
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Introduction 

 
AN IMPORTANT class of theoretical and practical 

problems in communication and control is of a statistical nature. 
Such problems are: (i) Prediction of random signals; (ii) separa- 
tion of random signals from random noise; (iii) detection of 
signals of known form (pulses, sinusoids) in the presence of 
random noise. 

In his pioneering work, Wiener [1]3 showed that problems (i) 
and (ii) lead to the so-called Wiener-Hopf integral equation; he 
also gave a method (spectral factorization) for the solution of this 
integral equation in the practically important special case of 
stationary statistics and rational spectra. 

Many extensions and generalizations followed Wiener’s basic 
work. Zadeh and Ragazzini solved the finite-memory case [2]. 
Concurrently and independently of Bode and Shannon [3], they 
also gave a simplified method [2] of solution.  Booton discussed 
the nonstationary Wiener-Hopf equation [4]. These results are 
now in standard texts [5-6]. A somewhat different approach along 
these main lines has been given recently by Darlington [7]. For 
extensions to sampled signals, see, e.g., Franklin [8], Lees [9]. 
Another approach based on the eigenfunctions of the Wiener-
Hopf equation (which applies also to nonstationary problems 
whereas the preceding methods in general don’t), has been 
pioneered by Davis [10] and applied by many others, e.g., 
Shinbrot [11], Blum [12], Pugachev [13], Solodovnikov [14].  

In all these works, the objective is to obtain the specification of 
a linear dynamic system (Wiener filter) which accomplishes the 
prediction, separation, or detection of a random signal.4 
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Present methods for solving the Wiener problem are subject to 

a number of limitations which seriously curtail their practical 
usefulness: 

(1) The optimal filter is specified by its impulse response. It is 
not a simple task to synthesize the filter from such data. 

(2) Numerical determination of the optimal impulse response is 
often quite involved and poorly suited to machine computation. 
The situation gets rapidly worse with increasing complexity of 
the problem. 

(3) Important generalizations (e.g., growing-memory filters, 
nonstationary prediction) require new derivations, frequently of 
considerable difficulty to the nonspecialist. 

(4) The mathematics of the derivations are not transparent. 
Fundamental assumptions and their consequences tend to be 
obscured. 

This paper introduces a new look at this whole assemblage of 
problems, sidestepping the difficulties just mentioned. The 
following are the highlights of the paper: 

(5) Optimal Estimates and Orthogonal Projections. The 
Wiener problem is approached from the point of view of condi- 
tional distributions and expectations. In this way, basic facts of 
the Wiener theory are quickly obtained; the scope of the results 
and the fundamental assumptions appear clearly. It is seen that all 
statistical calculations and results are based on first and second 
order averages; no other statistical data are needed. Thus 
difficulty (4) is eliminated. This method is well known in 
probability theory (see pp. 75–78 and 148–155 of Doob [15] and 
pp. 455–464 of Loève [16]) but has not yet been used extensively 
in engineering. 

(6) Models for Random Processes. Following, in particular, 
Bode and Shannon [3], arbitrary random signals are represented 
(up to second order average statistical properties) as the output of 
a linear dynamic system excited by independent or uncorrelated 
random signals (“white noise”). This is a standard trick in the 
engineering applications of the Wiener theory [2–7]. The 
approach taken here differs from the conventional one only in the 
way in which linear dynamic systems are described. We shall 
emphasize the concepts of state and state transition; in other 
words, linear systems will be specified by systems of first-order 
difference (or differential) equations.  This point of view is 
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natural and also necessary in order to take advantage of the 
simplifications mentioned under (5). 

(7) Solution of the Wiener Problem. With the state-transition 
method, a single derivation covers a large variety of problems: 
growing and infinite memory filters, stationary and nonstationary 
statistics, etc.; difficulty (3) disappears. Having guessed the 
“state” of the estimation (i.e., filtering or prediction) problem 
correctly, one is led to a nonlinear difference (or differential) 
equation for the covariance matrix of the optimal estimation error. 
This is vaguely analogous to the Wiener-Hopf equation. Solution 
of the equation for the covariance matrix starts at the time t0 when 
the first observation is taken; at each later time t the solution of 
the equation represents the covariance of the optimal prediction 
error given observations in the interval (t0, t). From the covariance 
matrix at time t we obtain at once, without further calculations, 
the coefficients (in general, time-varying) characterizing the 
optimal linear filter. 

(8) The Dual Problem. The new formulation of the Wiener 
problem brings it into contact with the growing new theory of 
control systems based on the “state” point of view [17–24]. It 
turns out, surprisingly, that the Wiener problem is the dual of the 
noise-free optimal regulator problem, which has been solved 
previously by the author, using the state-transition method to great 
advantage [18, 23, 24]. The mathematical background of the two 
problems is identical—this has been suspected all along, but until 
now the analogies have never been made explicit. 

(9) Applications. The power of the new method is most ap- 
parent in theoretical investigations and in numerical answers to 
complex practical problems. In the latter case, it is best to resort to 
machine computation. Examples of this type will be discussed 
later. To provide some feel for applications, two standard 
examples from nonstationary prediction are included; in these 
cases the solution of the nonlinear difference equation mentioned 
under (7) above can be obtained even in closed form.  

For easy reference, the main results are displayed in the form of 
theorems. Only Theorems 3 and 4 are original. The next section 
and the Appendix serve mainly to review well-known material in 
a form suitable for the present purposes. 

 
Notation Conventions 

Throughout the paper, we shall deal mainly with discrete (or 
sampled) dynamic systems; in other words, signals will be ob- 
served at equally spaced points in time (sampling instants). By 
suitable choice of the time scale, the constant intervals between 
successive sampling instants (sampling periods) may be chosen as 
unity. Thus variables referring to time, such as t, t0, τ, T will 
always be integers. The restriction to discrete dynamic systems is 
not at all essential (at least from the engineering point of view); 
by using the discreteness, however, we can keep the mathematics 
rigorous and yet elementary. Vectors will be denoted by small 
bold-face letters: a, b, ..., u, x, y, ... A vector or more precisely an 
n-vector is a set of n numbers x1, ... xn; the xi are the co-ordinates 
or components of the vector x. 

Matrices will be denoted by capital bold-face letters: A, B, Q, 
Φ, Ψ, …; they are m × n arrays of elements aij, bij, qij,... The 
transpose (interchanging rows and columns) of a matrix will be 
denoted by the prime. In manipulating formulas, it will be 
convenient to regard a vector as a matrix with a single column. 

 Using the conventional definition of matrix multiplication, we 
write the scalar product of two n-vectors x, y as  

 x'y = ∑
=

n

i
ii yx

1

= y'x 

 
The  scalar  product  is  clearly a scalar, i.e., not a vector, quantity. 

Similarly, the quadratic form associated with the n × n matrix Q 
is, 

  x'Qx = ∑
=

n

ji
jiji xqx

1,

 

We define the expression xy' where x' is an m-vector and y is an 
n-vector to be the m × n matrix with elements xiyj. 

We write E(x) = Ex for the expected value of the random vec- 
tor x (see Appendix). It is usually convenient to omit the brackets 
after E. This does not result in confusion in simple cases since 
constants and the operator E commute. Thus Exy' = matrix with 
elements E(xiyj); ExEy' = matrix with elements E(xi)E(yj). 

For ease of reference, a list of the principal symbols used is 
given below. 

Optimal Estimates 
t time in general, present time. 

t0 time at which observations start. 
x1(t), x2(t) basic random variables. 

y(t) observed random variable. 
x1*(t1|t) optimal estimate of x1(t1) given y(t0), …, y(t). 

L loss function (non random function of its argument). 
ε estimation error (random variable). 

 
Orthogonal Projections 

Y(t) linear manifold generated by the random variables 
y(t0), …, y(t). 

x (t1|t) orthogonal projection of x(t1) on Y(t). 
x~ (t1|t) component of x(t1) orthogonal to Y(t). 

Models for Random Processes 
Φ(t + 1; t) transition matrix 

Q(t) covariance of random excitation 

Solution of the Wiener Problem 
x(t) basic random variable. 
y(t) observed random variable. 
Y(t) linear manifold generated by y(t0), …, y(t). 
Z(t) linear manifold generated by y~ (t|t – 1). 

x*(t1|t) optimal estimate of x(t1) given Y(t). 
x~ (t1|t) error in optimal estimate of x(t1) given Y(t). 

