This file develops the memory model that is used in the dynamic
semantics of all the languages used in the compiler.
It defines a type
mem of memory states, the following 4 basic
operations over memory states, and their properties:
-
load: read a memory chunk at a given address;
-
store: store a memory chunk at a given address;
-
alloc: allocate a fresh memory block;
-
free: invalidate a memory block.
Require Import Zwf.
Require Import Axioms.
Require Import Coqlib.
Require Import Fappli_IEEE_bits.
Require Import Psatz.
Require Import PP.PpsimplZ.
Require Intv.
Require Import Maps.
Require Archi.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Values_symbolictype.
Require Import Values_symbolic.
Require Export Memtype.
Require Import IntFacts.
Require Import Normalise.
Require Import NormaliseSpec.
Require Export Memdata.
Require Import Alloc Align.
Require Import Permutation.
Require Import ExprEval.
Require Export Memperm.
Parameter MA :
nat.
Hypothesis MA_bound: (3 <=
MA <= 12)%
nat.
Local Unset Elimination Schemes.
Local Unset Case Analysis Schemes.
Local Notation "
a #
b" := (
PMap.get b a) (
at level 1).
Lemma align_le_two_p:
forall al al' (
AlGt: (
al <=
al')%
nat)
x,
align (
align x (
two_power_nat al)) (
two_power_nat al') =
align x (
two_power_nat al').
Proof.
Module Mem <:
MEM.
Definition perm_order' (
po:
option permission) (
p:
permission) :=
match po with
|
Some p' =>
perm_order p'
p
|
None =>
False
end.
Definition perm_order'' (
po1 po2:
option permission) :=
match po1,
po2 with
|
Some p1,
Some p2 =>
perm_order p1 p2
|
_,
None =>
True
|
None,
Some _ =>
False
end.
Inductive msz :=
M31 |
M32.
Definition comp_size q :=
match q with
M31 =>
Int.max_unsigned -
two_power_nat MA
|
M32 =>
Int.max_unsigned
end.
Definition __szmem :=
comp_size M31.
Lemma tpMA_pos:
two_power_nat MA > 0.
Proof.
Definition box_span (
z:
Z) :=
Z.to_nat ((
z - 1) /
two_power_nat MA + 1).
Lemma s32_ma:
Int.max_unsigned =
two_power_nat MA * (
two_power_nat (32 -
MA)) - 1.
Proof.
Lemma box_span_mul z:
box_span (
two_power_nat MA *
z - 1) =
Z.to_nat z.
Proof.
Lemma tpMA_sup8:
8 <=
two_power_nat MA.
Proof.
Lemma tpMA'
_sup8:
8 <=
two_power_nat (32-
MA).
Proof.
Definition nb_boxes_max :
Z :=
two_power_nat (32 -
MA) - 2.
Record is_block_list (
m:
PMap.t (
option (
Z*
Z))) (
nb:
nat)
l :=
{
ibl_lnr:
list_norepet (
map fst l);
ibl_size:
forall b sz,
In (
b,
sz)
l ->
get_size m b =
sz;
ibl_length:
length l =
nb;
ibl_valid:
forall b, (
Pos.to_nat b <=
nb)%
nat ->
In (
b,
get_size m b)
l
}.
Definition nb_boxes_used (
lb:
list (
block *
Z)) :=
fold_left
plus
(
map (
fun bsz :
block *
Z =>
let (
b,
sz) :=
bsz in
box_span sz
)
lb)
O.
Record mem' :
Type :=
mkmem {
mem_contents:
PMap.t (
ZMap.t memval);
(* block -> offset -> memval *)
mem_access:
PMap.t (
Z ->
perm_kind ->
option permission);
mem_blocksize:
PMap.t (
option (
Z*
Z));
(* block -> option(Z*Z) *)
mem_mask:
PMap.t (
option nat);
(* block -> option mask; the number of 0-trailing-bits *)
mem_blocktype:
PMap.t (
option block_type);
nextblock:
block;
nb_extra:
nat;
access_max:
forall b ofs,
perm_order'' (
mem_access#
b ofs Max) (
mem_access#
b ofs Cur);
nextblock_noaccess:
forall b ofs k, ~(
Plt b nextblock) ->
mem_access#
b ofs k =
None;
access_bounds_ok:
(* permissions and bounds agree *)
forall b ofs k,
(
mem_access#
b ofs k) <>
None
->
in_bound ofs (
get_bounds mem_blocksize b);
msk_valid:
(* only valid blocks have non-empty masks *)
forall b, ~ (
Plt b nextblock) ->
mem_mask#
b =
None;
blocktype_valid:
(* only valid blocks have non-empty masks *)
forall b, ~ (
Plt b nextblock) ->
mem_blocktype#
b =
None;
wfm_alloc_ok:
(* the allocation algorithm succeeds on this memory *)
Z.of_nat (
nb_boxes_used (
mk_block_list_aux (
get_size mem_blocksize) (
pred (
Pos.to_nat nextblock))) +
nb_extra)%
nat <
nb_boxes_max;
alignment_ok:
forall b al,
mem_mask#
b =
Some al -> (
al <=
MA)%
nat /\
(
al >=
alignment_of_size (
get_size (
mem_blocksize)
b))%
nat;
bounds_mask_consistency:
(* bounds and masks information are present together, or not at all *)
forall b,
mem_mask#
b =
None ->
mem_blocksize#
b =
None;
bounds_lo_inf0:
(* the lower bound of a block is 0 *)
forall b lo hi,
mem_blocksize#
b =
Some (
lo,
hi) ->
lo = 0 /\
hi >= 0
}.
Definition mem :=
mem'.
Lemma bs_valid:
(* only valid blocks have non-empty bounds *)
forall m b,
~ (
Plt b m.(
nextblock)) ->
m.(
mem_blocksize) #
b =
None.
Proof.
Definition size_block (
m:
mem) (
b:
block) :
Z :=
get_size (
m.(
mem_blocksize))
b.
Definition size_of_block (
m:
mem) (
b:
block) :=
match PMap.get b m.(
mem_blocksize)
with
|
Some (
lo,
hi) => (
Int.repr (
hi-
lo))
|
None => (
Int.repr 0)
end.
Definition bounds_of_block (
m:
mem) (
b:
block) :
Z*
Z :=
match PMap.get b m.(
mem_blocksize)
with
|
Some (
lo,
hi) => (
lo,
hi)
|
None => (0,0)
end.
Definition mask (
m:
mem) (
b:
block) :=
match PMap.get b m.(
mem_mask)
with
|
Some mask =>
mask
|
None =>
O
end.
The mask of a block is
Definition nat_mask (
m:
mem) (
b:
block) :=
Int.not (
Int.repr (
two_power_nat (
mask m b) - 1)).
Definition mk_block_list (
m:
mem) : (
list (
block *
Z)) :=
mk_block_list_aux (
size_block m) (
pred (
Pos.to_nat (
Mem.nextblock m))).
Definition nb_boxes_used_m (
m:
mem) :=
(
nb_boxes_used (
mk_block_list m) +
nb_extra m)%
nat.
alloc_mem computes a concrete memory for memory m. size_mem is the
first available address after the allocation of m.
Normalisation in a given memory. This is what is called normalise in the
paper.
Definition mem_norm (
m:
mem) (
e:
expr_sym) :
val :=
Normalise.normalise (
bounds_of_block m) (
nat_mask m)
e.
Definition max_def v e :=
match v with
Vundef =>
e
|
_ =>
Eval v
end.
Definition try_norm m e :=
max_def (
mem_norm m e)
e.
Lemma same_eval_same_eval_on:
forall e e' (
SE:
same_eval e e')
P,
same_eval_on P e e'.
Proof.
red; intros; eauto.
Qed.
Lemma same_eval_eqm:
forall m v1 v2,
same_eval v1 v2 ->
Mem.mem_norm m v1 =
Mem.mem_norm m v2.
Proof.
Lemma lessdef_eqm:
forall m v1 v2,
Val.lessdef v1 v2 ->
Values.Val.lessdef (
mem_norm m v1) (
mem_norm m v2).
Proof.
Encoding functions (from Memdata) are also morphisms for same_eval.
Definition compat_m (
m:
mem) (
q:
msz) :=
compat (
comp_size q) (
Mem.bounds_of_block m) (
Mem.nat_mask m).
Lemma lessdef_on_P_impl:
forall (
P Q : (
block ->
int) ->
Prop)
e e' (
LD:
lessdef_on P e e') (
PQ:
forall cm,
Q cm ->
P cm),
lessdef_on Q e e'.
Proof.
red; intros; eauto.
Qed.
Ltac unfsize :=
IntFacts.unfsize.
Lemma size31_inf:
comp_size M31 <=
Int.max_unsigned.
Proof.
Lemma fold_left_plus_rew:
forall l n,
(
fold_left plus l n =
fold_left plus l O +
n)%
nat.
Proof.
induction l; simpl; intros; auto.
rewrite (IHl (n + a))%nat.
rewrite (IHl a). lia.
Qed.
Definition make_box_allocation (
lb :
list (
block *
Z)) :=
fold_right (
fun (
bsz:
block *
Z)
(
acc:
nat * (
block ->
nat)) =>
let '(
b,
sz) :=
bsz in
let '(
curbox,
curalloc) :=
acc in
(
curbox +
box_span sz,
fun bb =>
if peq bb b then curbox else curalloc bb)%
nat
)
(
O,
fun _ :
block =>
O)
lb.
Definition box_alloc_to_cm (
ba:
block ->
nat) (
b:
block) :
int :=
Int.repr (
two_power_nat MA * ((
Z.of_nat (
ba b)) + 1)).
Lemma make_box_allocation_cons:
forall b sz r,
make_box_allocation ((
b,
sz) ::
r) =
let (
cb,
ca) :=
make_box_allocation r in
(
cb +
box_span sz,
fun bb =>
if peq bb b then cb else ca bb)%
nat.
Proof.
simpl. auto.
Qed.
Lemma is_block_list_permut:
forall sz l l' (
PERM:
Permutation l l')
n
(
IBL:
is_block_list sz n l),
is_block_list sz n l'.
Proof.
Lemma is_block_list_S:
forall sz n l
(
IBL':
is_block_list sz (
S n)
l),
exists l',
is_block_list sz n l' /\
Permutation ((
Pos.of_nat (
S n),
get_size sz (
Pos.of_nat (
S n))) ::
l')
l.
Proof.
Lemma is_block_list_is_permut:
forall sz n l l'
(
IBL:
is_block_list sz n l)
(
IBL':
is_block_list sz n l')
,
Permutation l l'.
Proof.
induction n;
simpl;
intros.
-
inv IBL;
inv IBL'.
des l;
des l'.
constructor.
-
apply is_block_list_S in IBL.
apply is_block_list_S in IBL'.
dex.
destr.
rewrite <-
H0, <-
H2.
apply perm_skip.
eauto.
Qed.
Lemma is_block_list_permut_mk_block_list:
forall sz n l,
is_block_list sz n l ->
Permutation l (
mk_block_list_aux (
get_size sz)
n).
Proof.
Lemma is_block_list_S':
forall sz n l l'
(
IBL:
is_block_list sz n l)
(
IBL':
is_block_list sz (
S n)
l'),
Permutation ((
Pos.of_nat (
S n),
get_size sz (
Pos.of_nat (
S n))) ::
l)
l'.
Proof.
Lemma fold_left_plus_permut:
forall l l' (
PERM:
Permutation l l')
n,
fold_left plus l n =
fold_left plus l'
n.
Proof.
induction 1; simpl; intros; auto.
- f_equal. lia.
- congruence.
Qed.
Lemma nb_boxes_used_S:
forall l l'
sz n,
is_block_list sz n l ->
is_block_list sz (
S n)
l' ->
(
nb_boxes_used l' =
nb_boxes_used l +
box_span (
get_size sz (
Pos.of_nat (
S n))))%
nat.
Proof.
Lemma nb_boxes_used_thr:
forall l curbox curalloc,
make_box_allocation l = (
curbox,
curalloc) ->
(
nb_boxes_used l =
curbox)%
nat.
Proof.
Lemma make_box_allocation_le:
forall l curbox curalloc,
make_box_allocation l = (
curbox,
curalloc) ->
forall b, (
curalloc b <=
curbox)%
nat.
Proof.
induction l;
simpl;
intros.
-
inv H;
auto.
-
des (
make_box_allocation l).
des a.
inv H.
specialize (
IHl _ _ eq_refl).
destr.
lia.
specialize (
IHl b).
lia.
Qed.
Require Import Tactics.
Lemma make_box_allocation_le_in:
forall l curbox curalloc,
list_norepet (
map fst l) ->
make_box_allocation l = (
curbox,
curalloc) ->
forall b sz,
In (
b,
sz)
l -> (
curalloc b +
box_span sz <=
curbox)%
nat.
Proof.
induction l;
simpl;
intros.
-
easy.
-
des (
make_box_allocation l).
des a.
inv H.
inv H0.
specialize (
IHl _ _ H5 eq_refl).
des H1.
inv e.
rewrite peq_true.
lia.
destr.
subst.
exfalso;
apply H4.
rewrite in_map_iff.
eexists;
split;
eauto.
reflexivity.
specialize (
IHl _ _ i).
lia.
Qed.
Lemma make_box_allocation_disjoint:
forall l cb ca,
list_norepet (
map fst l) ->
make_box_allocation l = (
cb,
ca) ->
forall b1 sz1 b2 sz2 (
i1:
In (
b1,
sz1)
l) (
i2:
In (
b2,
sz2)
l)
(
d:
b1 <>
b2) (
pos1:
sz1 > 0) (
pos2:
sz2 > 0),
(
ca b1 +
box_span sz1 <=
ca b2 \/
ca b2 +
box_span sz2 <=
ca b1)%
nat.
Proof.
induction l;
simpl;
intros.
-
easy.
-
des a.
des (
make_box_allocation l).
inv H0.
inv H.
specialize (
IHl _ _ H3 eq_refl).
repeat destr.
+
subst.
assert (
z =
sz1).
des i1.
exfalso;
apply H2.
rewrite in_map_iff.
eexists;
split;
eauto.
reflexivity.
subst.
clear i1.
des i2.
right;
eapply make_box_allocation_le_in;
eauto.
+
subst.
assert (
z =
sz2).
des i2.
exfalso;
apply H2.
rewrite in_map_iff.
eexists;
split;
eauto.
reflexivity.
subst.
clear i2.
des i1.
left;
eapply make_box_allocation_le_in;
eauto.
+
des i1.
des i2.
eauto.
Qed.
Lemma minus_1_div_eq:
forall z,
z > 0 -> -1 /
z = -1.
Proof.
unfold Z.div.
simpl.
intros.
des z.
lia.
destr.
lia.
Qed.
Lemma box_span_align:
forall z,
z >= 0 ->
two_power_nat MA *
Z.of_nat (
box_span z) =
align z (
two_power_nat MA).
Proof.
Lemma s31_ma:
comp_size M31 =
two_power_nat MA * (
two_power_nat (32 -
MA) - 1) - 1.
Proof.
Lemma lt_le_minus1:
forall a b :
Z,
a <
b ->
a <=
b - 1.
Proof.
intros. lia.
Qed.
Lemma in_bound_in_mk:
forall o m b l,
in_bound (
Int.unsigned o) (
bounds_of_block m b) ->
is_block_list (
mem_blocksize m) (
pred (
Pos.to_nat (
nextblock m)))
l ->
In (
b,
size_block m b)
l /\
Int.unsigned o <
two_power_nat MA *
Z.of_nat (
box_span (
size_block m b)) /\
size_block m b > 0.
Proof.
Lemma box_alloc_unsigned_range:
forall thr m ba
(
THR : (
thr <
Z.to_nat nb_boxes_max)%
nat)
l
(
IBL:
is_block_list (
mem_blocksize m) (
pred (
Pos.to_nat (
nextblock m)))
l)
(
MBA :
make_box_allocation l = (
thr,
ba))
b o
(
IB :
in_bound (
Int.unsigned o) (
bounds_of_block m b)),
0 <=
two_power_nat MA * (
Z.of_nat (
ba b) + 1) <=
Int.max_unsigned.
Proof.
Lemma box_alloc_in_range:
forall thr m ba
(
THR : (
thr <
Z.to_nat nb_boxes_max)%
nat)
l
(
IBL:
is_block_list (
mem_blocksize m) (
pred (
Pos.to_nat (
nextblock m)))
l)
(
MBA :
make_box_allocation l = (
thr,
ba))
b o
(
IB :
in_bound (
Int.unsigned o) (
bounds_of_block m b)),
0 <
Int.unsigned (
Int.repr (
two_power_nat MA * (
Z.of_nat (
ba b) + 1))) +
Int.unsigned o <
comp_size M31.
Proof.
Lemma box_alloc_in_range':
forall thr m ba
(
THR : (
thr <
Z.to_nat nb_boxes_max)%
nat)
l
(
IBL:
is_block_list (
mem_blocksize m) (
pred (
Pos.to_nat (
nextblock m)))
l)
(
MBA :
make_box_allocation l = (
thr,
ba))
b o
(
IB :
in_bound (
Int.unsigned o) (
bounds_of_block m b)),
0 <=
Int.unsigned (
Int.repr (
two_power_nat MA * (
Z.of_nat (
ba b) + 1))) +
Int.unsigned o <=
Int.max_unsigned.
Proof.
Lemma zlt_neq:
forall a b :
Z,
a <
b ->
a <>
b.
Proof.
intros. intro; subst. lia.
Qed.
Lemma zgt_neq:
forall a b :
Z,
b <
a ->
a <>
b.
Proof.
intros. intro; subst. lia.
Qed.
Lemma box_alloc_to_cm_compat:
forall m thr ba
(
THR: (
thr <
Z.to_nat nb_boxes_max)%
nat)
l
(
IBL:
is_block_list (
mem_blocksize m) (
pred (
Pos.to_nat (
nextblock m)))
l)
(
MBA:
make_box_allocation l = (
thr,
ba)),
compat_m m M31 (
box_alloc_to_cm ba).
Proof.
Definition mk_cm l nbe :=
let (
thr,
al) :=
make_box_allocation l in
if zlt (
Z.of_nat (
thr +
nbe))
nb_boxes_max
then Some al
else None.
Lemma nb_used_permut:
forall l l' (
P:
Permutation l l'),
nb_boxes_used l =
nb_boxes_used l'.
Proof.
Lemma alloc_compat:
forall m l
(
IBL:
is_block_list (
mem_blocksize m) (
pred (
Pos.to_nat (
nextblock m)))
l),
exists al,
mk_cm l (
nb_extra m) =
Some al /\
compat_m m M31 (
box_alloc_to_cm al).
Proof.
Lemma length_mbla:
forall sz n,
length (
mk_block_list_aux sz n) =
n.
Proof.
induction n; simpl; intros. auto. rewrite <- IHn at 2.
f_equal.
Qed.
Lemma is_block_list_mk_block_list:
forall sz n,
is_block_list sz n (
mk_block_list_aux (
get_size sz)
n).
Proof.
Lemma concrete_mem':
forall m,
exists al,
compat_m m M31 al.
Proof.
Lemma compat31_32:
forall m cm,
compat_m m M31 cm ->
compat_m m M32 cm.
Proof.
Lemma concrete_mem:
forall m,
exists al,
compat_m m M32 al.
Proof.
intros.
destruct (
concrete_mem'
m)
as [
al A].
exists al.
eapply compat31_32;
eauto.
Qed.
Definition good_result_m m e v :=
good_result Int.max_unsigned (
bounds_of_block m) (
nat_mask m)
e v.
Record is_norm_m m e v :=
mkIsNormM {
eval_ok_m:
lessdef_on (
compat_m m M32) (
Eval v)
e
}.
Lemma norm_complete:
forall m e v
(
INM:
is_norm_m m e v),
Values.Val.lessdef v (
mem_norm m e).
Proof.
Lemma norm_correct:
forall m e,
is_norm_m m e (
mem_norm m e).
Proof.
Lemma norm_ld:
forall m e v,
mem_norm m e =
v ->
forall cm em,
compat_m m M32 cm ->
Values.Val.lessdef (
eSval cm v) (
eSexpr cm em e).
Proof.
intros.
destruct (
norm_correct m e).
subst.
apply eval_ok_m0;
auto.
Qed.
Lemma norm_gr:
forall m e,
good_result_m m e (
mem_norm m e).
Proof.
Lemma eq_norm:
forall m e v,
is_norm_m m e v ->
v <>
Vundef ->
Mem.mem_norm m e =
v.
Proof.
intros m e v IS.
generalize (
norm_complete m e v IS).
intro A;
inv A;
destr.
Qed.
Lemma same_compat_bounds_mask:
forall m1 m2
(
Bnds:
forall b,
bounds_of_block m1 b =
bounds_of_block m2 b)
(
Msk:
forall b,
nat_mask m1 b =
nat_mask m2 b)
cm,
compat_m m1 M32 cm <->
compat_m m2 M32 cm.
Proof.
Lemma good_result_m_same_compat:
forall m m'
e v
(
MR:
forall cm,
compat_m m M32 cm <->
compat_m m'
M32 cm),
good_result_m m e v <->
good_result_m m'
e v.
Proof.
split; red; intros; des v;
red; intros.
eapply MR in COMP; eauto.
eapply MR in COMP'; eauto.
apply H; auto.
setoid_rewrite <- MR; eauto.
setoid_rewrite <- MR; eauto.
Qed.
Lemma is_norm_m_same_compat:
forall m m'
e v
(
C:
forall cm,
compat_m m M32 cm <->
compat_m m'
M32 cm),
is_norm_m m e v <->
is_norm_m m'
e v.
Proof.
Lemma norm_same_compat:
forall m1 m2 e
(
Bnds:
forall b,
bounds_of_block m1 b =
bounds_of_block m2 b)
(
Msk:
forall b,
nat_mask m1 b =
nat_mask m2 b),
mem_norm m1 e =
mem_norm m2 e.
Proof.
Definition in_bound_m (
o:
Z) (
m:
mem) (
b:
block) :
Prop :=
in_bound o (
bounds_of_block m b).
Definition in_bound_m_dec:
forall o m b,
in_bound_m o m b \/ ~
in_bound_m o m b.
Proof.
Definition pair_eq {
A B} (
eqA:
forall (
a b :
A), {
a =
b} + {
a<>
b})
(
eqB:
forall (
a b:
B), {
a =
b} + {
a<>
b}) :
forall (
a b : (
A*
B)),
{
a =
b} + {
a<>
b}.
Proof.
decide equality.
Qed.
Definition put_front (
bl:
list (
positive *
Z)) (
b:
positive) (
sz:
Z) :=
(
b,
sz) ::
remove (
pair_eq peq zeq) (
b,
sz)
bl.
Lemma remove_app:
forall {
A} (
eqA:
forall (
a b :
A), {
a =
b} + {
a<>
b})
a l1 l2,
remove eqA a (
l1 ++
l2) =
remove eqA a l1 ++
remove eqA a l2.
Proof.
induction l1; simpl. auto.
destr.
Qed.
Lemma remove_not_in:
forall {
A} (
eqA:
forall (
a b :
A), {
a =
b} + {
a<>
b})
a l (
NIN: ~
In a l),
remove eqA a l =
l.
Proof.
induction l; simpl; intros; auto.
destr.
Qed.
Lemma put_front_permut:
forall b sz bl (
IN:
In (
b,
sz)
bl)
(
LNR:
list_norepet bl),
Permutation bl (
put_front bl b sz).
Proof.
Definition other_cm cm b :=
fun bb =>
if peq b bb
then Int.add (
cm b) (
Int.repr (
two_power_nat MA))
else cm bb.
Lemma two_power_nat_inf_mod:
forall x y,
(
x <
y)%
nat ->
two_power_nat x =
two_power_nat x mod two_power_nat y.
Proof.
Lemma add_bounded_plus8:
forall i o
(
H : 0 <
Int.unsigned (
Int.add i o) <
comp_size M31),
0 <
Int.unsigned (
Int.add (
Int.add i (
Int.repr (
two_power_nat MA)))
o) <
Int.max_unsigned.
Proof.
Lemma i_bounded_plus8:
forall i :
int,
0 <
Int.unsigned i <
comp_size M31 ->
Int.unsigned (
Int.add i (
Int.repr (
two_power_nat MA))) <
Int.unsigned i ->
False.
Proof.
Lemma compat_shift:
forall m cm b
(
LAST:
forall b'
o o',
b <>
b' ->
in_bound (
Int.unsigned o) (
bounds_of_block m b) ->
in_bound (
Int.unsigned o') (
bounds_of_block m b') ->
Int.unsigned (
Int.add (
cm b')
o') <
Int.unsigned (
Int.add (
cm b)
o))
(
COMP :
compat_m m M31 cm),
exists cm',
cm b <>
cm'
b /\
(
forall b' (
diff:
b' <>
b),
cm b' =
cm'
b') /\
compat_m m M32 cm'.
Proof.
Lemma remove_in:
forall {
A} (
eqA:
forall (
a b:
A), {
a=
b}+{
a<>
b})
a b l,
a <>
b ->
In a l ->
In a (
remove eqA b l).
Proof.
induction l; simpl; intros; eauto.
destr.
Qed.
Lemma in_bound_plt:
forall b m o,
in_bound o (
bounds_of_block m b) ->
Plt b (
nextblock m).
Proof.
Lemma remove_in_before:
forall {
A} (
pdec:
forall (
a b :
A), {
a=
b}+{
a<>
b})
a b l,
In a (
remove pdec b l) ->
In a l.
Proof.
induction l; simpl; intros; auto.
revert H; destr.
Qed.
Lemma remove_P:
forall {
A B} (
pdec:
forall (
a b :
A*
B), {
a=
b}+{
a<>
b})
f
(
p:
A*
B) (
l:
list (
A*
B))
(
Pr:
forall a b,
In (
a,
b)
l ->
b =
f a)
a b
(
IN:
In (
a,
b) (
remove pdec p l)),
b =
f a.
Proof.
Lemma bounds_lo_0:
forall m b,
fst (
bounds_of_block m b) = 0.
Proof.
Lemma in_bound_zero:
forall o m b,
in_bound o (
bounds_of_block m b) ->
in_bound (
Int.unsigned Int.zero) (
bounds_of_block m b).
Proof.
Lemma compat_add_unsigned:
forall m cm (
COMP:
compat_m m M32 cm)
b
o (
IB:
in_bound (
Int.unsigned o) (
bounds_of_block m b)),
Int.unsigned (
Int.add (
cm b)
o) =
Int.unsigned (
cm b) +
Int.unsigned o.
Proof.
Lemma make_box_allocation_order:
forall l sz al
(
AMA:
make_box_allocation l = (
sz,
al))
(
lnr:
list_norepet (
map fst l))
b b'
(
AB:
appears_before b b' (
map fst l)),
(
al b' <=
al b)%
nat.
Proof.
induction l;
simpl;
intros.
inv AMA.
lia.
destruct a.
simpl in *.
inv lnr.
destruct (
peq b b').
subst.
lia.
des (
make_box_allocation l).
specialize (
IHl _ _ eq_refl H2).
inv AMA.
destr.
-
subst.
destr.
inv AB.
des l1.
-
destr.
subst.
eapply make_box_allocation_le;
eauto.
apply IHl.
inv AB.
des l1.
inv H.
econstructor.
eauto.
destr.
