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K-means	Clustering	
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Algorithms	for	solving	k-means	

•  Standard	Algorithm	(Lloyd	57)	
– Can	have	cost	arbitrarily	worse	than	opBmal	
(Arthur	and	Vassilvitskii,	07)	

– Can	take	exponenBal	Bme	(VaPani,	11)	

•  Polynomial	Bme	algorithms	for	k-means	
– Bound	raBo	of	(algorithm	cost)	/	(opBmal	cost)	
– Best	raBo	is	9+𝜀	due	to	(Kanungo	et	al,	02)	

•  These	do	not	work	for	streaming	seUng	
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K-means	for	Large	Datasets	

•  Want	good	k-means	soluBon	
– Without	random	access	to	full	data	
– Without	using	much	memory	
– Without	using	much	Bme	
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Streaming	k-means	
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When	done:	
If	more	than	k	faciliBes,	

Use	normal	k-means	to	consolidate	

Probability	∝	distance	



Improvements/ContribuBons	
Braverman	et	al	
(SODA	2011)	

This	Work	

Memory	
Requirement	

1623	k	log	n	 Any	Ω(k	log	n)	
(including	1	k	log	n)	

Cost	Guarantee	
(cost	raBo	against	
best)	

O(1)	
60,498	

O(1)	
17	

If	too	many	
faciliBes	before	
finishing	stream?	

Complicated	matching		 Simple	re-evaluaBon	

OpBmized	
runBme	

O(nk	log	n)	
Large	lead	constant	

o(nk)	
Less	than	θ(nk)	
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More	relevant	algorithms	for	
streaming	k-means	

•  Divide	and	Conquer	(Ailon,	Jaiswal,	and	Monteleoni,	NIPS	09)	

–  Read	M	points	into	memory	
–  Compute	and	store	weighted	representaBve	points	
–  Repeat	unBl	stream	exhausted	
–  Compute	k-means	on	stored	representaBves	

•  StreamKM++	(Ackermann	et	al,	ALENEX	10)	
–  Compute	a	weighted	representaBve	sample	of	stream	
–  Solve	k-means	on	sample	
–  Based	on	core	set	paradigm	

•  For	current	best	theoreBcal	treatment,	see	(Chen	09)	
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Experimental	Setup	

•  Compare	to	others	with	equal	memory	
•  Metrics:	
– Cost	of	soluBon	(squared	error)	
– Time	to	compute	soluBon	

•  Examples	in	this	talk	are	from	UCI	“Census	
1990”	dataset	
– 2,458,285	points	in	68	dimensions	
– Seeking	𝑘=12 clusters	
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Time	to	Compute	SoluBon	
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Ours≈ 	fastest	



Cost	(Summed	Squared	Distances)	
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With	enough	
memory,	

Ours	is	best	



BoPleneck	in	Algorithm	RunBme	
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O(κ)	Bme	
(if	κ	faciliBes)	

Choose	Random	
Vector	𝜛∈ ​[0,1)↑𝑑 	

IdenBfy	Two	
Nearest	Neighbors	

𝑂( ​log ⁠𝜅) 	

IdenBfy	Two	
Nearest	Neighbors	

𝑂( ​log ⁠𝜅) 	



Compute	Actual	Distance	to	Those	
Neighbors	
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SubstanBally	Faster	
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Cost	change	is	(usually)	minor	
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Conclusion	

•  Fast	streaming	k-means	algorithm	
– SubstanBal	Speedup	

•  Provides	good	quality	clustering	
– Best	O(1)	cost	guarantee	among	poly-Bme	
streaming	algorithms	

•  Source	Code	available	from		
	hPp://web.engr.oregonstate.edu/~shindler/	
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AddiBonal	Slides	
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Room	for	Improvement	

•  [BMO+11]	should	be	fast	and	straighrorward	
•  However:	
– Actual	memory	requirements	are	high	

•  O(k	log	n)	memory	great	in	limit	
•  Facility	cap	of	κ	=	1623	k	log	n		

– Constant	approximaBon	bound	is	high	
•  Constant	is	tens	of	thousands	

– End-of-phase	condiBons	are	complicated	
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End-of-phase	condiBons	
•  End-of-phase	in	[BMO+11]	
–  “Phase”	is	reading	data	unBl	f	too	low	
– When	done,	need	to	re-evaluate	faciliBes	and	increase	f	
–  Performed	maximal	matching	as	part	of	this	
–  Guaranteed	no	more	than	​𝑛/𝑘 ​log ⁠𝑛  	phases	

•  Simpler	phase	transiBons	
–  TransiBon	only	on	facility	count	
–  Increase	f	
–  Push	faciliBes	(weighted)	back	to	stream	
–  ConBnue	reading	stream,	starBng	at	those	
–  Faster,	no	guarantee	of	phase	count	
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Memory	Requirement	

•  [BMO+11]	:	facility	cap	of	1623	k	log	n	
•  Great	as	an	asymptoBc	bound	
•  Quite	large	in	pracBce	
•  Instead,	we	will	allow	any	κ	faciliBes	
•  Facility	count	κ	can	be	any	in	Ω(k	log	n)	
•  Will	demonstrate	that	κ	=	k	log	n	works	well	
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ApproximaBon	Bound	

•  RaBo	of	cost	of	soluBon	vs	opBmal	
•  ApproximaBon	factor	in	[BMO+11]	is	60,498	
•  We	achieve	a	bound	of	17	
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Algorithm:	Spot	the	BoPleneck	

Read	next	point?

There	is	one

Make	it	a	new	
facilityHave	κ	facilities?

fewer

Push	weighted	
facilities	to	stream yes

Increase	“weight”	of	
nearest

Do	not	“remember”	
this	point

Probability	δ/f?

yes

Measure	δ	=	
distance	to	nearest	

facility
no

Consolidate	facilities
Return	final	k	means done
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Algorithm:	Spot	the	BoPleneck	

Read	next	point?

There	is	one

Make	it	a	new	
facilityHave	κ	facilities?
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facilities	to	stream yes
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nearest
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23	



BoPleneck:		Finding	Nearest	Facility	

•  Use	approximate	nearest	neighbor	algorithms	
•  To	achieve	guarantee:	
– Techniques	from	hashing	and	metric	embedding	
– Look	up	is	O(log	n(log	k	+	loglog	n))	

•  MAIN	RESULT:	
– Algorithm	runBme	is	o(nk)	for	most	values	of	k	
–  (CompuBng	cost	given	soluBon	takes	θ(nk)	)	
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BoPleneck:	Finding	nearest	Facility	

•  Fast	pracBcal	implementaBon:	
– Select	random	point		𝜛∈ ​[0,1)↑𝑑 	
– Store	faciliBes	sorted	by	inner	product	with	𝜛	
– To	find	“nearest”	facility	to	x:	

•  Find	a,	b:	
–  𝑎∗𝜛	≤	x	*	𝜛	≤	b	*	𝜛	

•  Use	closer	of	(a,b)	
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Speed	close	to	compeBtors’	
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BoPleneck	in	Algorithm	RunBme	
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Full	distance		