 
Optimal Estimates 

To have a concrete description or the type of problems to be 
studied, consider the following situation. We are given signal 
x1(t) and noise x2(t). Only the sum y(t) = x1(t) + x2(t) can be ob- 
served. Suppose we have observed and know exactly the values 
of y(t0), ..., y(t). What can we infer from this knowledge in regard 
to the (unobservable) value of the signal at t = t1, where t1 may be 
less than, equal to, or greater than t? If t1 < t, this is a data- 
smoothing (interpolation) problem. If t1 = t, this is called 
filtering. If t1 > t, we have a prediction problem. Since our treat- 
ment will be general enough to include these and similar 
problems, we shall use hereafter the collective term estimation. 

As was pointed out by Wiener [1], the natural setting of the 
estimation problem belongs to the realm of probability theory and 
statistics. Thus signal, noise, and their sum will be random 
variables, and consequently they may be regarded as random 
processes. From the probabilistic description of the random 
processes we can determine the probability with which a par- 
ticular sample of the signal and noise will occur. For any given 
set of measured values η(t0), ..., η(t) of the random variable y(t) 
one can then also determine, in principle, the probability of 
simultaneous occurrence of various values ξ1(t) of the random 
variable x1(t1). This is the conditional probability distribution 
function 
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Pr[x1(t1) ≤ ξ1|y(t0) = η(t0), …, y(t) = η(t)] = F(ξ1)         (1) 

Evidently, F(ξ1) represents all the information which the meas- 
urement of the random variables y(t0), ..., y(t) has conveyed about 
the random variable x1(t1). Any statistical estimate of the random 
variable x1(t1) will be some function of this distribution and 
therefore a (nonrandom) function of the random variables y(t0), ..., 
y(t). This statistical estimate is denoted by X1(t1|t), or by just X1(t1) 
or X1 when the set of observed random variables or the time at 
which the estimate is required are clear from context. 

Suppose now that X1 is given as a fixed function of the random 
variables y(t0), ..., y(t). Then X1 is itself a random variable and its 
actual value is known whenever the actual values of y(t0), ..., y(t) 
are known. In general, the actual value of X1(t1) will be different 
from the (unknown) actual value of x1(t1). To arrive at a rational 
way of determining X1, it is natural to assign a penalty or loss for 
incorrect estimates. Clearly, the loss should be a (i) positive, (ii) 
nondecreasing function of the estimation error ε = x1(t1) – X1(t1). 
Thus we define a loss function by  

 
L(0) = 0 

 
L(ε2) ≥ L(ε1) ≥ 0    when    ε2 ≥ ε1 ≥ 0                 (2) 

 
L(ε) = L(–ε) 

Some common examples of loss functions are: L(ε) = aε2, aε4, 
a|ε|, a[1 – exp(–ε2)], etc., where a is a positive constant. 

One (but by no means the only) natural way of choosing the 
random variable X1 is to require that this choice should minimize 
the average loss or risk 
 

E{L[x1(t1) – X1(t1)]} = E[E{L[x(t1) – X1(t1)]|y(t0), …, y(t)}]   (3) 

Since the first expectation on the right-hand side of (3) does not 
depend on the choice of X1 but only on y(t0), ..., y(t), it is clear that 
minimizing (3) is equivalent to minimizing 

E{L[x1(t1) – X1(t1)]|y(t0), ..., y(t)}                       (4) 

Under just slight additional assumptions, optimal estimates can be 
characterized in a simple way. 

Theorem 1. Assume that L is of type (2) and that the conditional 
distribution function F(ξ) defined by (1) is: 

(A) symmetric about the mean ξ : 

F(ξ – ξ ) = 1 – F( ξ – ξ) 

(B) convex for ξ ≤ ξ : 

F(λξ1 + (1 – λ)ξ2) ≤ λF(ξ1) + (1 – λ)F(ξ2) 

for all ξ1, ξ2 ≤ ξ  and 0 ≤ λ ≤ 1 

Then the random variable x1*(t1|t) which minimizes the average 
loss (3) is the conditional expectation 

x1*(t1|t) = E[x1(t1)|y(t0), …, y(t)]                        (5) 

Proof: As pointed out recently by Sherman [25], this theorem 
follows immediately from a well-known lemma in probability 
theory.  

Corollary.  If the random processes {x1(t)}, {x2(t)}, and {y(t)} 
are gaussian, Theorem 1 holds.  

Proof: By Theorem 5, (A) (see Appendix), conditional distribu- 
tions on a gaussian random process are gaussian. Hence the re- 
quirements of Theorem 1 are always satisfied. 

In the control system literature, this theorem appears some-
times in a form which is more restrictive in one way and more 
general in another way: 

Theorem l-a. If L(ε) = ε2, then Theorem 1 is true without as-
sumptions (A) and (B). 

Proof: Expand the conditional expectation (4): 
 

E[x1
2(t1)|y(t0), …, y(t)] – 2X1(t1)E[x1(t1)|y(t0), …, y(t)] + X1

2(t1) 

and differentiate with respect to X1(t1). This is not a completely 
rigorous argument; for a simple rigorous proof see Doob [15], pp. 
77–78. 

Remarks. (a) As far as the author is aware, it is not known what 
is the most general class of random processes {x1(t)}, {x2(t)} for 
which the conditional distribution function satisfies the re- 
quirements of Theorem 1. 

(b) Aside from the note of Sherman, Theorem 1 apparently has 
never been stated explicitly in the control systems literature. In 
fact, one finds many statements to the effect that loss functions of 
the general type (2) cannot be conveniently handled mathe- 
matically. 

(c) In the sequel, we shall be dealing mainly with vector- 
valued random variables. In that case, the estimation problem is 
stated as: Given a vector-valued random process {x(t)} and ob- 
served random variables y(t0), ..., y(t), where y(t) = Mx(t) (M 
being a singular matrix; in other words, not all co-ordinates of 
x(t) can be observed), find an estimate X(t1) which minimizes the 
expected loss E[L(||x(t1) – X(t1)||)], ||  || being the norm of a 
vector.  

Theorem 1 remains true in the vector case also, provided we 
re- quire that the conditional distribution function of the n co-
ordi- nates of the vector x(t1),  

Pr[x1(t1) ≤ ξ1,…, xn(t1) ≤ ξn|y(t0), …, y(t)] = F(ξ1, …,ξn) 

be symmetric with respect to the n variables ξ1 – ξ 1, …, ξn – ξ n 
and convex in the region where all of these variables are 
negative. 
 

Orthogonal Projections 
The explicit calculation of the optimal estimate as a function of 

the observed variables is, in general, impossible. There is an 
important exception: The processes {x1(t)}, {x2(t)} are gaussian. 

On the other hand, if we attempt to get an optimal estimate 
under the restriction L(ε) = ε2 and the additional requirement that 
the estimate be a linear function of the observed random 
variables, we get an estimate which is identical with the optimal 
estimate in the gaussian case, without the assumption of linearity 
or quadratic loss function. This shows that results obtainable by 
linear estimation can be bettered by nonlinear estimation only 
when (i) the random processes are nongaussian and even then (in 
view of Theorem 5, (C)) only (ii) by considering at least third- 
order probability distribution functions. 

In the special cases just mentioned, the explicit solution of the 
estimation problem is most easily understood with the help of a 
geometric picture. This is the subject of the present section. 