Qed.
Lemma map_app_cons {
A B}:
forall (
f:
A ->
B)
l fa fb fc,
map f l =
fa ++
fb ::
fc ->
exists a b c,
l =
a ++
b ::
c /\
fa =
map f a /\
fb =
f b /\
fc =
map f c.
Proof.
induction l;
simpl;
intros.
-
apply app_cons_not_nil in H.
easy.
-
des fa.
inv H.
exists nil,
a,
l.
simpl.
auto.
inv H.
apply IHl in H2.
dex;
destr_and.
subst.
exists (
a::
a0),
b,
c.
auto.
Qed.
Lemma put_front_appears_before:
forall b sz l b',
In b' (
map fst l) ->
b <>
b' ->
appears_before b b' (
map fst (
put_front l b sz)).
Proof.
simpl.
intros.
exploit in_split;
eauto.
intro;
dex;
destr_and.
apply map_app_cons in H1.
dex.
destr_and.
subst.
eapply (
ab_intro _ _ _ nil);
simpl;
auto.
f_equal.
rewrite remove_app.
simpl.
destr.
subst;
destr.
rewrite map_app.
simpl.
eauto.
Qed.
Opaque put_front.
Lemma box_span_pos:
forall z,
z > 0 -> (0 <
box_span z)%
nat.
Proof.
Theorem exists_two_cms:
forall m b,
exists cm cm' :
block ->
int,
compat_m m M32 cm /\
compat_m m M32 cm' /\
cm b <>
cm'
b /\
forall b',
b <>
b' ->
cm b' =
cm'
b'.
Proof.
Lemma norm_val:
forall m v,
mem_norm m (
Eval v) =
v.
Proof.
Lemma norm_vundef:
forall m,
mem_norm m (
Eval Vundef) =
Vundef.
Proof.
Lemma same_Eval_norm:
forall m vn v,
same_eval vn (
Eval v) ->
Mem.mem_norm m vn =
v.
Proof.
Lemma norm_ptr_same:
forall m b o b'
o',
Mem.mem_norm m (
Eval (
Vptr b o)) =
Vptr b'
o' ->
Vptr b o =
Vptr b'
o'.
Proof.
intros m b o b'
o'
MN.
rewrite (
norm_val)
in MN;
auto.
Qed.
Lemma norm_type:
forall m e v t,
Mem.mem_norm m e =
v ->
v <>
Vundef ->
wt_val v t ->
wt_expr e t.
Proof.
Lemma same_val_ofbool_norm:
forall m vn b,
same_eval vn (
Val.of_bool b) ->
Mem.mem_norm m vn =
Vint (
if b then Int.one else Int.zero).
Proof.
clear.
intros m vn b SE.
erewrite same_Eval_norm;
eauto.
rewrite SE.
des b;
red;
simpl;
auto.
Qed.
Lemma norm_boolval:
forall m v i,
Mem.mem_norm m v =
Vint i ->
Mem.mem_norm m (
Val.boolval v) =
Values.Val.of_bool (
negb (
Int.eq i Int.zero)).
Proof.
intros m v i N.
apply eq_norm.
constructor.
-
red;
intros.
eapply norm_ld in Pcm;[|
eauto].
unfold Val.boolval.
simpl.
inv Pcm.
rewrite <-
H1.
simpl.
destruct negb;
destr;
auto.
-
destruct negb;
destr;
intro A;
inv A.
Qed.
Lemma normalise_int_notbool:
forall m b i,
Mem.mem_norm m b =
Vint i ->
Mem.mem_norm m (
Eunop OpNotbool Tint b) =
Vint (
Int.notbool i).
Proof.
intros m b i N.
apply eq_norm.
constructor.
-
red;
intros.
eapply norm_ld in Pcm;[|
eauto].
simpl.
inv Pcm.
rewrite <-
H1.
simpl.
unfold Int.notbool.
destr;
auto.
-
congruence.
Qed.
Lemma mkmem_ext:
forall cont1 cont2 acc1 acc2 next1 next2 bt1 bt2 nbe1 nbe2
a1 a2 b1 b2 bs1 bs2
mask1 mask2 Pabo1 Pabo2 comp2 comp1 vm1 vm2 vbt1 vbt2
const1 const2 bb1 bb2
bli1 bli2,
cont1=
cont2 ->
acc1=
acc2 ->
next1=
next2 ->
bs1=
bs2 ->
mask1=
mask2 ->
bt1 =
bt2 ->
nbe1 =
nbe2 ->
mkmem cont1 acc1 bs1 mask1 bt1 next1 nbe1
a1 b1 Pabo1 vm1 vbt1
comp1 bb1 const1 bli1 =
mkmem cont2 acc2 bs2 mask2 bt2 next2 nbe2
a2 b2 Pabo2 vm2 vbt2
comp2 bb2 const2 bli2.
Proof.
Validity of blocks and accesses
A block address is valid if it was previously allocated. It remains valid
even after being freed.
Definition valid_block (
m:
mem) (
b:
block) :=
Plt b (
nextblock m).
Definition valid_block_dec (
m:
mem) (
b:
block) : {
valid_block m b} + {~
valid_block m b}.
Proof.
Theorem valid_not_valid_diff:
forall m b b',
valid_block m b -> ~(
valid_block m b') ->
b <>
b'.
Proof.
intros; red; intros. subst b'. contradiction.
Qed.
Hint Local Resolve valid_not_valid_diff:
mem.
Permissions
Definition perm (
m:
mem) (
b:
block) (
ofs:
Z) (
k:
perm_kind) (
p:
permission) :
Prop :=
perm_order' (
m.(
mem_access)#
b ofs k)
p.
Theorem perm_implies:
forall m b ofs k p1 p2,
perm m b ofs k p1 ->
perm_order p1 p2 ->
perm m b ofs k p2.
Proof.
Hint Local Resolve perm_implies:
mem.
Theorem perm_cur_max:
forall m b ofs p,
perm m b ofs Cur p ->
perm m b ofs Max p.
Proof.
assert (
forall po1 po2 p,
perm_order'
po2 p ->
perm_order''
po1 po2 ->
perm_order'
po1 p).
unfold perm_order',
perm_order''.
intros.
destruct po2;
try contradiction.
destruct po1;
try contradiction.
eapply perm_order_trans;
eauto.
unfold perm;
intros.
generalize (
access_max m b ofs).
eauto.
Qed.
Theorem perm_cur:
forall m b ofs k p,
perm m b ofs Cur p ->
perm m b ofs k p.
Proof.
Theorem perm_max:
forall m b ofs k p,
perm m b ofs k p ->
perm m b ofs Max p.
Proof.
Hint Local Resolve perm_cur perm_max:
mem.
Theorem perm_valid_block:
forall m b ofs k p,
perm m b ofs k p ->
valid_block m b.
Proof.
Hint Local Resolve perm_valid_block:
mem.
Remark perm_order_dec:
forall p1 p2, {
perm_order p1 p2} + {~
perm_order p1 p2}.
Proof.
intros. destruct p1; destruct p2; (left; constructor) || (right; intro PO; inversion PO).
Defined.
Remark perm_order'
_dec:
forall op p, {
perm_order'
op p} + {~
perm_order'
op p}.
Proof.
intros.
destruct op;
unfold perm_order'.
apply perm_order_dec.
right;
tauto.
Defined.
Theorem perm_dec:
forall m b ofs k p, {
perm m b ofs k p} + {~
perm m b ofs k p}.
Proof.
unfold perm;
intros.
apply perm_order'
_dec.
Defined.
Definition range_perm (
m:
mem) (
b:
block) (
lo hi:
Z) (
k:
perm_kind) (
p:
permission) :
Prop :=
forall ofs,
lo <=
ofs <
hi ->
perm m b ofs k p.
Theorem range_perm_implies:
forall m b lo hi k p1 p2,
range_perm m b lo hi k p1 ->
perm_order p1 p2 ->
range_perm m b lo hi k p2.
Proof.
Theorem range_perm_cur:
forall m b lo hi k p,
range_perm m b lo hi Cur p ->
range_perm m b lo hi k p.
Proof.
Theorem range_perm_max:
forall m b lo hi k p,
range_perm m b lo hi k p ->
range_perm m b lo hi Max p.
Proof.
Hint Local Resolve range_perm_implies range_perm_cur range_perm_max:
mem.
Lemma range_perm_dec:
forall m b lo hi k p, {
range_perm m b lo hi k p} + {~
range_perm m b lo hi k p}.
Proof.
intros.
induction lo using (
well_founded_induction_type (
Zwf_up_well_founded hi)).
destruct (
zlt lo hi).
destruct (
perm_dec m b lo k p).
destruct (
H (
lo + 1)).
red.
omega.
left;
red;
intros.
destruct (
zeq lo ofs).
congruence.
apply r.
omega.
right;
red;
intros.
elim n.
red;
intros;
apply H0;
omega.
right;
red;
intros.
elim n.
apply H0.
omega.
left;
red;
intros.
omegaContradiction.
Defined.
valid_access m chunk b ofs p holds if a memory access
of the given chunk is possible in
m at address
b, ofs
with current permissions
p.
This means:
-
The range of bytes accessed all have current permission p.
-
The offset ofs is aligned.
Definition valid_access (
m:
mem) (
chunk:
memory_chunk) (
b:
block) (
ofs:
Z) (
p:
permission):
Prop :=
range_perm m b ofs (
ofs +
size_chunk chunk)
Cur p
/\ (
align_chunk chunk |
ofs).
Theorem valid_access_implies:
forall m chunk b ofs p1 p2,
valid_access m chunk b ofs p1 ->
perm_order p1 p2 ->
valid_access m chunk b ofs p2.
Proof.
intros. inv H. constructor; eauto with mem.
Qed.
Theorem valid_access_freeable_any:
forall m chunk b ofs p,
valid_access m chunk b ofs Freeable ->
valid_access m chunk b ofs p.
Proof.
Hint Local Resolve valid_access_implies:
mem.
Theorem valid_access_valid_block:
forall m chunk b ofs,
valid_access m chunk b ofs Nonempty ->
valid_block m b.
Proof.
Hint Local Resolve valid_access_valid_block:
mem.
Lemma valid_access_perm:
forall m chunk b ofs k p,
valid_access m chunk b ofs p ->
perm m b ofs k p.
Proof.
Lemma valid_access_compat:
forall m chunk1 chunk2 b ofs p,
size_chunk chunk1 =
size_chunk chunk2 ->
align_chunk chunk2 <=
align_chunk chunk1 ->
valid_access m chunk1 b ofs p->
valid_access m chunk2 b ofs p.
Proof.
Lemma valid_access_dec:
forall m chunk b ofs p,
{
valid_access m chunk b ofs p} + {~
valid_access m chunk b ofs p}.
Proof.
valid_pointer m b ofs returns true if the address b, ofs
is nonempty in m and false if it is empty.
Definition valid_pointer (
m:
mem) (
b:
block) (
ofs:
Z):
bool :=
perm_dec m b ofs Cur Nonempty.
Theorem valid_pointer_nonempty_perm:
forall m b ofs,
valid_pointer m b ofs =
true <->
perm m b ofs Cur Nonempty.
Proof.
Theorem valid_pointer_valid_access:
forall m b ofs,
valid_pointer m b ofs =
true <->
valid_access m Mint8unsigned b ofs Nonempty.
Proof.
intros.
rewrite valid_pointer_nonempty_perm.
split;
intros.
split.
simpl;
red;
intros.
replace ofs0 with ofs by omega.
auto.
simpl.
apply Zone_divide.
destruct H.
apply H.
simpl.
omega.
Qed.
C allows pointers one past the last element of an array. These are not
valid according to the previously defined valid_pointer. The property
weak_valid_pointer m b ofs holds if address b, ofs is a valid pointer
in m, or a pointer one past a valid block in m.
Definition weak_valid_pointer (
m:
mem) (
b:
block) (
ofs:
Z) :=
valid_pointer m b ofs ||
valid_pointer m b (
ofs - 1).
Lemma weak_valid_pointer_spec:
forall m b ofs,
weak_valid_pointer m b ofs =
true <->
valid_pointer m b ofs =
true \/
valid_pointer m b (
ofs - 1) =
true.
Proof.
Lemma valid_pointer_implies:
forall m b ofs,
valid_pointer m b ofs =
true ->
weak_valid_pointer m b ofs =
true.
Proof.
Operations over memory stores
The initial store
Program Definition empty:
mem :=
mkmem (
PMap.init (
ZMap.init (
Symbolic (
Eval (
Vint Int.zero))
None O)))
(
PMap.init (
fun ofs k =>
None))
(
PMap.init None)
(
PMap.init None)
(
PMap.init None)
1%
positive O _ _ _ _ _ _ _ _ _.
Next Obligation.
repeat rewrite PMap.gi.
red;
auto.
Qed.
Next Obligation.
Next Obligation.
repeat rewrite PMap.gi in H.
congruence.
Qed.
Next Obligation.
Next Obligation.
Next Obligation.
Next Obligation.
rewrite PMap.gi in H.
congruence.
Qed.
Next Obligation.
Next Obligation.
rewrite PMap.gi in H.
congruence.
Qed.
Reading N adjacent bytes in a block content.
Fixpoint getN (
n:
nat) (
p:
Z) (
c:
ZMap.t memval) {
struct n}:
list memval :=
match n with
|
O =>
nil
|
S n' =>
ZMap.get p c ::
getN n' (
p + 1)
c
end.
Lemma memval_rel_lf2:
forall mr n o t t'
b,
(
forall (
b0 :
positive) (
ofs :
ZIndexed.t),
memval_rel mr (
ZMap.get ofs t !!
b0)
(
ZMap.get ofs t' !!
b0)) ->
list_forall2 (
memval_rel mr)
(
Mem.getN n o t !!
b)
(
Mem.getN n o t' !!
b).
Proof.
induction n; simpl; intros; constructor; auto.
Qed.
Lemma getN_Nlist :
forall n p c,
length (
getN n p c) =
n.
Proof.
induction n.
intros; reflexivity.
intros.
simpl.
rewrite IHn.
reflexivity.
Qed.
Writing N adjacent bytes in a block content.
Fixpoint setN (
vl:
list memval) (
p:
Z) (
c:
ZMap.t memval) {
struct vl}:
ZMap.t memval :=
match vl with
|
nil =>
c
|
v ::
vl' =>
setN vl' (
p + 1) (
ZMap.set p v c)
end.
Remark setN_other:
forall vl c p q,
(
forall r,
p <=
r <
p +
Z_of_nat (
length vl) ->
r <>
q) ->
ZMap.get q (
setN vl p c) =
ZMap.get q c.
Proof.
Remark setN_outside:
forall vl c p q,
q <
p \/
q >=
p +
Z_of_nat (
length vl) ->
ZMap.get q (
setN vl p c) =
ZMap.get q c.
Proof.
Remark getN_setN_same:
forall vl p c,
getN (
length vl)
p (
setN vl p c) =
vl.
Proof.
induction vl;
intros;
simpl.
auto.
decEq.
rewrite setN_outside.
apply ZMap.gss.
omega.
apply IHvl.
Qed.
Remark getN_exten:
forall c1 c2 n p,
(
forall i,
p <=
i <
p +
Z_of_nat n ->
ZMap.get i c1 =
ZMap.get i c2) ->
getN n p c1 =
getN n p c2.
Proof.
induction n;
intros.
auto.
rewrite inj_S in H.
simpl.
decEq.
apply H.
omega.
apply IHn.
intros.
apply H.
omega.
Qed.
Remark getN_setN_disjoint:
forall vl q c n p,
Intv.disjoint (
p,
p +
Z_of_nat n) (
q,
q +
Z_of_nat (
length vl)) ->
getN n p (
setN vl q c) =
getN n p c.
Proof.
intros.
apply getN_exten.
intros.
apply setN_other.
intros;
red;
intros;
subst r.
eelim H;
eauto.
Qed.
Remark getN_setN_outside:
forall vl q c n p,
p +
Z_of_nat n <=
q \/
q +
Z_of_nat (
length vl) <=
p ->
getN n p (
setN vl q c) =
getN n p c.
Proof.
Remark setN_default:
forall vl q c,
fst (
setN vl q c) =
fst c.
Proof.
induction vl; simpl; intros. auto. rewrite IHvl. auto.
Qed.
Require Import Setoid.
Lemma get_setN_inside:
forall vl ofs lo t,
lo <=
ofs <
lo +
Z.of_nat (
length vl) ->
Some (
ZMap.get ofs (
setN vl lo t)) =
nth_error vl (
Z.to_nat (
ofs -
lo)).
Proof.
induction vl;
simpl;
intros.
-
omega.
-
des (
zlt lo ofs).
rewrite IHvl by (
zify;
omega).
replace (
Z.to_nat (
ofs -
lo))
with (
S (
Z.to_nat (
ofs - (
lo + 1)))).
simpl.
auto.
zify.
repeat rewrite Z2Nat.id by omega.
omega.
replace lo with ofs by omega.
rewrite setN_outside by omega.
rewrite ZMap.gss.
replace (
ofs -
ofs)
with 0
by omega.
simpl.
reflexivity.
Qed.
Lemma same_type_memval_refl:
forall m,
same_type_memval m m.
Proof.
des m.
Qed.
Lemma memval_rel_set:
forall mr (
WF:
wf_mr mr)
v v'
o ofs t b0,
list_forall2 (
memval_rel mr)
v v' ->
memval_rel mr
(
ZMap.get ofs (
setN v o t #
b0))
(
ZMap.get ofs (
setN v'
o t #
b0)).
Proof.
Lemma memval_rel_set':
forall mr v v'
ofs o t t'
b b0,
(
forall b o,
memval_rel mr (
ZMap.get o t !!
b) (
ZMap.get o t' !!
b)) ->
list_forall2 (
memval_rel mr)
v v' ->
memval_rel mr
(
ZMap.get
ofs
(
PMap.set b (
Mem.setN v o t !!
b)
t) !!
b0)
(
ZMap.get
ofs
(
PMap.set b (
Mem.setN v'
o t' !!
b)
t') !!
b0).
Proof.
We initialise the memory of allocated blocks with the appropriate Eundef values.
Fixpoint init_block' (
n:
nat) (
b:
block) (
cur:
int) :
list memval :=
match n with
O =>
nil
|
S m =>
Symbolic ( (
Eundef b cur))
None O :: (
init_block'
m b (
Int.add cur (
Int.repr 1)))
end.
Definition init_block (
lo hi:
Z) (
b:
block) :
memval *
PTree.t memval :=
ZMap.init (
Symbolic (
Eval Vundef)
None O).
Lemma pos_ex_index:
forall p,
exists z,
ZIndexed.index z =
p.
Proof.
Lemma zle_zlt:
forall a b c,
zle a b &&
zlt b c =
true <->
a <=
b <
c.
Proof.
unfold zle,
zlt.
intros.
destruct (
Z_le_gt_dec a b).
destruct (
Z_lt_dec b c).
intuition omega.
split;
try discriminate;
try omega.
split;
try discriminate;
try omega.
Qed.
Lemma maxspec:
forall (
n m:
nat),
max n m =
if lt_dec n m then m else n.
Proof.
intros.
generalize (
Max.max_spec n m).
repeat destr.
lia.
Qed.
Lemma minspec:
forall (
n m:
nat),
min n m =
if lt_dec n m then n else m.
Proof.
intros.
generalize (
Min.min_spec n m).
repeat destr.
lia.
Qed.
Lemma alignment_of_size_bnd sz:
(
alignment_of_size sz <= 3)%
nat.
Proof.
Opaque min max.
The allocation is now guarded by the success of conc_mem_alloc.
Program Definition low_alloc (
m:
mem) (
lo hi:
Z) (
al:
nat)
bt :
option (
mem *
block) :=
let lo := 0
in
let al := (
min MA (
max al (
alignment_of_size (
hi-
lo))))
in
if zlt (
Z.of_nat (
nb_boxes_used_m m +
box_span (
Z.max 0
hi)))
nb_boxes_max
then
Some (
mkmem (
PMap.set m.(
nextblock)
(
init_block lo hi m.(
nextblock))
m.(
mem_contents))
(
PMap.set m.(
nextblock)
(
fun ofs k =>
if zle lo ofs &&
zlt ofs hi then Some Freeable else None)
m.(
mem_access))
(
PMap.set m.(
nextblock)
(
Some (0,
Z.max 0
hi))
m.(
mem_blocksize))
(
PMap.set m.(
nextblock)
(
Some al)
m.(
mem_mask))
(
PMap.set m.(
nextblock)
(
Some bt)
m.(
mem_blocktype))
(
Psucc m.(
nextblock)) (
nb_extra m)
_ _ _ _ _ _ _ _ _,
m.(
nextblock))
else None.
Next Obligation.
Next Obligation.
Next Obligation.
Next Obligation.
Next Obligation.
Next Obligation.
Next Obligation.
Next Obligation.
Next Obligation.
Definition alloc (
m:
mem) (
lo hi:
Z)
bt :=
low_alloc m lo hi (
alignment_of_size hi)
bt.
Lemma alloc_nat_mask:
forall m lo hi m'
b bt,
Mem.alloc m lo hi bt =
Some (
m',
b) ->
Mem.nat_mask m'
b =
Int.not (
Int.repr (
two_power_nat (
alignment_of_size hi) - 1)).
Proof.
Lemma alloc_contents:
forall m lo hi m'
b bt,
alloc m lo hi bt =
Some (
m',
b) ->
forall b',
b <>
b' ->
(
mem_contents m') !!
b' = (
mem_contents m) !!
b'.
Proof.
Require Import Tactics.
Lemma box_span_le:
forall x y, 0 <=
x <=
y ->
(
box_span x <=
box_span y)%
nat.
Proof.
Lemma nb_boxes_used_le:
forall l l',
list_forall2 (
fun x x' => 0 <=
snd x <=
snd x')
l l' ->
(
nb_boxes_used l <=
nb_boxes_used l')%
nat.
Proof.
Lemma mbla_le:
forall sz sz' (
SZspec:
forall b, 0 <=
sz b <=
sz'
b)
n,
list_forall2 (
fun x x' :
block *
Z => 0 <=
snd x <=
snd x')
(
mk_block_list_aux sz n)
(
mk_block_list_aux sz'
n).
Proof.
induction n;
simpl;
intros.
constructor.
rewrite !
mbla_rew.
constructor;
auto.
simpl.
auto.
Qed.
Freeing a block between the given bounds.
We only free the block when lo and hi corresponds to the exact bounds of b.
Opaque zeq.
Program Definition unchecked_free (
m:
mem) (
b:
block) (
lo hi:
Z):
mem :=
mkmem m.(
mem_contents)
(
PMap.set b
(
fun ofs k =>
if zle lo ofs &&
zlt ofs hi then None else m.(
mem_access)#
b ofs k)
m.(
mem_access))
(
PMap.set b (
match m.(
mem_blocksize)#
b with
Some (
l,
h) =>
if zeq l lo &&
zeq h hi then
None
else m.(
mem_blocksize)#
b
|
None =>
None
end)
m.(
mem_blocksize))
m.(
mem_mask)
m.(
mem_blocktype)
m.(
nextblock) (
nb_extra m)
_ _ _ _ _ _ _ _ _ .
Next Obligation.
Next Obligation.
Next Obligation.
Next Obligation.
Next Obligation.
Next Obligation.
Next Obligation.
Next Obligation.
Next Obligation.
Lemma unchecked_free_mask:
forall m b lo hi b',
mask (
unchecked_free m b lo hi)
b' =
mask m b'.
Proof.
Lemma unchecked_free_nat_mask:
forall m b lo hi b',
nat_mask (
unchecked_free m b lo hi)
b' =
nat_mask m b'.
Proof.
intros. reflexivity.
Qed.
Definition has_bounds m b lo hi :=
let (
lo',
hi') :=
Mem.bounds_of_block m b in
if zeq lo lo' &&
zeq hi hi'
then true else false.
Definition free (
m:
mem) (
b:
block) (
lo hi:
Z):
option mem :=
if range_perm_dec m b lo hi Cur Freeable
then if has_bounds m b lo hi
then Some (
unchecked_free m b lo hi)
else None
else None.
Lemma free_bounds:
forall b lo hi m m1 m'
m1'
(
SB:
Mem.mem_blocksize m =
Mem.mem_blocksize m1)
(
FL :
Mem.free m1 b lo hi =
Some m')
(
FL' :
Mem.free m b lo hi =
Some m1'),
Mem.mem_blocksize m' =
Mem.mem_blocksize m1'.
Proof.
intros b lo hi m m1 m'
m1'
SB FL FL'.
unfold Mem.free,
Mem.unchecked_free in *.
repeat destr_in FL.
repeat destr_in FL'.
inv FL;
inv FL';
simpl.
rewrite SB.
reflexivity.
Qed.
Lemma unchecked_free_bounds:
forall b lo hi m m1
(
SB:
Mem.mem_blocksize m =
Mem.mem_blocksize m1),
Mem.mem_blocksize (
Mem.unchecked_free m1 b lo hi) =
Mem.mem_blocksize (
Mem.unchecked_free m b lo hi).
Proof.
intros b lo hi m m1 SB.
unfold Mem.unchecked_free in *.
intros.
simpl.
rewrite SB.
reflexivity.
Qed.
Lemma free_contents:
forall m b lo hi m',
Mem.free m b lo hi =
Some m' ->
Mem.mem_contents m' =
Mem.mem_contents m.
Proof.
Transparent Mem.free.
unfold Mem.free.
simpl.
intros.
repeat destr_in H;
inv H;
simpl;
auto.
Qed.
Fixpoint free_list (
m:
mem) (
l:
list (
block *
Z *
Z)) {
struct l}:
option mem :=
match l with
|
nil =>
Some m
| (
b,
lo,
hi) ::
l' =>
match free m b lo hi with
|
None =>
None
|
Some m' =>
free_list m'
l'
end
end.
Lemma bounds_of_block_valid:
forall m b lo hi,
bounds_of_block m b = (
lo,
hi) ->
lo <>
hi ->
valid_block m b.
Proof.
Lemma size_mem_aux_sup1:
forall m,
Alloc.size_mem_aux MA m >=
two_power_nat MA.
Proof.
Memory reads.
load chunk m b ofs perform a read in memory state m, at address
b and offset ofs. It returns the value of the memory chunk
at that address. None is returned if the accessed bytes
are not readable.
Definition load (
chunk:
memory_chunk) (
m:
mem) (
b:
block) (
ofs:
Z):
option expr_sym :=
if valid_access_dec m chunk b ofs Readable
then Some (
decode_val chunk (
getN (
size_chunk_nat chunk)
ofs (
m.(
mem_contents)#
b)))
else None.
loadv chunk m addr is similar, but the address and offset are given as a
single value addr, which must be a pointer value.
We normalise the address beforehand.
Definition loadv (
chunk:
memory_chunk) (
m:
mem) (
addr:
expr_sym) :
option expr_sym :=
match mem_norm m addr with
Vptr b ofs =>
load chunk m b (
Int.unsigned ofs)
|
_ =>
None
end.
loadbytes m b ofs n reads n consecutive bytes starting at
location (b, ofs). Returns None if the accessed locations are
not readable.
