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by I(X; Y ) = 0. Therefore,

x; y; z; u

p̂(x; y; z; u)

=
x; y; z; u: p(x)>0; p(y)>0; p(z)>0; p(u)>0

p̂(x; y; z; u)

=
x; y; z; u: p(x)>0; p(y)>0; p(z)>0; p(u)>0

p(x; z)p(x; u)p(y; z)p(y; u)

p(z)p(u)p(x)p(y)

=
x; y; z; u: p(x)>0; p(y)>0; p(z)>0; p(u)>0

p(x; y; z)p(x; u)p(y; u)

p(u)p(x; y)

=
x; y; u: p(x)>0; p(y)>0; p(u)>0

p(x; u)p(y; u)

p(u)
= 1:

The theorem is proved.
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Capacity of Fading Channels
with Channel Side Information
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Abstract—We obtain the Shannon capacity of a fading channel with
channel side information at the transmitter and receiver, and at the
receiver alone. The optimal power adaptation in the former case is
“water-pouring” in time, analogous to water-pouring in frequency for
time-invariant frequency-selective fading channels. Inverting the channel
results in a large capacity penalty in severe fading.

Index Terms— Capacity, channel side information, fading channels,
power adaptation.

I. INTRODUCTION

The growing demand for wireless communication makes it im-
portant to determine the capacity limits of fading channels. In
this correspondence, we obtain the capacity of a single-user fading
channel when the channel fade level is tracked by both the transmitter
and receiver, and by the receiver alone. In particular, we show that
the fading-channel capacity with channel side information at both the
transmitter and receiver is achieved when the transmitter adapts its
power, data rate, and coding scheme to the channel variation. The
optimal power allocation is a “water-pouring” in time, analogous to
the water-pouring used to achieve capacity on frequency-selective
fading channels [1], [2].

We show that for independent and identically distributed (i.i.d.)
fading, using receiver side information only has a lower complexity
and the same approximate capacity as optimally adapting to the
channel, for the three fading distributions we examine. However,
for correlated fading, not adapting at the transmitter causes both
a decrease in capacity and an increase in encoding and decoding
complexity. We also consider two suboptimal adaptive techniques:
channel inversion and truncated channel inversion, which adapt
the transmit power but keep the transmission rate constant. These
techniques have very simple encoder and decoder designs, but they
exhibit a capacity penalty which can be large in severe fading. Our
capacity analysis for all of these techniques neglects the effects of
estimation error and delay, which will generally degrade capacity.

The tradeoff between these adaptive and nonadaptive techniques
is therefore one of both capacity and complexity. Assuming that
the channel is estimated at the receiver, the adaptive techniques
require a feedback path between the transmitter and receiver and
some complexity in the transmitter. The optimal adaptive technique
uses variable-rate and power transmission, and the complexity of
its decoding technique is comparable to the complexity of decoding
a sequence of additive white Gaussian noise (AWGN) channels in
parallel. For the nonadaptive technique, the code design must make
use of the channel correlation statistics, and the decoder complexity is
proportional to the channel decorrelation time. The optimal adaptive
technique always has the highest capacity, but the increase relative
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Fig. 1. System model.

to nonadaptive transmission using receiver side information only is
small when the fading is approximately i.i.d. The suboptimal adaptive
techniques reduce complexity at a cost of decreased capacity.

This tradeoff between achievable data rates and complexity is
examined for adaptive and nonadaptive modulation in [3], where
adaptive modulation achieves an average data rate within 7–10 dB
of the capacity derived herein (depending on the required error
probability), while nonadaptive modulation exhibits a severe rate
penalty. Trellis codes can be combined with the adaptive modulation
to achieve higher rates [4].

We do not consider the case when the channel fade level is
unknown to both the transmitter and receiver. Capacity under this
assumption was obtained for the Gilbert–Elliot channel in [5] and for
more general Markov channel models in [6]. If the statistics of the
channel variation are also unknown, then channels with deep fading
will typically have a capacity close to zero. This is because the data
must be decoded without error, which is difficult when the location of
deep fades are random. In particular, the capacity of a fading channel
with arbitrary variation is at most the capacity of a time-invariant
channel under the worst case fading conditions. More details about
the capacity of time-varying channels under these assumptions can
be found in the literature on Arbitrarily Varying Channels [7], [8].