Consider the (real-valued) random variables y(t0), …, y(t). The 
set of all linear combinations of these random variables with real 
coefficients 

∑
=

t

ti
i iya

0

)(                               (6) 

forms a vector space (linear manifold) which we denote by Y(t). 
We regard, abstractly, any expression of the form (6) as “point” 
or “vector” in Y(t); this use of the word “vector” should not be 
confused, of course, with “vector-valued” random variables, etc. 
Since we do not want to fix the value of t (i.e., the total number 
of possible observations), Y(t) should be regarded as a finite-
dimensional subspace of the space of all possible observations. 
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Given any two vectors u, v in Y(t) (i.e., random variables ex- 
pressible in the form (6)), we say that u and v are orthogonal if 
Euv = 0. Using the Schmidt orthogonalization procedure, as de- 
scribed for instance by Doob [15], p. 151, or by Loève [16], p. 
459, it is easy to select an orthonormal basis in Y(t). By this is 
meant a set of vectors et0, …, et in Y(t) such that any vector in 
Y(t) can be expressed as a unique linear combination of et0, …, et 
and 
 
 
 
 
Thus any vector x in Y(t). is given by 

∑
=

=
t

ti
iieax

0

 

and so the coefficients ai can be immediately determined with the 
aid of (7): 

∑ ∑∑
= ==

=δ==













=

t

ti

t

ti
jijijiij

t

ti
iij aaeEeaeeaEexE

0 00

         (8) 

It follows further that any random variable x (not necessarily in 
Y(t)) can be uniquely decomposed into two parts: a part x in Y(t) 
and a part x~ orthogonal to Y(t) (i.e., orthogonal to every vector in 
'Y(t)). In fact, we can write 

∑
=

+=+=
t

ti
ii xeExexxx

0

~)(~                             (9) 

Thus x is uniquely determined by equation (9) and is obviously 
a vector in Y(t). Therefore x~ is also uniquely determined; it 
remains to check that it is orthogonal to Y(t): 

 
iiii exEExeexxEexE −=−= )(~  

 
Now the co-ordinates of x with respect to the basis et0, …, et, are 

given either in the form iexE  (as in (8)) or in the form Exei (as in 
(9)). Since the co-ordinates are unique, Exei = iexE  (i = t0, ..., t); 
hence iexE~ = 0 and x~ is orthogonal to every base vector ei; and 
therefore to Y(t). We call x the orthogonal projection of x on 
Y(t).  

There is another way in which the orthogonal projection can be 
characterized: x is that vector in Y(t) (i.e., that linear function of 
the random variables y(t0), ..., y(t)) which minimizes the quad- 
ratic loss function. In fact, if w is any other vector in Y(t), we 
have 

 
222 )]()[()~()( wxxxEwxxEwxE −+−=−+=−  

 
Since x~ is orthogonal to every vector in Y(t) and in particular 

to wx − we have 
 

2222 )()()()( xxEwxExxEwxE −≥−+−=−         (10) 
 
This shows that, if w also minimizes the quadratic loss, we must 
have 0)( 2 =− wxE  which means that the random 
variables x and w are equal (except possibly for a set of events 
whose probability is zero). 

These results may be summarized as follows: 
 

Theorem 2. Let {x(t)}, {y(t)} random processes with zero mean 
(i.e., Ex(t) = Ey(t) = 0 for all t). We observe y(t0), …, y(t). 

If either 
 
(A) the random processes {x(t)}, {y(t)} are gaussian; or 
(B) the optimal estimate is restricted to be a linear function of 

the observed random variables and L(ε) = ε2; 
 

then 

x*(t1|t) = optimal estimate of x(t1) given y(t0), …, y(t) 
= orthogonal projection x (t1|t) of x(t1) on Y(t).  (11) 

 
These results are well-known though not easily accessible in 

the control systems literature. See Doob [15], pp. 75–78, or 
Pugachev [26]. It is sometimes convenient to denote the 
orthogonal projection by 
 

)([ˆ)|(*)|( 111 txEttxttx =≡ |Y(t)] 
 

The notation Ê is motivated by part (b) of the theorem: If the 
stochastic processes in question are gaussian, then orthogonal 
projection is actually identical with conditional expectation. 

Proof. (A) This is a direct consequence of the remarks in con- 
nection with (10). 

(B) Since x(t), y(t) are random variables with zero mean, it is 
clear from formula (9) that the orthogonal part x~ (t1|t) of x(t1) 
with respect to the linear manifold Y(t) is also a random variable 
with zero mean. Orthogonal random variables with zero mean are 
uncorrelated; if they are also gaussian then (by Theorem 5 (B)) 
they are independent. Thus 
 
0  =  E x~ (t1|t)  = E[ x~ (t1|t)|y(t0), …, y(t)] 
  = E[x (t1) – x (t1|t)|y(t0), …, y(t)] 
  = E[x (t1)|y(t0), …, y(t)] – x (t1|t) = 0 

Remarks. (d) A rigorous formulation of the contents of this 
section as t → ∞ requires some elementary notions from the 
theory of Hilbert space. See Doob [15] and Loève [16 ]. 

(e) The physical interpretation of Theorem 2 is largely a matter 
of taste. If we are not worried about the assumption of gaus- 
sianness, part (A) shows that the orthogonal projection is the op- 
timal estimate for all reasonable loss functions. If we do worry 
about gaussianness, even if we are resigned to consider only 
linear estimates, we know that orthogonal projections are not the 
optimal estimate for many reasonable loss functions. Since in 
practice it is difficult to ascertain to what degree of approxima- 
tion a random process of physical origin is gaussian, it is hard to 
decide whether Theorem 2 has very broad or very limited sig- 
nificance. 

(f) Theorem 2 is immediately generalized for the case of 
vector-valued random variables. In fact, we define the linear 
manifold Y(t) generated by y(t0), ..., y(t) to be the set of all linear 
combinations 

∑∑
==

m

j
jij

t

ti

iya
1

)(
0

 

of all m co-ordinates of each of the random vectors y(t0), …, y(t). 
The rest of the story proceeds as before.  

(g) Theorem 2 states in effect that the optimal estimate under 
conditions (A) or (B) is a linear combination of all previous ob- 
servations. In other words, the optimal estimate can be regarded 
as the output of a linear filter, with the input being the actually 
occurring values of the observable random variables; Theorem 2 
gives a way of computing the impulse response of the optimal 
filter. As pointed out before, knowledge of this impulse response 
is not a complete solution of the problem; for this reason, no 
explicit formulas for the calculation of the impulse response will 
be given.  
 

Models for Random Processes  
In dealing with physical phenomena, it is not sufficient to give 

an empirical description but one must have also some idea of the 
underlying causes. Without being able to separate in some sense 
causes and effects, i.e., without the assumption of causality, one 
can hardly hope for useful results. 
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Eeiej = δi j  = 1   if   i = j 
 
  = 0   if   i ≠ j 

(i, j = t0, …, t)                (7) 
 
 
 



It is a fairly generally accepted fact that primary macroscopic 
sources of random phenomena are independent gaussian proc- 
esses.5 A well-known example is the noise voltage produced in a 
resistor due to thermal agitation. In most cases, observed random 
phenomena are not describable by independent random variables. 
The statistical dependence (correlation) between random signals 
observed at different times is usually explained by the presence of 
a dynamic system between the primary random source and the 
observer. Thus a random function of time may be thought of as the 
output of a dynamic system excited by an independent gaussian 
random process.  

An important property of gaussian random signals is that they 
remain gaussian after passing through a linear system (Theorem 5 
(A)). Assuming independent gaussian primary random sources, if 
the observed random signal is also gaussian, we may assume that 
the dynamic system between the observer and the primary source 
is linear. This conclusion may be forced on us also because of 
lack of detailed knowledge of the statistical properties of the 
observed random signal: Given any random process with known 
first and second-order averages, we can find a gaussian random 
process with the same properties (Theorem 5 (C)). Thus gaussian 
distributions and linear dynamics are natural, mutually plausible  
assumptions particularly when the statistical data are scant. 

How is a dynamic system (linear or nonlinear) described? The 
fundamental concept is the notion of the state.    By this is meant, 
intuitively, some quantitative information (a set of numbers, a 
function, etc.) which is the least amount of data one has to know 
about the past behavior of the system in order to predict its future 
behavior. The dynamics is then described in terms of state 
transitions, i.e., one must specify how one state is transformed 
into another as time passes.   

A linear dynamic system may be described in general by the 
vector differential equation 
 

 
and                                                                           

 
 

where x is an n-vector, the state of the system (the components xi 
of x are called state variables); u(t) is an m-vector (m ≤ n) 
representing the inputs to the system; F(t) and D(t) are n × n, 
respectively, n × m matrices. If all coefficients of F(t), D(t), M(t) 
are constants, we say that the dynamic system (12) is time- 
invariant or stationary. Finally, y(t) is a p-vector denoting the 
outputs of the system; M(t) is an n × p matrix; p ≤ n 

The physical interpretation of (12) has been discussed in detail 
elsewhere [18, 20, 23]. A look at the block diagram in Fig. 1 may 
be helpful. This is not an ordinary but a matrix block diagram (as 
revealed by the fat lines indicating signal flow). The integrator in 
 
 
 
 
 
 
 
 
Fig 1. Matrix block diagram of the general linear continuous-dynamic 
system  

——— 
5 The probability distributions will be gaussian because macroscopic 

random effects may be thought of as the superposition of very many 
microscopic random effects; under very general conditions, such ag- 
gregate effects tend to be gaussian, regardless of the statistical properties 
of the microscopic effects. The assumption of independence in this context 
is motivated by the fact that microscopic phenomena tend to take place 
much more rapidly than macroscopic phenomena; thus primary random 
sources would appear to be independent on a macroscopic time scale. 

