	

10	

With	enough	
memory,	

Ours	is	best	

BoPleneck	in	Algorithm	RunBme	

11	

O(κ)	Bme	
(if	κ	faciliBes)	

Choose	Random	
Vector	𝜛∈ ​[0,1)↑𝑑 	

IdenBfy	Two	
Nearest	Neighbors	

𝑂(​log ⁠𝜅) 	

IdenBfy	Two	
Nearest	Neighbors	

𝑂(​log ⁠𝜅) 	

Compute	Actual	Distance	to	Those	
Neighbors	

12	

SubstanBally	Faster	

13	

Cost	change	is	(usually)	minor	

14	

Conclusion	

•  Fast	streaming	k-means	algorithm	
– SubstanBal	Speedup	

•  Provides	good	quality	clustering	
– Best	O(1)	cost	guarantee	among	poly-Bme	
streaming	algorithms	

•  Source	Code	available	from		
	hPp://web.engr.oregonstate.edu/~shindler/	

15	

Acknowledgments	

•  Meyerson	and	Shindler	were	parBally	
supported	by	NSF	CIF	Grant	CCF-1016540	

•  Shindler	is	supported	by	DARPA	under	
Contract	W911NF-11-C-0088.			
– Any	opinions,	findings	and	conclusions	or	
recommendaBons	expressed	in	this	material	are	
those	of	the	author(s)	and	do	not	necessarily	
reflect	the	views	of	the	DARPA,	the	Army	
Research	Office,	or	the	US	government.	

16	

AddiBonal	Slides	

17	

Room	for	Improvement	

•  [BMO+11]	should	be	fast	and	straighrorward	
•  However:	
– Actual	memory	requirements	are	high	

•  O(k	log	n)	memory	great	in	limit	
•  Facility	cap	of	κ	=	1623	k	log	n		

– Constant	approximaBon	bound	is	high	
•  Constant	is	tens	of	thousands	

– End-of-phase	condiBons	are	complicated	

18	

End-of-phase	condiBons	
•  End-of-phase	in	[BMO+11]	
–  “Phase”	is	reading	data	unBl	f	too	low	
– When	done,	need	to	re-evaluate	faciliBes	and	increase	f	
–  Performed	maximal	matching	as	part	of	this	
–  Guaranteed	no	more	than	​𝑛/𝑘 ​log ⁠𝑛  	phases	

•  Simpler	phase	transiBons	
–  TransiBon	only	on	facility	count	
–  Increase	f	
–  Push	faciliBes	(weighted)	back	to	stream	
–  ConBnue	reading	stream,	starBng	at	those	
–  Faster,	no	guarantee	of	phase	count	

19	

Memory	Requirement	

•  [BMO+11]	:	facility	cap	of	1623	k	log	n	
•  Great	as	an	asymptoBc	bound	
•  Quite	large	in	pracBce	
•  Instead,	we	will	allow	any	κ	faciliBes	
•  Facility	count	κ	can	be	any	in	Ω(k	log	n)	
•  Will	demonstrate	that	κ	=	k	log	n	works	well	

20	

ApproximaBon	Bound	

•  RaBo	of	cost	of	soluBon	vs	opBmal	
•  ApproximaBon	factor	in	[BMO+11]	is	60,498	
•  We	achieve	a	bound	of	17	

21	

Algorithm:	Spot	the	BoPleneck	

Read	next	point?

There	is	one

Make	it	a	new	
facilityHave	κ	facilities?

fewer

Push	weighted	
facilities	to	stream yes

Increase	“weight”	of	
nearest

Do	not	“remember”	
this	point

Probability	δ/f?

yes

Measure	δ	=	
distance	to	nearest	

facility
no

Consolidate	facilities
Return	final	k	means done

22	

Algorithm:	Spot	the	BoPleneck	

Read	next	point?

There	is	one

Make	it	a	new	
facilityHave	κ	facilities?

fewer

Push	weighted	
facilities	to	stream yes

Increase	“weight”	of	
nearest

Do	not	“remember”	
this	point

Probability	δ/f?

yes

Measure	δ	=	
distance	to	nearest	

facility
no

Consolidate	facilities
Return	final	k	means done

23	

BoPleneck:		Finding	Nearest	Facility	

•  Use	approximate	nearest	neighbor	algorithms	
•  To	achieve	guarantee:	
– Techniques	from	hashing	and	metric	embedding	
– Look	up	is	O(log	n(log	k	+	loglog	n))	

•  MAIN	RESULT:	
– Algorithm	runBme	is	o(nk)	for	most	values	of	k	
–  (CompuBng	cost	given	soluBon	takes	θ(nk))	

24	

BoPleneck:	Finding	nearest	Facility	

•  Fast	pracBcal	implementaBon:	
– Select	random	point		𝜛∈ ​[0,1)↑𝑑 	
– Store	faciliBes	sorted	by	inner	product	with	𝜛	
– To	find	“nearest”	facility	to	x:	

•  Find	a,	b:	
–  𝑎∗𝜛	≤	x	*	𝜛	≤	b	*	𝜛	

•  Use	closer	of	(a,b)	

25	

Speed	close	to	compeBtors’	

26	

BoPleneck	in	Algorithm	RunBme	

27	

Full	distance		