Definition loadbytes (
m:
mem) (
b:
block) (
ofs n:
Z):
option (
list memval) :=
if range_perm_dec m b ofs (
ofs +
n)
Cur Readable
then Some (
getN (
nat_of_Z n)
ofs (
m.(
mem_contents)#
b))
else None.
Memory stores.
store chunk m b ofs v perform a write in memory state m.
Value v is stored at address b and offset ofs.
Return the updated memory store, or None if the accessed bytes
are not writable.
Program Definition store (
chunk:
memory_chunk) (
m:
mem) (
b:
block) (
ofs:
Z) (
v:
expr_sym):
option mem :=
if valid_access_dec m chunk b ofs Writable then
Some (
mkmem (
PMap.set b
(
setN (
encode_val chunk v)
ofs (
m.(
mem_contents)#
b))
m.(
mem_contents))
m.(
mem_access)
m.(
mem_blocksize)
m.(
mem_mask)
m.(
mem_blocktype)
m.(
nextblock) (
nb_extra m)
_ _ _ _ _ _ _ _ _ )
else
None.
Next Obligation.
Next Obligation.
Next Obligation.
Next Obligation.
destruct m. simpl. auto.
Qed.
Next Obligation.
destruct m. simpl. auto.
Qed.
Next Obligation.
destruct m. simpl. auto.
Qed.
Next Obligation.
destruct m. simpl. auto.
Qed.
Next Obligation.
destruct m. simpl. eauto.
Qed.
Next Obligation.
destruct m. simpl. eauto.
Qed.
storev chunk m addr v is similar, but the address and offset are given
as a single value addr, which must be a pointer value. We normalise the address beforehand.
Definition storev (
chunk:
memory_chunk) (
m:
mem) (
addr v:
expr_sym) :
option mem :=
match mem_norm m addr with
Vptr b ofs =>
store chunk m b (
Int.unsigned ofs)
v
|
_ =>
None
end.
storebytes m b ofs bytes stores the given list of bytes bytes
starting at location (b, ofs). Returns updated memory state
or None if the accessed locations are not writable.
Program Definition storebytes (
m:
mem) (
b:
block) (
ofs:
Z) (
bytes:
list memval) :
option mem :=
if range_perm_dec m b ofs (
ofs +
Z_of_nat (
length bytes))
Cur Writable then
Some (
mkmem
(
PMap.set b (
setN bytes ofs (
m.(
mem_contents)#
b))
m.(
mem_contents))
m.(
mem_access)
m.(
mem_blocksize)
m.(
mem_mask)
m.(
mem_blocktype)
m.(
nextblock) (
nb_extra m)
_ _ _ _ _ _ _ _ _)
else
None.
Next Obligation.
Next Obligation.
Next Obligation.
Next Obligation.
destruct m. simpl. auto.
Qed.
Next Obligation.
destruct m. simpl. auto.
Qed.
Next Obligation.
destruct m. simpl. auto.
Qed.
Next Obligation.
destruct m. simpl. auto.
Qed.
Next Obligation.
destruct m. simpl. eauto.
Qed.
Next Obligation.
destruct m. simpl in *. eauto.
Qed.
drop_perm m b lo hi p sets the max permissions of the byte range
(b, lo) ... (b, hi - 1) to p. These bytes must have current permissions
Freeable in the initial memory state m.
Returns updated memory state, or None if insufficient permissions.
Program Definition drop_perm (
m:
mem) (
b:
block) (
lo hi:
Z) (
p:
permission):
option mem :=
if range_perm_dec m b lo hi Cur Freeable then
Some (
mkmem m.(
mem_contents)
(
PMap.set b
(
fun ofs k =>
if zle lo ofs &&
zlt ofs hi then Some p else m.(
mem_access)#
b ofs k)
m.(
mem_access))
m.(
mem_blocksize)
m.(
mem_mask)
m.(
mem_blocktype)
m.(
nextblock)
(
nb_extra m)
_ _ _ _ _ _ _ _ _)
else None.
Next Obligation.
Next Obligation.
Next Obligation.
Next Obligation.
destruct m. simpl. auto.
Qed.
Next Obligation.
destruct m. simpl. auto.
Qed.
Next Obligation.
destruct m. simpl. auto.
Qed.
Next Obligation.
destruct m. simpl. eauto.
Qed.
Next Obligation.
destruct m. simpl. eauto.
Qed.
Next Obligation.
destruct m. simpl in *. eauto.
Qed.
Definition drop_perm_list m (
bl:
list (
block *
Z *
Z))
p :=
fold_right (
fun (
elt:
block*
Z*
Z)
m =>
let (
blo,
hi) :=
elt in
let (
b,
lo) :=
blo in
match m with
None =>
None
|
Some m =>
drop_perm m b lo hi p
end) (
Some m)
bl.
Properties of the memory operations
Properties of the empty store.
Theorem nextblock_empty:
nextblock empty = 1%
positive.
Proof.
reflexivity. Qed.
Theorem perm_empty:
forall b ofs k p, ~
perm empty b ofs k p.
Proof.
Theorem valid_access_empty:
forall chunk b ofs p, ~
valid_access empty chunk b ofs p.
Proof.
Properties related to load
Lemma Forall_rib:
forall {
A} (
P :
A ->
Prop)
l,
Forall P l ->
Forall P (
rev_if_be l).
Proof.
Theorem valid_access_load:
forall m chunk b ofs,
valid_access m chunk b ofs Readable ->
exists v,
load chunk m b ofs =
Some v.
Proof.
Theorem load_valid_access:
forall m chunk b ofs v,
load chunk m b ofs =
Some v ->
valid_access m chunk b ofs Readable.
Proof.
Lemma load_result:
forall chunk m b ofs v,
load chunk m b ofs =
Some v ->
v =
decode_val chunk (
getN (
size_chunk_nat chunk)
ofs (
m.(
mem_contents)#
b)).
Proof.
Lemma load_int64_eq_add:
forall m b i v ,
Mem.load Mint64 m b (
Int.unsigned i) =
Some v ->
Int.unsigned (
Int.add i (
Int.repr 4)) =
Int.unsigned i + 4.
Proof.
Hint Local Resolve load_valid_access valid_access_load:
mem.
Theorem load_type:
forall m chunk b ofs v,
load chunk m b ofs =
Some v ->
wt v (
type_of_chunk chunk).
Proof.
Lemma loadv_type:
forall m c a v (
L:
Mem.loadv c m a =
Some v),
wt v (
type_of_chunk c).
Proof.
Theorem load_cast:
forall m chunk b ofs v,
load chunk m b ofs =
Some v ->
match chunk with
|
Mint8signed =>
same_eval v (
Val.sign_ext 8
v)
|
Mint8unsigned =>
same_eval v (
Val.zero_ext 8
v)
|
Mint16signed =>
same_eval v (
Val.sign_ext 16
v)
|
Mint16unsigned =>
same_eval v (
Val.zero_ext 16
v)
|
Mint32 =>
same_eval v (
Val.sign_ext 32
v)
|
_ =>
True
end.
Proof.
Theorem load_int8_signed_unsigned:
forall m b ofs v1 v2,
load Mint8signed m b ofs =
Some v1 ->
option_map (
Val.sign_ext 8) (
load Mint8unsigned m b ofs) =
Some v2 ->
same_eval v1 v2.
Proof.
Theorem load_int8_signed_unsigned_none:
forall m b ofs,
load Mint8signed m b ofs =
None ->
load Mint8unsigned m b ofs =
None.
Proof.
Theorem load_int16_signed_unsigned:
forall m b ofs v1 v2,
load Mint16signed m b ofs =
Some v1 ->
option_map (
Val.sign_ext 16) (
load Mint16unsigned m b ofs) =
Some v2 ->
same_eval v1 v2.
Proof.
Theorem load_int16_signed_unsigned_none:
forall m b ofs,
load Mint16signed m b ofs =
None ->
load Mint16unsigned m b ofs =
None.
Proof.
Properties related to loadbytes
Theorem range_perm_loadbytes:
forall m b ofs len,
range_perm m b ofs (
ofs +
len)
Cur Readable ->
exists bytes,
loadbytes m b ofs len =
Some bytes.
Proof.
Theorem loadbytes_range_perm:
forall m b ofs len bytes,
loadbytes m b ofs len =
Some bytes ->
range_perm m b ofs (
ofs +
len)
Cur Readable.
Proof.
Theorem loadbytes_load:
forall chunk m b ofs bytes,
loadbytes m b ofs (
size_chunk chunk) =
Some bytes ->
(
align_chunk chunk |
ofs) ->
load chunk m b ofs =
Some (
decode_val chunk bytes).
Proof.
Theorem load_loadbytes:
forall chunk m b ofs v,
load chunk m b ofs =
Some v ->
exists bytes,
loadbytes m b ofs (
size_chunk chunk) =
Some bytes
/\
v =
decode_val chunk bytes.
Proof.
Lemma getN_length:
forall c n p,
length (
getN n p c) =
n.
Proof.
induction n; simpl; intros. auto. decEq; auto.
Qed.
Theorem loadbytes_length:
forall m b ofs n bytes,
loadbytes m b ofs n =
Some bytes ->
length bytes =
nat_of_Z n.
Proof.
Theorem loadbytes_empty:
forall m b ofs n,
n <= 0 ->
loadbytes m b ofs n =
Some nil.
Proof.
Lemma getN_concat:
forall c n1 n2 p,
getN (
n1 +
n2)%
nat p c =
getN n1 p c ++
getN n2 (
p +
Z_of_nat n1)
c.
Proof.
induction n1;
intros.
simpl.
decEq.
omega.
rewrite inj_S.
simpl.
decEq.
replace (
p +
Zsucc (
Z_of_nat n1))
with ((
p + 1) +
Z_of_nat n1)
by omega.
auto.
Qed.
Theorem loadbytes_concat:
forall m b ofs n1 n2 bytes1 bytes2,
loadbytes m b ofs n1 =
Some bytes1 ->
loadbytes m b (
ofs +
n1)
n2 =
Some bytes2 ->
n1 >= 0 ->
n2 >= 0 ->
loadbytes m b ofs (
n1 +
n2) =
Some(
bytes1 ++
bytes2).
Proof.
Theorem loadbytes_split:
forall m b ofs n1 n2 bytes,
loadbytes m b ofs (
n1 +
n2) =
Some bytes ->
n1 >= 0 ->
n2 >= 0 ->
exists bytes1,
exists bytes2,
loadbytes m b ofs n1 =
Some bytes1
/\
loadbytes m b (
ofs +
n1)
n2 =
Some bytes2
/\
bytes =
bytes1 ++
bytes2.
Proof.
Lemma Forall_dec:
forall {
A} (
P:
A ->
Prop)
(
Pdec:
forall a,
P a \/ ~
P a)
l,
Forall P l \/ ~
Forall P l.
Proof.
induction l; simpl; intros.
left; constructor.
destruct (Pdec a); destruct IHl; intuition try congruence.
left; constructor; auto.
right; intro C; inv C; congruence.
right; intro C; inv C; congruence.
right; intro C; inv C; congruence.
Qed.
Lemma Forall_app_l:
forall {
A} (
P:
A ->
Prop)
l1 l2,
Forall P (
l1 ++
l2) ->
Forall P l1.
Proof.
induction l1; try constructor.
change ((a::l1)++ l2) with (a:: (l1 ++ l2)) in H.
inv H; auto.
change ((a::l1)++ l2) with (a:: (l1 ++ l2)) in H.
inv H; auto.
apply IHl1 with (l2:=l2); auto.
Qed.
Lemma Forall_rev':
forall {
A} (
P:
A ->
Prop)
l,
Forall P l ->
Forall P (
rev l).
Proof.
Lemma Forall_app_r:
forall {
A} (
P:
A ->
Prop)
l1 l2,
Forall P (
l1 ++
l2) ->
Forall P l2.
Proof.
Theorem load_int64_split:
forall m b ofs v,
load Mint64 m b ofs =
Some v ->
exists v1 v2,
load Mint32 m b ofs =
Some (
if Archi.big_endian then v1 else v2)
/\
load Mint32 m b (
ofs + 4) =
Some (
if Archi.big_endian then v2 else v1)
/\
same_eval v (
Val.longofwords v1 v2).
Proof.
Lemma perm_bounds:
forall m b ofs p k,
Mem.perm m b ofs k p ->
in_bound_m ofs m b.
Proof.
Lemma range_perm_bounds:
forall m b o1 o2 k p
(
RP:
Mem.range_perm m b o1 o2 k p)
ofs
(
OFS:
o1 <=
ofs <
o2),
in_bound ofs (
Mem.bounds_of_block m b).
Proof.
Lemma range_perm_bounds':
forall m b o1 o2 k p
(
RP:
Mem.range_perm m b o1 o2 k p)
(
OFS:
o1 <
o2),
let (
z0,
z1) :=
Mem.bounds_of_block m b in
z0 <=
o1 /\
o2 <=
z1.
Proof.
Lemma loadv_int64_split:
forall m a v,
Mem.loadv Mint64 m a =
Some v ->
exists v1 v2,
Mem.loadv Mint32 m a =
Some (
if Archi.big_endian then v1 else v2)
/\
Mem.loadv Mint32 m (
Val.add a (
Eval (
Vint (
Int.repr 4)))) =
Some (
if Archi.big_endian then v2 else v1)
/\
Val.lessdef (
Val.hiword v)
v1
/\
Val.lessdef (
Val.loword v)
v2.
Proof.
Properties related to store
Theorem valid_access_store:
forall m1 chunk b ofs v,
valid_access m1 chunk b ofs Writable ->
{
m2:
mem |
store chunk m1 b ofs v =
Some m2 }.
Proof.
Hint Local Resolve valid_access_store:
mem.
Section STORE.
Variable chunk:
memory_chunk.
Variable m1:
mem.
Variable b:
block.
Variable ofs:
Z.
Variable v:
expr_sym.
Variable m2:
mem.
Hypothesis STORE:
store chunk m1 b ofs v =
Some m2.
Lemma store_access:
mem_access m2 =
mem_access m1.
Proof.
Lemma store_mem_contents:
mem_contents m2 =
PMap.set b (
setN (
encode_val chunk v)
ofs m1.(
mem_contents)#
b)
m1.(
mem_contents).
Proof.
Theorem perm_store_1:
forall b'
ofs'
k p,
perm m1 b'
ofs'
k p ->
perm m2 b'
ofs'
k p.
Proof.
Theorem perm_store_2:
forall b'
ofs'
k p,
perm m2 b'
ofs'
k p ->
perm m1 b'
ofs'
k p.
Proof.
Local Hint Resolve perm_store_1 perm_store_2:
mem.
Theorem size_of_block_store:
forall b',
size_of_block m1 b' =
size_of_block m2 b'.
Proof.
intros.
revert STORE.
unfold store.
destr_cond_match;
try congruence.
intro A;
inv A.
unfold size_of_block;
simpl.
reflexivity.
Qed.
Theorem mask_store:
forall b',
mask m1 b' =
mask m2 b'.
Proof.
intros.
revert STORE.
unfold store.
destr_cond_match;
try congruence.
intro A;
inv A;
unfold mask;
reflexivity.
Qed.
Theorem bounds_of_block_store:
forall b',
bounds_of_block m1 b' =
bounds_of_block m2 b'.
Proof.
intros;
revert STORE;
unfold store;
repeat (
destr_cond_match;
try congruence).
intro A;
inv A;
reflexivity.
Qed.
Theorem nat_mask_store:
forall b',
nat_mask m1 b' =
nat_mask m2 b'.
Proof.
intros;
revert STORE;
unfold store;
repeat destr_cond_match;
try congruence.
intro A;
inv A;
reflexivity.
Qed.
Lemma store_compat:
forall cm q,
Mem.compat_m m2 q cm ->
Mem.compat_m m1 q cm.
Proof.
Theorem nextblock_store:
nextblock m2 =
nextblock m1.
Proof.
Theorem store_valid_block_1:
forall b',
valid_block m1 b' ->
valid_block m2 b'.
Proof.
Theorem store_valid_block_2:
forall b',
valid_block m2 b' ->
valid_block m1 b'.
Proof.
Local Hint Resolve store_valid_block_1 store_valid_block_2:
mem.
Theorem store_valid_access_1:
forall chunk'
b'
ofs'
p,
valid_access m1 chunk'
b'
ofs'
p ->
valid_access m2 chunk'
b'
ofs'
p.
Proof.
intros. inv H. constructor; try red; auto with mem.
Qed.
Theorem store_valid_access_2:
forall chunk'
b'
ofs'
p,
valid_access m2 chunk'
b'
ofs'
p ->
valid_access m1 chunk'
b'
ofs'
p.
Proof.
intros. inv H. constructor; try red; auto with mem.
Qed.
Theorem store_valid_access_3:
valid_access m1 chunk b ofs Writable.
Proof.
Local Hint Resolve store_valid_access_1 store_valid_access_2 store_valid_access_3:
mem.
Theorem load_store_similar:
forall chunk',
size_chunk chunk' =
size_chunk chunk ->
align_chunk chunk' <=
align_chunk chunk ->
exists v',
load chunk'
m2 b ofs =
Some v' /\
decode_encode_expr_sym v chunk chunk'
v'.
Proof.
Theorem load_store_similar_2:
forall chunk'
v1,
size_chunk chunk' =
size_chunk chunk ->
align_chunk chunk' <=
align_chunk chunk ->
type_of_chunk chunk' =
type_of_chunk chunk ->
load chunk'
m2 b ofs =
Some v1 ->
same_eval v1 (
Val.load_result chunk'
v).
Proof.
intros.
destruct (
load_store_similar chunk')
as [
v' [
A B]];
auto.
rewrite A in H2;
inv H2.
des chunk;
des chunk';
try (
rewrite se_eval;
simpl;
auto).
unfold get_type in B.
repeat destr.
destr_in B.
destr_in Heqs.
destr_in Heqs.
-
rewrite B.
red;
intros;
symmetry;
destr.
erewrite (
wt_expr_2_is_undef _ Tsingle Tfloat);
destr.
-
repeat destr_in B;
repeat destr_in Heqs.
rewrite B.
red;
intros;
symmetry;
destr.
rewrite nwt_expr_undef;
auto.
intro;
dex.
des t.
Qed.
Theorem load_store_same:
exists v1,
load chunk m2 b ofs =
Some v1 /\
same_eval v1 (
Val.load_result chunk v).
Proof.
Theorem load_store_other:
forall chunk'
b'
ofs',
b' <>
b
\/
ofs' +
size_chunk chunk' <=
ofs
\/
ofs +
size_chunk chunk <=
ofs' ->
load chunk'
m2 b'
ofs' =
load chunk'
m1 b'
ofs'.
Proof.
Theorem loadbytes_store_same:
loadbytes m2 b ofs (
size_chunk chunk) =
Some (
encode_val chunk v).
Proof.
Theorem loadbytes_store_other:
forall b'
ofs'
n,
b' <>
b
\/
n <= 0
\/
ofs' +
n <=
ofs
\/
ofs +
size_chunk chunk <=
ofs' ->
loadbytes m2 b'
ofs'
n =
loadbytes m1 b'
ofs'
n.
Proof.
Lemma setN_property:
forall (
P:
memval ->
Prop)
vl p q c,
(
forall v,
In v vl ->
P v) ->
p <=
q <
p +
Z_of_nat (
length vl) ->
P(
ZMap.get q (
setN vl p c)).
Proof.
induction vl;
intros.
simpl in H0.
omegaContradiction.
simpl length in H0.
rewrite inj_S in H0.
simpl.
destruct (
zeq p q).
subst q.
rewrite setN_outside.
rewrite ZMap.gss.
auto with coqlib.
omega.
apply IHvl.
auto with coqlib.
omega.
Qed.
Lemma getN_in:
forall c q n p,
p <=
q <
p +
Z_of_nat n ->
In (
ZMap.get q c) (
getN n p c).
Proof.
induction n;
intros.
simpl in H;
omegaContradiction.
rewrite inj_S in H.
simpl.
destruct (
zeq p q).
subst q.
auto.
right.
apply IHn.
omega.
Qed.
Lemma psa_ptr:
forall l b o,
proj_symbolic_aux_le l =
Eval (
Vptr b o) ->
False.
Proof.
Lemma ps_ptr:
forall l b o,
proj_symbolic_le l =
Eval (
Vptr b o) ->
False.
Proof.
intros.
eapply psa_ptr;
eauto.
Qed.
Theorem load_pointer_store:
forall chunk'
b'
ofs'
v_b v_o,
load chunk'
m2 b'
ofs' =
Some(
Eval (
Vptr v_b v_o)) ->
(
chunk =
Mint32 /\
v =
Eval (
Vptr v_b v_o) /\
chunk' =
Mint32 /\
b' =
b /\
ofs' =
ofs)
\/ (
b' <>
b \/
ofs' +
size_chunk chunk' <=
ofs \/
ofs +
size_chunk chunk <=
ofs').
Proof.
intros.
assert (
True)
by (
destruct m1;
auto).
contradict H.
unfold load.
destr_cond_match;
try congruence.
Transparent decode_val.
unfold decode_val.
intro H.
inv H.
des chunk'.
-
inv H2.
-
repeat destr_in H2.
-
repeat destr_in H2.
repeat destr_in Heqo.
inv H2.
Qed.
Lemma store_size_block:
forall chunk m b o v m',
store chunk m b o v =
Some m' ->
size_block m' =
size_block m.
Proof.
unfold store;
intros.
destr_in H;
inv H.
unfold size_block.
simpl.
auto.
Qed.
Lemma store_mask:
forall chunk m b o v m',
store chunk m b o v =
Some m' ->
mask m' =
mask m.
Proof.
unfold store;
intros.
destr_in H.
inv H;
simpl.
unfold mask.
simpl.
auto.
Qed.
Lemma store_mk_block_list:
forall chunk m b o v m',
store chunk m b o v =
Some m' ->
mk_block_list m' =
mk_block_list m.
Proof.
Lemma size_block_store:
forall chunk m1 b1 ofs v1 n1,
store chunk m1 b1 ofs v1 =
Some n1 ->
forall b',
size_block n1 b' =
size_block m1 b'.
Proof.
Lemma store_in_bound_m_1:
forall b'
ofs',
in_bound_m ofs'
m1 b' ->
in_bound_m ofs'
m2 b'.
Proof.
Lemma store_in_bound_m_2:
forall b'
ofs',
in_bound_m ofs'
m2 b' ->
in_bound_m ofs'
m1 b'.
Proof.
End STORE.
Lemma store_norm:
forall chunk m1 b o v m2 e,
Mem.store chunk m1 b o v =
Some m2 ->
Mem.mem_norm m1 e =
Mem.mem_norm m2 e.
Proof.
Lemma storev_norm:
forall chunk m1 bo v m2 e,
Mem.storev chunk m1 bo v =
Some m2 ->
Mem.mem_norm m1 e =
Mem.mem_norm m2 e.
Proof.
Local Hint Resolve perm_store_1 perm_store_2:
mem.
Local Hint Resolve store_valid_block_1 store_valid_block_2:
mem.
Local Hint Resolve store_valid_access_1 store_valid_access_2
store_valid_access_3:
mem.
Lemma store_similar_chunks:
forall chunk1 chunk2 v1 v2 m b ofs,
encode_val chunk1 v1 =
encode_val chunk2 v2 ->
align_chunk chunk1 =
align_chunk chunk2 ->
store chunk1 m b ofs v1 =
store chunk2 m b ofs v2.
Proof.
Theorem store_signed_unsigned_8:
forall m b ofs v,
store Mint8signed m b ofs v =
store Mint8unsigned m b ofs v.
Proof.
Theorem store_signed_unsigned_16:
forall m b ofs v,
store Mint16signed m b ofs v =
store Mint16unsigned m b ofs v.
Proof.
Lemma get_setN_not_last:
forall al ofs0 ofs o a t,
ofs0 <>
ofs ->
(
ZMap.get ofs0 (
setN al o (
ZMap.set ofs a t))) =
ZMap.get ofs0 (
setN al o t).
Proof.
Properties related to storebytes.
Theorem range_perm_storebytes:
forall m1 b ofs bytes,
range_perm m1 b ofs (
ofs +
Z_of_nat (
length bytes))
Cur Writable ->
{
m2 :
mem |
storebytes m1 b ofs bytes =
Some m2 }.
Proof.
Theorem storebytes_store:
forall m1 b ofs chunk v m2,
storebytes m1 b ofs (
encode_val chunk v) =
Some m2 ->
(
align_chunk chunk |
ofs) ->
store chunk m1 b ofs v =
Some m2.
Proof.
Theorem store_storebytes:
forall m1 b ofs chunk v m2 ,
store chunk m1 b ofs v =
Some m2 ->
storebytes m1 b ofs (
encode_val chunk v) =
Some m2.
Proof.
Section STOREBYTES.
Variable m1:
mem.
Variable b:
block.
Variable ofs:
Z.
Variable bytes:
list memval.
Variable m2:
mem.
Hypothesis STORE:
storebytes m1 b ofs bytes =
Some m2.
Lemma storebytes_access:
mem_access m2 =
mem_access m1.
Proof.
Lemma storebytes_mem_contents:
mem_contents m2 =
PMap.set b (
setN bytes ofs m1.(
mem_contents)#
b)
m1.(
mem_contents).
Proof.
Theorem perm_storebytes_1:
forall b'
ofs'
k p,
perm m1 b'
ofs'
k p ->
perm m2 b'
ofs'
k p.
Proof.
Theorem perm_storebytes_2:
forall b'
ofs'
k p,
perm m2 b'
ofs'
k p ->
perm m1 b'
ofs'
k p.
Proof.
Local Hint Resolve perm_storebytes_1 perm_storebytes_2:
mem.
Theorem storebytes_valid_access_1:
forall chunk'
b'
ofs'
p,
valid_access m1 chunk'
b'
ofs'
p ->
valid_access m2 chunk'
b'
ofs'
p.
Proof.
intros. inv H. constructor; try red; auto with mem.
Qed.
Theorem storebytes_valid_access_2:
forall chunk'
b'
ofs'
p,
valid_access m2 chunk'
b'
ofs'
p ->
valid_access m1 chunk'
b'
ofs'
p.
Proof.
intros. inv H. constructor; try red; auto with mem.
Qed.
Local Hint Resolve storebytes_valid_access_1 storebytes_valid_access_2:
mem.
Theorem size_of_block_storebytes:
forall b',
size_of_block m1 b' =
size_of_block m2 b'.
Proof.
intros;
revert STORE.
unfold storebytes;
repeat destr_cond_match;
try congruence.
intro A;
inv A;
unfold size_of_block;
reflexivity.
Qed.
Theorem mask_storebytes:
forall b',
mask m1 b' =
mask m2 b'.
Proof.
intros;
revert STORE.
unfold storebytes;
repeat destr_cond_match;
try congruence.
intro A;
inv A;
unfold mask;
reflexivity.
Qed.
Theorem bounds_of_block_storebytes:
forall b',
bounds_of_block m1 b' =
bounds_of_block m2 b'.
Proof.
intros;
revert STORE;
unfold storebytes;
repeat destr_cond_match;
try congruence.
intro A;
inv A;
reflexivity.
Qed.
Theorem nat_mask_storebytes:
forall b',
nat_mask m1 b' =
nat_mask m2 b'.
Proof.
intros;
revert STORE;
unfold storebytes;
repeat destr_cond_match;
try congruence.
intro A;
inv A;
reflexivity.
