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K-means Clustering

“facilities” or
“centers” or
“means”




Algorithms for solving k-means

e Standard Algorithm (Lloyd 57)

— Can have cost arbitrarily worse than optimal
(Arthur and Vassilvitskii, 07)

— Can take exponential time (Vattani, 11)

e Polynomial time algorithms for k-means
— Bound ratio of (algorithm cost) / (optimal cost)
— Best ratio is 9+ & due to (Kanungo et al, 02)

 These do not work for streaming setting



K-means for Large Datasets

* Want good k-means solution
— Without random access to full data
— Without using much memory

— Without using much time



Streaming k-means

When done:
If more than k facilities,
Use normal k-means to consolidate



Improvements/Contributions

Braverman et al This Work
(SODA 2011)

Memory 1623 k log n Any Q(k log n)
Requirement (including 1 k log n)
Cost Guarantee O(1) O(1)

(cost ratio against 60,498 17

best)

If too many Complicated matching Simple re-evaluation

facilities before

finishing stream?

Optimized O(nk log n) o(nk)

runtime Large lead constant Less than 6(nk)



More relevant algorithms for
streaming k-means

e Divide and Conquer (Ailon, Jaiswal, and Monteleoni, NIPS 09)
— Read M points into memory
— Compute and store weighted representative points
— Repeat until stream exhausted
— Compute k-means on stored representatives

* StreamKM++ (Ackermann et al, ALENEX 10)
— Compute a weighted representative sample of stream
— Solve k-means on sample

— Based on core set paradigm
* For current best theoretical treatment, see (Chen 09)



Experimental Setup

 Compare to others with equal memory
* Metrics:

— Cost of solution (squared error)
— Time to compute solution

* Examples in this talk are from UCI “Census
1990” dataset

— 2,458,285 points in 68 dimensions
— Seeking A=12 clusters
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Bottleneck in Algorithm Runtime
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Compute Actual Distance to Those
Neighbors
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Substantially Faster
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Cost change is (usually) minor
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Conclusion

* Fast streaming k-means algorithm
— Substantial Speedup

* Provides good quality clustering

— Best O(1) cost guarantee among poly-time
streaming algorithms

* Source Code available from
http://web.engr.oregonstate.edu/~shindler/
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Room for Improvement

e [BMO+11] should be fast and straightforward

* However:
— Actual memory requirements are high
* O(k log n) memory great in limit
 Facility cap of k =1623 k log n
— Constant approximation bound is high

e Constant is tens of thousands

— End-of-phase conditions are complicated



End-of-phase conditions

 End-of-phase in [BMO+11]
— “Phase” is reading data until f too low
— When done, need to re-evaluate facilities and increase f
— Performed maximal matching as part of this
— Guaranteed no more than /4 logn phases

* Simpler phase transitions
— Transition only on facility count
— Increase f
— Push facilities (weighted) back to stream
— Continue reading stream, starting at those
— Faster, no guarantee of phase count



Memory Requirement

[BMO+11] : facility cap of 1623 k log n
Great as an asymptotic bound

Quite large in practice

Instead, we will allow any « facilities

Facility count k can be any in Q(k log n)

Will demonstrate that k = k log n works well



Approximation Bound

e Ratio of cost of solution vs optima
e Approximation factor in [BMO+11] is 60,498
 We achieve a bound of 17




Algorithm: Spot the Bottleneck

Increase “weight” of

| nearest

| Do not “remember”
this point

A

Consolidate facilities

R int?
Return final kK means el s gl

Measure 6 =

There is one P distance to nearest
facility

Make it a new
facility

Push weighted
facilities to stream

€——yes

Have « facilities?

Probability 6/f?




Algorithm: Spot the Bottleneck
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Bottleneck: Finding Nearest Facility

* Use approximate nearest neighbor algorithms

* To achieve guarantee:
— Techniques from hashing and metric embedding

— Look up is O(log n(log k + loglog n))
* MAIN RESULT:

— Algorithm runtime is o(nk) for most values of k
— (Computing cost given solution takes O(nk) )



Bottleneck: Finding nearest Facility

* Fast practical implementation:
— Select random point @€ [0,1)7d
— Store facilities sorted by inner product with @

— To find “nearest” facility to x:
* Find a, b:

—axwo<XxX*wo<b*w

e Use closer of (a,b)



Speed close to competitors’
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Bottleneck in Algorithm Runtime

Full distance