The remainder of this correspondence is organized as follows. The
next section describes the system model. The capacity of the fading
channel under the different side information conditions is obtained
in Section III. Numerical calculation of these capacities in Rayleigh,
log-normal, and Nakagami fading is given in Section IV. Our main
conclusions are summarized in the final section.

II. SYSTEM MODEL

Consider a discrete-time channel with stationary and ergodic time-
varying gain g[i]; 0 � g[i], and AWGN n[i]. We assume that
the channel power gain g[i] is independent of the channel input and
has an expected value of unity. Let S denote the average transmit
signal power, N0 denote the noise density of n[i], and B denote the
received signal bandwidth. The instantaneous received signal-to-noise
ratio (SNR) is then [i] = Sg[i]=(N0B), and its expected value over
all time is S=(N0B).

The system model, which sends an input message w from the
transmitter to the receiver, is illustrated in Fig. 1. The message is
encoded into the codeword x, which is transmitted over the time-
varying channel as x[i] at time i. The channel gain g[i] changes over
the transmission of the codeword. We assume perfect instantaneous
channel estimation so that the channel power gain g[i] is known
to the receiver at time i. We also consider the case when g[i] is
known to both the receiver and transmitter at time i, as might be
obtained through an error-free delayless feedback path. This allows
the transmitter to adapt x[i] to the channel gain at time i, and
is a reasonable model for a slowly varying channel with channel
estimation and transmitter feedback.

III. CAPACITY ANALYSIS

A. Side Information at the Transmitter and Receiver

Assume that the channel power gain g[i] is known to both the
transmitter and receiver at time i. The capacity of a time-varying
channel with side information about the channel state at both the
transmitter and receiver was originally considered by Wolfowitz for
the following model. Let c[i] be a stationary and ergodic stochastic
process representing the channel state, which takes values on a finite
set S of discrete memoryless channels. Let Cs denotes the capacity
of a particular channel s 2 S, and p(s) denote the probability, or
fraction of time, that the channel is in state s. The capacity of this
time-varying channel is then given by [9, Theorem 4.6.1]

C =
s2S

Csp(s): (1)

We now consider the capacity of the fading channel shown in Fig.
1. Specifically, assume an AWGN fading channel with stationary
and ergodic channel gain g[i]. It is well known that a time-invariant
AWGN channel with average received SNR  has capacity C =
B log (1 + ). Let p() = p([i] = ) denote the probability
distribution of the received SNR. From (1), the capacity of the fading
channel with transmitter and receiver side information is thus1

C =


Cp()d =


B log (1 + )p()d: (2)

By Jensen’s inequality, (2) is always less than the capacity of an
AWGN channel with the same average power. Suppose now that we
also allow the transmit power S() to vary with [i], subject to an
average power constraint S



S()p()d � S: (3)

With this additional constraint, we cannot apply (2) directly to obtain
the capacity. However, we expect that the capacity with this average
power constraint will be the average capacity given by (2) with the
power optimally distributed over time. This motivates the following
definition for the fading channel capacity, for which we subsequently
prove the channel coding theorem and converse.

Definition: Given the average power constraint (3), define the
time-varying channel capacity by

C(S) = max
S(): S()p() d=S 

B log 1 +
S()

S
p()d:

(4)

The channel coding theorem shows that this capacity is achievable,
and the converse shows that no code can achieve a higher rate with
arbitrarily small error probability. These two theorems are stated
below and proved in the Appendix.

1 Wolfowitz’s result was for  ranging over a finite set, but it can be
extended to infinite sets, as we show in the Appendix.
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Fig. 2. Multiplexed coding and decoding.

Coding Theorem: There exists a coding scheme with average
power S that achieves any rate R < C(S) with arbitrarily small
probability of error.

Converse: Any coding scheme with rate R > C(S) and average
power S will have a probability of error bounded away from zero.