Fig. 1 actually stands for n integrators such that the output of 
each is a state variable; F(t) indicates how the outputs of the 
integrators are fed back to the inputs of the integrators. Thus fij(t) 
is the coefficient with which the output of the jth integrator is fed 
back to the input of the ith integrator. It is not hard to relate this 
formalism to more conventional methods of linear system 
analysis.  

If we assume that the system (12) is stationary and that u(t) is 
constant during each sampling period, that is 

 
u(t + τ) = u(t);   0 ≤ τ < 1,   t = 0, 1, …               (13) 

 
then (12) can be readily transformed into the more convenient 
discrete form. 
 

x(t + 1) = Φ(1)x(t) + ∆(1)u(t);   t = 0, 1, … 
 
where [18, 20] 

Φ(1) = exp F = ∑
∞

=0i

Fi/i!   (F0 = unit matrix) 

 and 

∆(1) = ( ∫
1

0
exp Fτ dτ) D 

 
 
 
 
 
 
 
Fig 2. Matrix block diagram of the general linear discrete-dynamic 
system 
 
See Fig. 2. One could also express exp Fτ in closed form using 
Laplace transform methods [18, 20, 22, 24]. If u(t) satisfies (13) 
but the system (12) is nonstationary, we can write analogously 
 
 
 
 

     
but of course now Φ(t + 1; t), ∆(t) cannot be expressed in gen-
eral in closed form. Equations of type (14) are encountered fre-
quently also in the study of complicated sampled-data systems 
[22]. See Fig. 2 

Φ(t + 1; t) is the transition matrix of the system (12) or (14). 
The notation Φ(t2; t1) (t2, t1 = integers) indicates transition from 
time t1 to time t2. Evidently Φ(t; t) = I = unit matrix. If the system 
(12) is stationary then Φ(t + 1; t) = Φ(t + 1 – t) = Φ(1) = const. 
Note also the product rule: Φ(t; s)Φ(s; r) = Φ(t; r) and the inverse 
rule Φ–1(t; s) = Φ(s; t), where t, s, r are integers. In a stationary 
system, Φ(t; τ) = exp F(t – τ).  

As a result of the preceding discussion, we shall represent ran- 
dom phenomena by the model 

 
x(t + 1) = Φ(t + 1; t)x(t) + u(t)                      (15) 

 
where {u(t)} is a vector-valued, independent, gaussian random 
process, with zero mean, which is completely described by (in 
view of Theorem 5 (C)) 
 

Eu(t) = 0   for all t; 
 
Eu(t)u'(s) = 0   if t ≠ s 
 
Eu(t)u'(t) = G(t). 

 
Of course (Theorem 5 (A)), x(t) is then also a gaussian random 
process with zero mean, but it is no longer independent. In fact, if 
we consider (15) in the steady state (assuming it is a stable sys- 
tem), in other words, if we neglect the initial state x(t0), then 
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x(t + 1) = Φ(t + 1; t) + ∆(t)u(t) 
 
     y(t) = M(t)x(t)     

 
 
 

t = 0, 1, …             (14)

dx/dt = F(t)x + D(t)u(t) 
 
 
  y(t) = M(t)x(t)  

 
 
 

(12) 

y(t) u(t) x(t + 1) x(t) 

∑ ∆(t) M(t) 

Φ (t + 1; t) 

 unit 
delay 

y(t) u(t) x(t) x(t) 

∑ M(t) 

F (t) 

. 
D(t) 



x(t) = ∑
−

−∞=

1t

r

 Φ(t; r + 1)u(r). 

Therefore if t ≥ s we have 

Ex(t)x'(s) = ∑
−

−∞=

1s

r

 Φ(t; r + 1)Q(r) Φ'(s; r + 1). 

Thus if we assume a linear dynamic model and know the 
statistical properties of the gaussian random excitation, it is easy 
to find the corresponding statistical properties of the gaussian 
random process {x(t)}.  

In real life, however, the situation is usually reversed. One is 
given the covariance matrix Ex(t)x'(s) (or rather, one attempts to 
estimate the matrix from limited statistical data) and the problem 
is to get (15) and the statistical properties of u(t). This is a subtle 
and presently largely unsolved problem in experimentation and 
data reduction. As in the vast majority of the engineering 
literature on the Wiener problem, we shall find it convenient to 
start with the model (15) and regard the problem of obtaining the 
model itself as a separate question. To be sure, the two problems 
should be optimized jointly if possible; the author is not aware, 
however, of any study of the joint optimization problem.  

In summary, the following assumptions are made about random 
processes:  

Physical random phenomena may be thought of as due to 
primary random sources exciting dynamic systems. The primary 
sources are assumed to be independent gaussian random 
processes with zero mean; the dynamic systems will be linear. The 
random processes are therefore described by models such as (15). 
The question of how the numbers specifying the model are 
obtained from experimental data will not be considered. 
 

Solution of the Wiener problem 
Let us now define the principal problem of the paper. 
Problem I. Consider the dynamic model 

 
x(t + 1) = Φ(t + 1; t)x(t) + u(t)                   (16) 

 
y(t) = M(t)x(t)                                (17) 

 
where u(t) is an independent gaussian random process of n- 
vectors with zero mean, x(t) is an n-vector, y(t) is a p-vector (p ≤ 
n), Φ(t + 1; t), M(t) are n × n, resp. p × n, matrices whose 
elements are nonrandom functions of time.  

Given the observed values of y(t0), ..., y(t) find an estimate 
x*(t1|t) of x(t1) which minimizes the expected loss. (See Fig. 2, 
where ∆(t) = I.)  

This problem includes as a special case the problems of filter- 
ing, prediction, and data smoothing mentioned earlier. It in- 
cludes also the problem of reconstructing all the state variables of 
a linear dynamic system from noisy observations of some of the 
state variables (p < n!).  

From Theorem 2-a we know that the solution of Problem I is 
simply the orthogonal projection of x(t1) on the linear manifold 
Y(t) generated by the observed random variables. As remarked in 
the Introduction, this is to be accomplished by means of a linear 
(not necessarily stationary!) dynamic system of the general form 
(14). With this in mind, we proceed as follows.  

Assume that y(t0), ..., y(t – 1) have been measured, i.e., that Y(t 
– 1) is known. Next, at time t, the random variable y(t) is 
measured. As before let y~ (t|t – 1) be the component of y(t) 
orthogonal to Y(t – 1). If y~ (t|t – 1) ≡ 0, which means that the 
values of all components of this random vector are zero for almost 
every possible event, then Y(t) is obviously the same as Y(t – 1) 
and therefore the measurement of y(t) does not convey any addi-
tional information. This is not likely to happen in a physically 
meaningful situation. In any case, y~ (t|t – 1) generates a linear 

manifold (possibly 0) which we denote by Z(t). By definition, 
Y(t – 1) and Z(t) taken together are the same manifold as Y(t), 
and every vector in Z(t) is orthogonal to every vector in Y(t – 1).  

Assuming by induction that x*(t1 – 1|t – 1) is known, we can 
write:  

x*(t1|t)    = Ê [x(t1)|Y(t)] = Ê [x(t1)|Y(t – 1)] + Ê [x(t1)|Z(t)] 

    =  Φ(t + 1; t) x*(t1 – 1|t – 1) + Ê [u(t1 – 1)|Y(t – 1)] 
+ Ê [x(t1)|Z(t)]    (18) 

 
where the last line is obtained using (16).  

Let t1 = t + s, where s is any integer. If s ≥ 0, then u(tl – 1) is 
independent of Y(t – 1). This is because u(tl – 1) = u(t + s – 1) is 
then independent of u(t – 2), u(t – 3), ... and therefore by (16–
17), independent of y(t0), ..., y(t – 1), hence independent of Y(t – 
1). Since, for all t, u(t0) has zero mean by assumption, it follows 
that u(tl – 1) (s ≥ 0) is orthogonal to Y(t – 1). Thus if s ≥ 0, the 
second term on the right-hand side of (18) vanishes; if s < 0, 
considerable complications result in evaluating this term. We 
shall consider only the case tl ≥ t. Furthermore, it will suffice to 
consider in detail only the case tl = t + 1 since the other cases can 
be easily reduced to this one.  