Qed.
Theorem nextblock_storebytes:
nextblock m2 =
nextblock m1.
Proof.
Theorem storebytes_valid_block_1:
forall b',
valid_block m1 b' ->
valid_block m2 b'.
Proof.
Theorem storebytes_valid_block_2:
forall b',
valid_block m2 b' ->
valid_block m1 b'.
Proof.
Local Hint Resolve storebytes_valid_block_1 storebytes_valid_block_2:
mem.
Theorem storebytes_range_perm:
range_perm m1 b ofs (
ofs +
Z_of_nat (
length bytes))
Cur Writable.
Proof.
Theorem loadbytes_storebytes_same:
loadbytes m2 b ofs (
Z_of_nat (
length bytes)) =
Some bytes.
Proof.
Theorem loadbytes_storebytes_disjoint:
forall b'
ofs'
len,
len >= 0 ->
b' <>
b \/
Intv.disjoint (
ofs',
ofs' +
len) (
ofs,
ofs +
Z_of_nat (
length bytes)) ->
loadbytes m2 b'
ofs'
len =
loadbytes m1 b'
ofs'
len.
Proof.
Theorem loadbytes_storebytes_other:
forall b'
ofs'
len,
len >= 0 ->
b' <>
b
\/
ofs' +
len <=
ofs
\/
ofs +
Z_of_nat (
length bytes) <=
ofs' ->
loadbytes m2 b'
ofs'
len =
loadbytes m1 b'
ofs'
len.
Proof.
Theorem load_storebytes_other:
forall chunk b'
ofs',
b' <>
b
\/
ofs' +
size_chunk chunk <=
ofs
\/
ofs +
Z_of_nat (
length bytes) <=
ofs' ->
load chunk m2 b'
ofs' =
load chunk m1 b'
ofs'.
Proof.
Lemma storebytes_size_block:
size_block m2 =
size_block m1.
Proof.
Lemma storebytes_blocksize:
mem_blocksize m2 =
mem_blocksize m1.
Proof.
Lemma storebytes_mask:
mem_mask m2 =
mem_mask m1.
Proof.
Lemma storebytes_mk_block_list:
mk_block_list m2 =
mk_block_list m1.
Proof.
Lemma size_block_storebytes:
forall b',
size_block m2 b' =
size_block m1 b'.
Proof.
Lemma storebytes_in_bound_m_1:
forall b'
ofs',
in_bound_m ofs'
m1 b' ->
in_bound_m ofs'
m2 b'.
Proof.
Lemma storebytes_in_bound_m_2:
forall b'
ofs',
in_bound_m ofs'
m2 b' ->
in_bound_m ofs'
m1 b'.
Proof.
End STOREBYTES.
Definition all_blocks_injected (
f:
meminj) (
m:
mem) :
Prop :=
forall b lo hi,
bounds_of_block m b = (
lo,
hi) ->
hi -
lo <> 0 ->
f b <>
None.
Lemma store_abi:
forall chunk m b ofs v m',
Mem.store chunk m b ofs v =
Some m' ->
forall j,
Mem.all_blocks_injected j m ->
Mem.all_blocks_injected j m'.
Proof.
Lemma storev_abi:
forall chunk m bofs v m',
Mem.storev chunk m bofs v =
Some m' ->
forall j,
Mem.all_blocks_injected j m ->
Mem.all_blocks_injected j m'.
Proof.
Lemma storebytes_abi:
forall m b ofs v m'
(
SB:
Mem.storebytes m b ofs v =
Some m')
j (
ABI:
Mem.all_blocks_injected j m),
Mem.all_blocks_injected j m'.
Proof.
Lemma setN_concat:
forall bytes1 bytes2 ofs c,
setN (
bytes1 ++
bytes2)
ofs c =
setN bytes2 (
ofs +
Z_of_nat (
length bytes1)) (
setN bytes1 ofs c).
Proof.
induction bytes1;
intros.
simpl.
decEq.
omega.
simpl length.
rewrite inj_S.
simpl.
rewrite IHbytes1.
decEq.
omega.
Qed.
Lemma Forall_app_not:
forall {
A}
P (
a b:
list A),
(~
Forall P a) \/ (~
Forall P b) ->
~
Forall P (
a++
b).
Proof.
Theorem storebytes_concat:
forall m b ofs bytes1 m1 bytes2 m2,
storebytes m b ofs bytes1 =
Some m1 ->
storebytes m1 b (
ofs +
Z_of_nat(
length bytes1))
bytes2 =
Some m2 ->
storebytes m b ofs (
bytes1 ++
bytes2) =
Some m2.
Proof.
Theorem storebytes_split:
forall m b ofs bytes1 bytes2 m2,
storebytes m b ofs (
bytes1 ++
bytes2) =
Some m2 ->
exists m1,
storebytes m b ofs bytes1 =
Some m1
/\
storebytes m1 b (
ofs +
Z_of_nat(
length bytes1))
bytes2 =
Some m2.
Proof.
Lemma load_align_chunk:
forall m b ofs chunk v,
load chunk m b ofs =
Some v ->
(
align_chunk chunk |
ofs).
Proof.
intros until v.
unfold load.
destr_cond_match;
try congruence.
destruct v0.
intros;
auto.
Qed.
Lemma loadbytes_one:
forall m b o n bytes,
loadbytes m b o n =
Some bytes ->
n > 0 ->
exists b1 b2,
loadbytes m b o 1 =
Some b1 /\
loadbytes m b (
o+1) (
n-1) =
Some b2 /\
bytes =
b1 ++
b2.
Proof.
Lemma int_range_int64:
forall i,
0 <=
Int.unsigned i <=
Int64.max_unsigned.
Proof.
Lemma int_inf_two_p_32:
forall i,
0 <=
Int.unsigned i <
two_power_nat 32.
Proof.
Lemma store_int64_eq_add:
forall m b i v m',
store Mint64 m b (
Int.unsigned i)
v =
Some m' ->
Int.unsigned (
Int.add i (
Int.repr 4)) =
Int.unsigned i + 4.
Proof.
Properties related to alloc.
Lemma pos2nat_id:
forall p,
Pos.of_nat (
S (
pred (
Pos.to_nat p))) =
p.
Proof.
Section ALLOC.
Variable m1:
Mem.mem.
Variables lo hi:
Z.
Variable m2:
Mem.mem.
Variable b:
block.
Variable bt:
block_type.
Hypothesis ALLOC:
alloc m1 lo hi bt =
Some (
m2,
b).
Theorem mask_alloc_other:
forall b',
b <>
b' ->
mask m1 b' =
mask m2 b'.
Proof.
unfold alloc,
low_alloc in ALLOC.
destr_in ALLOC.
injection ALLOC;
intros;
subst;
unfold mask;
simpl in *.
rewrite PMap.gso by congruence.
reflexivity.
Qed.
Theorem size_of_block_alloc_other:
forall b',
b <>
b' ->
size_of_block m1 b' =
size_of_block m2 b'.
Proof.
Theorem bounds_of_block_alloc_other:
forall b',
b <>
b' ->
bounds_of_block m1 b' =
bounds_of_block m2 b'.
Proof.
Theorem nat_mask_alloc_other:
forall b',
b <>
b' ->
nat_mask m1 b' =
nat_mask m2 b'.
Proof.
Theorem nextblock_alloc:
nextblock m2 =
Psucc (
nextblock m1).
Proof.
unfold alloc,
low_alloc in ALLOC.
destr_in ALLOC.
injection ALLOC;
intros.
rewrite <-
H0;
auto.
Qed.
Theorem alloc_result:
b =
nextblock m1.
Proof.
Theorem valid_block_alloc:
forall b',
valid_block m1 b' ->
valid_block m2 b'.
Proof.
Theorem fresh_block_alloc:
~(
valid_block m1 b).
Proof.
Theorem valid_new_block:
valid_block m2 b.
Proof.
Local Hint Resolve valid_block_alloc fresh_block_alloc valid_new_block:
mem.
Theorem valid_block_alloc_inv:
forall b',
valid_block m2 b' ->
b' =
b \/
valid_block m1 b'.
Proof.
Theorem perm_alloc_1:
forall b'
ofs k p,
perm m1 b'
ofs k p ->
perm m2 b'
ofs k p.
Proof.
Theorem perm_alloc_2:
forall ofs k, 0 <=
ofs <
hi ->
perm m2 b ofs k Freeable.
Proof.
Theorem perm_alloc_inv:
forall b'
ofs k p,
perm m2 b'
ofs k p ->
if eq_block b'
b then 0 <=
ofs <
hi else perm m1 b'
ofs k p.
Proof.
Theorem perm_alloc_3:
forall ofs k p,
perm m2 b ofs k p -> 0 <=
ofs <
hi.
Proof.
Theorem perm_alloc_4:
forall b'
ofs k p,
perm m2 b'
ofs k p ->
b' <>
b ->
perm m1 b'
ofs k p.
Proof.
Local Hint Resolve perm_alloc_1 perm_alloc_2 perm_alloc_3 perm_alloc_4:
mem.
Theorem valid_access_alloc_other:
forall chunk b'
ofs p,
valid_access m1 chunk b'
ofs p ->
valid_access m2 chunk b'
ofs p.
Proof.
intros. inv H. constructor; auto with mem.
red; auto with mem.
Qed.
Theorem valid_access_alloc_same:
forall chunk ofs,
0 <=
ofs ->
ofs +
size_chunk chunk <=
hi -> (
align_chunk chunk |
ofs) ->
valid_access m2 chunk b ofs Freeable.
Proof.
intros.
constructor;
auto with mem.
red;
intros.
apply perm_alloc_2.
omega.
Qed.
Local Hint Resolve valid_access_alloc_other valid_access_alloc_same:
mem.
Theorem valid_access_alloc_inv:
forall chunk b'
ofs p,
valid_access m2 chunk b'
ofs p ->
if eq_block b'
b
then 0 <=
ofs /\
ofs +
size_chunk chunk <=
hi /\ (
align_chunk chunk |
ofs)
else valid_access m1 chunk b'
ofs p.
Proof.
Theorem load_alloc_unchanged:
forall chunk b'
ofs,
valid_block m1 b' ->
load chunk m2 b'
ofs =
load chunk m1 b'
ofs.
Proof.
Theorem load_alloc_other:
forall chunk b'
ofs v,
load chunk m1 b'
ofs =
Some v ->
load chunk m2 b'
ofs =
Some v.
Proof.
Require Import Classical.
Lemma init_block'
_eundef:
forall n b cur o,
(0 <=
o <
n)%
nat ->
nth_error (
init_block'
n b cur)
o =
Some (
Symbolic
( (
Eundef b (
Int.add cur (
Int.repr (
Z.of_nat o)))))
None O).
Proof.
induction n;
simpl;
intros.
lia.
destruct H.
destruct o.
simpl.
rewrite Int.add_zero;
auto.
simpl.
rewrite IHn;
auto.
rewrite Int.add_assoc.
f_equal.
f_equal.
f_equal.
f_equal.
rewrite Val.int_add_repr.
f_equal.
lia.
lia.
Qed.
Lemma in_nth_error:
forall (
A:
Type) (
vl:
list A) (
x:
A),
In x vl ->
exists n,
nth_error vl n =
Some x.
Proof.
induction vl;
simpl;
intros.
exfalso;
auto.
destruct H;
subst;
auto.
exists O;
auto.
destruct (
IHvl _ H).
exists (
S x0);
auto.
Qed.
Lemma nth_error_length:
forall (
A:
Type) (
l:
list A)
x v,
nth_error l x =
Some v ->
(
length l >
x)%
nat.
Proof.
induction l;
simpl;
intros.
rewrite nth_error_nil in H;
congruence.
destruct x.
omega.
simpl in H.
apply IHl in H.
omega.
Qed.
Lemma init_block'
_length:
forall n b c,
length (
init_block'
n b c) =
n.
Proof.
induction n; simpl; intros; eauto.
Qed.
Lemma init_block_eundef:
forall n o lo hi c,
Forall (
fun x =>
x =
Symbolic ((
Eval Vundef))
None O) (
getN n o (
init_block lo hi c)).
Proof.
induction n;
simpl;
intros.
constructor.
constructor;
auto.
-
unfold init_block.
rewrite ZMap.gi.
auto.
Qed.
Theorem loadbytes_alloc_unchanged:
forall b'
ofs n,
valid_block m1 b' ->
loadbytes m2 b'
ofs n =
loadbytes m1 b'
ofs n.
Proof.
Theorem loadbytes_alloc_same:
forall n ofs bytes byte,
loadbytes m2 b ofs n =
Some bytes ->
In byte bytes ->
byte =
Symbolic (
Eval Vundef)
None O.
Proof.
Opaque Pos.of_nat.
Lemma bounds_of_block_alloc:
bounds_of_block m2 b = (0,
Z.max 0
hi).
Proof.
Lemma bounds_of_block_alloc_old:
bounds_of_block m1 b = (0,0).
Proof.
Lemma alloc_mask:
mask m2 b =
alignment_of_size hi.
Proof.
Lemma bounds_of_block_alloc_eq:
forall b',
bounds_of_block m2 b' =
if eq_block b'
b
then (0,
Z.max 0
hi)
else if plt b' (
nextblock m2)
then bounds_of_block m1 b'
else (0,0).
Proof.
Lemma alloc_in_bound:
forall b0 o,
in_bound_m (
Int.unsigned o)
m1 b0 ->
in_bound_m (
Int.unsigned o)
m2 b0.
Proof.
Lemma mask_alloc_old:
mask m1 b =
O.
Proof.
Lemma nat_mask_alloc_old:
nat_mask m1 b =
Int.mone.
Proof.
Lemma compat_alloc:
forall cm q,
compat_m m2 q cm ->
compat_m m1 q cm.
Proof.
Lemma norm_alloc:
forall e v,
Mem.mem_norm m1 e =
v ->
v <>
Vundef ->
Mem.mem_norm m2 e =
v.
Proof.
Lemma normalise_alloc:
forall e,
Values.Val.lessdef (
Mem.mem_norm m1 e) (
Mem.mem_norm m2 e).
Proof.
Definition block_undefs lo hi delta m2 b2 :=
forall ofs :
Z,
lo <=
ofs <
hi ->
ZMap.get (
ofs +
delta) (
mem_contents m2) #
b2 =
Symbolic (
Eval Vundef )
None 0.
Lemma nth_error_init_block':
forall n b cur ofs,
(
ofs <
n)%
nat ->
nth_error (
init_block'
n b cur)
ofs =
Some (
Symbolic ((
Eundef b (
Int.add cur (
Int.repr (
Z.of_nat ofs)))))
None O).
Proof.
Lemma init_block_length:
forall n b i,
length (
init_block'
n b i) =
n.
Proof.
induction n; simpl; intros; try omega.
rewrite IHn; omega.
Qed.
Lemma get_init_block:
forall ofs lo hi b,
ZMap.get ofs (
init_block lo hi b) =
Symbolic (
Eval Vundef)
None O.
Proof.
Lemma mem_alloc_block_undefs:
block_undefs 0
hi 0
m2 b.
Proof.
Lemma alloc_contents_old:
forall b' (
DIFF:
b' <>
b),
(
mem_contents m2) #
b' = (
mem_contents m1) #
b'.
Proof.
End ALLOC.
Lemma bounds_size:
forall m b lo hi,
Mem.bounds_of_block m b = (
lo,
hi) ->
Mem.size_block m b =
hi -
lo.
Proof.
Lemma mbla_pred_nextblock:
forall sz n,
(
forall b,
Ple (
Pos.of_nat n)
b ->
sz b = (0)) ->
Alloc.size_mem_aux MA (
Alloc.mk_block_list_aux sz n) =
Alloc.size_mem_aux MA (
Alloc.mk_block_list_aux sz (
pred n)).
Proof.
Lemma fold_left_align:
let f :=
fun acc (
bsz:
block *
Z) =>
let (
_,
sz) :=
bsz in align (
align acc (
two_power_nat MA) +
Z.max 0
sz) (
two_power_nat MA)
in
forall l z,
fold_left f l (
align z (
two_power_nat MA)) =
fold_left f l 0 +
align z (
two_power_nat MA).
Proof.
induction l;
simpl;
intros;
eauto.
unfold f at 2.
des a.
rewrite !
IHl.
generalize tpMA_pos.
intro.
rewrite <- !
align_distr by lia.
rewrite align_align by lia.
rewrite align_0 by lia.
simpl.
lia.
Qed.
Lemma size_block_pos:
forall m b,
0 <=
Mem.size_block m b.
Proof.
Lemma mbl_pos:
forall m,
Forall (
fun x :
block *
Z => 0 <=
snd x) (
mk_block_list m).
Proof.
Local Hint Resolve valid_block_alloc fresh_block_alloc valid_new_block:
mem.
Local Hint Resolve valid_access_alloc_other valid_access_alloc_same:
mem.
Properties related to free.
Theorem range_perm_free:
forall m1 b lo hi,
range_perm m1 b lo hi Cur Freeable ->
has_bounds m1 b lo hi =
true ->
{
m2:
mem |
free m1 b lo hi =
Some m2 }.
Proof.
intros;
unfold free.
rewrite pred_dec_true;
auto.
rewrite H0.
econstructor;
eauto.
Defined.
Section FREE.
Variable m1:
mem.
Variable bf:
block.
Variables lo hi:
Z.
Variable m2:
mem.
Hypothesis FREE:
free m1 bf lo hi =
Some m2.
Theorem free_range_perm:
range_perm m1 bf lo hi Cur Freeable.
Proof.
Lemma free_result:
m2 =
unchecked_free m1 bf lo hi.
Proof.
unfold free in FREE.
repeat destr_in FREE.
Qed.
Lemma mask_free:
forall b',
Mem.mask m1 b' =
Mem.mask m2 b'.
Proof.
intros.
unfold Mem.free in FREE.
repeat destr_in FREE;
inv FREE.
reflexivity.
Qed.
Theorem size_of_block_free:
forall b',
bf <>
b' ->
size_of_block m1 b' =
size_of_block m2 b'.
Proof.
Theorem nextblock_free:
nextblock m2 =
nextblock m1.
Proof.
Theorem valid_block_free_1:
forall b,
valid_block m1 b ->
valid_block m2 b.
Proof.
Theorem valid_block_free_2:
forall b,
valid_block m2 b ->
valid_block m1 b.
Proof.
Local Hint Resolve valid_block_free_1 valid_block_free_2:
mem.
Theorem perm_free_1:
forall b ofs k p,
b <>
bf \/
ofs <
lo \/
hi <=
ofs ->
perm m1 b ofs k p ->
perm m2 b ofs k p.
Proof.
Theorem perm_free_2:
forall ofs k p,
lo <=
ofs <
hi -> ~
perm m2 bf ofs k p.
Proof.
Theorem perm_free_3:
forall b ofs k p,
perm m2 b ofs k p ->
perm m1 b ofs k p.
Proof.
Theorem perm_free_inv:
forall b ofs k p,
perm m1 b ofs k p ->
(
b =
bf /\
lo <=
ofs <
hi) \/
perm m2 b ofs k p.
Proof.
Theorem valid_access_free_1:
forall chunk b ofs p,
valid_access m1 chunk b ofs p ->
b <>
bf \/
lo >=
hi \/
ofs +
size_chunk chunk <=
lo \/
hi <=
ofs ->
valid_access m2 chunk b ofs p.
Proof.
intros.
inv H.
constructor;
auto with mem.
red;
intros.
eapply perm_free_1;
eauto.
destruct (
zlt lo hi).
intuition.
right.
omega.
Qed.
Theorem valid_access_free_2:
forall chunk ofs p,
lo <
hi ->
ofs +
size_chunk chunk >
lo ->
ofs <
hi ->
~(
valid_access m2 chunk bf ofs p).
Proof.
Theorem valid_access_free_inv_1:
forall chunk b ofs p,
valid_access m2 chunk b ofs p ->
valid_access m1 chunk b ofs p.
Proof.
Theorem valid_access_free_inv_2:
forall chunk ofs p,
valid_access m2 chunk bf ofs p ->
lo >=
hi \/
ofs +
size_chunk chunk <=
lo \/
hi <=
ofs.
Proof.
Theorem load_free:
forall chunk b ofs,
b <>
bf \/
lo >=
hi \/
ofs +
size_chunk chunk <=
lo \/
hi <=
ofs ->
load chunk m2 b ofs =
load chunk m1 b ofs.
Proof.
Theorem load_free_2:
forall chunk b ofs v,
load chunk m2 b ofs =
Some v ->
load chunk m1 b ofs =
Some v.
Proof.
Theorem loadbytes_free:
forall b ofs n,
b <>
bf \/
lo >=
hi \/
ofs +
n <=
lo \/
hi <=
ofs ->
loadbytes m2 b ofs n =
loadbytes m1 b ofs n.
Proof.
Theorem loadbytes_free_2:
forall b ofs n bytes,
loadbytes m2 b ofs n =
Some bytes ->
loadbytes m1 b ofs n =
Some bytes.
Proof.
End FREE.
Lemma unchecked_free_bounds':
forall m b lo hi b',
bounds_of_block (
unchecked_free m b lo hi)
b' =
if eq_block b'
b
then match bounds_of_block m b with
(
lo',
hi') => (
if zeq lo'
lo &&
zeq hi'
hi
then (0,0)
else (
lo',
hi'))
end
else bounds_of_block m b'.
Proof.
Lemma free_bounds':
forall m b lo hi m'
b',
free m b lo hi =
Some m' ->
bounds_of_block m'
b' =
bounds_of_block m b' \/
bounds_of_block m'
b' = (0,0).
Proof.
intros m b lo hi m'
b'
FREE.
unfold Mem.free in FREE.
repeat destr_in FREE;
inv FREE.
rewrite unchecked_free_bounds'.
repeat destr.
Qed.
Lemma free_abi:
forall m b lo hi m'
(
FREE:
Mem.free m b lo hi =
Some m')
j (
ABI:
Mem.all_blocks_injected j m),
Mem.all_blocks_injected j m'.
Proof.
red; intros.
destruct (Mem.free_bounds' _ _ _ _ _ b0 FREE).
eapply ABI; eauto. congruence.
rewrite H in H1; inv H1. omega.
Qed.
Lemma free_mask:
forall m b lo hi m'
b',
free m b lo hi =
Some m' ->
mask m'
b' =
mask m b'.
Proof.
intros m b lo hi m'
b'
FREE.
unfold Mem.free in FREE.
repeat destr_in FREE;
inv FREE.
reflexivity.
Qed.
Lemma freelist_mask:
forall l m m'
b',
free_list m l =
Some m' ->
mask m'
b' =
mask m b'.
Proof.
induction l;
simpl;
intros;
eauto.
inv H;
auto.
des a;
des p.
destr_in H.
specialize (
IHl _ _ b'
H).
rewrite IHl.
eapply free_mask;
eauto.
Qed.
Lemma freelist_abi:
forall l m m'
(
FREE:
Mem.free_list m l =
Some m')
j (
ABI:
Mem.all_blocks_injected j m),
Mem.all_blocks_injected j m'.
Proof.
induction l;
simpl;
intros;
eauto.
inv FREE;
auto.
destruct a as [[
b lo]
hi].
des (
Mem.free m b lo hi).
eapply IHl;
eauto.
eapply free_abi;
eauto.
Qed.
Lemma compat_free:
forall m b lo hi m'
(
FREE:
Mem.free m b lo hi =
Some m')
cm q (
COMP:
Mem.compat_m m q cm),
Mem.compat_m m'
q cm.
Proof.
intros.
inv COMP.
constructor;
simpl;
intros.
-
destruct (
free_bounds'
_ _ _ _ _ b0 FREE).
+
rewrite H0 in H;
eauto.
+
rewrite H0 in H.
unfold in_bound in H;
simpl in H;
omega.
-
destruct (
Mem.free_bounds'
_ _ _ _ _ b0 FREE);
rewrite H2 in H0;
eauto;
destruct (
Mem.free_bounds'
_ _ _ _ _ b'
FREE);
rewrite H3 in H1;
eauto;
unfold in_bound in *;
simpl in *;
try omega.
-
unfold Mem.nat_mask.
erewrite Mem.free_mask;
eauto.
Qed.
Lemma compat_unchecked_free:
forall m b lo hi
q cm (
COMP:
Mem.compat_m m q cm),
Mem.compat_m (
unchecked_free m b lo hi)
q cm.
Proof.
intros.
inv COMP.
constructor;
simpl;
intros.
-
rewrite unchecked_free_bounds'
in H.
destruct (
eq_block b0 b);
eauto.
subst.
destruct (
bounds_of_block m b)
eqn:?.
destruct (
zeq z lo &&
zeq z0 hi);
eauto.
red in H;
simpl in H;
omega.
apply addr_space;
auto.
congruence.
-
rewrite unchecked_free_bounds'
in *.
destruct (
eq_block b0 b), (
eq_block b'
b);
subst;
eauto;
destruct (
bounds_of_block m b)
eqn:?;
destruct (
zeq z lo &&
zeq z0 hi);
eauto.
red in H0;
simpl in H0;
omega.
apply overlap;
auto.
congruence.
red in H1;
simpl in H1;
omega.
apply overlap;
auto.
congruence.
-
unfold Mem.nat_mask.
erewrite unchecked_free_mask;
eauto.
Qed.
Lemma norm_free:
forall m1 bf lo hi m2 (
FREE:
free m1 bf lo hi =
Some m2),
forall e v,
Mem.mem_norm m2 e =
v ->
v <>
Vundef ->
Mem.mem_norm m1 e =
v.
Proof.
Lemma norm_unchecked_free:
forall m1 bf lo hi,
forall e v,
Mem.mem_norm (
unchecked_free m1 bf lo hi)
e =
v ->
v <>
Vundef ->
Mem.mem_norm m1 e =
v.
Proof.
Lemma normalise_free:
forall m1 bf lo hi m2 (
FREE:
free m1 bf lo hi =
Some m2),
forall e,
Values.Val.lessdef (
Mem.mem_norm m2 e) (
Mem.mem_norm m1 e).
Proof.
intros.
generalize (
norm_free _ _ _ _ _ FREE e _ eq_refl).
intro H0.
des (
mem_norm m2 e);
auto;
rewrite <-
H0;
auto;
destr.
Qed.
Lemma unchecked_free_bounds_of_block:
forall m b lo hi,
bounds_of_block (
unchecked_free m b lo hi)
b =
match (
bounds_of_block m b)
with
(
lo',
hi') =>
if zeq lo'
lo &&
zeq hi'
hi then (0,0)
else (
lo',
hi')
end.
Proof.
Lemma unchecked_free_bounds_of_block_other:
forall m b lo hi b',
b <>
b' ->
bounds_of_block (
unchecked_free m b lo hi)
b' =
bounds_of_block m b'.
Proof.
Lemma bounds_free:
forall m m'
b b'
lo hi ,
Mem.free m b lo hi =
Some m' ->
b <>
b' ->
Mem.bounds_of_block m'
b' =
Mem.bounds_of_block m b'.
Proof.
Lemma bounds_freelist:
forall fbl m m'
b ,
Mem.free_list m fbl =
Some m' ->
~
In b (
map (
fun a =>
fst (
fst a))
fbl) ->
Mem.bounds_of_block m'
b =
Mem.bounds_of_block m b.
