Abstract

The reachability problem for vector addition systems is shown to require at
least exponential space. In addition, the boundness problem for vector

addition systems is also shown to require exponential space.

Keywords

vector addition system, reachability, boundness, space-complexity, exponential

space, parallel programs, intractable problem

The Reachability Problem

Requires Exponential Space
Richard J. Lipton

Research Report #g# 05
- January 1976

An earlier version of this paper was presented at the Conference
on Petri Nets and Related Methods, July 1975. The research was

supported in part by the National Science Foundation under grant
DCR-74~-12870.

1. Introduction

Since Karp and Miller [4] introduced the concept of a vector addition system, considerable
interest has been directed toward the analysis and understanding of these systems. Indeed,
much of the attention has been directed toward understanding what questions about vector
addition systems are decidable. Three basic questions have beén studied. Karp and Miller
were able to show that the question of whether a vector addition system is bounded [4] is
decidable. On the other hand, Rabin [9] showed that the question of whether one vector
addition system is included in another is undecidable. This was later refined by Hack [1],
who showed that the question of whether one vector addition system is equivalent to
anpthervis,undgcidable. The third question is the SO—called reachability problem for
vector addition systems [4].

Its importanqg has been demonstrated by the number of results that show that many
other question are equivalent to.it (Hack [1], Keller [5]). 1In contrast to the first two
problems, the reachability problem has remained elusive. Currently it is not known
whether this problem is decidable. A number of researchers have, however, attempted
recently to determine the "space" complexity of this problem. Jones and Lien [2] and
Landweber [6] have independently oﬁserved that the reachability problem is at least
PSPACE-hard [SJ,Zi.e. the reachability problem is at least as hard as thebpafsing of
context-sensitive languages. And Meyer has independently observed that the reachability
problem restricted to reversible vector addition systems is also PSPACE-hard [7].

While these results supply evidence ﬁhaf’the reachability‘pfoblem is intractable,
they fall short of proving it. Here we will present a proof that the reachability problem

is indeed intractable. More precisely, we will show that

Theorem 1: The reachability problem for vector addition‘systems requires at least 2°n

space infinitely often for some constant c > O.

The proof of this result is based on the ability to construct vector addition

n
systems that are able assuredly to count to 22 . It is interesting to note that some of

the folklore surrounding the reachability problem bounted whether this was indeed possible.
The main techniques that make the construction of these systems possible are both new.
One is essentially a subroutine-calling mechanism. That is, we show how vector addition
systems can implement a primitive type of parameter passing and subroutine calling. The
other is the introduction of the concept of a "strong computer." The strong computer
behaves quite differently from the "weak computer" of Rabin [9]. This difference is
reflected in the fact that we can construct vector addition systems that can guarantee

n

that they count to 22 .

‘The remainder of this paper is devoted to proving Theorem 1 and its corollary. In
section 2 it is shown that the reachability problem for vector addition systems is
reducible to the acceptance problem for "parallel programs." Since the proof of Theorem 1
involves a good deal of programming, it is more convenient to work with parallel prégramé
than with vector addition systems. 'In section 3 the concept of a strong computer is

presented. In section 4 the main lemma is proved. This lemma shows how to construct,

n .
recursively, parallel programs that can simulate 22 counters, i.e. counters capable of

n-
counting from 0 to 22 . Section 5 completes the proof of Theorem 1 and its corollary.

2. Vector Addition Systems and Parallel Programs

In this section both vector addition systems and parallel programs are presented. It is
then shown in Lemma 2 that the reachability problem for vector addition systems is
reducible in the sense of Meyer and Stockmeyer [8] to the "acceptance" problem for

parallel programs.

-3=

Definition: <S,F,{Vl,...,Vn}> is a vector addition system of dimension k provided
S,F ¢ Nk and Vl""'vn € Zk where N is the set of natural numbers and Z is the set of
integers. ‘The reachability problem is the question whether there exist vectors

Wl,...,Wh € Nk such that

1) s = Wl;
2) F=W_;
m

3) for eacﬁ i, Wi+l = Wi-kvj for some j.

We now turn to the definition of parallel programs. A parallel program is a

collection of flowcharts. Each flowchart is a finite directed graph whose nodes are

statements of the following form:

1) Start:

START
2) Accept:

ACCEPT
3) Guess:

4) Assignment:

where each ci is 0, 1, or -1.

Informally, the semantics of these programs is as follows: The variables xl""’ﬁn

~

are initially 0; they take on values in N. The start statement is the first to be

executed in any flowchart. Statements then execute one at a time until (if ever) some

accept statement is executed. The guess statement causes a nondeterministic branch to
occur. The assignment can execute only in the case that Ei*'ci > 0 for all i.