It is easily shown that the power adaptation which maximizes (4) is

S()

S
=

1

0
�

1


;  � 0

0;  < 0

(5)

for some “cutoff” value 0. If [i] is below this cutoff then no data
is transmitted over the ith time interval. Since  is time-varying,
the maximizing power adaptation policy of (5) is a “water-pouring”
formula in time [1] that depends on the fading statistics p() only
through the cutoff value 0.

Substituting (5) into (3), we see that 0 must satisfy
1



1

0
�

1


p()d = 1: (6)

Substituting (5) into (4) then yields a closed-form capacity formula

C(S) =
1



B log


0
p()d: (7)

The channel coding and decoding which achieves this capacity is
described in the Appendix, but the main idea is a “time diversity”
system with multiplexed input and demultiplexed output, as shown
in Fig. 2. Specifically, we first quantize the range of fading values
to a finite set fj : 0 � j � Ng. Given a blocklength n, we
then design an encoder/decoder pair for each j with codewords
xj 2 fxw [k]g; wj = 1; � � � ; 2n R of average power S(j)
which achieve rate Rj � Cj , where Cj is the capacity of a
time-invariant AWGN channel with received SNR S(j)j=S and
nj = np( � j). These encoder/decoder pairs correspond to
a set of input and output ports associated with each j . When
[i] � j , the corresponding pair of ports are connected through the
channel. The codewords associated with each j are thus multiplexed
together for transmission, and demultiplexed at the channel output.
This effectively reduces the time-varying channel to a set of time-
invariant channels in parallel, where the jth channel only operates
when [i] � j . The average rate on the channel is just the sum
of rates Rj associated with each of the j channels weighted by
p( � j). This sketches the proof of the coding theorem. Details

can be found in the Appendix, along with the converse theorem that
no other coding scheme can achieve a higher rate.

B. Side Information at the Receiver

In [10], it was shown that if the channel variation satisfies a
compatibility constraint then the capacity of the channel with side
information at the receiver only is also given by the average capacity
formula (2). The compatibility constraint is satisfied if the channel
sequence is i.i.d. and if the input distribution which maximizes mutual
information is the same regardless of the channel state. In this case,
for a constant transmit power the side information at the transmitter
does not increase capacity, as we now show.

If g[i] is known at the decoder then by scaling, the fading channel
with power gain g[i] is equivalent to an AWGN channel with noise
power N0B=g[i]. If the transmit power is fixed at S and g[i] is i.i.d.
then the input distribution at time i which achieves capacity is an i.i.d.
Gaussian distribution with average power S. Thus without power
adaptation, the fading AWGN channel satisfies the compatibility
constraint of [10]. The channel capacity with i.i.d. fading and receiver
side information only is thus given by

C(S) = B log (1 + )p()d (8)

which is the same as (2), the capacity with transmitter and receiver
side information but no power adaptation. The code design in this case
chooses codewords fxw [i]gni=1; wj = 1; � � � ; 2nR at random from
an i.i.d. Gaussian source with variance equal to the signal power. The
maximum-likelihood decoder then observes the channel output vector
y[�] and chooses the codeword xw which minimizes the Euclidean
distance

k(y[1]; � � � ; y[n]) � (xw [1]g[1]; � � � ; xw [n]g[n])k:

Thus for i.i.d. fading and constant transmit power, side information at
the transmitter has no capacity benefit, and the encoder/decoder pair
based on receiver side information alone is simpler than the adaptive
multiplexing technique shown in Fig. 2.

However, most physical channels exhibit correlated fading. If the
fading is not i.i.d. then (8) is only an upper bound to channel capacity.
In addition, without transmitter side information, the code design must
incorporate the channel correlation statistics, and the complexity of
the maximum-likelihood decoder will be proportional to the channel
decorrelation time.
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Fig. 3. Capacity in log-normal fading (� = 8 dB).

C. Channel Inversion

We now consider a suboptimal transmitter adaptation scheme
where the transmitter uses the channel side information to maintain
a constant received power, i.e., it inverts the channel fading. The
channel then appears to the encoder and decoder as a time-invariant
AWGN channel. The power adaptation for channel inversion is given
by S()=S = �=, where � equals the constant received SNR
which can be maintained under the transmit power constraint (3).
The constant � thus satisfies (�=)p() = 1, so � = 1=EEE[1=].

