Mingfei Zhao

+1 203-506-6200 | mingfei.zhao@yale.edu | https://www.cs.yale.edu/homes/zhao-mingfei/ Apt. 208, 11 Dixwell Ave., New Haven, CT, USA 06511

Education

Yale University, New Haven, CT	Aug. 2019 – Present
Ph.D. candidate of Computer Science	
Advisor: Yang Cai	
McGill University, Montreal, Canada	Sep. 2017 – Aug. 2019
Ph.D. student of Computer Science (not complete, transferred to Yale University)	
Advisor: Yang Cai	
McGill University, Montreal, Canada	Sep. 2015 – Apr. 2017
Master of Computer Science (Thesis)	
Thesis: Approximating Gains from Trade in Two-sided Markets via Simple Mechanisms	
Advisor: Yang Cai GPA: 4.0/4.0	
Tsinghua University, Beijing, China	Sep. 2011 – Jul. 2015
Institute for Interdisciplinary Information Sciences (Yao Class)	
Bachelor of Science Major: Computer Science Minor: Pure and Applied Mathematics	
GPA: $87.9/100 \text{ (major)}$ 86.8/100 (overall)	

Research Interests

My research interests lie in mechanism design, approximation algorithms and algorithmic game theory, including (1) designing simple and approximately-optimal mechanisms in multi-parameter settings, (2) foundational revenue/welfare maximization problems and (3) maximizing Gains from Trade in two-sided markets.

PUBLICATIONS

On Multi-Dimensional Gains from Trade Maximization, with Yang Cai, Kira Goldner, Steven Ma. *To appear in Proceedings of the 32nd ACM-SIAM Symposium on Discrete Algorithms (SODA 2021)*

An Efficient ε -BIC to BIC Transformation and Its Application to Black-Box Reduction in Revenue Maximization, with Yang Cai, Argyris Oikonomou and Grigoris Velegkas. To appear in Proceedings of the 32nd ACM-SIAM Symposium on Discrete Algorithms (SODA 2021)

Simple Mechanisms for Profit Maximization in Multi-item Auctions, with Yang Cai. Proceedings of the 2019 ACM Conference on Economics and Computation (EC 19) Pages 217-236

The Best of Both Worlds: Asymptotically Efficient Mechanisms with a Guarantee on the Expected Gains-From-Trade, with Moshe Babaioff, Yang Cai and Yannai A. Gonczarowski. *Proceedings of the 2018 ACM Conference on Economics and Computation (EC 18), Pages 373*

Simple Mechanisms for Subadditive Buyers via Duality, with Yang Cai. Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2017), Pages 170-183 Invited to the Special Issue of Games and Economic Behavior for STOC/FOCS/SODA

Approximating Gains from Trade in Two-sided Markets via Simple Mechanisms, with Johannes Brustle, Yang Cai and Fa Wu. *Proceedings of the 2017 ACM Conference on Economics and Computation (EC 17), Pages 589-590*

Robust Influence Maximization, with Wei Chen, Tian Lin, Zihan Tan and Xuren Zhou. *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 16), Pages 795-804*

Tight Bound on Randomness for Violating the Clauser-Horne-Shimony-Holt Inequality, with Yifeng Teng, Shenghao Yang and Siwei Wang. *IEEE Transactions on Information Theory (Volume: 62, Issue: 4, April 2016)*

On Multi-Dimensional Gains from Trade Maximization	
SODA 2021, Virtual	Jan. 2021
Simple Mechanisms for Profit Maximization in Multi-item Auctions	
EC 2019, Pheonix, US	June 2019
Approximating Gains from Trade in Two-sided Markets via Simple Mechanisms	
EC 2017, Boston, US	June 2017
STOC 17 Workshop: Connections between Theory of Computing and Mechanism Design, Montreal, Canada	June 2017
Simple Mechanisms for Subadditive Buyers via Duality	
China Theory Week 2017, Shanghai, China	July 2017
STOC 2017, Montreal, Canada	June 2017
Experience	

Software Engineer Intern

Google Inc., Mountain View, CA Host: Saeed Alaei

Our research aimed to design auctions with good revenue robustness under the pctr improvements in ad auctions. We showed that the anchoring scheme can have bad robustness under improvement of predictions in general. For the i.i.d. case where all advertisers share the same value distribution, we proved that by adding a uniform monopoly reserve for every advertiser, the anchoring scheme has good robustness.

July 2018 – Oct. 2018

Feb. 2014

Oct. 2012

Mathematical Contest in Modeling 2014

Meritorious Winner

Built a mathematical model studying the tradeoff between road efficiency and safety for different traffic rules in freeways; as a group leader, wrote the simulation program and came up with the main idea of intelligence freeway system.

Students Research Training

Tsinghua University, Beijing, China

As a group member, developed an application that allows people to play Bridge game with another three players controlled by an advanced artificial intelligence, wrote the main platform by c++ that supports the application and the "Bidding" part of the artificial intelligence.

Scholarships and Awards

Richard H. Tomlinson Doctoral Fellowship	Sep. 2017
Tsinghua School Plan Scholarship	May 2013
China Mathematics Olympics, Silver Medal	Jan. 2010
China National Olympiad in Informatics (Summer Camp), Silver Medal	Aug. 2009

TEACHING ASSISTANTSHIPS

Economics and Computation, Yale University	Fall 2019
Algorithmic Game Theory, McGill University	Fall 2016, Fall 2018
Algorithm Design, McGill University	Winter 2017, Fall 2017, Winter 2018
Algorithms and Data Structures, McGill University	Winter 2016

TECHNICAL SKILLS

 ${\bf Languages:} \ {\rm C++, \ Python, \ Matlab, \ Latex}$