Proof.
induction fbl;
simpl;
intros.
inv H.
auto.
destruct a as [[
b'
lo]
hi].
destruct (
Mem.free m b'
lo hi)
eqn:?;
try congruence.
intros.
intuition try congruence.
simpl in *.
generalize (
IHfbl _ _ _ H H2).
intro A;
rewrite A.
erewrite bounds_free;
eauto.
Qed.
Lemma range_perm_freelist:
forall fbl m m'
b,
Mem.free_list m fbl =
Some m' ->
~
In b (
map (
fun a =>
fst (
fst a))
fbl) ->
forall lo hi k p,
Mem.range_perm m'
b lo hi k p ->
Mem.range_perm m b lo hi k p.
Proof.
induction fbl;
simpl;
intros.
inv H.
auto.
destruct a as [[
b'
lo']
hi'].
destruct (
Mem.free m b'
lo'
hi')
eqn:?;
try congruence.
intros.
intuition try congruence.
simpl in *.
generalize (
IHfbl _ _ _ H H3 _ _ _ _ H1).
unfold Mem.range_perm.
intros.
specialize (
H0 ofs H4).
eapply Mem.perm_free_3;
eauto.
Qed.
Lemma contents_free:
forall m b lo hi m'
b',
Mem.free m b lo hi =
Some m' ->
b <>
b' ->
(
Mem.mem_contents m) !!
b' = (
Mem.mem_contents m') !!
b'.
Proof.
Lemma contents_freelist:
forall (
fbl :
list (
block *
Z *
Z)) (
m m' :
mem) (
b' :
block),
Mem.free_list m fbl =
Some m' ->
(
Mem.mem_contents m) !!
b' = (
Mem.mem_contents m') !!
b'.
Proof.
induction fbl;
simpl;
intros;
eauto.
inv H;
auto.
repeat destr_in H.
rewrite <- (
IHfbl _ _ _ H).
rewrite (
Mem.free_contents _ _ _ _ _ Heqo).
auto.
Qed.
Lemma freelist_valid:
forall fbl m m'
b,
Mem.free_list m fbl =
Some m' ->
~
Mem.valid_block m'
b ->
~
Mem.valid_block m b.
Proof.
induction fbl;
simpl;
intros.
inv H;
auto.
destruct a as [[
b0 lo]
hi].
destruct (
Mem.free m b0 lo hi)
eqn:?;
try congruence.
generalize (
IHfbl _ _ _ H H0).
intros.
intro.
generalize (
Mem.valid_block_free_1 _ _ _ _ _ Heqo _ H2);
auto.
Qed.
Lemma permut_filter:
forall A f (
l l' :
list A)
(
P:
Permutation l l'),
Permutation (
filter f l) (
filter f l').
Proof.
induction 1;
simpl;
intros;
eauto.
destr.
constructor;
auto.
destr;
destr;
try reflexivity.
apply perm_swap.
eapply Permutation_trans;
eauto.
Qed.
Definition size_mem_blocks (
bl:
list (
block *
Z *
Z)) (
z:
Z) :
Z :=
fold_left
(
fun acc x =>
align acc (
two_power_nat MA) +
Z.max 0 (
snd x -
snd (
fst x)))
bl z.
Definition list_of_blocks (
bl:
list (
block*
Z*
Z)) :
list (
block*
Z) :=
map (
fun a :
ident *
Z *
Z => (
fst (
fst a),
snd a -
snd (
fst a)))
bl.
Lemma size_mem_blocks_al:
forall l z,
size_mem_al (
two_power_nat MA) (
list_of_blocks l) (
align z (
two_power_nat MA)) =
align (
size_mem_blocks l z) (
two_power_nat MA).
Proof.
Lemma size_mem_al_rev:
forall l z,
size_mem_al (
two_power_nat MA)
l z =
size_mem_al (
two_power_nat MA) (
rev l)
z.
Proof.
Lemma size_mem_app:
forall a b c,
size_mem_al (
two_power_nat MA) (
a++
b)
c =
size_mem_al (
two_power_nat MA)
b (
size_mem_al (
two_power_nat MA)
a c).
Proof.
Lemma size_mem_al_aligned:
forall l z,
z =
align z (
two_power_nat MA) ->
size_mem_al (
two_power_nat MA)
l z =
align (
size_mem_al (
two_power_nat MA)
l z) (
two_power_nat MA).
Proof.
Lemma size_mem_aux_aligned:
forall l,
size_mem_aux MA l =
align (
size_mem_aux MA l) (
two_power_nat MA).
Proof.
Local Hint Resolve valid_block_free_1 valid_block_free_2
perm_free_1 perm_free_2 perm_free_3
valid_access_free_1 valid_access_free_inv_1:
mem.
Properties related to drop_perm
Theorem range_perm_drop_1:
forall m b lo hi p m',
drop_perm m b lo hi p =
Some m' ->
range_perm m b lo hi Cur Freeable.
Proof.
Theorem range_perm_drop_2:
forall m b lo hi p,
range_perm m b lo hi Cur Freeable -> {
m' |
drop_perm m b lo hi p =
Some m' }.
Proof.
Section DROP.
Variable m:
mem.
Variable b:
block.
Variable lo hi:
Z.
Variable p:
permission.
Variable m':
mem.
Hypothesis DROP:
drop_perm m b lo hi p =
Some m'.
Theorem mask_drop_perm:
forall b',
mask m b' =
mask m'
b'.
Proof.
revert DROP;
unfold drop_perm;
destr_cond_match;
try congruence.
intro A;
inv A.
intros.
unfold mask;
reflexivity.
Qed.
Theorem size_of_block_drop_perm:
forall b',
size_of_block m b' =
size_of_block m'
b'.
Proof.
revert DROP;
unfold drop_perm;
destr_cond_match;
try congruence.
intro A;
inv A.
intros.
unfold size_of_block;
reflexivity.
Qed.
Theorem nextblock_drop:
nextblock m' =
nextblock m.
Proof.
Theorem drop_perm_valid_block_1:
forall b',
valid_block m b' ->
valid_block m'
b'.
Proof.
Theorem drop_perm_valid_block_2:
forall b',
valid_block m'
b' ->
valid_block m b'.
Proof.
Theorem perm_drop_1:
forall ofs k,
lo <=
ofs <
hi ->
perm m'
b ofs k p.
Proof.
Theorem perm_drop_2:
forall ofs k p',
lo <=
ofs <
hi ->
perm m'
b ofs k p' ->
perm_order p p'.
Proof.
Theorem perm_drop_3:
forall b'
ofs k p',
b' <>
b \/
ofs <
lo \/
hi <=
ofs ->
perm m b'
ofs k p' ->
perm m'
b'
ofs k p'.
Proof.
Theorem perm_drop_4:
forall b'
ofs k p',
perm m'
b'
ofs k p' ->
perm m b'
ofs k p'.
Proof.
Lemma valid_access_drop_1:
forall chunk b'
ofs p',
b' <>
b \/
ofs +
size_chunk chunk <=
lo \/
hi <=
ofs \/
perm_order p p' ->
valid_access m chunk b'
ofs p' ->
valid_access m'
chunk b'
ofs p'.
Proof.
Lemma valid_access_drop_2:
forall chunk b'
ofs p',
valid_access m'
chunk b'
ofs p' ->
valid_access m chunk b'
ofs p'.
Proof.
intros.
destruct H;
split;
auto.
red;
intros.
eapply perm_drop_4;
eauto.
Qed.
Theorem load_drop:
forall chunk b'
ofs,
b' <>
b \/
ofs +
size_chunk chunk <=
lo \/
hi <=
ofs \/
perm_order p Readable ->
load chunk m'
b'
ofs =
load chunk m b'
ofs.
Proof.
Theorem loadbytes_drop:
forall b'
ofs n,
b' <>
b \/
ofs +
n <=
lo \/
hi <=
ofs \/
perm_order p Readable ->
loadbytes m'
b'
ofs n =
loadbytes m b'
ofs n.
Proof.
Lemma drop_perm_bounds:
forall b',
bounds_of_block m b' =
bounds_of_block m'
b'.
Proof.
Lemma nat_mask_drop_perm:
forall b',
nat_mask m b' =
nat_mask m'
b'.
Proof.
Lemma drop_perm_blocksize:
mem_blocksize m' =
mem_blocksize m.
Proof.
Lemma drop_perm_size_block:
size_block m' =
size_block m.
Proof.
Lemma drop_perm_mask:
mask m' =
mask m.
Proof.
Lemma drop_perm_nextblock:
nextblock m' =
nextblock m.
Proof.
Lemma drop_perm_mk_block_list:
mk_block_list m =
mk_block_list m'.
Proof.
End DROP.
Section DROPLIST.
Variable bl:
list (
block*
Z*
Z).
Variable m:
mem.
Variable p:
permission.
Variable m':
mem.
Hypothesis DROP:
drop_perm_list m bl p =
Some m'.
Theorem mask_drop_perm_list:
forall b',
mask m b' =
mask m'
b'.
Proof.
revert bl m p m'
DROP;
induction bl;
simpl in *;
intros;
eauto.
inv DROP;
auto.
repeat destr_in DROP.
erewrite IHl; [|
eauto].
eapply mask_drop_perm;
eauto.
Qed.
Theorem size_of_block_drop_perm_list:
forall b',
size_of_block m b' =
size_of_block m'
b'.
Proof.
revert bl m p m'
DROP;
induction bl;
simpl in *;
intros;
eauto.
inv DROP;
auto.
repeat destr_in DROP.
erewrite IHl; [|
eauto].
eapply size_of_block_drop_perm;
eauto.
Qed.
Theorem nextblock_drop_list:
nextblock m' =
nextblock m.
Proof.
revert bl m p m'
DROP;
induction bl;
simpl in *;
intros;
eauto.
inv DROP;
auto.
repeat destr_in DROP.
rewrite (
nextblock_drop _ _ _ _ _ _ DROP).
eauto.
Qed.
Theorem drop_perm_valid_block_1_list:
forall b',
valid_block m b' ->
valid_block m'
b'.
Proof.
Theorem drop_perm_valid_block_2_list:
forall b',
valid_block m'
b' ->
valid_block m b'.
Proof.
Theorem perm_drop_perm:
forall m b lo hi p m',
Mem.drop_perm m b lo hi p =
Some m' ->
forall bb ofs k p',
perm m'
bb ofs k p' <->
(
if eq_block b bb
then
if zle lo ofs &&
zlt ofs hi
then perm_order p p'
else perm m bb ofs k p'
else perm m bb ofs k p').
Proof.
Lemma zle_zlt_false:
forall a b c,
zle a b &&
zlt b c =
false ->
b <
a \/
b >=
c.
Proof.
intros.
rewrite andb_false_iff in H.
intuition.
destruct (
zle a b);
try discriminate;
lia.
destruct (
zlt b c);
try discriminate;
lia.
Qed.
Theorem perm_drop_perm_list:
list_norepet (
map fst (
map fst bl)) ->
forall b ofs k p',
perm m'
b ofs k p' <->
((
In b (
map fst (
map fst bl)) ->
forall lo hi,
In (
b,
lo,
hi)
bl ->
(
lo <=
ofs <
hi ->
perm_order p p') /\
(~ (
lo <=
ofs <
hi) ->
perm m b ofs k p')) /\
(~
In b (
map fst (
map fst bl)) ->
perm m b ofs k p')).
Proof.
revert bl m p m'
DROP;
induction bl;
simpl in *;
intros;
eauto.
inv DROP.
tauto.
destruct a as [[
bb lo]
hi].
destruct (
drop_perm_list m l p)
eqn:?;
try congruence.
simpl in *.
inv H.
rewrite (
perm_drop_perm _ _ _ _ _ _ DROP).
repeat destr_cond_match;
subst.
-
split;
intros;
auto.
+
split;
intros;
try congruence.
destruct H1.
inv H1.
rewrite zle_zlt in Heqb0.
tauto.
rewrite map_map in H2.
rewrite in_map_iff in H2.
exfalso;
apply H2.
eexists;
split;
eauto.
simpl;
auto.
exfalso;
apply H0;
auto.
+
destruct H as [
A B].
trim A;
auto.
specialize (
A _ _ (
or_introl eq_refl)).
destruct A as [
A C].
apply A.
apply zle_zlt;
auto.
-
rewrite IHl;
eauto.
apply zle_zlt_false in Heqb0.
split;
intros;
eauto.
split;
intros.
repeat destr_and.
destruct H1.
inv H1.
split;
intros;
try lia.
apply H4.
rewrite map_map,
in_map_iff.
intro;
dex;
destr_and.
apply H2.
rewrite map_map,
in_map_iff.
eexists;
split;
eauto.
rewrite map_map,
in_map_iff in H2.
exfalso;
apply H2.
exists (
b,
lo0,
hi0);
split;
simpl;
auto.
exfalso;
apply H0;
auto.
destruct H.
trim H;
auto.
specialize (
H _ _ (
or_introl eq_refl)).
destruct H .
split;
try congruence.
intros.
apply H1.
lia.
-
rewrite IHl;
eauto.
repeat split;
intros;
repeat destr_and;
eauto;
destr;
try des H0;
try des H1.
specialize (
H i _ _ i0);
destr_and;
auto.
specialize (
H i _ _ i0);
destr_and;
auto.
specialize (
H (
or_intror H0)
_ _ (
or_intror H1));
destr_and;
auto.
specialize (
H (
or_intror H0)
_ _ (
or_intror H1));
destr_and;
auto.
Qed.
Lemma drop_perm_bounds_list:
forall b',
bounds_of_block m b' =
bounds_of_block m'
b'.
Proof.
revert bl m p m'
DROP;
induction bl;
simpl in *;
intros;
eauto.
congruence.
repeat destr_in DROP.
eapply drop_perm_bounds in DROP;
eauto.
erewrite IHl;
eauto.
Qed.
Lemma nat_mask_drop_perm_list:
forall b',
nat_mask m b' =
nat_mask m'
b'.
Proof.
revert bl m p m'
DROP;
induction bl;
simpl in *;
intros;
eauto.
congruence.
repeat destr_in DROP.
eapply nat_mask_drop_perm in DROP;
eauto.
erewrite IHl;
eauto.
Qed.
Lemma drop_perm_blocksize_list:
mem_blocksize m' =
mem_blocksize m.
Proof.
revert bl m p m'
DROP;
induction bl;
simpl in *;
intros;
eauto.
congruence.
repeat destr_in DROP.
eapply drop_perm_blocksize in DROP;
eauto.
eapply IHl in Heqo;
eauto.
congruence.
Qed.
Lemma drop_perm_size_block_list:
size_block m' =
size_block m.
Proof.
revert bl m p m'
DROP;
induction bl;
simpl in *;
intros;
eauto.
congruence.
repeat destr_in DROP.
eapply drop_perm_size_block in DROP;
eauto.
rewrite DROP.
erewrite IHl;
eauto.
Qed.
Lemma drop_perm_mask_list:
mask m' =
mask m.
Proof.
revert bl m p m'
DROP;
induction bl;
simpl in *;
intros;
eauto.
congruence.
repeat destr_in DROP.
eapply drop_perm_mask in DROP;
eauto.
apply IHl in Heqo;
eauto.
congruence.
Qed.
Lemma drop_perm_nextblock_list:
nextblock m' =
nextblock m.
Proof.
revert bl m p m'
DROP;
induction bl;
simpl in *;
intros;
eauto.
congruence.
repeat destr_in DROP.
eapply drop_perm_nextblock in DROP;
eauto.
rewrite DROP;
eapply IHl;
eauto.
Qed.
Lemma drop_perm_mk_block_list_list:
mk_block_list m =
mk_block_list m'.
Proof.
revert bl m p m'
DROP;
induction bl;
simpl in *;
intros;
eauto.
congruence.
repeat destr_in DROP.
eapply drop_perm_mk_block_list in DROP;
eauto.
rewrite <-
DROP;
eapply IHl;
eauto.
Qed.
Lemma drop_perm_contents:
forall m b lo hi p m',
drop_perm m b lo hi p =
Some m' ->
mem_contents m =
mem_contents m'.
Proof.
clear; intros.
simp H.
Qed.
Lemma drop_perm_list_contents:
mem_contents m =
mem_contents m'.
Proof.
revert bl m p m'
DROP;
induction bl;
simpl in *;
intros;
eauto.
congruence.
repeat destr_in DROP.
eapply drop_perm_contents in DROP.
apply IHl in Heqo.
congruence.
Qed.
End DROPLIST.
Generic injections
A memory state
m1 generically injects into another memory state
m2 via the
memory injection
f if the following conditions hold:
-
each access in m2 that corresponds to a valid access in m1
is itself valid;
-
the memory value associated in m1 to an accessible address
must inject into m2's memory value at the corersponding address.
Lemma load_in_bound:
forall chunk b ofs m v,
load chunk m b ofs =
Some v ->
in_bound_m ofs m b.
Proof.
Lemma alignment_of_size_inj:
forall n n0,
Z.max 0
n >=
Z.max 0
n0 ->
(
alignment_of_size n >=
alignment_of_size n0)%
nat.
Proof.
Ltac egt H :=
match type of H with
|
context [
get_type ?
v =
get_type ?
v'] =>
unfold get_type in H;
destruct (
wt_expr_dec v Tint);
destruct (
wt_expr_dec v Tfloat);
destruct (
wt_expr_dec v Tsingle);
destruct (
wt_expr_dec v Tlong);
destruct (
wt_expr_dec v'
Tint);
destruct (
wt_expr_dec v'
Tfloat);
destruct (
wt_expr_dec v'
Tsingle);
destruct (
wt_expr_dec v'
Tlong);
destr
end.
Lemma mr_vundef_get_type:
forall mr (
wf:
wf_mr mr)
v v'
(
Rel:
mr v v'),
same_eval v (
Eval Vundef) \/
get_type v =
get_type v'.
Proof.
Lemma list_forall2_and:
forall A B P Q (
l:
list A) (
l':
list B),
list_forall2 (
fun a b =>
P a b)
l l' ->
list_forall2 (
fun a b =>
Q a b)
l l' ->
list_forall2 (
fun a b =>
P a b /\
Q a b)
l l'.
Proof.
induction 1; simpl; intros.
constructor.
inv H1.
constructor; auto.
Qed.
Lemma match_eSexpr:
forall al em a b c d e,
eSexpr al em match a with
Tint =>
b
|
Tlong =>
c
|
Tfloat =>
d
|
Tsingle =>
e
end =
match a with
Tint =>
eSexpr al em b
|
Tlong =>
eSexpr al em c
|
Tfloat =>
eSexpr al em d
|
Tsingle =>
eSexpr al em e
end.
Proof.
intros.
repeat destr.
Qed.
Lemma encode_val_memval_rel:
forall mr (
wf:
wf_mr mr)
v v'
chunk,
mr v v' ->
list_forall2 (
memval_rel mr) (
encode_val chunk v) (
encode_val chunk v').
Proof.
Lemma free_list_bounds_after:
forall bl m m',
Mem.free_list m bl =
Some m' ->
forall b lo0 hi0,
Mem.bounds_of_block m'
b = (
lo0,
hi0) ->
hi0 -
lo0 <> 0 ->
Mem.bounds_of_block m b = (
lo0,
hi0).
Proof.
induction bl;
simpl;
intros;
auto.
-
inv H;
auto.
-
destruct a as [[
b'
lo]
hi].
destruct (
Mem.free m b'
lo hi)
eqn:?;
try discriminate.
eapply IHbl in H;
eauto.
destruct (
Mem.free_bounds'
_ _ _ _ _ b Heqo);
auto.
congruence.
rewrite H in H2;
inv H2;
omega.
Qed.
Ltac genAlloc :=
repeat match goal with
|
H:
Mem.alloc ?
m ?
lo ?
hi ?
bt =
Some (?
m',?
b') |-
_ =>
generalize (
Mem.nextblock_alloc _ _ _ _ _ _ H);
generalize (
Mem.alloc_result _ _ _ _ _ _ H);
let x :=
fresh in let y :=
fresh "
NA"
in
intros x y;
subst;
clear H;
try rewrite y in *
end.
Lemma align_small:
forall al (
AlPos:
al > 0)
x (
Xsmall: 0 <
x <=
al),
align x al =
al.
Proof.
intros.
unfold align.
elim_div.
intuition.
assert (
z0 =
x - 1 +
al * (1 -
z))
by lia.
clear H;
subst.
assert (
al *
z >= 0)
by lia.
destruct (
zeq 0 (
al*
z)).
symmetry in e.
apply Zmult_integral in e.
destruct e.
lia.
subst.
change (1 - 0)
with 1
in *.
rewrite Z.mul_1_r in *.
assert (
x - 1 < 0)
by lia.
assert (
x = 0)
by lia.
subst.
lia.
generalize (
Zmult_gt_0_lt_0_reg_r _ z AlPos).
intro A.
trim A.
lia.
destruct (
zlt z 2).
assert (
z=1)
by lia.
subst;
lia.
clear -
H3 H1 H0 g AlPos.
exfalso.
assert (
x - 1 +
al * (1 -
z) <
al * (2 -
z)).
lia.
assert (2 -
z <= 0).
lia.
apply Zmult_le_compat_l with (
p:=
al)
in H2;
lia.
Qed.
Lemma mul_lt_slack:
forall a b c d,
0 <=
d <
a ->
a *
b <
a *
c ->
a *
b <
a *
c -
d.
Proof.
intros.
eapply (
Z.le_lt_trans _ (
a * (
c-1))). 2:
lia.
assert (
b <
c).
nia.
nia.
Qed.
Lemma align_mul:
forall al (
AlPos:
al > 0)
x,
align (
x *
al)
al =
x *
al.
Proof.
Lemma align_big_smaller:
forall z n,
n >= 0 ->
z >= 0 ->
align (
z+
n) (
two_power_nat MA) <= (
two_power_nat MA) *
n +
align z (
two_power_nat MA).
Proof.
Lemma alloc_perm:
forall m n m'
b'
bt
(
AB:
Mem.alloc m 0
n bt =
Some (
m',
b'))
b o k p
(
Cond:
Mem.perm m b o k p \/
(
b =
b' /\ 0 <=
o <
n)),
Mem.perm m'
b o k p.
Proof.
Lemma alloc_perm_inv:
forall m n m'
b'
bt
(
AB:
Mem.alloc m 0
n bt =
Some (
m',
b'))
b o k p
(
PERM:
Mem.perm m'
b o k p),
Mem.perm m b o k p \/
(
b =
b' /\ 0 <=
o <
n).
Proof.
Lemma alloc_lo_0:
forall m lo hi bt,
alloc m lo hi bt =
alloc m 0
hi bt.
Proof.
Lemma in_bound_valid:
forall m b o,
Mem.in_bound_m o m b ->
Mem.valid_block m b.
Proof.
Lemma a_mask:
forall m sz m'
sp bt,
Mem.alloc m 0
sz bt =
Some (
m',
sp) ->
forall b,
Mem.mask m'
b =
if plt b sp then Mem.mask m b
else if peq b sp then Alloc.alignment_of_size sz
else O.
Proof.
Lemma a_mem_contents:
forall m1 sz m2 sp bt (
ALLOC:
Mem.alloc m1 0
sz bt =
Some (
m2,
sp)),
Maps.PMap.get sp (
Mem.mem_contents m2) =
Mem.init_block 0
sz sp.
Proof.
Lemma a_mem_contents':
forall m1 sz m2 sp bt (
ALLOC:
Mem.alloc m1 0
sz bt =
Some (
m2,
sp)),
(
Mem.mem_contents m2) =
Maps.PMap.set sp (
Mem.init_block 0
sz sp) (
Mem.mem_contents m1).
Proof.
clear.
intros.
destr.
subst.
unfold Mem.alloc,
Mem.low_alloc in ALLOC.
destr_in ALLOC;
inv ALLOC;
simpl.
auto.
Qed.
Lemma init_block_spec_out:
forall ofs sz b,
ofs < 0 \/
ofs >=
sz ->
Maps.ZMap.get ofs (
Mem.init_block 0
sz b) =
Symbolic (
Eval Vundef)
None 0.
Proof.
Lemma init_block_spec:
forall ofs sz b,
Maps.ZMap.get ofs (
Mem.init_block 0
sz b) =
Symbolic (
if zle 0
ofs &&
zlt ofs sz
then Eval Vundef
else Eval Vundef)
None 0.
Proof.
Require Import IntFacts.
Lemma get_getN:
forall t1 t2
(
CONT :
forall ofs,
Maps.ZMap.get ofs t1 =
Maps.ZMap.get ofs t2),
forall n o,
Mem.getN n o t1 =
Mem.getN n o t2.
Proof.
induction n; simpl; intros; eauto.
f_equal; auto.
Qed.
Lemma same_access_same_perm:
forall m1 m2
(
ACC:
Mem.mem_access m1 =
Mem.mem_access m2)
b o k p,
Mem.perm m1 b o k p <->
Mem.perm m2 b o k p.
Proof.
intros.
unfold Mem.perm.
rewrite ACC;
tauto.
Qed.
Lemma same_access:
forall m1 m2
(
ACC:
Mem.mem_access m1 =
Mem.mem_access m2)
chunk b ofs p,
Mem.valid_access m1 chunk b ofs p <->
Mem.valid_access m2 chunk b ofs p.
Proof.
Lemma load_contents_access:
forall m1 m2
(
CONT:
forall b ofs,
Maps.ZMap.get ofs (
Maps.PMap.get b (
Mem.mem_contents m1)) =
Maps.ZMap.get ofs (
Maps.PMap.get b (
Mem.mem_contents m2)))
(
ACC:
Mem.mem_access m1 =
Mem.mem_access m2)
b ofs chunk,
Mem.load chunk m1 b ofs =
Mem.load chunk m2 b ofs.
Proof.
Lemma perm_freelist:
forall fbl m m'
b ofs k p,
Mem.free_list m fbl =
Some m' ->
Mem.perm m'
b ofs k p ->
Mem.perm m b ofs k p.
Proof.
induction fbl;
simpl;
intros until p.
congruence.
destruct a as [[
b'
lo]
hi].
case_eq (
Mem.free m b'
lo hi);
try congruence.
intros.
eauto with mem.
Qed.
Lemma nextblock_freelist:
forall fbl m m',
Mem.free_list m fbl =
Some m' ->
Mem.nextblock m' =
Mem.nextblock m.
Proof.
induction fbl;
intros until m';
simpl.
congruence.
destruct a as [[
b lo]
hi].
case_eq (
Mem.free m b lo hi);
intros;
try congruence.
transitivity (
Mem.nextblock m0).
eauto.
eapply Mem.nextblock_free;
eauto.
Qed.
Hint Resolve two_power_nat_pos.
Lemma size_mem_blocks_rew:
forall l z,
align (
Mem.size_mem_blocks l z) (
two_power_nat MA) =
align z (
two_power_nat MA) +
align (
Mem.size_mem_blocks l 0) (
two_power_nat MA).
Proof.
induction l;
simpl;
intros;
auto.
rewrite align_0;
eauto.
lia.
rewrite IHl at 1.
rewrite <-
align_distr;
auto.
rewrite <-
Z.add_assoc.
f_equal.
rewrite <-
IHl.
rewrite align_0;
auto.
Qed.