The fading channel capacity with channel inversion is just the
capacity of an AWGN channel with SNR �:

C(S) = B log [1 + �] = B log 1 +
1

EEE[1=]
: (9)

Channel inversion is common in spread-spectrum systems with
near–far interference imbalances [11]. It is also very simple to
implement, since the encoder and decoder are designed for an AWGN
channel, independent of the fading statistics. However, it can exhibit a
large capacity penalty in extreme fading environments. For example,
in Rayleigh fading EEE[1=] is infinite, and thus the capacity with
channel inversion is zero.

We also consider a truncated inversion policy that only compen-
sates for fading above a certain cutoff fade depth 0

S()

S
=

�


;  � 0

0;  < 0:
(10)

Since the channel is only used when  � 0, the power constraint
(3) yields � = 1=EEE [1=], where

EEE [1=]
�
=

1



1


p()d: (11)

For decoding this truncated policy, the receiver must know when
 < 0. The capacity in this case, obtained by maximizing over all
possible 0, is

C(S) = max


B log 1 +
1

EEE [1=]
p( � 0): (12)

IV. NUMERICAL RESULTS

Figs. 3–5 show plots of (4), (8), (9), and (12) as a function
of average received SNR for log-normal fading (standard deviation
� = 8 dB), Rayleigh fading, and Nakagami fading (with Nakagami
parameter m = 2). The capacity in AWGN for the same average
power is also shown for comparison. Several observations are worth
noting. First, for this range of SNR values, the capacity of the AWGN
channel is larger, so fading reduces channel capacity. This will not
always be the case at very low SNR’s. The severity of the fading is
indicated by the Nakagami parameter m, where m = 1 for Rayleigh
fading and m = 1 for an AWGN channel without fading. Thus
comparing Figs. 4 and 5 we see that, as the severity of the fading
decreases (m goes from one to two), the capacity difference between
the various adaptive policies also decreases, and their respective
capacities approach that of the AWGN channel.

The difference between the capacity curves (4) and (8) are neg-
ligible in all cases. Recalling that (2) and (8) are the same, this
implies that when the transmission rate is adapted relative to the
channel, adapting the power as well yields a negligible capacity
gain. It also indicates that for i.i.d. fading, transmitter adaptation
yields a negligible capacity gain relative to using only receiver side
information. We also see that in severe fading conditions (Rayleigh
and log-normal fading), truncated channel inversion exhibits a 1–5-
dB-rate penalty and channel inversion without truncation yields a
very large capacity loss. However, under mild fading conditions
(Nakagami with m = 2) the capacity of all the adaptation techniques
are within 3 dB of each other and within 4 dB of the AWGN
channel capacity. These differences will further decrease as the fading
diminishes (m ! 1).

We can view these results as a tradeoff between capacity and
complexity. The adaptive policy with transmitter side information
requires more complexity in the transmitter (and it typically also
requires a feedback path between the receiver and transmitter to
obtain the side information). However, the decoder in the receiver
is relatively simple. The nonadaptive policy has a relatively simple
transmission scheme, but its code design must use the channel
correlation statistics (often unknown), and the decoder complexity is
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Fig. 4. Capacity in Rayleigh fading (m = 1).

Fig. 5. Capacity in Nakagami fading (m = 2).

proportional to the channel decorrelation time. The channel inversion
and truncated inversion policies use codes designed for AWGN
channels, and are therefore the least complex to implement, but in
severe fading conditions they exhibit large capacity losses relative to
the other techniques.

In general, Shannon capacity analysis does not give any indication
how to design adaptive or nonadaptive techniques for real systems.
Achievable rates for adaptive trellis-coded quadrature amplitude
modulation (QAM) have been investigated in [4], where a simple
four-state trellis code combined with adaptive six-constellation QAM

was shown to achieve rates within 7 dB of the capacity (4) in Figs.
3 and 4. Using more complex codes and a richer constellation set
comes within a few decibels of the Shannon capacity limit.