The precise semantics of these programs is as follows: The state of a parallel

program is of the form

P ,eee /P X ,...,% >,
ll ’ml 1! In

The xl,...,xn are the values of the variables x ,...,gn; the P ,...,Pm are the values of

1 1

the program counters. There is one program counter for each flowchart; thé values of the
ith program counter are the statements of the ith flowchart. The initial state of a
parallel program has each X = 0 and each Pi = the start statement of the ith flowchart.

Now define the yields relation between states by

<Po,eeesP ,Xopee,x > |=— <P!,..0.,P',x!, ... ,x">
ll r ml ll r n | l’ ’ m' ll r n

provided one of the following is true:

1) Pi is a start statement and Pi = the unique successor of this statement and Pj = Pé for
all j # i and xj = x% for all j.

2) Pi is a guess statement and Pi = one of the‘successors of this statement and Pj = P%
for all j # i and xj = xé‘for all j.

3) Pj is an assignment statement and xi-l-ci > 0 for all i and Pi = the unique successor of

this statement and Pj = Pé for all j # i and x3 = xj-l-cj for all j.

The acceptance problem for a parallel program is the question whether there is some
state

= < >
S P Pm’xl""’xn

17

with P, = an accept statement for some i such that SO |—* S where SO is the initial state
and |—* is the transitive closure of |—. We also say that S is a reachable state provided
S |- 8.

0

A number of remarks about parallel programs are in order. Essentially, parallel

programs can do only two things, either perform an assignment or execute a nondeterministic
branch. They cannot directly test any predicate. But as we will see later in Lemma 3,
they can exploit the fact that the assignment statement is "partial" to simulate the
testing of certain predicates.

Since we plan next to discuss the space complexity of the reachability problem and
the acceptance problem, we need several basic concepts from automata-based complexity
(Meyer and Stockmeter [8], Stockmeyer [10]). As usual, a language L is a subset of {0,1}*,
i.e. it is a set of strings over the alphabet 0,1. Say a language Ll is polynomial time
reducible to another language L2 provided there is some function f computable in
polynomial time by a deterministic multitape Turing machine such that, for all strings x,

X € Ll if and only if £(x) € L2. A language L reqﬁires exponential space provided any
deterministic Turing machine that accepts L requires for some ¢ >»O at least 2°7 space
infinitely often on inputs of length n. A basic result of Meyer and Stockmeyer's is: If

Ll is polynomial time reducible to L2 and Ll requires exponential space, then L_ requires

2

exponential space.

In order to state the next result, we must agree on some particular encoding for
both the acceptance problem and the reachability problem as 1anguages.‘ As in Karp [3], we
can use any of a number of encodings; we will assume that some encoding is fixed throughout

the rest of the paper.

Lemma 2: The acceptance problem for parallel programs is polynomial time
reducible to the reachability problem for vector addition systems.
Proof: We omit a detailed proof of this lemma. It should, however, be clear that parallel

programs can be encoded as vector addition systems. 0

The consequence of this lemma is that we need only show that the écceptance problem

-6

requires at least exponential space in order to prove Theorem 1.

3. Strong Computers

In this section, the concept of a strong computer is presented. Before doing this we need
some additional concepts. A set of statements P of a parallel program is a block with

entry and exits (entry = Sl; exits = 52 and S3)—provided

1) only S. has a predecessor not in P,

1

2) only Sz'and S3 have successors not in P,

3) 82 and S3 have unique successors.

.
If S is a state of some parallel program, then we will say that in S control is at
statement S provided the progrém counter Pi = S where S is in the ith process. Also say

that Sl l?* 32 provided there is a computation from state Sl to state 32 with only

statements from P executing.

We are now ready to define the concept of a strong computer.

Definition: Suppose that P is a block with entry Sl and exits 52 and S3 (S2 = YES exit,

S3 = NO exit) in some parallel program. Then P is a strong computer for the predicate

Q(xl,...,xn) and the side effect X, > X provided the following are true:

~e ~~

(Let P be in the kth process.)
1) 1f <P.,...,P_,x.,...,x_> is a reachable state with control at the entry of P, then
1 m'71 n ;

a) If not Q(xl,...,xn), then there is a state S such that <Pl,...,Pm,xl,;..,xn> I?* S
and in S control is at the NO exit of P.
b) If Q(xl,...,xn), then there is a state S such that <Pl,...,Pm,xl,...,xn> |7# S and

in S control is at the YES exit of P.

-7-

2) If <Pl,...,Pm,x1,...,xn> is a reachable state with cqntrol at the entry of P and

<Pl,...,Pm,xl,...,xn> |—* <Pi,...,Pé,xi,...,x;> where in <Pi,...,P£,xi,...,x;> control

is at one of the exits of P, then the following are true:

a) If control is at the NO exit, then not Q(xl,...,xn) and x; = xi for i =1,...,n and

Pi = Pi for i = 1,...,m except for i = k.

b) If control is at the YES exit, then Q(xl,...,xn) and x; = xi for i = 1,...,n except

= x' 3 = i i = '
that xr xS and xs x' (i.e. xr and xs are interchanged) and Pi Pi for

~ ~~

]
r

i=1,...,m except for i = k.