Lemma exact_bounds_perm_free_list:
forall e m m'
(
LNR:
list_norepet (
map (
fun a =>
fst (
fst a))
e))
(
FREELIST:
Mem.free_list m e =
Some m'),
forall b,
In b (
map (
fun a =>
fst (
fst a))
e) ->
Mem.bounds_of_block m'
b = (0,0).
Proof.
induction e;
simpl in *;
intros;
auto.
intuition congruence.
destruct a as [[
b'
lo]
hi].
simpl in *.
destruct (
Mem.free m b'
lo hi)
eqn:?;
try congruence.
unfold Mem.free in Heqo.
repeat destr_in Heqo;
inv Heqo.
destruct H;
subst;
auto.
-
erewrite Mem.bounds_freelist;
eauto.
clear FREELIST.
rewrite Mem.unchecked_free_bounds'.
rewrite!
pred_dec_true;
auto.
unfold has_bounds in Heqb0;
repeat destr_in Heqb0.
des (
zeq lo z);
des (
zeq hi z0);
auto.
des (
zeq z z);
des (
zeq z0 z0);
auto.
inv LNR;
auto.
-
apply IHe with (
m :=
Mem.unchecked_free m b'
lo hi) (
m':=
m') ;
eauto.
intros.
clear FREELIST.
inv LNR;
auto.
Qed.
Lemma exact_bounds_free_list:
forall e m m'
(
LNR:
list_norepet (
map (
fun a =>
fst (
fst a))
e))
(
FREELIST:
Mem.free_list m e =
Some m'),
forall b,
In b (
map (
fun a =>
fst (
fst a))
e) ->
Mem.bounds_of_block m'
b = (0,0) /\
(
forall k p ofs,
~
Mem.perm m'
b ofs k p).
Proof.
Lemma free_list_freeable:
forall l m m',
Mem.free_list m l =
Some m' ->
forall b lo hi,
In (
b,
lo,
hi)
l ->
Mem.range_perm m b lo hi Cur Freeable.
Proof.
induction l;
simpl;
intros.
contradiction.
repeat destr_in H.
des H0.
inv e.
eapply free_range_perm;
eauto.
red;
intros.
eapply Mem.perm_free_3;
eauto.
exploit IHl;
eauto.
Qed.
Lemma nextblock_storev:
forall chunk m addr v m',
Mem.storev chunk m addr v =
Some m' ->
Mem.nextblock m' =
Mem.nextblock m.
Proof.
Remark free_list_nextblock:
forall l m m',
Mem.free_list m l =
Some m' ->
Mem.nextblock m' =
Mem.nextblock m.
Proof.
induction l;
simpl;
intros.
congruence.
destruct a.
destruct p.
destruct (
Mem.free m b z0 z)
as [
m1|]
eqn:?;
try discriminate.
transitivity (
Mem.nextblock m1).
eauto.
eapply Mem.nextblock_free;
eauto.
Qed.
Remark free_list_load:
forall chunk b'
l m m',
Mem.free_list m l =
Some m' ->
(
forall b lo hi,
In (
b,
lo,
hi)
l ->
Plt b'
b) ->
Mem.load chunk m'
b' 0 =
Mem.load chunk m b' 0.
Proof.
induction l;
simpl;
intros.
inv H;
auto.
destruct a.
destruct p.
destruct (
Mem.free m b z0 z)
as [
m1|]
eqn:?;
try discriminate.
transitivity (
Mem.load chunk m1 b' 0).
eauto.
eapply Mem.load_free.
eauto.
left.
assert (
Plt b'
b)
by eauto.
unfold block;
xomega.
Qed.
Lemma store_storev:
forall m c b v m',
Mem.store c m b (
Int.unsigned Int.zero)
v =
Some m' ->
Mem.storev c m (
Eval (
Vptr b Int.zero))
v =
Some m'.
Proof.
Lemma free_list_perm':
forall b lo hi l m m',
Mem.free_list m l =
Some m' ->
In (
b,
lo,
hi)
l ->
Mem.range_perm m b lo hi Cur Freeable.
Proof.
induction l;
simpl;
intros.
contradiction.
destruct a as [[
b1 lo1]
hi1].
destruct (
Mem.free m b1 lo1 hi1)
as [
m1|]
eqn:?;
try discriminate.
destruct H0.
inv H0.
eapply Mem.free_range_perm;
eauto.
red;
intros.
eapply Mem.perm_free_3;
eauto.
eapply IHl;
eauto.
Qed.
Lemma memval_rel_refl:
forall mr mv (
WF:
wf_mr mr),
memval_rel mr mv mv.
Proof.
Lemma storev_bounds:
forall chunk m1 ptr v m2,
Mem.storev chunk m1 ptr v =
Some m2 ->
forall b,
Mem.bounds_of_block m1 b =
Mem.bounds_of_block m2 b.
Proof.
Lemma storev_addr_lessdef:
forall m chunk vaddr vaddr'
v m',
Val.lessdef vaddr vaddr' ->
storev chunk m vaddr v =
Some m' ->
storev chunk m vaddr'
v =
Some m'.
Proof.
intros m chunk vaddr vaddr'
v m'
SE.
unfold storev;
destr_cond_match;
try discriminate.
generalize (
lessdef_eqm m _ _ SE).
rewrite Heqv0.
intro A;
inv A.
tauto.
Qed.
Lemma perm_unchecked_free:
forall
m bb lo hi
(
Bnds:
Mem.bounds_of_block m bb = (
lo,
hi))
m'
(
UFL:
Mem.unchecked_free m bb lo hi =
m')
b o k p,
Mem.perm m'
b o k p <->
(
b <>
bb /\
Mem.perm m b o k p).
Proof.
Lemma perm_free_eq:
forall m b lo hi m'
(
FREE:
Mem.free m b lo hi =
Some m')
(
BND:
Mem.bounds_of_block m b = (
lo,
hi))
b'
o k p
(
PERM:
Mem.perm m'
b'
o k p),
Mem.perm m b'
o k p /\
b <>
b'.
Proof.
Lemma free_bounds_exact:
forall m b lo hi m'
(
Free:
Mem.free m b lo hi =
Some m')
b',
Mem.bounds_of_block m'
b' =
if eq_block b b'
then (0,0)
else Mem.bounds_of_block m b'.
Proof.
intros.
generalize (
Mem.bounds_free _ _ _ b'
_ _ Free).
Local Transparent Mem.free.
unfold Mem.free in Free.
repeat destr_in Free;
inv Free.
destr.
subst.
intros _.
rewrite unchecked_free_bounds'.
repeat destr.
unfold has_bounds in Heqb0;
repeat destr_in Heqb0;
inv Heqb0.
inv Heqp.
des (
zeq lo z);
des (
zeq hi z0).
des (
zeq z z);
des (
zeq z0 z0).
Qed.
Lemma unchecked_free_contents:
forall m bb lo hi,
Mem.mem_contents (
Mem.unchecked_free m bb lo hi) =
Mem.mem_contents m.
Proof.
reflexivity.
Qed.
Lemma nextblock_unchecked_free:
forall b lo hi m,
Mem.nextblock m =
Mem.nextblock (
Mem.unchecked_free m b lo hi).
Proof.
intros.
reflexivity.
Qed.
Lemma Zeq_ge:
forall x y,
x =
y ->
x >=
y.
Proof.
intros; lia. Qed.
Lemma bounds_dec:
forall m b lo hi,
{
bounds_of_block m b = (
lo,
hi)} + {
bounds_of_block m b <> (
lo,
hi)}.
Proof.
decide equality.
Qed.
Preservation of drop_perm operations.
Definition meminj_no_overlap (
f:
meminj) (
m:
mem) :
Prop :=
forall b1 b1'
delta1 b2 b2'
delta2 ofs1 ofs2,
b1 <>
b2 ->
f b1 =
Some (
b1',
delta1) ->
f b2 =
Some (
b2',
delta2) ->
perm m b1 ofs1 Max Nonempty ->
perm m b2 ofs2 Max Nonempty ->
b1' <>
b2' \/
ofs1 +
delta1 <>
ofs2 +
delta2.
Definition meminj_no_overlap' (
f:
meminj) (
m:
mem) :
Prop :=
forall b1 b1'
delta1 b2 b2'
delta2 ofs1 ofs2,
b1 <>
b2 ->
f b1 =
Some (
b1',
delta1) ->
f b2 =
Some (
b2',
delta2) ->
in_bound_m ofs1 m b1 ->
in_bound_m ofs2 m b2 ->
b1' <>
b2' \/
ofs1 +
delta1 <>
ofs2 +
delta2.
Definition inj_offset_aligned (
delta:
Z) (
size:
Z) :
Prop :=
(
two_power_nat (
alignment_of_size size) |
delta).
Section MEMINJ.
Variable sm:
bool.
Variable ei:
meminj ->
expr_sym ->
expr_sym ->
Prop.
Hypothesis WF :
wf_inj ei.
Record mem_inj (
f:
meminj) (
m1 m2:
mem) :
Prop :=
mk_mem_inj {
mi_perm:
forall b1 b2 delta ofs k p,
f b1 =
Some(
b2,
delta) ->
perm m1 b1 ofs k p ->
perm m2 b2 (
ofs +
delta)
k p;
mi_bounds:
(* we mimic mi_perm with bounds instead of permissions. *)
forall b1 b2 delta ofs,
f b1 =
Some(
b2,
delta) ->
in_bound_m ofs m1 b1 ->
in_bound_m (
ofs+
delta)
m2 b2;
mi_align':
forall b b0 z,
(* we can now talk of the alignment of blocks *)
f b =
Some (
b0,
z) ->
(
mask m2 b0 >=
mask m1 b)%
nat /\
Z.divide (
two_p (
Z.of_nat (
mask m1 b)))
z;
mi_memval:
forall b1 ofs b2 delta,
f b1 =
Some(
b2,
delta) ->
perm m1 b1 ofs Cur Readable ->
memval_inject ei f
(
ZMap.get ofs m1.(
mem_contents)#
b1)
(
ZMap.get (
ofs+
delta)
m2.(
mem_contents)#
b2);
mi_size_mem:
(* m2 must be ``smaller'' than m1. *)
sm =
true ->
(
nb_boxes_used_m m2 <=
nb_boxes_used_m m1)%
nat
}.
Lemma mi_align:
forall f m1 m2,
mem_inj f m1 m2 ->
forall (
b1 b2:
block)
delta,
f b1 =
Some (
b2,
delta) ->
forall chunk ofs p,
range_perm m1 b1 ofs (
ofs +
size_chunk chunk)
Max p ->
(
align_chunk chunk |
delta).
Proof.
Preservation of permissions
Lemma perm_inj:
forall f m1 m2 b1 ofs k p b2 delta,
mem_inj f m1 m2 ->
perm m1 b1 ofs k p ->
f b1 =
Some(
b2,
delta) ->
perm m2 b2 (
ofs +
delta)
k p.
Proof.
intros.
eapply mi_perm;
eauto.
Qed.
Lemma range_perm_inj:
forall f m1 m2 b1 lo hi k p b2 delta,
mem_inj f m1 m2 ->
range_perm m1 b1 lo hi k p ->
f b1 =
Some(
b2,
delta) ->
range_perm m2 b2 (
lo +
delta) (
hi +
delta)
k p.
Proof.
intros;
red;
intros.
replace ofs with ((
ofs -
delta) +
delta)
by omega.
eapply perm_inj;
eauto.
apply H0.
omega.
Qed.
Lemma valid_access_inj:
forall f m1 m2 b1 b2 delta chunk ofs p,
mem_inj f m1 m2 ->
f b1 =
Some(
b2,
delta) ->
valid_access m1 chunk b1 ofs p ->
valid_access m2 chunk b2 (
ofs +
delta)
p.
Proof.
Preservation of loads.
Lemma getN_inj:
forall f m1 m2 b1 b2 delta,
mem_inj f m1 m2 ->
f b1 =
Some(
b2,
delta) ->
forall n ofs,
range_perm m1 b1 ofs (
ofs +
Z_of_nat n)
Cur Readable ->
list_forall2 (
memval_inject ei f)
(
getN n ofs (
m1.(
mem_contents)#
b1))
(
getN n (
ofs +
delta) (
m2.(
mem_contents)#
b2)).
Proof.
induction n;
intros;
simpl.
constructor.
rewrite inj_S in H1.
constructor.
eapply mi_memval;
eauto.
apply H1.
omega.
replace (
ofs +
delta + 1)
with ((
ofs + 1) +
delta)
by omega.
apply IHn.
red;
intros;
apply H1;
omega.
Qed.
Lemma load_inj:
forall f m1 m2 chunk b1 ofs b2 delta v1
(
MIG:
mem_inj f m1 m2)
(
LOAD:
load chunk m1 b1 ofs =
Some v1)
(
FB:
f b1 =
Some (
b2,
delta)),
exists v2,
load chunk m2 b2 (
ofs +
delta) =
Some v2 /\
ei f v1 v2.
Proof.
Lemma loadbytes_inj:
forall f m1 m2 len b1 ofs b2 delta bytes1,
mem_inj f m1 m2 ->
loadbytes m1 b1 ofs len =
Some bytes1 ->
f b1 =
Some (
b2,
delta) ->
exists bytes2,
loadbytes m2 b2 (
ofs +
delta)
len =
Some bytes2
/\
list_forall2 (
memval_inject ei f)
bytes1 bytes2.
Proof.
Preservation of stores.
Lemma setN_inj:
forall (
access:
Z ->
Prop)
delta m f vl1 vl2,
list_forall2 (
memval_inject m f)
vl1 vl2 ->
forall p c1 c2,
(
forall q,
access q ->
memval_inject m f (
ZMap.get q c1) (
ZMap.get (
q +
delta)
c2)) ->
(
forall q,
access q ->
memval_inject m f (
ZMap.get q (
setN vl1 p c1))
(
ZMap.get (
q +
delta) (
setN vl2 (
p +
delta)
c2))).
Proof.
induction 1;
intros;
simpl.
auto.
replace (
p +
delta + 1)
with ((
p + 1) +
delta)
by omega.
apply IHlist_forall2;
auto.
intros.
rewrite ZMap.gsspec at 1.
destruct (
ZIndexed.eq q0 p).
subst q0.
rewrite ZMap.gss.
auto.
rewrite ZMap.gso.
auto.
unfold ZIndexed.t in *.
omega.
Qed.
Lemma filter_ext:
forall A p p' (
l:
list A),
(
forall b,
p b =
p'
b) ->
filter p l =
filter p'
l.
Proof.
induction l; simpl; intros; eauto.
rewrite H; destr.
Qed.
Lemma nb_extra_store:
forall chunk m1 b ofs v m2 (
STORE:
store chunk m1 b ofs v =
Some m2),
nb_extra m1 =
nb_extra m2.
Proof.
intros.
unfold store in STORE.
destr_in STORE.
inv STORE.
reflexivity.
Qed.
Lemma nb_extra_storebytes:
forall m1 b ofs v m2 (
STORE:
storebytes m1 b ofs v =
Some m2),
nb_extra m1 =
nb_extra m2.
Proof.
intros.
unfold storebytes in STORE.
destr_in STORE.
inv STORE.
reflexivity.
Qed.
Lemma nb_extra_low_alloc:
forall m1 lo hi bt al b m2 (
STORE:
low_alloc m1 lo hi al bt =
Some (
m2,
b)),
nb_extra m1 =
nb_extra m2.
Proof.
intros.
unfold alloc,
low_alloc in STORE.
destr_in STORE.
inv STORE.
reflexivity.
Qed.
Lemma nb_extra_alloc:
forall m1 lo hi bt b m2 (
STORE:
alloc m1 lo hi bt =
Some (
m2,
b)),
nb_extra m1 =
nb_extra m2.
Proof.
intros.
unfold alloc,
low_alloc in STORE.
destr_in STORE.
inv STORE.
reflexivity.
Qed.
Lemma nb_extra_unchecked_free:
forall m1 lo hi b,
nb_extra m1 =
nb_extra (
unchecked_free m1 b lo hi).
Proof.
Lemma nb_extra_free:
forall m1 lo hi b m2 (
STORE:
free m1 b lo hi =
Some m2),
nb_extra m1 =
nb_extra m2.
Proof.
intros.
unfold free in STORE.
destr_in STORE.
destr_in STORE.
inv STORE.
reflexivity.
Qed.
Lemma nb_extra_drop_perm:
forall m1 b lo hi p m2 (
STORE:
drop_perm m1 b lo hi p =
Some m2),
nb_extra m1 =
nb_extra m2.
Proof.
intros.
unfold drop_perm in STORE.
destr_in STORE.
inv STORE.
reflexivity.
Qed.
Lemma nb_extra_free_list:
forall bl m1 m2 (
STORE:
free_list m1 bl =
Some m2),
nb_extra m1 =
nb_extra m2.
Proof.
induction bl;
simpl;
intros;
auto.
inv STORE;
auto.
repeat destr_in STORE.
apply IHbl in STORE.
erewrite (
nb_extra_free m1). 2:
eauto.
auto.
Qed.
Lemma nb_boxes_used_same:
forall m1 m2,
mk_block_list m1 =
mk_block_list m2 ->
nb_extra m1 =
nb_extra m2 ->
nb_boxes_used_m m1 =
nb_boxes_used_m m2.
Proof.
Ltac rew_nb_extra :=
repeat
match goal with
|
H:
store _ ?
m1 _ _ _ =
Some ?
m2 |-
context [
nb_extra ?
m2] =>
rewrite <- (
nb_extra_store _ _ _ _ _ _ H)
|
H:
storebytes ?
m1 _ _ _ =
Some ?
m2 |-
context [
nb_extra ?
m2] =>
rewrite <- (
nb_extra_storebytes _ _ _ _ _ H)
|
H:
drop_perm ?
m1 _ _ _ _ =
Some ?
m2 |-
context [
nb_extra ?
m2] =>
rewrite <- (
nb_extra_drop_perm _ _ _ _ _ _ H)
end.
Ltac rew_mk_block_list :=
repeat
match goal with
|
H:
store _ ?
m1 _ _ _ =
Some ?
m2 |-
context [
mk_block_list ?
m2] =>
rewrite (
store_mk_block_list _ _ _ _ _ _ H)
|
H:
storebytes ?
m1 _ _ _ =
Some ?
m2 |-
context [
mk_block_list ?
m2] =>
rewrite (
storebytes_mk_block_list _ _ _ _ _ H)
|
H:
drop_perm ?
m1 _ _ _ _ =
Some ?
m2 |-
context [
mk_block_list ?
m2] =>
rewrite <- (
drop_perm_mk_block_list _ _ _ _ _ _ H)
end.
Lemma nb_boxes_used_cons:
forall a b l,
nb_boxes_used ((
a,
b)::
l) = (
nb_boxes_used l +
box_span b)%
nat.
Proof.
Lemma nb_boxes_alloc:
forall m1 lo hi bt b m2,
alloc m1 lo hi bt =
Some (
m2,
b) ->
nb_boxes_used_m m2 = (
nb_boxes_used_m m1 +
box_span (
Z.max 0
hi))%
nat.
Proof.
Ltac solve_size_mem :=
match goal with
|
H:
alloc ?
m1 _ _ _ =
Some (?
m2,
_) |-
context [
nb_boxes_used_m ?
m2] =>
rewrite (
nb_boxes_alloc _ _ _ _ _ _ H)
|
H:
mem_inj _ _ _ |-
_ =>
unfold nb_boxes_used_m;
rew_mk_block_list;
rew_nb_extra;
inv H;
auto
| |-
_ =>
unfold nb_boxes_used_m;
rew_mk_block_list;
rew_nb_extra;
auto
end.
Lemma store_mapped_inj:
forall f chunk m1 b1 ofs v1 n1 m2 b2 delta v2
,
mem_inj f m1 m2 ->
store chunk m1 b1 ofs v1 =
Some n1 ->
meminj_no_overlap f m1 ->
f b1 =
Some (
b2,
delta) ->
ei f v1 v2 ->
exists n2,
store chunk m2 b2 (
ofs +
delta)
v2 =
Some n2
/\
mem_inj f n1 n2.
Proof.
Lemma store_unmapped_inj:
forall f chunk m1 b1 ofs v1 n1 m2,
mem_inj f m1 m2 ->
store chunk m1 b1 ofs v1 =
Some n1 ->
f b1 =
None ->
mem_inj f n1 m2.
Proof.
Lemma store_outside_inj:
forall f m1 m2 chunk b ofs v m2',
mem_inj f m1 m2 ->
(
forall b'
delta ofs',
f b' =
Some(
b,
delta) ->
perm m1 b'
ofs'
Cur Readable ->
ofs <=
ofs' +
delta <
ofs +
size_chunk chunk ->
False) ->
store chunk m2 b ofs v =
Some m2' ->
mem_inj f m1 m2'.
Proof.
Lemma storebytes_mapped_inj:
forall f m1 b1 ofs bytes1 n1 m2 b2 delta bytes2,
mem_inj f m1 m2 ->
storebytes m1 b1 ofs bytes1 =
Some n1 ->
meminj_no_overlap f m1 ->
f b1 =
Some (
b2,
delta) ->
list_forall2 (
memval_inject ei f)
bytes1 bytes2 ->
exists n2,
storebytes m2 b2 (
ofs +
delta)
bytes2 =
Some n2
/\
mem_inj f n1 n2.
Proof.
Lemma storebytes_unmapped_inj:
forall f m1 b1 ofs bytes1 n1 m2,
mem_inj f m1 m2 ->
storebytes m1 b1 ofs bytes1 =
Some n1 ->
f b1 =
None ->
mem_inj f n1 m2.
Proof.
Lemma storebytes_outside_inj:
forall f m1 m2 b ofs bytes2 m2',
mem_inj f m1 m2 ->
(
forall b'
delta ofs',
f b' =
Some(
b,
delta) ->
perm m1 b'
ofs'
Cur Readable ->
ofs <=
ofs' +
delta <
ofs +
Z_of_nat (
length bytes2) ->
False) ->
storebytes m2 b ofs bytes2 =
Some m2' ->
mem_inj f m1 m2'.
Proof.
Lemma storebytes_empty_inj:
forall f m1 b1 ofs1 m1'
m2 b2 ofs2 m2',
mem_inj f m1 m2 ->
storebytes m1 b1 ofs1 nil =
Some m1' ->
storebytes m2 b2 ofs2 nil =
Some m2' ->
mem_inj f m1'
m2'.
Proof.
Preservation of allocations
Lemma alloc_left_unmapped_inj:
forall f m1 m2 lo hi m1'
b1 bt,
mem_inj f m1 m2 ->
alloc m1 lo hi bt =
Some (
m1',
b1) ->
f b1 =
None ->
forall (
VB:
forall b, ~
valid_block m1 b ->
f b =
None),
mem_inj f m1'
m2.
Proof.
intros.
inversion H.
constructor.
-
intros.
exploit perm_alloc_inv;
eauto.
intros.
destruct (
eq_block b0 b1).
congruence.
eauto.
-
intros.
unfold in_bound_m in H3.
erewrite <-
bounds_of_block_alloc_other in H3;
eauto.
congruence.
-
intros.
erewrite <-
mask_alloc_other with (
m2:=
m1');
eauto.
congruence.
-
generalize H0;
intro ALLOC.
unfold alloc,
low_alloc in ALLOC.
destr_in ALLOC.
injection ALLOC;
intros NEXT MEM.
intros.
rewrite <-
MEM;
simpl.
rewrite NEXT.
exploit perm_alloc_inv;
eauto.
intros.
rewrite PMap.gsspec.
unfold eq_block in H4.
destruct (
peq b0 b1).
subst.
congruence.
eauto.
-
solve_size_mem.
intuition lia.
Qed.
Lemma drop_unmapped_inj:
forall f m1 m2 b lo hi p m1',
mem_inj f m1 m2 ->
drop_perm m1 b lo hi p =
Some m1' ->
f b =
None ->
mem_inj f m1'
m2.
Proof.
Lemma drop_mapped_inj:
forall f m1 m2 b1 b2 delta lo hi p m1',
mem_inj f m1 m2 ->
drop_perm m1 b1 lo hi p =
Some m1' ->
meminj_no_overlap f m1 ->
f b1 =
Some(
b2,
delta) ->
exists m2',
drop_perm m2 b2 (
lo +
delta) (
hi +
delta)
p =
Some m2'
/\
mem_inj f m1'
m2'.
Proof.
Lemma drop_outside_inj:
forall f m1 m2 b lo hi p m2',
mem_inj f m1 m2 ->
drop_perm m2 b lo hi p =
Some m2' ->
(
forall b'
delta ofs'
k p,
f b' =
Some(
b,
delta) ->
perm m1 b'
ofs'
k p ->
lo <=
ofs' +
delta <
hi ->
False) ->
mem_inj f m1 m2'.
Proof.
Lemma drop_left_inj:
forall f m1 m2 b lo hi p m1',
mem_inj f m1 m2 ->
drop_perm m1 b lo hi p =
Some m1' ->
mem_inj f m1'
m2.
Proof.
intros f m1 m2 b lo hi p m1'
INJ DP.
inv INJ;
constructor;
auto.
-
intros.
eapply mi_perm0;
eauto.
eapply perm_drop_4;
eauto.
-
intros.
eapply mi_bounds0;
eauto.
unfold in_bound_m in *.
erewrite drop_perm_bounds;
eauto.
-
intros.
eapply mi_align'0
in H;
eauto.
erewrite (
drop_perm_mask _ _ _ _ _ _ DP);
eauto.
-
intros.
erewrite <- (
drop_perm_contents _ _ _ _ _ _ DP);
eauto.
apply mi_memval0;
eauto.
eapply perm_drop_4;
eauto.
-
solve_size_mem.
Qed.
End MEMINJ.
Memory injections
A memory state
m1 injects into another memory state
m2 via the
memory injection
f if the following conditions hold:
-
each access in m2 that corresponds to a valid access in m1
is itself valid;
-
the memory value associated in m1 to an accessible address
must inject into m2's memory value at the corersponding address;
-
unallocated blocks in m1 must be mapped to None by f;
-
if f b = Some(b', delta), b' must be valid in m2;
-
distinct blocks in m1 are mapped to non-overlapping sub-blocks in m2;
-
the sizes of m2's blocks are representable with unsigned machine integers;
-
pointers that could be represented using unsigned machine integers remain
representable after the injection.
Opaque Z.add.
Opaque Pos.of_nat.
Lemma size_sup_one_block:
forall m bs b z0
(
BS:
bs #
b =
Some (0,
z0))
(
PLE: ((
Pos.to_nat b) <=
m)%
nat)
,
z0 <=
size_mem_aux MA
(
mk_block_list_aux (
get_size bs)
m).
Proof.
Lemma nb_boxes_used_le_one:
forall b z0 l,
In (
b,
z0)
l ->
(
box_span z0 <=
nb_boxes_used l)%
nat.
Proof.
Lemma in_bound_rep_aux:
forall m b o,
in_bound_m o m b ->
0 <=
o <
__szmem.
Proof.
Lemma in_bound_rep:
forall m b o,
in_bound_m o m b ->
0 <=
o <
Int.max_unsigned.
Proof.
This is now provable and not needed as an invariant.