The last term in (18) must be a linear operation on the random 
variable y~ (t |t – 1): 
 

Ê [x(t + 1)|Z(t)] = ∆*(t) y~ (t|t – 1)                   (19) 
 
where ∆*(t) is an n × p matrix, and the star refers to “optimal 
filtering”.  

The component of y(t) lying in Y(t – 1) is y (t|t – 1) = 
M(t)x*(t|t – 1). Hence 
 
y~ (t|t – 1) = y(t) – y (t|t – 1) = y(t) – M(t)x*(t|t – 1).                (20) 
 
Combining (18-20) (see Fig. 3) we obtain 
 

x*(t + 1|t)  = Φ*(t + 1; t)x*(t|t – 1) + ∆*(t)y(t)           (21) 
 

where 
 

 Φ*(t + 1; t) = Φ(t + 1; t) – ∆*(t)M(t)                  (22) 
 

Thus optimal estimation is performed by a linear dynamic 
system of the same form as (14). The state of the estimator is the 
previous estimate, the input is the last measured value of the 
observable random variable y(t) , the transition matrix is given by 
(22). Notice that physical realization of the optimal filter requires 
only (i) the model of the random process (ii) the operator ∆*(t). 

The estimation error is also governed by a linear dynamic 
system. In fact,  
 
x~ (t + 1|t)  = x(t + 1) – x*(t + 1|t) 
   = Φ(t + 1; t)x(t) + u(t) – Φ*(t + 1; t)x*(t|t – 1) 
  – ∆*(t)M(t)x(t) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3   Matrix block diagram of optimal filter 
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x*(t + s|t) 

y (t|t – 1) y(t) 
x*(t|t – 1) 

x*(t + 1|t) 
∑ ∆*(t) M(t) 

Φ (t + 1; t) 

∑ 

y~ (t|t – 1) 

 

Φ(t + s; t + 1)

 unit 
delay 

x*(t + 1|t – 1) 

– I

MODEL      OF       RANDOM       PROCESS 



= Φ*(t + 1; t) x~ (t|t – 1) + u(t)   (23) 
 
Thus Φ* is also the transition matrix of the linear dynamic system 
governing the error.  

From (23) we obtain at once a recursion relation for the co- 
variance matrix P*(t) of the optimal error x~ (t|t – 1). Noting that 
u(t) is independent of x(t) and therefore of x~ (t|t – 1) we get 
 
P*(t + 1)  = E x~ (t + 1|t) x~ '(t + 1|t) 
 

= Φ*(t + 1; t)E x~ (t|t – 1) x~ '(t|t – 1)Φ*' (t + 1; t) + Q(t) 
 

= Φ*(t + 1; t)E x~ (t|t – 1) x~ '(t|t – 1)Φ'(t + 1; t) + Q(t) 
 

= Φ*(t + 1; t)P*(t)Φ'(t + 1; t) + Q(t)     (24) 
 
where Q(t) = Eu(t)u'(t). 

There remains the problem of obtaining an explicit formula for 
∆* (and thus also for Φ*). Since, 
 

x~ (t + 1)|Z(t)) = x(t + 1) – Ê [x(t + 1)|Z(t)] 
 

is orthogonal to y~ (t |t – 1), it follows that by (19) that 
 
             0 = E[x(t + 1) – ∆*(t) y~ (t|t – 1)] y~ '(t|t – 1) 
 

= Ex(t + 1) y~ '(t|t – 1) – ∆*(t)E y~ (t|t – 1) y~ '(t|t – 1). 
 
Noting that x (t + 1|t – 1) is orthogonal to Z(t), the definition of 
P(t) given earlier, and (17), it follows further 
 
0 = E x~ (t + 1|t – 1) y~ '(t|t – 1) – ∆*(t)M(t)P*(t)M'(t) 
 
   = E[Φ(t + 1; t) x~ (t|t – 1) + u(t|t – 1)] x~ '(t|t – 1)M'(t) 

– ∆*(t)M(t)P*(t)M'(t). 
 
Finally, since u(t) is independent of x(t), 
 

0 = Φ(t + 1; t)P*(t)M'(t) – ∆*(t)M(t)P*(t)M'(t). 

Now the matrix M(t)P*(t)M'(t)will be positive definite and hence 
invertible whenever P*(t) is positive definite, provided that none 
of the rows of M(t) are linearly dependent at any time, in other 
words, that none of the observed scalar random variables yl(t), ..., 
ym(t), is a linear combination of the others. Under these 
circumstances we get finally: 

∆*(t) = Φ(t + 1; t)P*(t)M'(t)[M(t)P*(t)M'(t)]–1           (25) 

Since observations start at t0, x~ (t0|t0 – 1) = x(t0); to begin the 
iterative evaluation of P*(t) by means of equation (24), we must 
obviously specify P*(t0) = Ex(t0)x'(t0). Assuming this matrix is 
positive definite, equation (25) then yields ∆*(t0); equation (22) 
Φ*(t0 + 1; t0), and equation (24) P*(t0 + 1), completing the cycle. 
If now Q(t) is positive definite, then all the P*(t) will be positive 
definite and the requirements in deriving (25) will be satisfied at 
each step.  

Now we remove the restriction that t1 = t + 1. Since u(t) is 
orthogonal to Y(t), we have 

x*(t + 1|t) = Ê [Φ(t + 1; t)x(t) + u(t)|Y(t)] = Φ(t + 1; t)x*(t|t) 

Hence if Φ(t + 1; t) has an inverse Φ(t; t + 1) (which is always the 
case when Φ is the transition matrix of a dynamic system 
describable by a differential equation) we have 

x*(t|t) = Φ(t; t + 1)x*(t + 1|t)  

If t1 ≥ t + 1, we first observe by repeated application of (16) that 

x(t + s) = Φ(t + s; t + 1)x(t + 1) 

+ ∑
−1

1

s

r

Φ(t + s; t + r)u(t + r)          (s ≥ 1) 

Since u(t + s – 1), …, u(t + 1) are all orthogonal to Y(t), 

 x*(t + s|t) = Ê [x(t + s)|Y(t)] 

  = Ê [Φ(t + s; t + 1)x(t + 1)|Y(t)] 

  = Φ(t + s; t + 1)x*(t + 1|t)       (s ≥ 1) 

If s < 0, the results are similar, but x*(t – s|t) will have (1 – 
s)(n – p) co-ordinates. 

The results of this section may be summarized as follows: 
Theorem 3. (Solution of the Wiener Problem) 

Consider Problem I. The optimal estimate x*(t + 1|t) of x(t + 
1) given y(t0), ..., y(t) is generated by the linear dynamic system 
 

x*(t + 1|t) = Φ*(t + 1; t)x*(t|t – 1) + ∆*(t)y(t)           (21) 
 
The estimation error is given by 
 

x~ (t + 1|t) = Φ*(t + 1; t) x~ (t|t – 1) + u(t) (23)  
 
The covariance matrix of the estimation error is 
 

cov x~ (t|t – 1) = E x~ (t|t – 1) x~ '(t|t – 1) = P*(t)     (26) 
 
The expected quadratic loss is 

∑
=

−
n

i
i ttxE

1

2 )1|(~  =  trace P*(t)        (27) 

The matrices ∆*(t), Φ*(t + 1; t), P*(t) are generated by the 
recursion relations 

 
 

 

 

 

In order to carry out the iterations, one must specify the 
covariance P*(t0) of x(t0) and the covariance Q(t) of u(t). 
Finally, for any s ≥ 0, if Φ is invertible 
 

x*(t + s|t) = Φ(t + s; t + 1)x*(t + 1)|t) 

 = Φ(t + s; t + 1)Φ*(t + 1; t)Φ(t; t + s – 1) 
× x*(t + s – 1|t – 1) 

+ Φ(t + s; t + 1)∆*(t)y(t)     (31) 
 
so that the estimate x*(t + s|t) (s ≥ 0) is also given by a linear dy- 
namic system of the type (21).  