A strong computer P for the predicate Q(xl,...,xn) and the side effect X, x, can

be viewed as follows:

entry

P p—— NO exit

I

YES exit

The four conditions that P must satisfy are:

la) If not Q(xl,...,xn), then there is some computation from the entry to the NO exit.

1b) If Q(xl,...,xn), then there is some computation from the entry to the YES exit.

2a) If there is a computation from entry to the NO exit, then Q(xl,...,xn) was false and
no side effects have occurred.

2b) If there is a computation from entry to the YES exit, then Q(xl,...,xn) was true and

the only side effect is that X, and x are interchanged.

~e ~S

4. Basic Lemma

In this section the key lemma to our proof is presented.

Definition: Al = 2 and
2i—l

Clearly Ai = 2 .

Lemma 3: Suppose that

Ay = Alzc

1] 1] 1] Ll L] L] '
R S 6 06 T e B SRR B B B B v 0 ¢ T
are variables such that
' =
1) r +r Ak+1'
- = = oyt = QY = 3=
2) X, =y, = Si = 0 and x; =y3 Si Ai for all i ='1,...,k.
3) B, C. =0 for all i = 1,...,k.
i i
Then there is a strong computer P for the predicate r = 0 and with the side effect r <> r'.

Moreover, P contains at most ek statements where e is

a constant independent of k.

Thus P

informally behaves as a decision statement:

entry

- NO exit

YES exit

The NO exit has no side effects, while the YES branch has the side effect of swapping the

values of r and r'.

Proof: We proceed by induction on k. For k = 1 the desired program is the following:

entry

NO exit

<+, r' < r'-4|

YES exit

We need only check the four conditions that a strong computer must satisfy. If r > 0 then
control can clearly reach the NO exit; moreover, control can reach’thé‘NO exit only in the
case that ¥ 2 1 is true. Thus (la) and (2a) are true. Next suppose that g = 0. Then -
since r+r' = A, = 4, it follows that r' = 4. fherefore if r = 0, cqntrol can reach the
YES exit. On the other hand, if control does reach the YES exit, then r' > 4 was true.
Since r+r' = 4, this implies that r = 0 was true. Thus (1lb) and (2b) are true once one
realizes that the effect of control's reaching the YES exit is to map (r,r') to (x+4,r'-4).

Before goin§ on‘to the case k > 1 it is perhaps important to point out that the use
of r and r' to bomplemeht each other is one of the keys to our proof. We have replaced
the test r = 0 by the test r' > 4.

Now assume that k > 1. Then the desired program P is given on page 10.

For the moment, let us assume that the statements labelled a and B are strong
computers that have been recursively constructed. Then we assert that the program P is
indeed a strong computer for the predicate r = 0 and the side effect r <> 5';' As before,
if r > 0, then control can reach the NO exit. Also if control does reach the NO exit,
then r > 0 was true and no side effect has occurred. Thus (la) and (2a) are true. Now
suppose that r = 0. Then r' = Ak+l' The effect of the section of the program labelled
is to add 1 to r Aﬁ ;imes and. subtract 1 from r' Ai times. Thus since r= Ai, control can

reach the YES exit. Note carefully how the side effects are used to reset the values of

-10-

| guess ll o r < -1 NO exit

r < r+l, r' «<r'-1 T

vy =0 a

NO N]'S'
YES
' = 0 B

NO faad

YES J
y

YES exit

of Xy xﬁ, Yy r and yi. For example, when the statement o goes to its YES exit the values

of y. and y! are "reset" to 0 and respectively. On the other hand, if control reaches
Xk

the YES exit of P, then the reasoning above shows that r' > Ai. Since r+x' = Ak+1 = Ai,
it follows that r was 0. Note also that the side effect r «» r' is achieved. Thus (1b)

and (2b) are true and P is a strong computer.

The problem is that defining P in this way would lead to a strong computer with 2k
statements. Thus statements o and B are not done recursively. We use the following
"subroutine trick" to avoid this problem. o is shown on pagé 11. B is the same except

that the roles of x and y are interchanged. We also include a new flowchart as the

subroutine, also shown on page 1ll. Note that Bk and Ck act as a "call" and a "return"

~e~ ~e~

signal respectively. Finally, statement § is constructed by recursion.