Lemma mi_representable':
forall sm m f m1 m2
(
MI:
mem_inj sm m f m1 m2),
forall b b'
delta ofs
(
FB:
f b =
Some(
b',
delta))
(
PERM:
in_bound_m (
Int.unsigned ofs)
m1 b \/
in_bound_m (
Int.unsigned ofs - 1)
m1 b)
(
delta_pos:
delta >= 0),
0 <=
Int.unsigned ofs +
delta <=
Int.max_unsigned.
Proof.
intros.
assert (
PERM':
in_bound_m (
Int.unsigned ofs +
delta)
m2 b' \/
in_bound_m (
Int.unsigned ofs - 1 +
delta)
m2 b').
inv MI.
destruct PERM as [
PERM|
PERM]; [
left|
right];
eapply (
mi_bounds0 _ _ _ _ FB)
in PERM;
eauto.
destruct PERM'
as [
PERM'|
PERM'];
eapply in_bound_rep in PERM';
eauto;
omega.
Qed.
Lemma mi_representable:
forall sm m f m1 m2
(
MI:
mem_inj sm m f m1 m2),
forall b b'
delta ofs
(
FB:
f b =
Some(
b',
delta))
(
PERM:
perm m1 b (
Int.unsigned ofs)
Max Nonempty \/
perm m1 b (
Int.unsigned ofs - 1)
Max Nonempty)
(
delta_pos:
delta >= 0),
0 <=
Int.unsigned ofs +
delta <=
Int.max_unsigned.
Proof.
intros.
eapply mi_representable';
eauto.
destruct PERM as [
PERM|
PERM]; [
left|
right];
apply perm_bounds in PERM;
auto.
Qed.
Lemma meminj_no_overlap_impl:
forall f m,
Mem.meminj_no_overlap'
f m ->
Mem.meminj_no_overlap f m.
Proof.
intros f m MNO.
red in MNO;
red.
intros b1 b1'
delta1 b2 b2'
delta2 ofs1 ofs2 diff FB1 FB2 P1 P2.
apply Mem.perm_bounds in P1.
apply Mem.perm_bounds in P2.
specialize (
MNO b1 b1'
delta1 b2 b2'
delta2 ofs1 ofs2 diff FB1 FB2 P1 P2).
auto.
Qed.
Definition is_dynamic_block m b :=
(
mem_blocktype m) #
b =
Some Dynamic.
Lemma is_block_dynamic_alloc:
forall m lo hi m'
b
(
AB:
Mem.alloc m lo hi Normal =
Some (
m',
b))
b',
Mem.is_dynamic_block m b' <->
Mem.is_dynamic_block m'
b'.
Proof.
Lemma is_block_dynamic_alloc':
forall m lo hi m'
b bt
(
AB:
Mem.alloc m lo hi bt =
Some (
m',
b))
b' (
diff:
b <>
b'),
Mem.is_dynamic_block m b' <->
Mem.is_dynamic_block m'
b'.
Proof.
Lemma is_block_dynamic_storebytes:
forall m b o l m'
(
AB:
Mem.storebytes m b o l =
Some m')
b',
Mem.is_dynamic_block m b' <->
Mem.is_dynamic_block m'
b'.
Proof.
Lemma is_block_dynamic_drop_perm:
forall m b lo hi p m'
(
AB:
Mem.drop_perm m b lo hi p =
Some m')
b',
Mem.is_dynamic_block m b' <->
Mem.is_dynamic_block m'
b'.
Proof.
Lemma is_block_dynamic_unchfree:
forall m b lo hi b',
Mem.is_dynamic_block (
Mem.unchecked_free m b lo hi)
b' <->
Mem.is_dynamic_block m b'.
Proof.
Lemma is_block_dynamic_free:
forall m b lo hi b'
m' (
FREE:
Mem.free m b lo hi =
Some m'),
Mem.is_dynamic_block m'
b' <->
Mem.is_dynamic_block m b'.
Proof.
Lemma is_block_dynamic_freelist:
forall l m b'
m' (
FL:
Mem.free_list m l =
Some m'),
Mem.is_dynamic_block m'
b' <->
Mem.is_dynamic_block m b'.
Proof.
induction l;
simpl;
intros;
eauto.
inv FL.
tauto.
repeat destr_in FL.
rewrite <- (
is_block_dynamic_free _ _ _ _ _ _ Heqo).
auto.
Qed.
Lemma size_block_snd:
forall m2 b0,
snd (
Mem.bounds_of_block m2 b0) =
Mem.size_block m2 b0.
Proof.
Lemma size_block_unchecked_free:
forall m b lo hi b',
Mem.size_block (
Mem.unchecked_free m b lo hi)
b' =
if eq_block b b'
then let (
lo',
hi') :=
Mem.bounds_of_block m b in
if zeq lo'
lo &&
zeq hi'
hi
then 0
else hi'
else Mem.size_block m b'.
Proof.
Ltac rewbnd :=
try rewrite <- !
size_block_snd;
repeat
match goal with
H:
Mem.storebytes ?
m ?
b ?
o ?
l =
Some ?
m' |-
context [
Mem.bounds_of_block ?
m' ?
b'] =>
rewrite <- (
Mem.bounds_of_block_storebytes _ _ _ _ _ H b')
|
H:
Mem.drop_perm ?
m ?
b ?
lo ?
hi ?
p =
Some ?
m' |-
context [
Mem.bounds_of_block ?
m' ?
b'] =>
rewrite <- (
Mem.drop_perm_bounds _ _ _ _ _ _ H b')
|
H:
Mem.alloc ?
m ?
lo ?
hi ?
bt =
Some (?
m',?
b) |-
context [
Mem.bounds_of_block ?
m' ?
b] =>
rewrite (
Mem.bounds_of_block_alloc _ _ _ _ _ _ H)
|
H:
Mem.alloc ?
m ?
lo ?
hi ?
bt =
Some (?
m',?
b),
H1: ?
b <> ?
b' |-
context [
Mem.bounds_of_block ?
m' ?
b'] =>
rewrite <- (
Mem.bounds_of_block_alloc_other _ _ _ _ _ _ H _ H1)
|
H:
Mem.alloc ?
m ?
lo ?
hi ?
bt =
Some (?
m',?
b),
H1: ?
b' <> ?
b |-
context [
Mem.bounds_of_block ?
m' ?
b'] =>
rewrite <- (
Mem.bounds_of_block_alloc_other _ _ _ _ _ _ H _ (
not_eq_sym H1))
end;
try rewrite !
size_block_snd.
Ltac rewmsk :=
repeat
match goal with
H:
Mem.storebytes ?
m ?
b ?
o ?
l =
Some ?
m' |-
context [
Mem.mask ?
m' ?
b'] =>
rewrite <- (
Mem.mask_storebytes _ _ _ _ _ H b')
|
H:
Mem.drop_perm ?
m ?
b ?
lo ?
hi ?
p =
Some ?
m' |-
context [
Mem.mask ?
m' ?
b'] =>
rewrite <- (
Mem.mask_drop_perm _ _ _ _ _ _ H b')
|
H:
Mem.alloc ?
m ?
lo ?
hi ?
bt =
Some (?
m',?
b) |-
context [
Mem.mask ?
m' ?
b] =>
rewrite (
Mem.alloc_mask _ _ _ _ _ _ H)
|
H:
Mem.alloc ?
m ?
lo ?
hi ?
bt =
Some (?
m',?
b),
H1: ?
b <> ?
b' |-
context [
Mem.mask ?
m' ?
b'] =>
rewrite <- (
Mem.mask_alloc_other _ _ _ _ _ _ H _ H1)
|
H:
Mem.alloc ?
m ?
lo ?
hi ?
bt =
Some (?
m',?
b),
H1: ?
b' <> ?
b |-
context [
Mem.mask ?
m' ?
b'] =>
rewrite <- (
Mem.mask_alloc_other _ _ _ _ _ _ H _ (
not_eq_sym H1))
end.
Ltac rewvb :=
repeat
match goal with
H:
Mem.storebytes ?
m ?
b ?
o ?
l =
Some ?
m' |-
Mem.valid_block ?
m' ?
b' =>
apply (
Mem.storebytes_valid_block_1 _ _ _ _ _ H b')
|
H:
Mem.drop_perm ?
m ?
b ?
lo ?
hi ?
p =
Some ?
m' |-
Mem.valid_block ?
m' ?
b' =>
apply (
Mem.drop_perm_valid_block_1 _ _ _ _ _ _ H)
|
H:
Mem.alloc ?
m ?
lo ?
hi _ =
Some (?
m',?
b) |-
Mem.valid_block ?
m' ?
b =>
apply (
Mem.valid_new_block _ _ _ _ _ _ H)
|
H:
Mem.alloc ?
m ?
lo ?
hi _ =
Some (?
m',?
b),
H1: ?
b <> ?
b' |-
Mem.valid_block ?
m' ?
b' =>
apply (
Mem.valid_block_alloc _ _ _ _ _ _ H)
|
H:
Mem.alloc ?
m ?
lo ?
hi _ =
Some (?
m',?
b),
H1: ?
b' <> ?
b |-
Mem.valid_block ?
m' ?
b' =>
apply (
Mem.valid_block_alloc _ _ _ _ _ _ H)
|
H:
Mem.alloc ?
m ?
lo ?
hi _ =
Some (?
m',?
b)
|-
Mem.valid_block ?
m' ?
b' =>
let i :=
fresh in
set (
i :=
b' <>
b);
exfalso
end.
Lemma Forall_impl':
forall {
A :
Type} (
P Q :
A ->
Prop),
forall l :
list A,
(
forall a :
A,
In a l ->
P a ->
Q a) ->
Forall P l ->
Forall Q l.
Proof.
induction l; simpl; intros; eauto.
inv H0; constructor; auto.
Qed.
Lemma size_block_free_list:
forall l m b
(
F:
Forall (
fun x =>
let '(
b,
lo,
hi) :=
x in
Mem.bounds_of_block m b = (
lo,
hi))
l)
(
lnr:
list_norepet (
map fst (
map fst l)))
m',
Mem.free_list m l =
Some m' ->
Mem.size_block m'
b =
if in_dec peq b (
map fst (
map fst l))
then 0
else Mem.size_block m b.
Proof.
induction l;
simpl;
intros;
eauto.
inv H;
auto.
repeat destr_in H.
specialize (
IHl m0 b).
trim IHl.
{
clear IHl.
inv F.
revert H3;
apply Forall_impl'.
intros;
des a.
des p.
rewrite <-
H1.
eapply Mem.bounds_free.
eauto.
inv lnr.
rewrite map_map,
in_map_iff in H5.
intro;
subst.
elim H5;
exists (
b1,
z2,
z1);
split;
auto.
}
trim IHl.
{
inv lnr;
auto.
}
specialize (
IHl _ H).
rewrite IHl.
destr.
destr.
destr.
destr.
inv lnr.
des o.
unfold Mem.free in Heqo;
repeat destr_in Heqo;
inv Heqo.
rewrite size_block_unchecked_free.
rewrite pred_dec_true;
auto.
inv F.
rewrite H4.
des (
zeq z0 z0) ;
des (
zeq z z).
unfold Mem.free in Heqo;
repeat destr_in Heqo;
inv Heqo.
rewrite size_block_unchecked_free.
rewrite pred_dec_false;
auto.
Qed.
Lemma bounds_of_block_free_list:
forall l m b
(
F:
Forall (
fun x =>
let '(
b,
lo,
hi) :=
x in
Mem.bounds_of_block m b = (
lo,
hi))
l)
(
lnr:
list_norepet (
map fst (
map fst l)))
m',
Mem.free_list m l =
Some m' ->
Mem.bounds_of_block m'
b =
if in_dec peq b (
map fst (
map fst l))
then (0,0)
else Mem.bounds_of_block m b.
Proof.
induction l;
simpl;
intros;
eauto.
inv H;
auto.
repeat destr_in H.
specialize (
IHl m0 b).
trim IHl.
{
clear IHl.
inv F.
revert H3;
apply Forall_impl'.
intros;
des a.
des p.
rewrite <-
H1.
eapply Mem.bounds_free.
eauto.
inv lnr.
rewrite map_map,
in_map_iff in H5.
intro;
subst.
elim H5;
exists (
b1,
z2,
z1);
split;
auto.
}
trim IHl.
{
inv lnr;
auto.
}
specialize (
IHl _ H).
rewrite IHl.
destr.
destr.
destr.
destr.
inv lnr.
des o.
unfold Mem.free in Heqo;
repeat destr_in Heqo;
inv Heqo.
rewrite Mem.unchecked_free_bounds'.
rewrite pred_dec_true;
auto.
inv F.
rewrite H4.
des (
zeq z0 z0) ;
des (
zeq z z).
unfold Mem.free in Heqo;
repeat destr_in Heqo;
inv Heqo.
rewrite Mem.unchecked_free_bounds'.
rewrite pred_dec_false;
auto.
Qed.
Lemma freelist_in_bound_m:
forall l m m'
(
FL:
Mem.free_list m l =
Some m')
o b
(
IB:
Mem.in_bound_m o m'
b),
Mem.in_bound_m o m b.
Proof.
induction l;
simpl;
intros;
eauto.
-
inv FL;
auto.
-
des a;
des p.
destr_in FL.
specialize (
IHl _ _ FL _ _ IB).
unfold Mem.in_bound_m in *.
destruct (
Mem.free_bounds'
_ _ _ _ _ b Heqo0).
rewrite <-
H;
auto.
rewrite H in IHl.
red in IHl;
destr;
lia.
Qed.
Lemma freelist_perm:
forall l m m'
(
FL:
Mem.free_list m l =
Some m')
b o k p
(
NIN: ~
In b (
map fst (
map fst l)))
(
P:
Mem.perm m b o k p),
Mem.perm m'
b o k p.
Proof.
induction l;
simpl;
intros;
eauto.
inv FL;
auto.
repeat destr_in FL.
eapply IHl in FL;
eauto.
eapply Mem.perm_free_1;
eauto.
Qed.
Lemma free_list_not_in_bound:
forall l m m' (
FL:
Mem.free_list m l =
Some m')
o b (
NIB: ~
Mem.in_bound_m o m b),
~
Mem.in_bound_m o m'
b.
Proof.
Lemma freelist_in_bound_m':
forall l m m'
(
FL:
Mem.free_list m l =
Some m')
(
LNR:
list_norepet (
map fst (
map fst l)))
o b
(
IB:
Mem.in_bound_m o m'
b),
(
forall lo hi,
In b (
map fst (
map fst l)) ->
lo <=
o <
hi ->
False).
Proof.
Lemma uf_load:
forall chunk m b o b'
lo hi ,
b <>
b' ->
Mem.load chunk (
Mem.unchecked_free m b'
lo hi)
b o =
Mem.load chunk m b o.
Proof.
Lemma free_size:
forall m b lo hi m'
(
FREE:
Mem.free m b lo hi =
Some m'),
forall b',
Mem.size_block m'
b' <=
Mem.size_block m b'.
Proof.
Lemma lnr_remove:
forall {
A:
Type} (
eq:
forall (
a b:
A), {
a =
b} + {
a <>
b}) (
a:
A) (
l:
list A),
list_norepet l ->
list_norepet (
remove eq a l).
Proof.
induction 1;
simpl;
intros;
eauto.
constructor.
destr;
constructor;
auto.
intro IN.
apply Mem.remove_in_before in IN;
destr.
Qed.
Lemma has_bounds_bounds:
forall m b lo hi,
Mem.has_bounds m b lo hi =
true ->
Mem.bounds_of_block m b = (
lo,
hi).
Proof.
Lemma free_bounds_exact':
forall m b lo hi m',
Mem.free m b lo hi =
Some m' ->
Mem.bounds_of_block m b = (
lo,
hi).
Proof.
Section INJECT.
Variable sm :
bool.
Variable ei:
meminj ->
expr_sym ->
expr_sym ->
Prop.
Hypothesis wf:
wf_inj ei.
Record inject' (
f:
meminj) (
m1 m2:
mem) :
Prop :=
mk_inject {
mi_inj:
mem_inj sm ei f m1 m2;
mi_freeblocks:
forall b, ~(
valid_block m1 b) ->
f b =
None;
mi_mappedblocks:
forall b b'
delta,
f b =
Some(
b',
delta) ->
valid_block m2 b';
mi_no_overlap':
meminj_no_overlap'
f m1;
mi_delta_pos:
(* the mi_representable is derivable from mi_delta_pos and mi_inj *)
forall b b'
delta,
f b =
Some(
b',
delta) ->
delta >= 0;
mi_inj_dynamic:
forall b b'
delta,
f b =
Some (
b',
delta) ->
(
is_dynamic_block m1 b <->
is_dynamic_block m2 b') /\
(
is_dynamic_block m1 b ->
delta = 0 /\
bounds_of_block m1 b =
bounds_of_block m2 b') /\
(
is_dynamic_block m2 b' ->
forall b''
delta',
f b'' =
Some (
b',
delta') ->
b'' =
b)
}.
Definition inject :=
inject'.
Local Hint Resolve mi_mappedblocks:
mem.
Lemma inject_meminj_no_overlap:
forall f m1 m2,
inject f m1 m2 ->
meminj_no_overlap f m1.
Proof.
Preservation of access validity and pointer validity
Theorem valid_block_inject_1:
forall f m1 m2 b1 b2 delta,
f b1 =
Some(
b2,
delta) ->
inject f m1 m2 ->
valid_block m1 b1.
Proof.
Theorem valid_block_inject_2:
forall f m1 m2 b1 b2 delta,
f b1 =
Some(
b2,
delta) ->
inject f m1 m2 ->
valid_block m2 b2.
Proof.
Local Hint Resolve valid_block_inject_1 valid_block_inject_2:
mem.
Theorem perm_inject:
forall f m1 m2 b1 b2 delta ofs k p,
f b1 =
Some(
b2,
delta) ->
inject f m1 m2 ->
perm m1 b1 ofs k p ->
perm m2 b2 (
ofs +
delta)
k p.
Proof.
intros.
inv H0.
eapply perm_inj;
eauto.
Qed.
Theorem range_perm_inject:
forall f m1 m2 b1 b2 delta lo hi k p,
f b1 =
Some(
b2,
delta) ->
inject f m1 m2 ->
range_perm m1 b1 lo hi k p ->
range_perm m2 b2 (
lo +
delta) (
hi +
delta)
k p.
Proof.
Theorem valid_access_inject:
forall f m1 m2 chunk b1 ofs b2 delta p,
f b1 =
Some(
b2,
delta) ->
inject f m1 m2 ->
valid_access m1 chunk b1 ofs p ->
valid_access m2 chunk b2 (
ofs +
delta)
p.
Proof.
Theorem valid_pointer_inject:
forall f m1 m2 b1 ofs b2 delta,
f b1 =
Some(
b2,
delta) ->
inject f m1 m2 ->
valid_pointer m1 b1 ofs =
true ->
valid_pointer m2 b2 (
ofs +
delta) =
true.
Proof.
Theorem weak_valid_pointer_inject:
forall f m1 m2 b1 ofs b2 delta,
f b1 =
Some(
b2,
delta) ->
inject f m1 m2 ->
weak_valid_pointer m1 b1 ofs =
true ->
weak_valid_pointer m2 b2 (
ofs +
delta) =
true.
Proof.
The following lemmas establish the absence of machine integer overflow
during address computations.
Lemma address_inject:
forall f m1 m2 b1 ofs1 b2 delta p,
inject f m1 m2 ->
perm m1 b1 (
Int.unsigned ofs1)
Cur p ->
f b1 =
Some (
b2,
delta) ->
Int.unsigned (
Int.add ofs1 (
Int.repr delta)) =
Int.unsigned ofs1 +
delta.
Proof.
Lemma address_inject':
forall f m1 m2 chunk b1 ofs1 b2 delta,
inject f m1 m2 ->
valid_access m1 chunk b1 (
Int.unsigned ofs1)
Nonempty ->
f b1 =
Some (
b2,
delta) ->
Int.unsigned (
Int.add ofs1 (
Int.repr delta)) =
Int.unsigned ofs1 +
delta.
Proof.
Theorem weak_valid_pointer_inject_no_overflow:
forall f m1 m2 b ofs b'
delta,
inject f m1 m2 ->
weak_valid_pointer m1 b (
Int.unsigned ofs) =
true ->
f b =
Some(
b',
delta) ->
0 <=
Int.unsigned ofs +
Int.unsigned (
Int.repr delta) <=
Int.max_unsigned.
Proof.
Theorem valid_pointer_inject_no_overflow:
forall f m1 m2 b ofs b'
delta,
inject f m1 m2 ->
valid_pointer m1 b (
Int.unsigned ofs) =
true ->
f b =
Some(
b',
delta) ->
0 <=
Int.unsigned ofs +
Int.unsigned (
Int.repr delta) <=
Int.max_unsigned.
Proof.
Theorem valid_pointer_inject_val:
forall f m1 m2 b ofs b'
ofs',
inject f m1 m2 ->
valid_pointer m1 b (
Int.unsigned ofs) =
true ->
ei f (
Eval (
Vptr b ofs)) (
Eval (
Vptr b'
ofs')) ->
valid_pointer m2 b' (
Int.unsigned ofs') =
true.
Proof.
Theorem weak_valid_pointer_inject_val:
forall f m1 m2 b ofs b'
ofs',
inject f m1 m2 ->
weak_valid_pointer m1 b (
Int.unsigned ofs) =
true ->
ei f (
Eval (
Vptr b ofs)) (
Eval (
Vptr b'
ofs')) ->
weak_valid_pointer m2 b' (
Int.unsigned ofs') =
true.
Proof.
Theorem inject_no_overlap:
forall f m1 m2 b1 b2 b1'
b2'
delta1 delta2 ofs1 ofs2,
inject f m1 m2 ->
b1 <>
b2 ->
f b1 =
Some (
b1',
delta1) ->
f b2 =
Some (
b2',
delta2) ->
perm m1 b1 ofs1 Max Nonempty ->
perm m1 b2 ofs2 Max Nonempty ->
b1' <>
b2' \/
ofs1 +
delta1 <>
ofs2 +
delta2.
Proof.
Theorem different_pointers_inject:
forall f m m'
b1 ofs1 b2 ofs2 b1'
delta1 b2'
delta2,
inject f m m' ->
b1 <>
b2 ->
valid_pointer m b1 (
Int.unsigned ofs1) =
true ->
valid_pointer m b2 (
Int.unsigned ofs2) =
true ->
f b1 =
Some (
b1',
delta1) ->
f b2 =
Some (
b2',
delta2) ->
b1' <>
b2' \/
Int.unsigned (
Int.add ofs1 (
Int.repr delta1)) <>
Int.unsigned (
Int.add ofs2 (
Int.repr delta2)).
Proof.
Require Intv.
Theorem disjoint_or_equal_inject:
forall f m m'
b1 b1'
delta1 b2 b2'
delta2 ofs1 ofs2 sz,
inject f m m' ->
f b1 =
Some(
b1',
delta1) ->
f b2 =
Some(
b2',
delta2) ->
range_perm m b1 ofs1 (
ofs1 +
sz)
Max Nonempty ->
range_perm m b2 ofs2 (
ofs2 +
sz)
Max Nonempty ->
sz > 0 ->
b1 <>
b2 \/
ofs1 =
ofs2 \/
ofs1 +
sz <=
ofs2 \/
ofs2 +
sz <=
ofs1 ->
b1' <>
b2' \/
ofs1 +
delta1 =
ofs2 +
delta2
\/
ofs1 +
delta1 +
sz <=
ofs2 +
delta2
\/
ofs2 +
delta2 +
sz <=
ofs1 +
delta1.
Proof.
intros.
destruct (
eq_block b1 b2).
assert (
b1' =
b2')
by congruence.
assert (
delta1 =
delta2)
by congruence.
subst.
destruct H5.
congruence.
right.
destruct H5.
left;
congruence.
right.
omega.
destruct (
eq_block b1'
b2');
auto.
subst.
right.
right.
set (
i1 := (
ofs1 +
delta1,
ofs1 +
delta1 +
sz)).
set (
i2 := (
ofs2 +
delta2,
ofs2 +
delta2 +
sz)).
change (
snd i1 <=
fst i2 \/
snd i2 <=
fst i1).
apply Intv.range_disjoint';
simpl;
try omega.
unfold Intv.disjoint,
Intv.In;
simpl;
intros.
red;
intros.
exploit inject_meminj_no_overlap;
eauto.
instantiate (1 :=
x -
delta1).
apply H2.
omega.
instantiate (1 :=
x -
delta2).
apply H3.
omega.
intuition.
Qed.
Theorem aligned_area_inject:
forall f m m'
b ofs al sz b'
delta,
inject f m m' ->
al = 1 \/
al = 2 \/
al = 4 \/
al = 8 ->
sz > 0 ->
(
al |
sz) ->
range_perm m b ofs (
ofs +
sz)
Cur Nonempty ->
(
al |
ofs) ->
f b =
Some(
b',
delta) ->
(
al |
ofs +
delta).
Proof.
Preservation of loads
Theorem load_inject:
forall f m1 m2 chunk b1 ofs b2 delta v1,
inject f m1 m2 ->
load chunk m1 b1 ofs =
Some v1 ->
f b1 =
Some (
b2,
delta) ->
exists v2,
load chunk m2 b2 (
ofs +
delta) =
Some v2 /\
ei f v1 v2.
Proof.
intros.
inv H.
eapply load_inj;
eauto.
Qed.
Lemma alloc_0_inject:
forall tm1 tm2 sp f1 m2 bt,
alloc tm1 0 0
bt =
Some (
tm2,
sp) ->
inject f1 m2 tm1 ->
inject f1 m2 tm2.
Proof.
Lemma compat_wider:
forall m m'
(
bw :
forall b o,
in_bound_m o m b ->
in_bound_m o m'
b)
(
ms:
forall b,
nat_mask m b =
nat_mask m'
b)
cm q
(
COMP:
compat_m m'
q cm),
compat_m m q cm.
Proof.
intros; inv COMP; constructor; simpl; intros.
- apply addr_space.
apply bw; auto.
- apply overlap; auto.
apply bw; auto.
apply bw; auto.
- rewrite ms. apply alignment.
Qed.
Lemma abi_in_bound:
forall f m b o
(
ABI :
all_blocks_injected f m)
(
IB :
in_bound (
Int.unsigned o) (
bounds_of_block m b))
(
Fnone :
f b =
None),
False.
Proof.
intros.
destruct (
bounds_of_block m b)
eqn:?.
specialize (
ABI b _ _ Heqp ).
destruct (
zeq (
z0 -
z) 0).
unfold in_bound in IB.
simpl in IB.
omega.
apply ABI;
auto.
Qed.
Lemma compat_inject:
forall f m m'
(
ABI:
all_blocks_injected f m)
(
INJ :
inject f m m')
cm q
(
COMP:
compat_m m'
q cm),
compat_m m q (
Val.inj_alloc cm f).
Proof.
Lemma is_norm_m_is_norm:
forall m e v,
is_norm_m m e v ->
IsNorm.t (
bounds_of_block m) (
nat_mask m)
e v.
Proof.
intros m e v [A]; constructor; auto.
Qed.
Lemma tpMA_not_null:
Int.zero =
Int.repr (
two_power_nat MA) ->
False.
Proof.
Lemma inject_dep:
forall f m e e'
b
(
EI:
expr_inj f e e')
(
DEP:
depends Int.max_unsigned (
bounds_of_block m) (
nat_mask m)
e b),
f b <>
None.