Remarks. (h) Eliminating ∆* and Φ* from (28–30), a nonlinear 
difference equation is obtained for P*(t): 
 
P*(t + 1)  =  Φ(t + 1; t){P*(t) – P*(t)M'(t)[M(t)P*(t)M'(t)]–1 

× P*(t)M(t)}Φ'(t + 1; t) + Q(t)              t ≥ t0        (32) 
 

This equation is linear only if M(t) is invertible but then the 
problem is trivial since all components of the random vector x(t) 
are observable P*(t + 1) = Q(t). Observe that equation (32) plays 
a role in the present theory analogous to that of the Wiener-Hopf 
equation in the conventional theory. 

Once P*(t) has been computed via (32) starting at t = t0, the 
explicit specification of the optimal linear filter is immediately 
available from formulas (29-30). Of course, the solution of 
Equation (32), or of its differential-equation equivalent, is a much 
simpler task than solution of the Wiener-Hopf equation. 
(i) The results stated in Theorem 3 do not resolve completely 
Problem I. Little has been said, for instance, about the physical 
significance of the assumptions needed to obtain equation (25), 
the convergence and stability of the nonlinear difference equa- 
tion (32), the stability of the optimal filter (21), etc. This can 
actually be done in a completely satisfactory way, but must be 
left to a future paper. In this connection, the principal guide and 
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∆*(t) = Φ(t + 1; t)P*(t)M'(t)[M(t)P*(t)M'(t)]–1 
 
Φ*(t + 1; t)  =  Φ(t + 1; t) – ∆*(t)M(t) 
 
P*(t + 1)  =  Φ*(t + 1; t)P*(t)Φ'(t + 1; t)  

+  Q(t) 

 




t ≥ t0 

(28)
 
(29) 
 
 
(30) 



tool turns out to be the duality theorem mentioned briefly in the 
next section. See [29]. 

(j) By letting the sampling period (equal to one so far) ap- 
proach zero, the method can be used to obtain the specification of 
a differential equation for the optimal filter. To do this, i.e., to 
pass from equation (14) to equation (12), requires computing the 
logarithm F* of the matrix Φ*. But this can be done only if Φ* is 
nonsingular—which is easily seen not to be the case. This is 
because it is sufficient for the optimal filter to have n – p state 
variables, rather than n, as the formalism of equation (22) would 
seem to imply. By appropriate modifications, therefore, equation 
(22) can be reduced to an equivalent set of only n – p equations 
whose transition matrix is nonsingular. Details of this type will be 
covered in later publications. 

(k) The dynamic system (21) is, in general, nonstationary. This 
is due to two things: (1) The time dependence of Φ(t + 1; t) and 
M(t); (2) the fact that the estimation starts at t = t0 and improves as 
more data are accumulated. If Φ, M are constants, it can be shown 
that (21) becomes a stationary dynamic system in the limit t → ∞. 
This is the case treated by the classical Wiener theory. 

(l) It is noteworthy that the derivations given are not affected 
by the nonstationarity of the model for x(t) or the finiteness of 
available data. In fact, as far as the author is aware, the only 
explicit recursion relations given before for the growing-memory 
filter are due to Blum [12]. However, his results are much more 
complicated than ours. 

(m) By inspection of Fig. 3 we see that the optimal filter is a 
feedback system, and that the signal after the first summer is 
white noise since y~ (t|t – 1) is obviously an orthogonal random 
process. This corresponds to some well-known results in Wiener 
filtering, see, e.g., Smith [28], Chapter 6, Fig. 6–4. However, this 
is apparently the first rigorous proof that every Wiener filter is 
realizable by means of a feedback system. Moreover, it will be 
shown in another paper that such a filter is always stable, under 
very mild assumptions on the model (16–17). See [29]. 
 

The Dual Problem 
Let us now consider another problem which is conceptually 

very different from optimal estimation, namely, the noise-free 
regulator problem. In the simplest cases, this is: 

Problem II.  Consider the dynamic system 

x(t + 1) = Φ̂ (t + 1; t)x(t) + M̂ (t)u(t)  (33) 

where x(t) is an n-vector, u(t) is an m-vector (m ≤ n), Φ̂ , M̂  are 
n × n resp. n × m matrices whose elements are nonrandom func- 
tions of time. Given any state x(t) at time t, we are to find a 
sequence u(t), ..., u(T) of control vectors which minimizes the 
performance index 

V[x(t)] = ∑
+

=τ

1T

t

x'(τ)Q(τ)x(τ) 

Where Q̂ (t) is a positive definite matrix whose elements are 
nonrandom functions of time. See Fig. 2, where ∆ = M̂  and M = I.  

Probabilistic considerations play no part in Problem II; it is 
implicitly assumed that every state variable can be measured 
exactly at each instant t, t + 1, ..., T. It is customary to call T ≥ t 
the terminal time (it may be infinity).  

The first general solution of the noise-free regulator problem is 
due to the author [18]. The main result is that the optimal control 
vectors u*(t) are nonstationary linear functions of x(t). After a 
change in notation, the formulas of the Appendix, Reference [18] 
(see also Reference [23]) are as follows: 

u*(t)  =  – ∆̂ *(t)x(t)  (34) 
 

Under optimal control as given by (34), the “closed-loop” equa-
tions for the system are (see Fig. 4)  

x(t + 1) = Φ̂ *(t + 1; t)x(t) 
  

and the minimum performance index at time t is given by   
V*[x(t)] = x'(t)P*(t – 1)x(t)  

The matrices ∆̂ *(t), Φ̂ *(t + 1; t), P̂ *(t) are determined by 
the recursion relations: 

 
 
 
 
 

Initially we must set P̂ *(T) = Q̂ (T + 1).  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4   Matrix block diagram of optimal controller 
 

Comparing equations (35–37) with (28–30) and Fig. 3 with 
Fig. 4 we notice some interesting things which are expressed 
precisely by 

Theorem 4. (Duality Theorem) Problem I and Problem II are 
duals of each other in the following sense: 

Let τ ≥ 0. Replace every matrix X(t) = X(t0 + τ) in (28–30) by 
X̂ '(t) = X̂ '(T – τ). Then One has (35–37). Conversely, replace 
every matrix X̂ (T – τ) in (35–37) by X'(t0 + τ). Then one has 
(28–30). 

Proof. Carry out the substitutions. For ease of reference, the 
dualities between the two problems are given in detail in Table 1. 
 

Table 1 
                Problem I Problem II 
1 x(t) (unobservable) state 

variables of random proc-
ess. 

x(t) (observable) state varia-
bles of plant to be 
regulated. 

2 y(t) observed random varia-
bles. 

u(t) control variables 

3 t0 first observation. T last control action. 
4 Φ(t0 + τ +1; t0 + τ) transition 

matrix. 
Φ̂ (T – τ + 1; T – τ)    transi- 

 tion matrix. 
5 P*(t0 + τ) covariance of 

optimized estimation error. P̂ *(T – τ)  matrix  of  quad- 
ratic form for performance 
index under optimal regu- 
lation. 

6 ∆*(t0 + τ) weighting of ob- 
servation for optimal esti- 
mation. 

∆̂ *(T – τ)    weighting     of 
 state for optimal control. 

7 Φ*(t0 + τ + 1; t0 + τ) transi- 
tion matrix for optimal es- 
timation error. 

Φ̂ *(T – τ + 1; T – τ)  transi- 
tion matrix under optimal 
regulation. 

8 M(t0 + τ) effect of state on 
observation. 

M̂ (T – τ)   effect  of  control 
vectors on state. 

9 Q(t0 + τ) covariance of ran- 
dom excitation. Q̂ (T – τ)        matrix         of  

quadratic form defining 
error criterion. 

 
Remarks.  (n) The mathematical significance of the duality be- 

tween Problem I and Problem II is that both problems reduce to 
the solution of the Wiener-Hopf-like equation (32). 

(o) The physical significance of the duality is intriguing. Why 
are observations and control dual quantities? 
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∆̂ *(t) = M̂[ '(t) P̂ *(t) M̂ (t)]–1 M̂ '(t) P̂ *(t) Φ̂ (t + 1; t)

Φ̂ *(t + 1; t)  = Φ̂ (t + 1; t) – M̂ (t) ∆̂ *(t)  
P̂ *(t – 1)  =  Φ̂ '(t + 1; t) P̂ *(t) Φ̂ *(t + 1; t)  

+ Q̂ (t)

 




t ≤ T 

(35)
 
(36) 
 
 
(37) 

 

x(t + 1) 

x(t) 

∑ M̂ (t) ∆̂ *(t) 

Φ̂ (t + 1; t) 

 unit 
delay 

– I 

PHYSICAL    SYSTEM     TO     BE     CONTROLLED 

u*(t) 



Recent research [29] has shown that the essence of the Duality 
Theorem lies in the duality of constraints at the output (repre- 
sented by the matrix M̂ (t) in Problem I) and constraints at the 
input (represented by the matrix M̂ (t) in Problem II). 