V. CONCLUSIONS

We have determined the capacity of a fading AWGN channel with
an average power constraint under different channel side information
conditions. When side information about the current channel state is
available to both the transmitter and receiver, the optimal adaptive
transmission scheme uses water-pouring in time for power adaptation,
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and a variable-rate multiplexed coding scheme. In channels with
correlated fading this adaptive transmission scheme yields both higher
capacity and a lower complexity than nonadaptive transmission using
receiver side information. However, it does not exhibit a significant
capacity increase or any complexity reduction in i.i.d. fading as
compared to nonadaptive transmission. Channel inversion has the
lowest encoding and decoding complexity, but it also suffers a
large capacity penalty in severe fading. The capacity of all of these
techniques converges to that of an AWGN channel as the severity of
the fading diminishes.

APPENDIX

We now prove that the capacity of the time-varying channel in
Section II is given by (4). We first prove the coding theorem, followed
by the converse proof.

Coding Theorem: Let C(S) be given by (4). Then for any R <
C(S) there exists a sequence of (2nR ; n) block codes with average
power S, rate Rn ! R, and probability of error �n ! 0 as n!1.

Proof: Fix any � > 0, and let R = C(S)� 3�. Define

j = j=m+ �0; j = 0; � � � ; mM = N

to be a finite set of SNR values, where �0 is the cutoff associated
with the optimal power control policy for average power S (defined
as 0 in (5) from Section III-A). The received SNR of the fading
channel takes values in 0 �  < 1, and the j values discretize
the subset of this range �0 �  � M + �0 for a step size of 1=m.
We say that the fading channel is in state sj , j = 0; � � � ; mM , if
j �  < j+1, where mM+1 =1. We also define a power control
policy associated with state sj by

�j
S

=
S(j)

S
=

1

�0
�

1

j
: (13)

Over a given time interval [0; n], let Nj denote the number of
transmissions during which the channel is in state sj . By the
stationarity and ergodicity of the channel variation

Nj

n
! p(j �  < j+1); as n!1: (14)

Consider a time-invariant AWGN channel with SNR j and
transmit power �j . For a given n, let

nj = bnp(j �  < j+1)c = np(j �  < j+1)

for n sufficiently large. From Shannon [12], for

Rj = B log (1 + j�j=S) = B log (j=�0)

we can develop a sequence of (2n R ) codes

fxw [k]g
n

k=1; wj = 1; � � � ; 2n R

with average power �j and error probability �n; j ! 0 as nj !1.
The message index w 2 [1; � � � ; 2nR ] is transmitted over the

N + 1 channels in Fig. 2 as follows. We first map w to the indices
fwjg

N
j=0 by dividing the nRn bits which determine the message

index into sets of njRj bits. We then use the multiplexing strategy
described in Section III-A to transmit the codeword xw [�] whenever
the channel is in state sj . On the interval [0; n] we use the jth channel
Nj times. We can thus achieve a transmission rate of

Rn =

mM

j=0

Rj
Nj

n
=

mM

j=0

B log
j
�0

Nj

n
: (15)

The average transmit power for the multiplexed code is

Sn =

mM

j=0

S
1

�0
�

1

j

Nj

n
: (16)

From (14) and (15), it is easily seen that

lim
n!1

Rn =

mM

j=0

B log
j
�0

p(j �  < j+1): (17)

So, for � fixed, we can find n sufficiently large such that

Rn �

mM

j=0

B log
j
�0

p(j �  < j+1) � �: (18)

Moreover, the power control policy �j satisfies the average power
constraint for asymptotically large n

lim
n!1

mM

j=0

S
1

�0
�

1

j

Nj

n
=

mM

j=0

S
1

�0
�

1

j





p()d

�

mM

j=0





S
1

�0
�

1


p()d

= S
1

�

1

�0
�

1


p()d�S

(19)

where a follows from (14), b follows from the fact that j �  for
 2 [j ; j+1), and c follows from (3).