Proof.
intros f m e e'
b EI DEP.
destruct (
exists_two_cms m b)
as (
cm &
cm' &
COMP &
COMP' &
DIFF &
SAME).
specialize (
DEP _ COMP _ COMP'
DIFF dummy_em).
clear COMP COMP'.
revert e e'
EI cm cm'
DEP DIFF SAME.
induction 1;
simpl;
intros;
eauto.
-
inv VI;
simpl in *;
try congruence.
destruct (
peq b b1);
subst;
auto.
congruence.
rewrite SAME in DEP;
auto.
-
apply (
fun d =>
IHEI _ _ d DIFF SAME).
intro EQ.
rewrite EQ in DEP.
congruence.
-
unfold not in *.
intro FB.
specialize (
fun d =>
IHEI1 _ _ d DIFF SAME FB).
specialize (
fun d =>
IHEI2 _ _ d DIFF SAME FB).
apply Decidable.dec_not_not in IHEI1.
apply Decidable.dec_not_not in IHEI2.
congruence.
destruct (
Val.eq (
eSexpr cm dummy_em f1) (
eSexpr cm'
dummy_em f1)); [
left|
right];
auto.
destruct (
Val.eq (
eSexpr cm dummy_em e1) (
eSexpr cm'
dummy_em e1)); [
left|
right];
auto.
Qed.
Lemma not_injected_not_dep:
forall f m m'
e1 e1'
b i (
ABI :
all_blocks_injected f m)
(
INJ :
inject f m m') (
EI :
ei f e1 e1')
(
N :
is_norm_m m e1 (
Vptr b i)) (
Fnone :
f b =
None),
False.
Proof.
Lemma norm_inject:
forall f m m'
e1 v1 e1'
(
ABI:
all_blocks_injected f m)
(
INJ:
inject f m m')
(
EI:
ei f e1 e1')
(
NU:
v1 <>
Vundef),
forall (
MN:
mem_norm m e1 =
v1),
mem_norm m'
e1' <>
Vundef /\
ei f (
Eval v1) (
Eval (
mem_norm m'
e1')).
Proof.
Lemma ei_vi_norm:
forall f v1 v2 m m',
all_blocks_injected f m ->
inject f m m' ->
ei f (
Eval (
mem_norm m v1)) (
Eval v2) ->
val_inject f (
mem_norm m v1)
v2.
Proof.
intros f v1 v2 m m'
ABI INJ EI.
eapply ei_vi;
eauto.
destr.
intro.
generalize (
norm_correct m v1);
rewrite Heqv.
intros.
exploit not_injected_not_dep;
eauto.
constructor.
red;
intros;
simpl;
eauto.
Qed.
Lemma norm_inject_val':
forall f m m'
e1 e1'
(
ABI:
all_blocks_injected f m)
(
INJ:
inject f m m')
(
EI:
ei f e1 e1'),
val_inject f (
mem_norm m e1) (
mem_norm m'
e1').
Proof.
Lemma sgn_lt:
forall a,
a > 0 ->
Z.sgn a = 1.
Proof.
des a; lia.
Qed.
Lemma sgn_le:
forall a,
a >= 0 ->
Z.sgn a = 1 \/
Z.sgn a = 0.
Proof.
des a; lia.
Qed.
Lemma propZ:
forall (
a b c d:
Z),
a =
b ->
c =
d ->
a =
c ->
b =
d.
Proof.
intros; subst; auto.
Qed.
Lemma align_ge2:
forall al z,
al > 0 ->
align z al =
z + (
al - 1 - (
z-1)
mod al).
Proof.
intros.
destruct (
align_ge1 z _ H)
as [
b [
A [
B C]]].
rewrite B.
f_equal.
subst.
generalize (
Z_div_mod_eq (
z-1)
_ H).
intros.
assert (
al * ((
z-1)/
al) =
z - 1 - (
z-1)
mod al)
by lia.
rewrite H1.
lia.
Qed.
Lemma sgn_gt x:
Z.sgn x = 1 ->
x > 0.
Proof.
des x; lia. Qed.
Lemma filter_mbla_ext:
forall sz n p p' (
P:
forall b,
Ple b (
Pos.of_nat n) ->
p b =
p'
b),
filter (
fun x =>
p (
fst x)) (
mk_block_list_aux sz n) =
filter (
fun x =>
p' (
fst x)) (
mk_block_list_aux sz n).
Proof.
induction n; simpl; intros; auto.
trim (IHn p p').
intros b PLT; apply P. ppsimpl; lia.
rewrite P.
destr; f_equal; auto.
xomega.
Qed.
Theorem loadv_inject:
forall f m1 m2 chunk a1 a2 v1
(
ABI:
all_blocks_injected f m1)
(
MINJ:
inject f m1 m2),
loadv chunk m1 a1 =
Some v1 ->
ei f a1 a2 ->
exists v2,
loadv chunk m2 a2 =
Some v2 /\
ei f v1 v2.
Proof.
Theorem loadbytes_inject:
forall f m1 m2 b1 ofs len b2 delta bytes1,
inject f m1 m2 ->
loadbytes m1 b1 ofs len =
Some bytes1 ->
f b1 =
Some (
b2,
delta) ->
exists bytes2,
loadbytes m2 b2 (
ofs +
delta)
len =
Some bytes2
/\
list_forall2 (
memval_inject ei f)
bytes1 bytes2.
Proof.
Preservation of stores
Theorem store_mapped_inject:
forall f chunk m1 b1 ofs v1 n1 m2 b2 delta v2,
inject f m1 m2 ->
store chunk m1 b1 ofs v1 =
Some n1 ->
f b1 =
Some (
b2,
delta) ->
ei f v1 v2 ->
exists n2,
store chunk m2 b2 (
ofs +
delta)
v2 =
Some n2
/\
inject f n1 n2.
Proof.
Theorem storev_inject:
forall f m1 m2 chunk a1 a2 b1 b2 v1
(
ABI:
all_blocks_injected f m1),
inject f m1 m2 ->
storev chunk m1 a1 b1 =
Some v1 ->
ei f a1 a2 ->
ei f b1 b2 ->
exists v2,
storev chunk m2 a2 b2 =
Some v2 /\
inject f v1 v2.
Proof.
Theorem store_unmapped_inject:
forall f chunk m1 b1 ofs v1 n1 m2,
inject f m1 m2 ->
store chunk m1 b1 ofs v1 =
Some n1 ->
f b1 =
None ->
inject f n1 m2.
Proof.
Theorem store_outside_inject:
forall f m1 m2 chunk b ofs v m2',
inject f m1 m2 ->
(
forall b'
delta ofs',
f b' =
Some(
b,
delta) ->
perm m1 b'
ofs'
Cur Readable ->
ofs <=
ofs' +
delta <
ofs +
size_chunk chunk ->
False) ->
store chunk m2 b ofs v =
Some m2' ->
inject f m1 m2'.
Proof.
Theorem storev_mapped_inject:
forall f chunk m1 a1 v1 n1 m2 a2 v2
(
ABI:
all_blocks_injected f m1),
inject f m1 m2 ->
storev chunk m1 a1 v1 =
Some n1 ->
ei f a1 a2 ->
ei f v1 v2 ->
exists n2,
storev chunk m2 a2 v2 =
Some n2 /\
inject f n1 n2.
Proof.
Theorem storebytes_mapped_inject:
forall f m1 b1 ofs bytes1 n1 m2 b2 delta bytes2,
inject f m1 m2 ->
storebytes m1 b1 ofs bytes1 =
Some n1 ->
f b1 =
Some (
b2,
delta) ->
list_forall2 (
memval_inject ei f)
bytes1 bytes2 ->
exists n2,
storebytes m2 b2 (
ofs +
delta)
bytes2 =
Some n2
/\
inject f n1 n2.
Proof.
Theorem storebytes_unmapped_inject:
forall f m1 b1 ofs bytes1 n1 m2,
inject f m1 m2 ->
storebytes m1 b1 ofs bytes1 =
Some n1 ->
f b1 =
None ->
inject f n1 m2.
Proof.
Theorem storebytes_outside_inject:
forall f m1 m2 b ofs bytes2 m2',
inject f m1 m2 ->
(
forall b'
delta ofs',
f b' =
Some(
b,
delta) ->
perm m1 b'
ofs'
Cur Readable ->
ofs <=
ofs' +
delta <
ofs +
Z_of_nat (
length bytes2) ->
False) ->
storebytes m2 b ofs bytes2 =
Some m2' ->
inject f m1 m2'.
Proof.
Theorem storebytes_empty_inject:
forall f m1 b1 ofs1 m1'
m2 b2 ofs2 m2',
inject f m1 m2 ->
storebytes m1 b1 ofs1 nil =
Some m1' ->
storebytes m2 b2 ofs2 nil =
Some m2' ->
inject f m1'
m2'.
Proof.
Theorem alloc_left_unmapped_inject:
forall f m1 m2 lo hi m1'
b1 bt,
inject f m1 m2 ->
alloc m1 lo hi bt =
Some (
m1',
b1) ->
exists f',
inject f'
m1'
m2
/\
inject_incr f f'
/\
f'
b1 =
None
/\ (
forall b,
b <>
b1 ->
f'
b =
f b).
Proof.
intros.
inversion H.
set (
f' :=
fun b =>
if eq_block b b1 then None else f b).
assert (
inject_incr f f').
{
red;
unfold f';
intros.
destruct (
eq_block b b1).
subst b.
assert (
f b1 =
None).
eauto with mem.
congruence.
auto.
}
assert (
mem_inj sm ei f'
m1 m2).
{
inversion mi_inj0;
constructor;
eauto with mem.
-
unfold f';
intros.
destruct (
eq_block b0 b1).
congruence.
eauto.
-
unfold f';
intros.
destruct (
eq_block b0 b1).
congruence.
eauto.
-
unfold f';
intros.
destruct (
eq_block b b1).
congruence.
eauto.
-
unfold f';
intros.
destruct (
eq_block b0 b1).
congruence.
apply memval_inject_incr with f;
auto.
}
exists f';
split.
constructor;
eauto.
-
eapply alloc_left_unmapped_inj;
eauto.
unfold f';
apply dec_eq_true.
unfold f'.
intros;
destr.
eauto.
-
intros.
unfold f'.
destruct (
eq_block b b1).
auto.
apply mi_freeblocks0.
red;
intro;
elim H3.
eauto with mem.
-
unfold f';
intros.
destruct (
eq_block b b1).
congruence.
eauto.
-
unfold f';
red;
intros.
destruct (
eq_block b0 b1);
destruct (
eq_block b2 b1);
try congruence.
eapply mi_no_overlap'0.
eexact H3.
eauto.
eauto.
unfold in_bound_m in *.
erewrite <-
bounds_of_block_alloc_other in H6;
eauto.
unfold in_bound_m in *.
erewrite <-
bounds_of_block_alloc_other in H7;
eauto.
-
unfold f';
intros.
destruct (
eq_block b b1);
try discriminate.
eauto.
-
unfold f'.
intros.
destr_in H3.
unfold is_dynamic_block,
bounds_of_block in *;
unfold alloc,
low_alloc in H0;
destr_in H0;
inv H0;
simpl in *.
unfold f'
in *.
subst b1.
rewrite !
PMap.gso by auto.
move mi_inj_dynamic0 at bottom.
specialize (
mi_inj_dynamic0 _ _ _ H3).
des mi_inj_dynamic0.
des a.
repSplit;
eauto.
intros A.
intros.
destr_in H0.
apply e in H0;
auto.
-
split;
auto.
split.
unfold f';
apply dec_eq_true.
intros;
unfold f';
apply dec_eq_false;
auto.
Qed.
Lemma alloc_in_bound':
forall m1 lo hi m2 b bt (
ALLOC:
alloc m1 lo hi bt =
Some (
m2,
b))
b0 o,
in_bound_m o m1 b0 ->
in_bound_m o m2 b0.
Proof.
Lemma alloc_in_bound_old:
forall m1 lo hi m2 b bt (
ALLOC:
alloc m1 lo hi bt =
Some (
m2,
b))
b0 o (
diff:
b <>
b0),
in_bound_m o m2 b0 ->
in_bound_m o m1 b0.
Proof.
Lemma ioa_div:
forall sz delta,
inj_offset_aligned delta sz ->
(
two_p (
Z.of_nat (
alignment_of_size sz)) |
delta).
Proof.
Definition align_distr :=
align_distr.
Opaque align.
Lemma alloc_less_ok:
forall m z z0 bt,
Mem.alloc m 0
z bt =
None ->
Mem.alloc m 0
z0 bt <>
None ->
0 <=
z <=
z0 ->
False.
Proof.
Lemma alloc_parallel_inj:
forall f m1 m2 lo hi m1'
b1 m b bt
(
INJ:
inject f m1 m2)
(
ALLOC:
alloc m1 lo hi bt =
Some (
m1',
b1))
(
HIpos :
hi >= 0)
(
ALLOC2 :
alloc m2 lo hi bt =
Some (
m,
b)),
mem_inj sm ei (
fun b0 :
positive =>
if peq b0 b1 then Some (
b, 0)
else f b0)
m1'
m.
Proof.
Lemma alloc_none_too_many_boxes:
forall m lo hi bt (
ALLOC:
alloc m lo hi bt =
None),
Z.of_nat (
nb_boxes_used_m m +
box_span (
Z.max 0
hi))%
nat >=
nb_boxes_max.
Proof.
Lemma wfm_alloc:
forall m,
Z.of_nat (
nb_boxes_used_m m) <
nb_boxes_max.
Proof.
Theorem alloc_parallel_inject:
forall f m1 m2 lo1 hi1 m1'
b1 (
ORD:
lo1 <=
hi1)
bt
(
INJ:
inject f m1 m2)
(
ALLOC:
alloc m1 lo1 hi1 bt =
Some (
m1',
b1))
(
HIpos:
hi1 >= 0)
(
SM:
sm =
true),
exists f',
exists m2',
exists b2,
alloc m2 lo1 hi1 bt =
Some (
m2',
b2)
/\
inject f'
m1'
m2'
/\
inject_incr f f'
/\
f'
b1 =
Some(
b2, 0)
/\ (
forall b,
b <>
b1 ->
f'
b =
f b).
Proof.
intros.
destruct (
alloc m2 lo1 hi1 bt)
eqn:?.
-
destruct p.
exists (
fun b0 =>
if peq b0 b1 then Some (
b,0)
else f b0).
exists m.
exists b.
intuition.
+
constructor;
simpl;
intros;
eauto.
*
eapply alloc_parallel_inj;
eauto.
*
destr.
subst b0.
contradict H.
eapply valid_new_block;
eauto.
inv INJ;
auto.
apply mi_freeblocks0;
auto.
intro A.
apply (
valid_block_alloc _ _ _ _ _ _ ALLOC)
in A.
congruence.
*
inv INJ;
eauto.
destr_in H.
inv H.
apply valid_new_block in Heqo;
auto.
apply mi_mappedblocks0 in H;
auto.
eapply valid_block_alloc in H;
eauto.
*
inv INJ.
red.
intros b0 b1'
delta1 b2 b2'
delta2 ofs1 ofs2 diff F0 F2 i0 i2.
{
des (
peq b0 b1).
des (
peq b2 b1).
-
left.
inv F0.
intro;
subst.
apply mi_mappedblocks0 in F2.
apply (
fresh_block_alloc _ _ _ _ _ _ Heqo)
in F2;
auto.
-
des (
peq b2 b1).
inv F2.
+
left.
intro;
subst.
apply mi_mappedblocks0 in F0.
apply (
fresh_block_alloc _ _ _ _ _ _ Heqo)
in F0;
auto.
+
red in mi_no_overlap'0.
apply (
mi_no_overlap'0
_ _ _ _ _ _ _ _ diff);
eauto.
unfold in_bound_m in *;
rewrite <- (
bounds_of_block_alloc_other _ _ _ _ _ _ ALLOC)
in i0;
auto.
unfold in_bound_m in *;
rewrite <-(
bounds_of_block_alloc_other _ _ _ _ _ _ ALLOC)
in i2;
auto.
}
*
inv INJ.
destruct (
peq b0 b1);
subst;
auto.
inv H.
omega.
eauto.
*
inv INJ.
destr_in H.
inv H.
unfold is_dynamic_block,
bounds_of_block in *;
unfold alloc,
low_alloc in ALLOC,
Heqo;
destr_in ALLOC;
destr_in Heqo;
inv ALLOC;
inv Heqo;
simpl in *.
rewrite !
PMap.gss.
repSplit;
destr.
intro A;
inv A.
intros.
destr_in H.
apply mi_mappedblocks0 in H.
red in H;
xomega.
assert (
b' <>
b).
intro;
subst.
apply mi_mappedblocks0 in H.
apply alloc_result in Heqo.
subst;
red in H;
xomega.
unfold is_dynamic_block,
bounds_of_block in *;
unfold alloc,
low_alloc in ALLOC,
Heqo;
destr_in ALLOC;
destr_in Heqo;
inv ALLOC;
inv Heqo;
simpl in *.
rewrite !
PMap.gso by auto.
des (
mi_inj_dynamic0 _ _ _ H).
des a.
repSplit;
auto.
intros.
destr_in H2.
eapply e;
eauto.
+
unfold inject_incr.
intros.
des (
peq b0 b1).
rewrite mi_freeblocks with (
m1:=
m1) (
m2:=
m2)
in H;
auto.
congruence.
eapply fresh_block_alloc;
eauto.
subst b0;
eauto.
+
rewrite peq_true.
auto.
+
rewrite peq_false;
auto.
-
exfalso.
rewrite alloc_lo_0 in *.
apply alloc_none_too_many_boxes in Heqo.
apply nb_boxes_alloc in ALLOC.
generalize (
mi_size_mem _ _ _ _ _ (
mi_inj _ _ _ INJ)).
generalize (
wfm_alloc m1').
intros.
intuition lia.
Qed.
Preservation of free operations
Lemma perm_free_list:
forall l m m'
b ofs k p,
free_list m l =
Some m' ->
perm m'
b ofs k p ->
perm m b ofs k p /\
(
forall lo hi,
In (
b,
lo,
hi)
l ->
lo <=
ofs <
hi ->
False).
Proof.
induction l;
simpl;
intros.
inv H.
auto.
destruct a as [[
b1 lo1]
hi1].
destruct (
free m b1 lo1 hi1)
as [
m1|]
eqn:
E;
try discriminate.
exploit IHl;
eauto.
intros [
A B].
split.
eauto with mem.
intros.
destruct H1.
inv H1.
elim (
perm_free_2 _ _ _ _ _ E ofs k p).
auto.
auto.
eauto.
Qed.
Lemma drop_outside_inject:
forall f m1 m2 b lo hi p m2',
inject f m1 m2 ->
drop_perm m2 b lo hi p =
Some m2' ->
(
forall b'
delta ofs k p,
f b' =
Some(
b,
delta) ->
perm m1 b'
ofs k p ->
lo <=
ofs +
delta <
hi ->
False) ->
inject f m1 m2'.
Proof.
Injecting a memory into itself.
Definition flat_inj (
thr:
block) :
meminj :=
fun (
b:
block) =>
if plt b thr then Some(
b, 0)
else None.
Definition inject_neutral (
thr:
block) (
m:
mem) :=
mem_inj sm ei (
flat_inj thr)
m m.
Remark flat_inj_no_overlap:
forall thr m,
meminj_no_overlap (
flat_inj thr)
m.
Proof.
unfold flat_inj;
intros;
red;
intros.
destruct (
plt b1 thr);
inversion H0;
subst.
destruct (
plt b2 thr);
inversion H1;
subst.
auto.
Qed.
Theorem neutral_inject:
forall m,
inject_neutral (
nextblock m)
m ->
inject (
flat_inj (
nextblock m))
m m.
Proof.
Theorem empty_inject_neutral:
forall thr,
inject_neutral thr empty.
Proof.
intros thr;
red;
constructor;
eauto.
-
unfold flat_inj;
intros.
destruct (
plt b1 thr);
inv H.
replace (
ofs + 0)
with ofs by omega;
auto.
-
unfold flat_inj;
intros.
destruct (
plt b1 thr);
inv H.
replace (
ofs + 0)
with ofs by omega;
auto.
-
unfold flat_inj;
intros.
destruct (
plt b thr);
inv H.
split;
try omega.
unfold mask;
simpl.
rewrite PMap.gi.
simpl.
apply Z.divide_1_l.
-
intros.
apply perm_empty in H0.
exfalso;
auto.
Qed.
Theorem alloc_inject_neutral:
forall thr m lo hi b m'
bt
(
ALLOC:
alloc m lo hi bt =
Some (
m',
b))
(
LO:
lo <= 0)
(
INJ:
inject_neutral thr m)
(
LT:
Plt (
nextblock m)
thr),
inject_neutral thr m'.
Proof.
Theorem store_inject_neutral:
forall chunk m b ofs v m'
thr,
store chunk m b ofs v =
Some m' ->
inject_neutral thr m ->
Plt b thr ->
ei (
flat_inj thr)
v v ->
inject_neutral thr m'.
Proof.
Theorem drop_inject_neutral:
forall m b lo hi p m'
thr,
drop_perm m b lo hi p =
Some m' ->
inject_neutral thr m ->
Plt b thr ->
inject_neutral thr m'.
Proof.
End INJECT.
Definition one2oneinject (
f:
meminj) :=
forall b b'
delta,
f b =
Some (
b',
delta) ->
delta = 0.
Invariance properties between two memory states
Section UNCHANGED_ON.
Variable P:
block ->
Z ->
Prop.
Record unchanged_on (
m_before m_after:
mem) :
Prop :=
mk_unchanged_on {
unchanged_on_perm:
forall b ofs k p,
P b ofs ->
valid_block m_before b ->
(
perm m_before b ofs k p <->
perm m_after b ofs k p);
unchanged_on_contents:
forall b ofs,
P b ofs ->
perm m_before b ofs Cur Readable ->
ZMap.get ofs (
PMap.get b m_after.(
mem_contents)) =
ZMap.get ofs (
PMap.get b m_before.(
mem_contents))
}.
Lemma unchanged_on_refl:
forall m,
unchanged_on m m.
Proof.
intros; constructor; tauto.
Qed.
Lemma perm_unchanged_on:
forall m m'
b ofs k p,
unchanged_on m m' ->
P b ofs ->
valid_block m b ->
perm m b ofs k p ->
perm m'
b ofs k p.
Proof.
intros. destruct H. apply unchanged_on_perm0; auto.
Qed.
Lemma perm_unchanged_on_2:
forall m m'
b ofs k p,
unchanged_on m m' ->
P b ofs ->
valid_block m b ->
perm m'
b ofs k p ->
perm m b ofs k p.
Proof.
intros. destruct H. apply unchanged_on_perm0; auto.
Qed.
Lemma loadbytes_unchanged_on_1:
forall m m'
b ofs n,
unchanged_on m m' ->
valid_block m b ->
(
forall i,
ofs <=
i <
ofs +
n ->
P b i) ->
loadbytes m'
b ofs n =
loadbytes m b ofs n.
Proof.
Lemma loadbytes_unchanged_on:
forall m m'
b ofs n bytes,
unchanged_on m m' ->
(
forall i,
ofs <=
i <
ofs +
n ->
P b i) ->
loadbytes m b ofs n =
Some bytes ->
loadbytes m'
b ofs n =
Some bytes.
Proof.
Lemma load_unchanged_on_1:
forall m m'
chunk b ofs,
unchanged_on m m' ->
valid_block m b ->
(
forall i,
ofs <=
i <
ofs +
size_chunk chunk ->
P b i) ->
load chunk m'
b ofs =
load chunk m b ofs.
Proof.
Lemma load_unchanged_on:
forall m m'
chunk b ofs v,
unchanged_on m m' ->
(
forall i,
ofs <=
i <
ofs +
size_chunk chunk ->
P b i) ->
load chunk m b ofs =
Some v ->
load chunk m'
b ofs =
Some v.
Proof.
Lemma store_unchanged_on:
forall chunk m b ofs v m',
store chunk m b ofs v =
Some m' ->
(
forall i,
ofs <=
i <
ofs +
size_chunk chunk -> ~
P b i) ->
unchanged_on m m'.
Proof.
Lemma storebytes_unchanged_on:
forall m b ofs bytes m',
storebytes m b ofs bytes =
Some m' ->
(
forall i,
ofs <=
i <
ofs +
Z_of_nat (
length bytes) -> ~
P b i) ->
unchanged_on m m'.
Proof.
Lemma alloc_unchanged_on:
forall m lo hi m'
b bt,
alloc m lo hi bt =
Some (
m',
b) ->
unchanged_on m m'.
Proof.
Lemma free_unchanged_on:
forall m b lo hi m',
free m b lo hi =
Some m' ->
(
forall i,
lo <=
i <
hi -> ~
P b i) ->
unchanged_on m m'.
Proof.
intros;
constructor;
intros.
-
split;
intros.
eapply perm_free_1;
eauto.
destruct (
eq_block b0 b);
auto.
destruct (
zlt ofs lo);
auto.
destruct (
zle hi ofs);
auto.
subst b0.
elim (
H0 ofs).
omega.
auto.
eapply perm_free_3;
eauto.
-
unfold free in H.
repeat destr_in H;
inv H.
simpl.
auto.
Qed.
End UNCHANGED_ON.
End Mem.
Notation mem :=
Mem.mem.
Global Opaque Mem.alloc Mem.free Mem.store Mem.load Mem.storebytes Mem.loadbytes.
Hint Resolve
Mem.valid_not_valid_diff
Mem.perm_implies
Mem.perm_cur
Mem.perm_max
Mem.perm_valid_block
Mem.range_perm_implies
Mem.range_perm_cur
Mem.range_perm_max
Mem.valid_access_implies
Mem.valid_access_valid_block
Mem.valid_access_perm
Mem.valid_access_load
Mem.load_valid_access
Mem.loadbytes_range_perm
Mem.valid_access_store
Mem.perm_store_1
Mem.perm_store_2
Mem.nextblock_store
Mem.store_valid_block_1
Mem.store_valid_block_2
Mem.store_valid_access_1
Mem.store_valid_access_2
Mem.store_valid_access_3
Mem.storebytes_range_perm
Mem.perm_storebytes_1
Mem.perm_storebytes_2
Mem.storebytes_valid_access_1
Mem.storebytes_valid_access_2
Mem.nextblock_storebytes
Mem.storebytes_valid_block_1
Mem.storebytes_valid_block_2
Mem.nextblock_alloc
Mem.alloc_result
Mem.valid_block_alloc
Mem.fresh_block_alloc
Mem.valid_new_block
Mem.perm_alloc_1
Mem.perm_alloc_2
Mem.perm_alloc_3
Mem.perm_alloc_4
Mem.perm_alloc_inv
Mem.valid_access_alloc_other
Mem.valid_access_alloc_same
Mem.valid_access_alloc_inv
Mem.range_perm_free
Mem.free_range_perm
Mem.nextblock_free
Mem.valid_block_free_1
Mem.valid_block_free_2
Mem.perm_free_1
Mem.perm_free_2
Mem.perm_free_3
Mem.valid_access_free_1
Mem.valid_access_free_2
Mem.valid_access_free_inv_1
Mem.valid_access_free_inv_2
Mem.unchanged_on_refl
:
mem.