(p) Applications of Wiener's methods to the solution of noise- 
free regulator problem have been known for a long time; see the 
recent textbook of Newton, Gould, and Kaiser [27]. However, the 
connections between the two problems, and in particular the 
duality, have apparently never been stated precisely before. 

(q) The duality theorem offers a powerful tool for developing 
more deeply the theory (as opposed to the computation) of Wiener 
filters, as mentioned in Remark (i). This will be published 
elsewhere [29]. 
 

Applications 
The power of the new approach to the Wiener problem, as ex- 

pressed by Theorem 3, is most obvious when the data of the 
problem are given in numerical form. In that case, one simply 
performs the numerical computations required by (28–30). Re- 
suits of such calculations, in some cases of practical engineering 
interest, will be published elsewhere. 

When the answers are desired in closed analytic form, the itera- 
tions (28–30) may lead to very unwieldy expressions. In a few 
cases, ∆* and Φ* can be put into “closed form.” Without dis- 
cussing here how (if at all) such closed forms can be obtained, we 
now give two examples indicative of the type of results to be ex- 
pected. 

Example 1.  Consider the problem mentioned under “Optimal 
Estimates.” Let x1(t) be the signal and x2(t) the noise. We assume 
the model: 
 

x1(t + 1) = φ11(t + 1; t)x1(t) + u1(t) 
 

x2(t + 1) = u2(t) 
 

y1(t) = x1(t) + x2(t)  

The specific data for which we desire a solution of the estimation 
problem are as follows:  

1   t1 = t + 1; t0 = 0 
2   Ex1

2(0) = 0, i.e., x1(0) = 0 
3   Eu1

2(t) = a2, Eu2(t) = b2, Eu1(t) u2(t) = 0 (for all t) 
4   φ11(t + 1; t) = φ11 = const.  
A simple calculation shows that the following matrices satisfy 

the difference equations (28–30), for all t ≥ t0: 

∆*(t) = 







0

)(11 tCφ
 

Φ*(t + 1; t) = 






 −
00

0)](1[11 tCφ
 

P*(t + 1) =










 +
2

22
11

2

0

0)(

b

tCba φ
 

where      C(t + 1)  = 
)(

1
22

11
22

2

tCbba

b

φ++
−     t ≥ 0               (38) 

 
Since it was assumed that x1(0) = 0, neither x1(1) nor x2(1) can 

be predicted from the measurement of y1(0). Hence the meas- 
urement at time t = 0 is useless, which shows that we should set 
C(0) = 0. This fact, with the iterations (38), completely deter- 
mines the function C(t). The nonlinear difference equation (38) 
plays the role of the Wiener-Hopf equation. 

If b2/a2 <<1, then C(t) ≈ 1 which is essentially pure prediction. 
If  b2/a2 >>1, then C(t) ≈ 0, and we depend mainly on x1*(t|t – 1) 
for the estimation of x1*(t +1|t) and assign only very small weight 

to the measurement y1(t) ; this is what one would expect when the 
measured data are very noisy. 

In any case, x2*(t|t – 1) = 0 at all times; one cannot predict 
independent noise! This means that φ *12 can be set equal to zero. 
The optimal predictor is a first-order dynamic system. See 
Remark (j). 

To find the stationary Wiener filter, let t = ∞ on both sides of 
(38), solve the resulting quadratic equation in C(∞), etc.  

Example 2.  A number or particles leave the origin at time t0 = 0 
with random velocities; after t = 0, each particle moves with a 
constant (unknown) velocity. Suppose that the position of one of 
these particles is measured, the data being contaminated by 
stationary, additive, correlated noise. What is the optimal estimate 
of the position and velocity of the particle at the time of the last 
measurement? 

Let x1(t) be the position and x2(t) the velocity of the particle; 
x3(t) is the noise. The problem is then represented by the model,  

x1(t + 1) = x1(t) + x2(t)  
x2(t + 1) = x2(t)  
x3(t + 1) = φ33(t + 1; t)x3(t) + u3(t)  
      y1(t) = x1(t) + x3(t)  

and the additional conditions  
1   t1 = t; t0 = 0 
2   Ex1

2(0) = Ex2(0) = 0, Ex2
2(0) = a2 > 0; 

3   Eu3(t) = 0, Eu3
2(t) = b2. 

4   φ33(t + 1; t) = φ33 = const. 
 
According to Theorem 3, x*(t|t) is calculated using the 

dynamic system (31). 
First we solve the problem of predicting the position and ve- 

locity of the particle one step ahead. Simple considerations show 
that 

P*(1)  = 
















2

22

22

00

0

0

b

aa

aa

   and   ∆*(0)  = 
















1

0

0

 

It is then easy to check by substitution into equations (28–30) that 

P*(t) = 
)1(1

2

−tC

b
 

×
















−+−−−−−
−−
−−

)1()1()1()1(

)1(1

)1(

1
22

333333

33

33
2

tCtttt

tt

tttt

φφφ
φ
φ

 

is the correct expression for the covariance matrix of the predic- 
tion error x~ (t|t – 1) for all t ≥ 1, provided that we define 
 

C1(0) = b2/a2 

C1(t) = C1(t – 1) + [t – φ33(t – 1)]2,  t ≥ 1 

It is interesting to note that the results just obtained are valid 
also when φ33 depends on t. This is true also in Example 1. In 
conventional treatments of such problems there seems to be an 
essential difference between the cases of stationary and nonsta- 
tionary noise. This misleading impression created by the con- 
ventional theory is due to the very special methods used in 
solving the Wiener-Hopf equation.  

Introducing the abbreviation 
 

C2(0) = 0 

C2(t) = t – φ33(t – 1),  t ≥ 1 

and observing that 

cov x~ (t + 1|t) = P*(t + 1) 

            = Φ(t + 1; t)[cov x~ (t|t)]Φ'(t + 1; t) + Q(t) 
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the matrices occurring in equation (31) and the covariance matrix 
of x~ (t|t) are found after simple calculations.  We have, for all t ≥ 
0, 

Φ(t; t + 1)∆*(t) =
















− )()(

)(

)(

)(

1

21

2

2

1 ttCtC

tC

ttC

tC
 

Φ(t; t + 1)Φ*(t + 1; t)Φ(t + 1; t) 

=
















++−+−
−−−
−−−

)()()()()(

)()()()(

)()()()()(

)(

1

2332121

233212

2333121

1 ttCttCtCttCtC

tCtCtCtC

ttCttCtCttCtC
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φ
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and 

cov x~ (t|t) = E x~ (t|t) x~ '(t|t) =
















−−
−
−

22

22

1

2

1
)(

ttt

tt

ttt

tC

b
 

To gain some insight into the behavior of this system, let us 
examine the limiting case t → ∞ of a large number of observa- 
tions. Then C1(t) obeys approximately the differential equation 
 

dC1(t)/dt ≈ C2
2(t)         (t >> 1) 

 
from which we find 

C1(t) ≈ (1 – φ33)2t3/3 + φ33(1 – φ33)t2 + φ33
2t + b2/a2   

(t >> 1)         (39) 

Using (39), we get further, 

Φ–1Φ*Φ  ≈  
















−− 011

010

011

  and    Φ–1∆*  ≈  
















1

0

0

               (t >> 1) 

Thus as the number of observations becomes large, we depend 
almost exclusively on x1*(t|t) and x2*(t|t) to estimate x1*(t + 1|t + 
1) and x2*(t + 1|t + 1). Current observations are used almost 
exclusively to estimate the noise 

x3*(t|t) ≈ y1*(t) – x1*(t|t) (t >> 1) 

One would of course expect something like this since the prob- 
lem is analogous to fitting a straight line to an increasing number 
of points. 

As a second check on the reasonableness of the results given, 
observe that the case t >> 1 is essentially the same as prediction 
based on continuous observations. Setting φ33 = 0, we have 

E
3/

)|(~
322

222
2

1
tab

tba
ttx

+
≈  (t >> 1; φ33 = 0) 

which is identical with the result obtained by Shinbrot [11], 
Example 1, and Solodovnikov [14], Example 2, in their treat- 
ment of the Wiener problem in the finite-length, continuous-data 
case, using an approach entirely different from ours. 
 