Since the SNR of the channel during transmission of the code xj
is greater than or equal to j , the error probability of the multiplexed
coding scheme is bounded above by

�n �

mM

j=0

�n; j ! 0; as n!1 (20)

since n ! 1 implies nj ! 1 for all j channels of interest. Thus
it remains to show that for fixed � there exists m and M such that

mM

j=0

B log
j
�0

p(j �  < j+1) � C(S)� 2�: (21)

It is easily shown that

C(S) =
1

�

B log


�0
p()d � B log (1 + )

�B log �0p( � �0) <1 (22)

where the finite bound on C(S) follows from the fact that �0 must
be greater than zero to satisfy (6). So for fixed � there exists an M�

such that
1

M +�

B log


�0
p()d < �: (23)

Moreover, for M fixed, the monotone convergence theorem [13]
implies that

lim
m!1

mM�1

j=0

B log
j
�0

p(j �  < j+1)

= lim
m!1

mM�1

j=0





B log
j
�0

p()d

=
M+�

�

B log


�0
p()d: (24)

Thus using the M� in (23) and combining (23) and (24) we see that
for the given � there exists an m sufficiently large such that
mM

j=0

B log
j
�0

p(j �  < j+1)

�
1

�

B log


�0
p()d � 2� (25)

which completes the proof.
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Converse: Any sequence of (2nR; n) codes with average power
S and probability of error �n ! 0 as n!1 must have R � C(S).

Proof: Consider any sequence of (2nR; n) codes

fxw[i]g
n
i=1; w = 1; � � � ; 2nR

with average power S and �n ! 0 as n ! 1. We assume that
the codes are designed with a priori knowledge of the channel side
information n = f[1]; � � � ; [n]g, since any code designed under
this assumption will have at least as high a rate as if [i] were only
known at time i. Assume that the message index W is uniformly
distributed on f1; � � � ; 2nRg. Then

nR =H(W jn)

=H(W jY n; n) + I(W ; Y n; n)

�H(W jY n; n) + I(Xn; Y njn)

� 1 + �nnR + I(Xn; Y njn) (26)

where a follows from the data processing theorem [14] and the side
information assumption, and b follows from Fano’s inequality.

Let N denote the number of times over the interval [0; n] that the
channel has fade level . Also let Sn (w) denote the average power
in xw associated with fade level , so

Sn (w) =
1

n

n

i=1

jxw[i]j
2
1[[i] = ]: (27)

The average transmit power over all codewords for a given fade level
is denoted by Sn = EEEw[S

n
 (w)], and we define

Sn
�
= fSn ; 0 �  � 1g:

With this notation, we have

I(Xn; Y njn)=

n

i=1

I(Xi; Yij[i])

=

n

i=1

1

0

I(X; Y j)1[[i] = ] d

=
1

0

I(X; Y j)N d

=
1

0

EEEw[I(X; Y j; Sn (w))]N d

�
1

0

I(X; Y j; Sn )N d

�
1

0

B log 1 +
Sn
S

N d (28)

where a follows from the fact that the channel is memoryless when
conditioned on [i], b follows from Jensen’s inequality, and c follows
from the fact that the maximum mutual information on an AWGN
channel with bandwidth B and SNR � = Sn=S is B log (1 + �).

Combining (26) and (28) yields

nR � 1 + �nnR +
1

0

B log 1 +
Sn
S

n d: (29)

By assumption, each codeword satisfies the average power constraint,
so for all w

1

0

Sn (w)(N=n) � S:

Thus
1

0

Sn (n=n) � S

also. Moreover, Sn takes values on a compact space, so there is a
convergent subsequence

Sn ! S
1 �

= fS1 ; 0 �  � 1g:

Since Sn satisfies the average power constraint

lim
n !1

1

0

Sn
(Ni)
ni

d =
1

0

S1 p()d � S: (30)

Dividing (29) by n, we have

R �
1

n
+ �nR+

1

0

B log 1 +
Sn
S

N

n
d: (31)

Taking the limit of the right-hand side of (31) along the subsequence
ni yields

R �
1

0

B log 1 +
S1
S

p()d � C(S) (32)

by definition of C(S) and the fact that, from (30), S1 satisfies the
average power constraint.
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