We now claim that even though o and B are not constructed by recursion they behave

-11-

~eo ~r ~e ~~ Of o

]] -) [
Yfi’zs“' Z}S«Z]é 1, Sk+sk+1, skeilsl

~ ~S AN e

guess

YES exit of o

Xk
[
S s]l{ = 0 j———— (Reject)
~ NO
YES ¢

just as if they were. We will now prove this in the case of « ; the same argument applies
to B. We are essentially claiming that o is still a strong computer for the predicate

y,'{ = 0 and the side effect yk > y]'<. The assertions (la) and (2a) are as before. Now
assume that y]:: = 0. Then there is a sequence of guesses that will call the subroutine

with

-12-

By induction there is a sequence of guesses that will reach the YES exit of § and thus Ck

~e~

can be set fo 1. Thus when yi = 0 control can reach the YES exit of a. On the other hand,
assume that control does reach the YES exit of o and yet yi was positive. Then no matter

what sequences of guesses occurred Si > 0 was true when the subroutine was called.

~r

Therefore, by induction, control will never reach the YES exit of §, and hence Ck is never

~r

set to 1. This is a contradiction. It remains only to see that the sole side effect is

the interchange of y,. and y'! when y, = 0. Suppose, therefore, that control reaches the
X -3 X

YES exit of a. Then as we have seen yi is set to Ak and Yy to 0 and Sk to Ak and Si to O

~e

on calling the subroutine. But by induction Sk and Si will be interchanged. Therefore
the side effects are correct.
In order to complete the proof of the lemma we need only observe that the size of

the construction for k < the size for k-1 plus some fixed constant number of

statements. O

5. Proof of Theorem 1

In this section we complete the proof of Theorem 1.

Lemma 4: Suppose that
1 Ll L] 1 1 L] 1
PEN NG v M T e R kB kR R

are variables such that

) r=¢x'"=0.

=0 and X! =y

(S

= A, for all i.
i

-13-

3) B, =C, =0 for all i.
i i

~S e~

Then there is a program that sets r' to Ak+1 and leaves all the values of the other

variables unchanged and has at most ek statements for some ¢ that does not depend on k.

Proof: The program is:

L' <xr'+l
vi <0 o
NO X
dvEs
x!' <0 B
NO ,~]5
YES

We use Lemma 3 to do the decision statements o and B. [

Lemma 5: Suppose that

v)) ' L} L)
SHBARERG R % %

AL I R g Xk
are variables that are equal to 0. Then there is a program that is a polynomial-in—k size

program that sets these variables as follows:

1) fi = Zi = Ei = 0 for all i.
2) B, =C, =0 for all i
~~ 2

3) x! =y! S: = A, for all i.
i i i

~N AN A

-14-

!

Proof: Use Lemma 4 repeatedly. [J

We now complete the proof of Theorem 1. By Lemmas 4 and 5 we can initialize the

variables
v v 1)] 1) 1 v
SR BERE R e e e T 45 e e 30 B
= = = = Vom ' = g!' = = ' = i
so that fé Z% El 3£ S~' f& Zi fi Ai' r=20, and ¢ Ak+1. We will now show
ok

how to use r to simulate a counter with values from 0 to 2° . By counter here we mean
that we can (1) increment and decrement r and (2) test r = 0. Clearly (1) is trivial.

The key of course is that Lemma 3 allows us to test r = 0 as follows:

a ,:E = () |r—
NO
' YES
8 r' = 0% (Impossible)
NO
YES

Here o and B are as in Lemma 3. The repeated test is used to avoid the side effect of

interchanging r and r'. Finally we need only note that we can obtain three counters with

2
values from O to 22 ; hence, we can simulate any Turing machine that uses at most 2k tape-

This completes the proof of Theorem 1.
Corollary: The boundness of a vector addition system [4], a decidable property, also

requires infinitely often exponential space.

Proof: This is a corollary to the proof method of Theorem 1. It is easy to see that the

k
simulation of a counter with values 0 to 22 is by a bounded vector addition system. Thus

-15-

we can construct a vector addition system that is unbounded if and only if some Turing

machine that uses exponential space accepts. O

References

1. M. Hack
Private communication.

2. N. D. Jones.
Private communication.

3. R. M. Karp. |
Reducibility among combinatorial problems. i

In Raymond E. Miller and James W. Thatcher, Complexity of Computer Computations, |
85-104. Plenum, 1972. !

4. R. M. Karp and R. E. Miller.
Parallel program schemata.
JCSS 3(2):147-195, 1969.

5. R. M. Keller.
Vector replacement systems: A formalism for modeling asynchronous problems.
Technical Report 117, Princeton University, 1972.

6. L. Landweber.
Private communication.

7. A. R. Meyer.
Private communication.

8. A. R. Meyer and L. J. Stockmeyer.
The equivalence problem for regular expressions with squaring requires exponential
space.
Proceedings of the 13th Annual SWAT Conference, 1973.

9. M. O. Rabin.
Cited in Karp and Miller [4].

10. L. J. Stockmeyer.
The complexity of decision problems in automata theory and logic.
Project MAC Technical Report 133, MIT, 1974.