Conclusions 

This paper formulates and solves the Wiener problem from the 
“state” point of view. On the one hand, this leads to a very gen- 
eral treatment including cases which cause difficulties when at- 
tacked by other methods. On the other hand, the Wiener problem 
is shown to be closely connected with other problems in the 
theory of control. Much remains to be done to exploit these 
connections. 
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A P P E N D I X 
RANDOM PROCESSES:  BASIC CONCEPTS 

 
For convenience of the reader, we review here some elementary 

definitions and facts about probability and random processes. 
Everything is presented with the utmost possible simplicity; for 
greater depth and breadth, consult Laning and Battin [5] or Doob 
[15]. 

A random variable is a function whose values depend on the 
outcome of a chance event. The values of a random variable may 
be any convenient mathematical entities; real or complex 
numbers, vectors, etc. For simplicity, we shall consider here only 
real-valued random variables, but this is no real restriction. 
Random variables will be denoted by x, y, ... and their values by ξ, 
η, …. Sums, products, and functions of random variables are also 
random variables. 

A random variable x can be explicitly defined by stating the 
probability that x is less than or equal to some real constant ξ. 
This is expressed symbolically by writing 
 

Pr(x ≤ ξ) = Fx(ξ); Fx(– ∞) = 0, Fx(+ ∞) = 1 
 
Fx(ξ) is called the probability distribution function of the random 
variable x. When Fx(ξ) is differentiable with respect to ξ, then 
fx(ξ) = dFx(ξ)/dξ is called the probability density function of x.  

The expected value (mathematical expectation, statistical 
average, ensemble average, mean, etc., are commonly used 
synonyms) of any nonrandom function g(x) of a random variable x 
is defined by 

  ∫ ∫
∞

∞−

∞

∞−
ξξξ=ξξ== dfgdFgxgExEg xx )()()()()]([)(        (40) 

As indicated, it is often convenient to omit the brackets after the 
symbol E. A sequence of random variables (finite or infinite) 

 
{x(t)} = …, x(–1), x(0), x(1), …  (41) 

 
is called a discrete (or discrete-parameter) random (or stochastic) 
process. One particular set of observed values of the random 
process (41) 
 

…, ξ(–1), ξ(0), ξ(1), … 
 
is called a realization (or a sample function) of the process. In- 
tuitively, a random process is simply a set of random variables 
which are indexed in such a way as to bring the notion of time 
into the picture. 

A random process is uncorrelated if 
 

Ex(t)x(s) = Ex(t)Ex(s) (t ≠ s) 
 

If, furthermore, 
 

Ex(t)x(s) = 0 (t ≠ s) 
 
then the random process is orthogonal. Any uncorrelated random 
process can be changed into orthogonal random process by re- 
placing x(t) by x’(t) = x(t) – Ex(t) since then 
 
Ex’(t)x’(s) = E[x(t) – Ex(t)]•[x(s) – Ex(s)] 

= Ex(t)x(s) – Ex(t)Ex(s) = 0 
 

It is useful to remember that, if a random process is orthogonal, 
then 
 

E[x(t1) + x(t2) + …]2 = Ex2(t1) + Ex2 (t2) + … (t1 ≠ t2 ≠ ...)   
If x is a vector-valued random variable with components x1, …, xn 
(which are of course random variables), the matrix 
 
[E(xi – Exi)(xj – Exj)]   =   E(x – Ex)(x' – Ex') 

=   cov x              (42) 
 
is called the covariance matrix of x. 

A random process may be specified explicitly by stating the 
probability of simultaneous occurrence of any finite number of 
events of the type 
x(t1) ≤ ξ1, …, x(tn) ≤ ξn; (t1 ≠ … ≠  tn), i.e., 

Pr[(x(t1) ≤ ξ1, …, x(tn) ≤ ξn)] = Fx(t1), ..., x(tn)(ξ1, …, ξn)          (43) 

where Fx(t1), ..., x(tn) is called the joint probability distribution 
function of the random variables x(t1), …, x(tn). The joint 
probability density function is then 

fx(t1), ..., x(tn)(ξ1, …, ξn) = ∂nFn(t1), ..., x(tn)/∂ξ1, …, ∂ξn 

provided the required derivatives exist. The expected value 
Eg[x(t1), …, x(tn)] of any nonrandom function of n random varia- 
bles is defined by an n-fold integral analogous to (40).  

A random process is independent if for any finite t1 ≠ … ≠  tn, 
(43) is equal to the product of the first-order distributions 

Pr[x(t1) ≤ ξ1] … Pr[x(tn) ≤ ξn] 

If a set of random variables is independent, then they are obvi- 
ously also uncorrelated. The converse is not true in general. For a 
set of more than 2 random variables to be independent, it is not 
sufficient that any pair of random variables be independent. 

Frequently it is of interest to consider the probability distribu- 
tion of a random variable x(tn + 1) of a random process given the 
actual values ξ(t1), …, ξ(tn) with which the random variables 
x(t1), …, x(tn) have occurred. This is denoted by 

Pr[x(tn + 1) ≤ ξn + 1|x(t1) = ξ1, …, x(tn) = ξn] 

),...,(

),...,(

1)(),...,(

111)(),...,(

1

1

11

ntxtx

nntxtx
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n

n

f

df

ξξ

ξξξ
= ∫

+

+

ξ

∞− ++
      (44)   

which is called the conditional probability distribution function 
of x(tn + 1) given x(t1), …, x(tn). The conditional expectation  

E{g[x(tn + 1)]|x(t1), …, x(tn)} 

is defined analogously to (40). The conditional expectation is a 
random variable; it follows that 

E[E{g[x(tn + 1)]|x(t1), …, x(tn)}] = E{g[x(tn + 1)]} 

In all cases of interest in this paper, integrals of the type (40) or 
(44) need never be evaluated explicitly, only the concept of the 
expected value is needed. 

A random variable x is gaussian (or normally distributed) if 

 

 

which is the well-known bell-shaped curve. Similarly, a random 
vector x is gaussian if 
          

 

where C–1 is the inverse of the covariance matrix (42) of x. A 
gaussian random process is defined similarly. 

The importance of gaussian random variables and processes is 
largely due to the following facts: 

Theorem 5. (A) Linear functions (and therefore conditional ex- 
pectations) on a gaussian random process are gaussian random 
variables. 

(B)   Orthogonal gaussian random variables are independent. 

(C) Given any random process with means Ex(t) and 
covariances Ex(t)x(s), there exists a unique gaussian random 
process with the same means and covariances. 
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Explanation of this transcription, John Lukesh, 20 January 2002. 

Using a photo copy of R. E. Kalman’s 1960 paper from an 
original of the ASME “Journal of Basic Engineering”, March 
1960 issue, I did my best to make an accurate version of this 
rather significant piece, in an up-to-date computer file format.  For 
this I was able to choose page formatting and type font spacings 
that resulted in a document that is a close match to the original. 
(All pages start and stop at about the same point, for example; 
even most individual lines of text do.) I used a recent version of 
Word for Windows and a recent Hewlett Packard scanner with 
OCR (optical character recognition) software.  The OCR software 
is very good on plain text, even distinguishing between italic 
versus regular characters quite reliably, but it does not do well 
with subscripts, superscripts, and special fonts, which were quite 
prevalent in the original paper.  And I found there was no point in 
trying to work from the OCR results for equations.  A lot of 
manual labor was involved. 

Since I wanted to make a faithful reproduction of the original, I 
did not make any changes to correct (what I believed were) 
mistakes in it.  For example, equation (32) has a P*(t)M(t) 
product that should be reversed, I think.  I left this, and some 
other things that I thought were mistakes in the original, as is.  (I 
didn’t find very many other problems with the original.)  There 
may, of course, be problems with my transcription.  The plain text 
OCR results, which didn’t require much editing, are pretty 
accurate I think. But the subscripts etc and the equations which I 
copied essentially manually, are suspect.  I’ve reviewed the 
resulting document quite carefully, several times finding mistakes 
in what I did each time. The last time there were five, four 
cosmetic and one fairly inconsequential.  There are probably 
more.  I would be very pleased to know about it if any reader of 
this finds some of them; jlukesh@deltanet.com. 
 


